961 research outputs found

    Reinforcement Learning Algorithms in Humanoid Robotics

    Get PDF

    IK-FA, a new heuristic inverse kinematics solver using firefly algorithm

    Get PDF
    In this paper, a heuristic method based on Firefly Algorithm is proposed for inverse kinematics problems in articulated robotics. The proposal is called, IK-FA. Solving inverse kinematics, IK, consists in finding a set of joint-positions allowing a specific point of the system to achieve a target position. In IK-FA, the Fireflies positions are assumed to be a possible solution for joints elementary motions. For a robotic system with a known forward kinematic model, IK-Fireflies, is used to generate iteratively a set of joint motions, then the forward kinematic model of the system is used to compute the relative Cartesian positions of a specific end-segment, and to compare it to the needed target position. This is a heuristic approach for solving inverse kinematics without computing the inverse model. IK-FA tends to minimize the distance to a target position, the fitness function could be established as the distance between the obtained forward positions and the desired one, it is subject to minimization. In this paper IK-FA is tested over a 3 links articulated planar system, the evaluation is based on statistical analysis of the convergence and the solution quality for 100 tests. The impact of key FA parameters is also investigated with a focus on the impact of the number of fireflies, the impact of the maximum iteration number and also the impact of (a, Ăź, Âż, d) parameters. For a given set of valuable parameters, the heuristic converges to a static fitness value within a fix maximum number of iterations. IK-FA has a fair convergence time, for the tested configuration, the average was about 2.3394 Ă— 10-3 seconds with a position error fitness around 3.116 Ă— 10-8 for 100 tests. The algorithm showed also evidence of robustness over the target position, since for all conducted tests with a random target position IK-FA achieved a solution with a position error lower or equal to 5.4722 Ă— 10-9.Peer ReviewedPostprint (author's final draft

    Intelligent approaches in locomotion - a review

    Get PDF

    Humanoid Robots

    Get PDF
    For many years, the human being has been trying, in all ways, to recreate the complex mechanisms that form the human body. Such task is extremely complicated and the results are not totally satisfactory. However, with increasing technological advances based on theoretical and experimental researches, man gets, in a way, to copy or to imitate some systems of the human body. These researches not only intended to create humanoid robots, great part of them constituting autonomous systems, but also, in some way, to offer a higher knowledge of the systems that form the human body, objectifying possible applications in the technology of rehabilitation of human beings, gathering in a whole studies related not only to Robotics, but also to Biomechanics, Biomimmetics, Cybernetics, among other areas. This book presents a series of researches inspired by this ideal, carried through by various researchers worldwide, looking for to analyze and to discuss diverse subjects related to humanoid robots. The presented contributions explore aspects about robotic hands, learning, language, vision and locomotion

    Biologically Inspired Robots

    Get PDF

    Computational aspects of cellular intelligence and their role in artificial intelligence.

    Get PDF
    The work presented in this thesis is concerned with an exploration of the computational aspects of the primitive intelligence associated with single-celled organisms. The main aim is to explore this Cellular Intelligence and its role within Artificial Intelligence. The findings of an extensive literature search into the biological characteristics, properties and mechanisms associated with Cellular Intelligence, its underlying machinery - Cell Signalling Networks and the existing computational methods used to capture it are reported. The results of this search are then used to fashion the development of a versatile new connectionist representation, termed the Artificial Reaction Network (ARN). The ARN belongs to the branch of Artificial Life known as Artificial Chemistry and has properties in common with both Artificial Intelligence and Systems Biology techniques, including: Artificial Neural Networks, Artificial Biochemical Networks, Gene Regulatory Networks, Random Boolean Networks, Petri Nets, and S-Systems. The thesis outlines the following original work: The ARN is used to model the chemotaxis pathway of Escherichia coli and is shown to capture emergent characteristics associated with this organism and Cellular Intelligence more generally. The computational properties of the ARN and its applications in robotic control are explored by combining functional motifs found in biochemical network to create temporal changing waveforms which control the gaits of limbed robots. This system is then extended into a complete control system by combining pattern recognition with limb control in a single ARN. The results show that the ARN can offer increased flexibility over existing methods. Multiple distributed cell-like ARN based agents termed Cytobots are created. These are first used to simulate aggregating cells based on the slime mould Dictyostelium discoideum. The Cytobots are shown to capture emergent behaviour arising from multiple stigmergic interactions. Applications of Cytobots within swarm robotics are investigated by applying them to benchmark search problems and to the task of cleaning up a simulated oil spill. The results are compared to those of established optimization algorithms using similar cell inspired strategies, and to other robotic agent strategies. Consideration is given to the advantages and disadvantages of the technique and suggestions are made for future work in the area. The report concludes that the Artificial Reaction Network is a versatile and powerful technique which has application in both simulation of chemical systems, and in robotic control, where it can offer a higher degree of flexibility and computational efficiency than benchmark alternatives. Furthermore, it provides a tool which may possibly throw further light on the origins and limitations of the primitive intelligence associated with cells

    Controller design of a robotic orthosis using sinusoidal-input describing function model

    Get PDF
    Stroke is one of top leading causes of death in the world and it happens to more than 15 million people yearly. According to the National Stroke Association of Malaysia (NASAM), stroke is the third leading cause of death in Malaysia with around 40,000 cases reported annually. Forty percent of stroke survivors suffer from movement impairments after stroke. My grandfather was one of the victims and he was unable to attend any rehabilitation sessions due to several reasons. Hence, he lost the golden time to regain his movement and freedom. There are a lot of similar cases that happen daily in Malaysia. Besides, as the number of stroke patients increases yearly, the need for physiotherapists or rehabilitation machines equally increases. Hence, a low-cost clinical rehabilitation device is essential to provide assistance for an effective rehabilitation program and substitute the conventional method, as well as to reduce the burden of physiotherapists. In future, the proposed rehabilitation device would benefit not only stroke patients, but any patients who lost their normal walking ability including post-accident patients or those who suffer from spinal cord injury. The rehabilitation device aims to provide training assistance to patients not only in rehabilitation centres but also at home for daily training. The robotic orthosis is planned to be configured based on moving joint angles of human lower extremities. In the first stage of this research, angle-time characteristics for knee and hip swinging motion are utilised as a sagittal motion reference for the rehabilitation devices. The aim of following a proper gait cycle during rehabilitation training is to train patients to perform standing and swinging phases at proper timing and simultaneously provide the correct position reference to the patient during rehabilitation training. This can prevent patients from walking abnormally with an asymmetric gait cycle along or after the rehabilitation program. Besides, various limitations and the bulky structure of other rehabilitation devices lead to the design of the two-link lower limb rehabilitation device. This project aims to develop an assistive robotic rehabilitation device that generates a human gait trajectory for hemiplegic stroke patient gait rehabilitation in future. The shortcomings of other control applications due to environmental conditions and disturbances lead to the implementation of the describing function approach in the development of the devices. A sinusoidal-input describing function (SIDF) approach was implemented to linearize the nonlinear robotic orthosis with linear transfer function. The reason for utilising the SIDF approach is due to the nonlinear actual plant model with the present of load torque disturbances, discontinuous nonlinearities such as saturation and backlash, and also multivariable in the system. The nonlinear properties of the plant were proven in the preliminary stage of the research. A conventional controller, PID control combined with position and trajectory inputs were also applied to the system in the early stage of research. However, the experimental results were not satisfying. Finally, the SIDF approach was chosen to linearize the nonlinear system. Hence, generating a controller is much easier with a linear model of the nonlinear system. A SIDF approach was implemented to generate a controller for the multivariable, nonlinear closed loop system. Firstly, the SIDF approach enables the determination of the linear function of the nonlinear model known as the SIDF model. By utilising the linear model to mimic the behaviour of the nonlinear rehabilitation system, the controller for the nonlinear plant was able to be generated. In this research a controller based on linear control theory technique was used. The MATLAB library was used to design the lead-lag controller for the rehabilitation device. Various simulations such as step responses, tracking and decoupling of both links were performed on the generated controller with the nonlinear model to study the capability of the controller. Besides that, real life experiment testing was carried out to validate the feasibility of the controller designed via the SIDF approach. Simulation and experimental results were obtained, compared, and discussed. The highly accurate responses gained from experimental setup showed the robustness of the controller generated via SIDF approach. The implementation of the SIDF approach in a rehabilitation device (vertical two-link manipulator) is a first and hence, fulfils a novelty requirement for this research
    • …
    corecore