52 research outputs found

    Fuzzy integral based information fusion for classification of highly confusable non-speech sounds

    Get PDF
    Acoustic event classification may help to describe acoustic scenes and contribute to improve the robustness of speech technologies. In this work, fusion of different information sources with the fuzzy integral (FI), and the associated fuzzy measure (FM), are applied to the problem of classifying a small set of highly confusable human non-speech sounds. As FI is a meaningful formalism for combining classifier outputs that can capture interactions among the various sources of information, it shows in our experiments a significantly better performance than that of any single classifier entering the FI fusion module. Actually, that FI decision-level fusion approach shows comparable results to the high-performing SVM feature-level fusion and thus it seems to be a good choice when feature-level fusion is not an option. We have also observed that the importance and the degree of interaction among the various feature types given by the FM can be used for feature selection, and gives a valuable insight into the problem.Peer Reviewe

    A Novel Scheme for Intelligent Recognition of Pornographic Images

    Full text link
    Harmful contents are rising in internet day by day and this motivates the essence of more research in fast and reliable obscene and immoral material filtering. Pornographic image recognition is an important component in each filtering system. In this paper, a new approach for detecting pornographic images is introduced. In this approach, two new features are suggested. These two features in combination with other simple traditional features provide decent difference between porn and non-porn images. In addition, we applied fuzzy integral based information fusion to combine MLP (Multi-Layer Perceptron) and NF (Neuro-Fuzzy) outputs. To test the proposed method, performance of system was evaluated over 18354 download images from internet. The attained precision was 93% in TP and 8% in FP on training dataset, and 87% and 5.5% on test dataset. Achieved results verify the performance of proposed system versus other related works

    Source ambiguity resolution of overlapped sounds in a multi-microphone room environment

    Get PDF
    When several acoustic sources are simultaneously active in a meeting room scenario, and both the position of the sources and the identity of the time-overlapped sound classes have been estimated, the problem of assigning each source position to one of the sound classes still remains. This problem is found in the real-time system implemented in our smart-room, where it is assumed that up to two acoustic events may overlap in time and the source positions are relatively well separated in space. The position assignment system proposed in this work is based on fusion of model-based log-likelihood ratios obtained after carrying out several different partial source separations in parallel. To perform the separation, frequency-invariant null-steering beamformers, which can work with a small number of microphones, are used. The experimental results using all the six microphone arrays deployed in the room show a high assignment rate in our particular scenario.Peer ReviewedPostprint (published version

    Applying the Upper Integral to the Biometric Score Fusion Problem in the Identification Model

    Get PDF
    This paper presents a new biometric score fusion approach in an identification system using the upper integral with respect to Sugeno's fuzzy measure. First, the proposed method considers each individual matcher as a fuzzy set in order to handle uncertainty and imperfection in matching scores. Then, the corresponding fuzzy entropy estimates the reliability of the information provided by each biometric matcher. Next, the fuzzy densities are generated based on rank information and training accuracy. Finally, the results are aggregated using the upper fuzzy integral. Experimental results compared with other fusion methods demonstrate the good performance of the proposed approach

    Fuzzy Integral Based Multi-Sensor Fusion for Arc Detection in the Pantograph-Catenary System

    Get PDF
    The pantograph-catenary subsystem is a fundamental component of a railway train since it provides the traction electrical power. A bad operating condition or, even worse, a failure can disrupt the railway traffic creating economic damages and, in some cases, serious accidents. Therefore, the correct operation of such subsystems should be ensured in order to have an economically efficient, reliable and safe transportation system. In this study, a new arc detection method was proposed and is based on features from the current and voltage signals collected by the pantograph. A tool named mathematical morphology is applied to voltage and current signals to emphasize the effect of the arc, before applying the fast Fourier transform to obtain the power spectrum. Afterwards, three support vector machine-based classifiers are trained separately to detect the arcs, and a fuzzy integral technique is used to synthesize the results obtained by the individual classifiers, therefore implementing a classifier fusion technique. The experimental results show that the proposed approach is effective for the detection of arcs, and the fusion of classifier has a higher detection accuracy than any individual classifier

    A Retrospective Assessment of Fuzzy Logic Applications in Voice Communications and Speech Analytics

    Get PDF
    Voice and speech communication is a major topic covering simultaneously ’communication’, ’control’ (because it often involves control in the coding algorithms), and ’computing’ - from speech analysis and recognition, to speech analytics and to speech coding over communication channels. While fuzzy logic was specifically con- ceived to deal with language and reasoning, it has yet a limited use in the referred field. We discuss some of the main current applications from the perspective of half a century since fuzzy logic inception

    The Mason-Alberta Phonetic Segmenter: A forced alignment system based on deep neural networks and interpolation

    Full text link
    Forced alignment systems automatically determine boundaries between segments in speech data, given an orthographic transcription. These tools are commonplace in phonetics to facilitate the use of speech data that would be infeasible to manually transcribe and segment. In the present paper, we describe a new neural network-based forced alignment system, the Mason-Alberta Phonetic Segmenter (MAPS). The MAPS aligner serves as a testbed for two possible improvements we pursue for forced alignment systems. The first is treating the acoustic model in a forced aligner as a tagging task, rather than a classification task, motivated by the common understanding that segments in speech are not truly discrete and commonly overlap. The second is an interpolation technique to allow boundaries more precise than the common 10 ms limit in modern forced alignment systems. We compare configurations of our system to a state-of-the-art system, the Montreal Forced Aligner. The tagging approach did not generally yield improved results over the Montreal Forced Aligner. However, a system with the interpolation technique had a 27.92% increase relative to the Montreal Forced Aligner in the amount of boundaries within 10 ms of the target on the test set. We also reflect on the task and training process for acoustic modeling in forced alignment, highlighting how the output targets for these models do not match phoneticians' conception of similarity between phones and that reconciliation of this tension may require rethinking the task and output targets or how speech itself should be segmented.Comment: submitted for publicatio

    Study on a novel fault diagnosis method based on information fusion method

    Get PDF
    For the low accuracy and calculation speed of traditional fault diagnosis methods, the chaos optimization algorithm (COA), quantum particle swarm optimization (QPSO) algorithm and support vector machine (SVM) are introduced into the fault diagnosis to propose a novel fault diagnosis (CQPSMFD) method in this paper. In the proposed CQPSMFD method, the COA is used to initialize the parameters of the QPSO algorithm in order to obtain the CQPSO algorithm with the better convergence speed. Then the CQPSO algorithm is used to optimize the parameters of the SVM model to construct a high-precision SVM model (CQPSM) with the higher accuracy and stronger generalization ability. Next, the CQPSMFD method based on CQPSM method is proposed for motor. Finally, the experiment data from Case Western bearing dataset and actual motor are selected to verify the CQPSMFD method. The results show that the CQPSO algorithm can obtain the optimal parameter combination and the CQPSMFD method can effectively improve the fault diagnosis accuracy and speed

    Acoustic event detection and localization using distributed microphone arrays

    Get PDF
    Automatic acoustic scene analysis is a complex task that involves several functionalities: detection (time), localization (space), separation, recognition, etc. This thesis focuses on both acoustic event detection (AED) and acoustic source localization (ASL), when several sources may be simultaneously present in a room. In particular, the experimentation work is carried out with a meeting-room scenario. Unlike previous works that either employed models of all possible sound combinations or additionally used video signals, in this thesis, the time overlapping sound problem is tackled by exploiting the signal diversity that results from the usage of multiple microphone array beamformers. The core of this thesis work is a rather computationally efficient approach that consists of three processing stages. In the first, a set of (null) steering beamformers is used to carry out diverse partial signal separations, by using multiple arbitrarily located linear microphone arrays, each of them composed of a small number of microphones. In the second stage, each of the beamformer output goes through a classification step, which uses models for all the targeted sound classes (HMM-GMM, in the experiments). Then, in a third stage, the classifier scores, either being intra- or inter-array, are combined using a probabilistic criterion (like MAP) or a machine learning fusion technique (fuzzy integral (FI), in the experiments). The above-mentioned processing scheme is applied in this thesis to a set of complexity-increasing problems, which are defined by the assumptions made regarding identities (plus time endpoints) and/or positions of sounds. In fact, the thesis report starts with the problem of unambiguously mapping the identities to the positions, continues with AED (positions assumed) and ASL (identities assumed), and ends with the integration of AED and ASL in a single system, which does not need any assumption about identities or positions. The evaluation experiments are carried out in a meeting-room scenario, where two sources are temporally overlapped; one of them is always speech and the other is an acoustic event from a pre-defined set. Two different databases are used, one that is produced by merging signals actually recorded in the UPCÂżs department smart-room, and the other consists of overlapping sound signals directly recorded in the same room and in a rather spontaneous way. From the experimental results with a single array, it can be observed that the proposed detection system performs better than either the model based system or a blind source separation based system. Moreover, the product rule based combination and the FI based fusion of the scores resulting from the multiple arrays improve the accuracies further. On the other hand, the posterior position assignment is performed with a very small error rate. Regarding ASL and assuming an accurate AED system output, the 1-source localization performance of the proposed system is slightly better than that of the widely-used SRP-PHAT system, working in an event-based mode, and it even performs significantly better than the latter one in the more complex 2-source scenario. Finally, though the joint system suffers from a slight degradation in terms of classification accuracy with respect to the case where the source positions are known, it shows the advantage of carrying out the two tasks, recognition and localization, with a single system, and it allows the inclusion of information about the prior probabilities of the source positions. It is worth noticing also that, although the acoustic scenario used for experimentation is rather limited, the approach and its formalism were developed for a general case, where the number and identities of sources are not constrained
    • …
    corecore