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Abstract 

 

Automatic acoustic scene analysis is a complex task that involves several functionalities: 

detection (time), localization (space), separation, recognition, etc. This thesis focuses on both 

acoustic event detection (AED) and acoustic source localization (ASL), when several sources 

may be simultaneously present in a room. In particular, the experimentation work is carried 

out with a meeting-room scenario. Unlike previous works that either employed models of all 

possible sound combinations or additionally used video signals, in this thesis, the time 

overlapping sound problem is tackled by exploiting the signal diversity that results from the 

usage of multiple microphone array beamformers. 

The core of this thesis work is a rather computationally efficient approach that consists 

of three processing stages. In the first, a set of (null) steering beamformers is used to carry out 

diverse partial signal separations, by using multiple arbitrarily located linear microphone 

arrays, each of them composed of a small number of microphones. In the second stage, each of 

the beamformer output goes through a classification step, which uses models for all the 

targeted sound classes (HMM-GMM, in the experiments). Then, in a third stage, the classifier 

scores, either being intra- or inter-array, are combined using a probabilistic criterion (like 

MAP) or a machine learning fusion technique (fuzzy integral (FI), in the experiments). 

The above-mentioned processing scheme is applied in this thesis to a set of complexity-

increasing problems, which are defined by the assumptions made regarding identities (plus 

time endpoints) and/or positions of sounds. In fact, the thesis report starts with the problem of 

unambiguously mapping the identities to the positions, continues with AED (positions 

assumed) and ASL (identities assumed), and ends with the integration of AED and ASL in a 

single system, which does not need any assumption about identities or positions. 

The evaluation experiments are carried out in a meeting-room scenario, where two 

sources are temporally overlapped; one of them is always speech and the other is an acoustic 

event from a pre-defined set. Two different databases are used, one that is produced by 

merging signals actually recorded in the UPC‟s department smart-room, and the other consists 

of overlapping sound signals directly recorded in the same room and in a rather spontaneous 

way. From the experimental results with a single array, it can be observed that the proposed 
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detection system performs better than either the model based system or a blind source 

separation based system. Moreover, the product rule based combination and the FI based 

fusion of the scores resulting from the multiple arrays improve the accuracies further. On the 

other hand, the posterior position assignment is performed with a very small error rate.  

Regarding ASL and assuming an accurate AED system output, the 1-source localization 

performance of the proposed system is slightly better than that of the widely-used SRP-PHAT 

system, working in an event-based mode, and it even performs significantly better than the 

latter one in the more complex 2-source scenario. Finally, though the joint system suffers from 

a slight degradation in terms of classification accuracy with respect to the case where the 

source positions are known, it shows the advantage of carrying out the two tasks, recognition 

and localization, with a single system, and it allows the inclusion of information about the 

prior probabilities of the source positions. It is worth noticing also that, although the acoustic 

scenario used for experimentation is rather limited, the approach and its formalism were 

developed for a general case, where the number and identities of sources are not constrained.  
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Resum 

 

L‟anàlisi automatic d‟escenes acústiques és una tasca complexa que requereix unes quantes 

funcionalitats: detecció (temps), localització (espai), separació, reconeixement, etc. Aquesta 

tesi s‟enfoca tant cap a la detecció d‟esdeveniments acústics (AED) com a la localització de 

fonts acústiques (ASL), en el cas en què en una sala hi puguin coexistir diverses fonts 

acústiques simultàniament. En concret, el treball d‟experimentació es du a terme en un 

escenari de sala de reunions. 

El nucli del treball de la tesi rau en un plantejament eficient en termes de càlcul que es 

basa en tres etapes de processament. En la primera, s'utilitza un conjunt de comformadors de 

feix per dur a terme diverses separacions parcials de senyals, usant múltiples configuracions 

lineals de micròfons col·locades arbitràriament, cada una composta d'un nombre petit de 

micròfons. En la segona etapa, cada una de les sortides dels comformadors passa per un 

classificador, el qual té models de totes les classes considerades. I llavors, en la tercera etapa, 

les puntuacions del classificador, ja siguin intra o inter-configuració, es combinen amb un 

criteri probabilistic (com MAP) o amb una tècnica de fusió amb aprenentatge automàtic (la 

integral difusa (FI), en els experiments). 

L'esquema de processament esmentat s'aplica en aquesta tesi a un conjunt de problemes 

de complexitat creixent, que queden definits per les suposicions que es fan en relació a les 

identitats (més els temps d'inici i final) i/o les posicions dels sons. En efecte, l'informe de la 

tesi comença amb el problema de l'assignació sense ambiguïtat de les identitats a les posicions, 

continua amb AED (suposant les posicions) i ASL (suposant les identitats), i acaba amb la 

integració de AED i ASL en un sistema únic que no necesita fer cap suposició respecte les 

identitats o les posicions. 

Els experiments tenen lloc en un escenari de sala de reunions, on hi ha dues fonts 

superposades en el temps; una és sempre parla i l'altra és un esdeveniment acústic d'entre un 

conjunt predefinit. S'usen dues bases de dades diferents, una s'ha produït barrejant senyals 

enregistrats realment en la sala intel·ligent de la UPC, i l'altra consisteix en senyals de sons 

ensolapats que  gravats directament en la sala i d'una manera més aviat espontània. S'observa 
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dels resultats experimentals amb una sola configuració que el sistema proposat de detecció es 

comporta millor que el sistema basat en models o el sistema basat en separació cega de fonts. 

A més a més, tant la combinació basada en la regla producte com la fusió basada en FI de les 

puntuacions obtingudes dels múltiples arrays milloren encara més la precisió. D'altra banda, 

l'assignació posterior de posicions té lloc amb una taxa d'error molt petita.  

En relació amb ASL i suposant una sortida del sistema AED, les prestacions de 

localització del sistema proposat per a una sola font són lleugerament millors que les del 

sistema SRP-PHAT treballant en mode esdeveniment, i fins i tot són significativament millors 

que les d'aquest darrer sistema en el cas més complex de l'escenari de dues fonts. Finalment, 

tot i que amb el sistema conjunt s'observa una lleugera degradació en termes de precisió de 

classificació respecte del cas en què es coneixen les posicions de les fonts, aquest té 

l'avantatge de dur a terme les dues tasques, reconeixement i localització, amb un únic sistema, 

i permet la inclusió d'informació sobre les probabilitats a priori de les posicions de les fonts. 

Cal fer notar també que, tot i que l'escenari acústic que s'ha usat en l'experimentació és bastant 

limitat, el plantejament i el seu formalisme s'han desenvolupat per a un cas general, sense 

restriccions pel que fa al nombre i les identitats de les fonts. 
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Resumen 

 

El análisis automático de escenas acústicas es una tarea compleja que requiere unas cuantas 

funcionalidades: detección (tiempo), localización (espacio), separación, reconocimiento, etc. 

Esta tesis se enfoca tanto hacia la detección de eventos acústicos (AED) como la localización 

de fuentes acústicas (ASL), en el caso en que en una sala puedan coexistir diversas fuentes 

acústicas simultáneamente. En concreto, el trabajo de experimentación se lleva a cabo en un 

escenario de sala de reuniones. 

El núcleo del trabajo de la tesis radica en un planteamiento eficiente en términos de 

cálculo que se basa en tres etapas de procesamiento. En la primera, se utiliza un conjunto de 

conformadores de haz para llevar a cabo diversas separaciones parciales de señales, usando 

múltiples configuraciones lineales de micrófonos colocadas arbitrariamente, cada una 

compuesta de un número pequeño de micrófonos. En la segunda etapa, cada una de las salidas 

de los conformadores pasa por un clasificador, el cual tiene modelos de todas las clases 

consideradas. Y entonces, en la tercera etapa, las puntuaciones del clasificador, ya sean intra o 

inter-configuración, se combinan con un criterio probabilístico (como MAP) o con una técnica 

de fusión con aprendizaje automático (la integral difusa (FI), en los experimentos). 

El esquema de procesamiento mencionado se aplica en esta tesis a un conjunto de 

problemas de complejidad creciente, que quedan definidos por las suposiciones que se hacen 

en relación a las identidades (más los tiempos de inicio y final) y / o las posiciones de los 

sonidos. En efecto, el informe de la tesis comienza con el problema de la asignación sin 

ambigüedad de las identidades a las posiciones, continúa con AED (suponiendo las 

posiciones) y ASL (suponiendo las identidades), y termina con la integración de AED y ASL 

en un sistema único que no necesita hacer ninguna suposición respecto a las identidades o las 

posiciones. 

Los experimentos tienen lugar en un escenario de sala de reuniones, donde hay dos 

fuentes superpuestas en el tiempo; una es siempre habla y la otra es un evento acústico de 

entre un conjunto predefinido. Se usan dos bases de datos diferentes, una se ha producido 

mezclando señales registradas realmente en la sala inteligente de la UPC, y la otra consiste en 
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señales de sonidos solapados grabados directamente en la sala y de una manera más bien 

espontánea. Se observa de los resultados experimentales con una sola configuración que el 

sistema propuesto de detección se comporta mejor que el sistema basado en modelos o el 

sistema basado en separación ciega de fuentes. Además, tanto la combinación basada en la 

regla producto como la fusión basada en FI de las puntuaciones obtenidas de los múltiples 

arrays mejoran aún más la precisión. Por otra parte, la asignación posterior de posiciones tiene 

lugar con una tasa de error muy pequeña. 

En relación con ASL y suponiendo una salida del sistema AED, las prestaciones de 

localización del sistema propuesto para una sola fuente son ligeramente mejores que las del 

sistema SRP-PHAT trabajando en modo evento, e incluso son significativamente mejores que 

las de este último sistema en el caso más complejo del escenario de dos fuentes. Finalmente, 

aunque con el sistema conjunto se observa una ligera degradación en términos de precisión de 

clasificación respecto del caso en que se conocen las posiciones de las fuentes, éste tiene la 

ventaja de llevar a cabo las dos tareas, reconocimiento y localización, con un único sistema, y 

permite la inclusión de información sobre las probabilidades a priori de las posiciones de las 

fuentes. Conviene hacer notar también que, aunque el escenario acústico que se ha usado en la 

experimentación es bastante limitado, el planteamiento y su formalismo se han desarrollado 

para un caso general, sin restricciones en cuanto al número y las identidades de las fuentes. 
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Chapter 1 

1 

 

Chapter 1. Introduction 

1.1 Thesis overview and motivations 

Acoustic event detection (AED) aims at determining the identity of sounds and their temporal 

position in audio signals. Actually, in the context of person-machine communication, 

computers involved in human communication activities have to meet certain requirements and 

be designed to have minimal possible awareness from the users. Consequently, there is a need 

of perceptual user interfaces which uses microphone array sensors, and is capable of 

describing the complete audio scene in the respective environment. One example of such 

challenging research efforts is the development of smart-rooms. A smart-room is a closed 

space equipped with multiple microphones and cameras, which are designed to assist and 

complement human activities. In the case of the audio processing, some of the technologies 

that may be involved are microphone array signal processing, automatic speech and event 

recognition, source localization, voice activity detection, speaker identification and 

verification. 

Although speech is usually the most informative AE, other kind of sounds may also 

carry useful cues for scene understanding. Since in such types of environments the human 

activity is reflected in a rich variety of acoustic events, either produced by the human body or 

by objects handled by humans, detection and localization of acoustic events may help to 

describe complete scene about human activity in the room environment. Additionally, the 

robustness of automatic speech recognition systems may be increased. For instance, in a 

meeting/lecture context, we may associate a chair moving or door noise to its start or end, cup 

clinking to a coffee break, or footsteps to somebody entering or leaving. Furthermore, some of 

these AEs are tightly coupled with human behaviors or psychological states: paper wrapping 

may denote tension; laughing, cheerfulness; yawning in the middle of a lecture, boredom; 

keyboard typing, distraction from the main activity in a meeting; and clapping during a 

speech, appreciation. 

Some acoustic event detection and classification work was carried out at our UPC's lab 

in the framework of the CHIL EU project ("Computers in the Human Interaction Loop", 2004-

2007). The CHIL AEC task was conceived to reliably classify meeting-room sounds like 
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“door knock”, “door open/slam”, “steps”, “chair moving”, “spoon/cup jingle”, “paper work”, 

“key jingle”, “keyboard typing”, “phone ring”, “applause”, “cough”, and “laugh” along with 

speech and other human noises. The two CLEAR (Classification of Events, Activities and 

Relationships) evaluation campaigns supported by the CHIL project, which took place in 2006 

and 2007, were designed to recognize events, activities, and their relationships in interaction 

scenarios. The last evaluation campaign showed that, in those seminar conditions, AED is still 

a challenging problem. In fact, 5 out of 6 submitted systems showed accuracy below 25%, and 

the best working system got 33.6% accuracy. It was realized that one of the main factors that 

accounts for those low detection scores is the high degree of overlap between sounds, 

especially between the targeted acoustic events and speech due to the nature of the recorded 

testing databases, that were mostly interactive seminars [1].  

During that time, the PhD thesis entitled “Acoustic event detection and classification”, from 

A. Temko [2], already included a first attempt to tackle the overlapping problem at the model 

level, using together models for isolated sounds and models for overlapped sounds [3]. A 

subsequent PhD thesis entitled “Feature selection for multimodal acoustic event detection”, by 

T. Butko [4], among other contributions, showed a noticeable improvement in the detection 

rate of overlapped acoustic events that have a visual correlate, thanks to the inclusion of video 

features, and using different types of fusion, at the feature level and at the decision level [5]. 

Moreover, a real-time system is implemented in UPC‟s smart-room, where AED task is 

carried out using the model based approach, and ASL is based on SRP-PHAT algorithm. In 

summary, these previous works have dealt with the overlapping problem mostly either at the 

model level or by fusion with the additional video modality that is not affected by acoustic 

interference.  

As the overlapping problem still remains, and there are other alternatives to solve it, 

source separation prior to detection could be the reasonable one. Motivated by this fact, the 

main effort in this thesis work is to develop an AED system to detect the acoustic events, 

which may be overlapped in time, as well as to identify them. For that purpose, all the arrays 

are used. The chosen methodology consists of performing some kind of source separation at 

the front end so that the overlapping problem could be tackled at signal level in order to avoid 

the burden of a huge number of models for overlapping events when the number of events is 
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not low. Both blind source separation techniques and beamforming techniques are employed 

to carry out a separation of acoustic sources that, though it is partial, allows to achieve a 

satisfactory detection accuracy. As real-time processing is a constraint put on the systems in 

our application, beamforming techniques will get a strong emphasys in our work. They will be 

developed to take advantage of the room setup. To integrate the scores from all the arrays, 

either a product rule based combination or fuzzy integral fusion is used in the decision block 

of the AED system. Moreover, within the same framework, the permutation problem is solved; 

since each hypothesized event is assigned to a given source position.  

Since ASL is a very important task in the meeting-room acoustic scene analysis, a novel 

localization technique is explored in this thesis that can work with the sound recognition 

system. Most ASL approaches rely on some kind of measurement of the acoustic energy as a 

function of space, so the identity of the sound is not used at all. Once the identities and the 

endpoints of the simultaneous sounds are known, the proposed technique uses the statistical 

models of those sounds to compute a likelihood score for each model and each beamformer. 

Those scores are subsequently combined to find the MAP-optimal positions in the room. 

Although the proposed localization system can work alone, but focusing to a more integrated 

approach, an attempt is made to jointly recognize and localize several simultaneous acoustic 

events that take place in a meeting room environment, by developing a computationally 

efficient technique that employs multiple arbitrarily-located small microphone arrays. 
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1.2 Thesis objectives 

The goal of this thesis work is designing efficient algorithms for acoustic event detection and 

localization in meeting-room environments. The thesis work contemplates several main 

research directions: multi-microphone array signal processing for source separation, sound-

model-based event localization, combining assistive technologies like AED and ASL in a 

room environment, source ambiguity resolution, and classifier fusion at the decision stage. 

Therefore, in this thesis work, one of the main objectives will be to develop a system 

that detects and identifies several possible overlapping acoustic events. The experimental work 

will be carried out in the particular case where there are only two possible acoustic sources, a 

meeting-room acoustic event and speech, which may be overlapped in time. The chosen 

methodology consists of performing source separation prior to the detection. Both 

beamforming and blind source separation techniques will be employed to carry out a 

separation of acoustic sources. Beamforming techniques will get a strong emphasis in our 

work, as real-time processing is the constraint that is put on the systems in our application. In 

addition, an optimal strategy for combining the processed signals acquired from the various 

arrays will be designed. Under the similar acoustic scenario, the performance of the proposed 

source separation based AED will be compared with the already implemented and baseline 

model based AED system. 

On the other hand, once we have the output of the AED system, there is the need of a 

posterior identification of which one of the source positions given by the ASL system 

corresponds to speech and which one corresponds to the detected AE. That requires an 

additional position assignment system, which will also be developed in the thesis work. 

Information regarding the source positions is necessary to analyze an acoustic scene. 

This particular task is performed by an additional ASL system. Most ASL approaches rely on 

some kind of measurement of the acoustic energy as a function of space, so the identity of the 

sound is not used at all. In this thesis work, a novel source localization technique will be 

proposed and developed which shows that the information about the content of the signals that 

are captured by distant and distributed microphones may be effectively used for localization of 

the sources in the space domain. In fact, instead of relying only on energy-like based 
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measures, a similarity measure delivered by a classifier is proposed. As the classifier uses 

models for the different sound classes like in the detection task, this method is called as sound-

model-based (SMB) localization. The validity of proposed localization method will be verified 

in a scenario consisting of meeting-room acoustic events, either isolated or overlapped with 

speech. 

 The functionalities like detection, localization and separation are assigned to different 

sub-systems. However, it can be expected that an integrated approach, where all the 

functionalities are developed jointly, can offer advantages. Therefore, focusing to a more 

integrated approach, systems to jointly recognize and localize several simultaneous acoustic 

events will be developed. The system will also be developed with a computationally efficient 

technique that employs multiple arbitrarily-located small microphone arrays. 
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1.3 Thesis outline 

The thesis is organized as follows.  

Chapter 2 presents a state of the art in the area of acoustic event detection from the 

application point of view. It also reports one of the main problems, the current event detection 

systems has, is the temporal overlapping, and its different possible solutions. The source 

separation based approach, which is based on either beamforming or BSS and applied in 

different speech technologies, is briefly discussed. In this Chapter, a brief state of the art for 

acoustic source localization is also presented.  

Chapter 3 describes the overlapped acoustic event detection system. A proposal of 

source separation based AED, which based on beamforming and BSS are presented. The 

possibility of using two different types of beamforming: frequency dependent, and frequency 

invariant is also discussed. The overall scheme of the system that could be used either for 

detection, or for localization, or for source ambiguity resolution, or jointly for both detection 

and localization is presented. A Fuzzy Integral based fusion approach to combine the several 

information sources at the decision stage for the improvement of the performance of the 

overall system is also discussed. In addition, the acoustic scenario and the databases, which 

will be used in the thesis work, are also presented. 

Chapter 4 presents a system that resolves the source ambiguity when several acoustic 

sources are simultaneously active in a meeting-room scenario, and both the position of the 

sources and the identity of the time-overlapped sound classes have already been estimated is 

presented. The problem of source ambiguity is discussed at the beginning of the Chapter. Then 

a position assignment system for resolving that problem is presented. Combination of 

microphones at both the signal and the classifier level is also investigated. It is also verified 

how the inclusion of speech model in the classifier along with the AE models improved the 

performance of the system. The experimental results obtained with the available database, are 

reported. The performance of the system with two different types of beamforming is also 

investigated in this Chapter. 

Chapter 5 presents the acoustic event classification and detection system based on 

beamforming based source separation assuming the source positions are known. A MAP based 
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classification and detection is described. Position assignment (PA) system for resolving the 

source ambiguity is also discussed within the same framework. In the experimental section, 

metrics for the evaluation of the above-mentioned system are described. Classification, 

detection and the position assignment results are also reported with the discussion.  

Chapter 6 presents a new acoustic event localization system assuming the sources have 

already been detected, i.e. the identities and the end-points of the sources are known. A SRP-

PHAT based source localization system, which is considered as a baseline one is described. 

The MAP criterion for the newly proposed localization technique is discussed. The metrics 

used for the evaluation of the localization systems is presented in the experimental section. 

The results with the proposed system and a comparison with the baseline SRP-PHAT based 

localization system are also reported.  

In Chapter 7, a joint approach for detection and localization is presented. At the 

beginning, an integrated method for classification plus direction-of-arrival estimation is 

described. Then the joint method for classification and 2D localization is presented. In the 

experimental section, the metrics and the experimental results with discussion are presented.  

Finally, in Chapter 8, conclusions are presented. The main achievements are 

summarized in this Chapter. Several promising future directions are also highlighted. 
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Chapter 2. Overlapped acoustic event detection 

2.1 Chapter overview 

In this Chapter, an overview of various concepts and techniques that will be the basis of the 

different works in this thesis is presented. In the initial sections, the state of the art for acoustic 

event detection is presented from the application point of view. In this context, the problem of 

signal overlapping in the current state of the art AED system is also discussed with some 

possible solutions. A brief overview of source separation based techniques that are mostly 

used in speech technologies including acoustic event detection, is presented. The microphone 

array signal processing technique like beamforming is discussed from application point of 

view. In the later part of this Chapter, a brief state of the art regarding acoustic source 

localization is presented.  
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2.2 Acoustic event detection 

Acoustic Event Detection (AED) is the task related to identify different classes of sounds and 

their temporal positions. Initially, it was started as a task of segregating few audio sources in 

computational auditory scene analysis problem [6] [7]  and segmenting an audio stream into a 

small number of acoustically compact categories [8]. Many of the existing contributions in 

AED are intended either for indexing and retrieval of multimedia documents [9] [10] [11] or 

to improve the robustness of speech recognition task [12] [13]. For an instance, in [14], ten 

key audio effects are taken into consideration: applause, car-racing, cheer, car-crash, 

explosion, gunshot, helicopter, laughter, plane, and siren. In [15], author proposed to detect 

violent events in feature films by analyzing environmental sounds such as gunfire, engines, 

and explosions. Extraction of semantic information with annotations of basketball multimedia 

document is presented in [16]. In [17], authors proposed a method for automatically extracting 

highlights of TV baseball programs. Audio segmentation (AS) in the broadcast news domain 

is a very specific application of AED, where the speech data exhibit considerable diversity, 

ranging from clean to noisy speech interspersed with music, commercials, sports etc. This line 

of research was started in [18], then some works for speech/music discrimination from radio 

stations in [19] [20], recognition of a broader set of acoustic classes in [9], difficult problem of 

speech music discrimination for singing segment [21], and mixed sound detection in the recent 

years shows that it is still a challenging problem [22] [23] [24]. Audio segmentation was one 

of the tracks in the recent Albayzin Evaluation campaign, held in 2010 and 2012, consist of 

segmenting a broadcast audio document (TV channels and radio) and assign labels for each 

segment indicating the presence of speech, music and/or noise [25] [26].  

Detection of acoustic events has been carried out in other applications like monitoring 

and surveillance. For instance, AED is performed in living environments [27] [28], hospitals 

[29], kitchen-rooms [30], bathroom [31] [32], public places. In [33], the authors propose an 

activity recognition system based on detection of acoustic events caused by residents within 

the living space. The efforts have been made to assist interdependent people in aging society 

today, particularly to the elderly living alone at home [33] [34]. An example of event detection 

for an audio based surveillance system is presented in [35] , and detection and localization of 
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selected acoustic events in acoustic field for smart surveillance applications is presented in 

[36]. 

A specific case that have received some attention in recent years, mainly due to the work 

done in the context of the Computers in the Human Interaction Loop (CHIL) EU project [37] 

consists of the description of sounds that take place in a meeting-room environment. Within 

the context of ambient intelligence, AED applied to give a contextual description of a meeting 

scenario was pioneered by [2]. Moreover, AED has been adopted as a semantically relevant 

technology in CHIL European project [37], and in several evaluation campaigns CLEAR 2006 

and CLEAR 2007 [38] [39] were international efforts to evaluate systems designed to 

recognize events, activities, and their relationships in interactive scenarios like lectures or 

meetings.  

2.3 The problem of temporal overlapping 

The detection of single acoustic event sources is performed with relatively high accuracy in 

the CHIL works [1] [2] [37]. However, in the CLEAR 2007 evaluation campaign [1], where 

acoustic event detection (AED) was carried out with meeting-room seminars, it became clear 

that time overlapping of acoustic events is a major source of detection errors (70%). The 

problem of acoustic overlaps is closely related to the „„cocktail party” problem [40]. In that 

problem, one usually tries to separate one speech source from the others; however, in AED it 

could be to separate acoustic events from speech or one event from the others. The former 

case is very relevant in the context of meeting room AED, where one source could always be 

speech. Temporal overlaps are matter of research in other speech processing areas, like in 

speaker recognition or diarization. The problem of several simultaneous speakers has been 

considered in the NIST RT-09 [41] evaluation campaign, where the involved tasks (e.g. 

speaker diarization) have been evaluated on overlapped speaker segments as well. In fact, the 

overlap problem has recently gained a strong interest in speech processing [42] [43] . For 

instance, in [44], the authors propose several different features and investigate their 

effectiveness for detection of overlaps of two and more speakers. Also, some improvement in 

detection of speech overlaps for speaker diarization is shown in [45] [46] [47]. 
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2.3.1 Different solutions in previous UPC work 

The detection of overlapping events may be dealt with different approaches, either at the 

signal level, at the model level, at the feature level or at the decision level. In the UPC lab, 

although some attempts have been made to tackle the overlapping problem at the level of 

model, including additional video modality for the improvement of the detection of the 

overlapped events that have visual correlate, but not tackled at the signal level. 

2.3.1.1 Model based approach 

In [3], a model based approach was adopted for detection of events in a realistic meeting-room 

scenario with two sources, one of which is always speech, and the other one is a different 

acoustic event from a list of 11 pre-defined events. Thus, apart from the mono-event acoustic 

models, additional acoustic models were considered for each AE overlapped with speech, so 

the number of models was doubled (i.e. 22) as shown in Figure 1. That approach is used in the 

current real-time system implemented in the Universitat Politècnica de Catalunya (UPC)'s 

smart-room, which includes both AED and ASL [48]. In this approach, the AED system 

requires a model for each event class whether it is an isolated or an overlapped event. So there 

must be a different model for each possible combination of classes as depicted in Figure 1.  

There is a limitation of this approach to be considered as a general solution of the 

overlapping problem. For the general case, the number of models required may be high since 

it depends on total number of event classes and the number of events which can exist 

simultaneously. Though this approach is feasible in some limited scenario, it may not be the 

case for other scenarios where the numbers of events, or the number of simultaneous sources, 

or both are large. 
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Figure 1: Model based acoustic event detection system 

Although the estimated position of the sources is provided by an ASL system, there is 

still an ambiguity regarding the correspondence between identified events and located sources. 

As an example, in the most general case, AED have two detected events, i.e. E (one of the 

possible AE) and “sp”, and two source positions are provided by ASL: P1 and P2. To have a 

complete description of the acoustic scene in the room, there is still the need of assigning each 

one of the two positions to each one of the two AEs. In this context, the system requires a 

posterior identification of which one of the source positions given by the ASL system 

corresponds to speech and which one corresponds to the detected AE.  

2.3.1.2 Using extra modalities 

In [5], multimodal techniques are used to deal with the problem of signal overlaps in the 

meeting-room signals. The video modality is used along with the audio modality. Two 

different strategies for fusion of audio and video modalities have been employed: feature-level 

fusion is based on concatenating feature vectors from different modalities into one super 

vector; and decision-level fusion, where each modality acts as an independent “expert”, giving 

its opinion about the unknown acoustic event (AE). Decision-level fusion is carried out using 

weighted arithmetical mean (WAM) and fuzzy integral (FI) approaches. In [4] [5], a number 

of features are extracted from video recordings by means of object detection, motion analysis, 

and multi-camera person tracking to represent the visual counterpart of AEs. From the audio 
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perspective, the video modality has an attractive property: the disturbing acoustic noise 

usually does not have a correlate in the video signal. There are several video technologies 

which provide useful features for AED task. Person tracking features are very useful in this 

context. It is necessary that multiple cameras are employed to perform tracking of multiple 

interacting people in the scene. Some AEs are associated with motion of objects around the 

person like paper wrapping (under the assumption that a paper sheet is distinguishable from 

the background colour). Color specific motion descriptors, namely the motion history energy 

(MHE) and image (MHI), have been found useful to describe and recognize actions.  

2.3.1.3 Using acoustic localization features 

In order to enhance the meeting-room AED recognition rate, acoustic localization features are 

used in combination with audio spectro-temporal features [4]. In the case where the 

characteristics of the room are known beforehand, the position (x, y, z) of the acoustic source 

may carry useful information. Indeed, some AEs can only occur at particular locations, like 

door slam and door knock can only appear near the door, or footsteps and chair moving events 

take place near the floor. Based on this fact, a set of meta-classes (e.g. “near door” and “far 

door”, related to the distance of the acoustic source to the door, and “below table”, “on table” 

and “above table” meta-classes depending on the z-coordinate of the detected AE) are defined 

that depend on the position where each AE can be detected. The height-related meta-classes 

and their likelihood function modelled via Gaussian Mixture Models can provide useful 

information. These types of features could be included by using a standard localization system 

(e.g. SRP-PHAT). 

Alternatively, the problem could be tackled at the signal level by separating the signals 

first before entering the AED system and describes in the following Section.  

2.4 Source separation 

Another possible solution to the overlapping problem is to have in the front end, a source 

separation technique that allows the system to separate the desired source from the other 

interfering sources or noise, followed by detection and recognition of the identity of each 

overlapped sounds. According to the type of source separation techniques, we can broadly 
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classify it into two categories. 1. Array processing based separation technique that exploits the 

information about the positions and orientations of the sources and sensors. 2. Blind source 

separation (BSS) technique, which separates the signal with or without the aid of the 

information about the source signals or the mixing process. 

2.4.1 Array processing  

2.4.1.1 Microphone arrays 

A microphone array consists of multiple microphones located at different spatial positions. 

Using the spatial diversity and the basic principles of sound propagation, the multi-

microphone signals can be combined to enhance or reject signals originated from a specific 

spatial direction. Therefore, it is possible to design the spatial filters using the microphone 

arrays, which are capable of enhancing a desired signal in the presence of multiple noise 

sources. Thus, microphone arrays have great potential as a pre-processing stage in many audio 

processing applications, due to their ability to provide far field audio acquisition and 

robustness against a wide variety of noises. However, in many cases, the properties of such 

kind of spatial filters are based on the array geometry and source locations. 

The performance of audio processing technologies is affected by many acoustic 

disturbances. The audio signal recorded by microphones is degraded by the presence of other 

undesired acoustic sources, the effect of interferences, attenuation, channel distortion or 

multipath propagation. The impact of those disturbing factors can be augmented in the case of 

using far field microphones, where the desired signal can be severely attenuated, and 

significantly degrading the performance of audio technologies. 

2.4.1.2 Acoustic disturbances: noise and reverberation 

Depending on the application environment, different types of acoustic disturbances may be 

present. Small enclosures, like a car or an elevator, are characterized by low reverberation and 

additive noise with the microphones placed relatively close to the source. On the other hand, 

medium-size space has more adverse condition, since a high level of reverberation is present 

and the microphones are usually placed at several meters away from the source. This could be 

the case of an office or a meeting-room, where the main noises are produced by the 
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participants and the equipments, like computer fans and air-condition machine. In free space, 

the microphones are usually very close to the speaker, i.e. a cell phone or a door-phone, and 

reverberation is practically absent. This thesis is developed under the context of a smart-room 

environment. Therefore, reverberation and noise not related with the acoustic source of 

interest are expected to be present in such scenarios. A distributed microphones placed at 

arbitrary locations is employed to capture the signal. The microphones position is assumed 

fixed and known a-priori. A particular microphone array constellation is not necessary, 

although some classical approaches need a determined geometry. The microphone placement 

can have a great impact in the performance of some multi-microphone processing techniques. 

Acoustic noise is generally referred to the undesired acoustic signals or disturbances, 

which is not produced by the acoustic source of interest that we want to detect. Depending on 

the scenario, the noises can be characterized differently [49]. Generally, they are broadly 

classified in three categories. 1. Non-coherent noise: the noise captured at different locations 

has little or no correlation. Also known as non-directional noise, it is normally related to 

thermal noise present at every microphone, which is non-correlated. 2. Coherent noise: A 

coherent noise (directional noise) consists in a noise coming from a single point that is not 

reflected by any surface, because multipath would increase the signal scattering, and the 

coherence function decreases [50]. 3. Diffuse noise: also known as homogeneous or isotropic, 

diffuse noise is common in car or room scenarios. The noise propagates in all directions and 

many reflections are produced. The coherence between microphones close to the noise source 

is high and it decreases with distance between microphones [51]. The coherence also 

decreases with increasing frequency. 

The propagation of sound throughout multiple paths is a phenomenon commonly known 

as reverberation. The propagation of sound in closed space is influenced by reflections on the 

surfaces and scattering by the different objects. This creates indirect propagation paths and 

enables the multiple delayed versions of the signal reach to the sensors. The number of 

indirect paths is very high, tending to infinite, thus creating a sound field very similar to a 

diffuse sound source. However, audio technologies are particularly sensitive to reverberation 

and it constitutes a challenge to overcome. 
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2.4.1.3 Multi-microphone array signal processing  

In such real and noisy environments, a single microphone captures noise and reverberation. 

This is one of the very common phenomena that influence almost all the technologies in the 

field related to speech processing. There are several de-noising algorithms. In most of the 

cases this is applying a time varying real gain to the short term frequency transformation of an 

audio frame extracted from the input signal. This class of algorithms is denoted as noise 

suppression. Various criteria for estimation of this suppression gain (rule) were derived 

historically: magnitude minimum mean square error (Wiener, 1947) [52] [53] [54] , spectral 

subtraction (Boll, 1979) [55], maximum likelihood (McAllay and Malpass, 1980), short-term 

MMSE (Ephraim and Malah, 1984), log MMSE (Ephraim and Malah, 1985), etc.  

One of the solutions to capture better sound is to use more microphones. The signals 

from these microphones, combined in certain way, increase the directivity of the device and 

reduce the captured noise and reverberation. Using multiple microphones allows localization 

of the sound source and pointing the directivity pattern maximum towards the desired sound 

source. The concept of algorithmically steering the main lobe or beam of a directivity pattern 

in a desired direction is called beamforming. The direction the array is steered is called the 

look direction. 

2.4.1.4 Beamforming 

The array signal processing operates in a multidimensional space-time domain with the sensor 

arrays. And, the processor that combines temporal and spatial filtering using sensor arrays is 

the beamformer [56]. Obviously, spatio-temporal filtering is preferable over temporal filtering 

alone, because desired signal and interference often overlap in time and or frequency, but 

originates from different spatial position. One of the main purposes of using a microphone 

array signal processing is the design of spatial filters that able to enhance the desired source 

from the received signal, while attenuating all other acoustic disturbances. The spatial filtering 

method is known as beamforming when the signal enhancement is obtained as a linear 

combination of the signals captured by all microphones. The spatial filtering can be written as 

a weighted sum of the snapshot xq(n) and resulting in a beamformed signal y(n): 
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where wq is the weight for q-th microphone signal. The beamformer response pointing to a 

given position p at a concrete frequency can be computed as the product of the beamforming 

weights and the steering vector determined by p for that frequency as follows: 
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The task of beamforming then simplifies to find the optimal set of weights W that 

permits the enhancement of the desired sources and attenuation of the non-desired 

components. There exist many approximations and criteria for the beamformer design, but 

they can be classified broadly into two: 1) data independent methods, and 2) statistically 

optimum methods.  

Data independent methods design the fixed beamformer patterns independently on the 

arriving signals according to spatial restrictions or other kinds of restrictions. This can be the 

case when the position of the source of interest is known a-priori, like in a car or room 

environment, or when we want to attenuate the noise sources whose positions are already 

known. There are various schemes to select the weights of the beamformer, each with its own 

characteristics and limitations. A conventional beamformer is a simple one, sometimes 

referred as the delay-sum beamformer, with all its weights of equal magnitudes. The phases 

are selected to steer the array in a particular direction, known as the look direction. The mean 

output power of the conventional beamformer steered in the look direction is equal to the 

power of the source in the look direction. In the multiple source scenarios, a technique called 

null steering beamforming is used to cancel the plane waves arriving from the known 

directions and thus produce nulls in the response pattern by steering only towards the direction 

of arrival (DOA) of the desired target source. In general, spatial restrictions can be introduced 

in the design of the beamformer weights by simply imposing a desired response to concrete 

directions. The maximum number of restrictions is determined by the number of sensors of the 

array. In that case, we would like to enhance the response to the signal coming from position 
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p0 while also attenuate the sound arriving from Ns noise sources at p1,…,pNs. The expression 

with this kind of implementation can be written: 
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or in terms of matrix notation: 
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Assuming that the noise sources are uncorrelated, that is the noise cross-covariance 

matrix R In  , the solution of Eq. 2.4 can be obtained by conditional minimization: 
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This beamforming technique is also known as multiple sidelobe cancellers (MSC) [56]. 

The implementation of this type of beamformer depends on several factors like the array 

geometry, number of microphone in the arrays, the narrowband or broadband considerations 

of the signal to be processed. With sufficient number of microphones in a given array 

geometry, narrowband signals are well suited for the processing by this type of beamformer in 

time domain. In other words, this type of narrowband assumptions puts frequency dependent 

limitations on the characteristics of beamformers. Basically, the delay-sum beamformer 

belongs to a more general class called filter-sum beamformers, in which both the amplitude 

and phase weights are frequency dependent. The directivity pattern of such kind beamformer 

with uniformly spaced sensor array depends on the factors like frequency of interest, the inter-

element spacing and the number of elements in the array. The dependency in the operating 

frequency means that the response characteristics (beam width, sidelobe level) will only 

remain constant for narrow-band signals. For wideband applications, it means that a single 

linear array is inadequate if frequency invariant beam-pattern is desired. To deal with a 

wideband signal like speech, one possibility is to process the signal in the frequency domain 

[57]. Hence, the problem of frequency dependency can be overcome by converting the time 

domain signal into frequency domain and using the narrowband beamforming for each 

frequency bin [58] [59] [60]. In some applications like in [61] [62], processing of different 

frequency bands in different harmonically nested sub-arrays makes the whole system to be 
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used for broadband applications. Each sub-array is designed as a narrow band beamformer 

applied to a concrete frequency band typically of one octave. The lowest frequency band is 

processed by largest sub-arrays and highest frequency band is processed by smallest sub-

arrays, in this way reducing the beampattern variation. 

In the case of distributed microphone arrays in the room environment like UPC‟s smart 

room, the spatial beam-patterns of the array beamformer are expected to be highly dependent 

on the relative positions of the active sources and the sensors in the room [63]. For a total 

acoustic scene analysis, the combination of the contributions from all microphone arrays is 

necessary. This type of combination at the signal level is described in [64].   

The performance of ASR systems in a room environment with distant microphones is 

strongly affected by reverberation. As the degree of signal distortion varies among acoustic 

channels (i.e. microphones), the recognition accuracy can benefit from a proper channel 

selection. Such an attempt is made in [65] [66], which proves beneficial to the recognition 

task. Basically channel selection for automatic speech recognition aims to rank the signals 

according to their quality. To create such ranking, in [66] [67], authors propose to use 

posterior probabilities estimated from the N-best hypothesis of each channel.  

Practically, microphone array beamforming have to face the problem of multipath 

propagation due to early reflections and reverberations, wideband signals, non-stationary 

environments and with the restrictions in array geometry, size and number of sensors due to 

design constraints [68]. In such kind of situations, a frequency invariant beamforming is 

attempted in [69], which uses a numerical approach to construct an optimal frequency 

invariant response for an arbitrary array configuration with a very small number of 

microphones, and it is capable of nulling several interferent sources simultaneously. The 

method first decouples the spatial selectivity from the frequency selectivity by replacing the 

set of real sensors by a set of virtual ones, which are frequency invariant. Then, the same array 

coefficients can be used for all frequencies. A frequency invariant beamformer in the subbands 

using least square approach is designed [70].  

Conventional and null-steering beamformer often requires the knowledge of the 

directions of target and interference sources, and the output signal to interference noise ratio 

(SINR) is not maximized by the estimated weights [71]. Optimal beamformer overcomes 
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some limitations based on the adaptive estimation of optimum mean square error (MSE) 

parameters on the available dataset. The weights are selected by minimizing the mean power 

of the processor while maintaining the unity response in the look direction of the desired 

source. The constraint included takes care that the signal remains undistorted. Alternatively, 

this adaptive array processing can be divided in two categories: element-space processing and 

beam-space processing.  

In element-space processing, the signals derived from the elements are weighted and 

summed to produce array output. The beam-space processing is a two stage scheme where the 

first stage takes the array signals as input and produces a set of multiple outputs. These outputs 

are then weighted and combined to produce the array output. In general, the beam space 

processing arrays are used in situations where the number of interferences is much less than 

the number of elements. They offer computational advantage over the element-space 

processing array. For element-space processing, the constraints on the weights are imposed to 

prevent the signal that arrives from look direction to be distorted. It makes the array designing 

more robust. Beam-space processors are reported to produce superior performance in the 

presence of look direction errors. Beam-space processors have been studied under many 

different names, including Howell-Applebaum array [72], Generalized sidelobe canceller [73] 

[74]. One of the advantages of the beam-space processing is that the number of degrees of 

freedom of an array that are used to achieve adaptivity are proportional to the number of 

unwanted signals rather than the number of array elements. In the absence of errors, both 

processing schemes yield identical results. Both Applebaum and Least mean squares (LMS) 

adaptive array techniques based on statistical methodologies were applied to many 

applications that iteratively null the jammers. The LMS array relies on a locally generated 

reference signal to guide feedback loops that generate weights. The Applebaum array uses a 

steering vector to control the feedback loops and does not require reference signal. The 

difficulty with this method is that the designer must know where to point the beam. Thus a 

priori knowledge of arrival angle of the desired signal is required. When this angle is not 

known, one can choose the Applebaum array in the form of power inversion array, where 

steering vector turns one element on and the rest off. The turned on element is so chosen that 

its pattern covers some large sector of space from which desired signals may arrive.  
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To deal with the problem of non-stationarity, adaptive beamformers are very useful [75]. 

This kind of beamformers optimally extract non-stationary desired signals from the non-

stationary interference for a given array geometry. In this context, it is worth to mention that 

beamformers can partially dereverberate the desired signal, although reverberation is strongly 

correlated with the desired signal. The beamformer generally increase the power ratio between 

direct path and reverberation. 

2.4.1.5 Some useful beamforming applications in speech technologies  

Many microphone array based speech recognition systems have successfully used delay-and-

sum processing to improve recognition performance, and because of its simplicity, it remains 

the method of choice for many array based speech recognition systems [68] [76] [77]. The 

delay-and-sum beamformer can be generalized to a filter and sum beamformer where rather 

than a single weight, each microphone signal has an associated filter and the captured signals 

are filtered before they are combined. Both the delay-and-sum and filter-and-sum methods are 

examples of fixed beamforming algorithms, as the array processing parameters do not change 

dynamically over time. If the source moves then the delay values will of course change, but 

these algorithms are still considered fixed parameter algorithms.  

In adaptive beamforming, the array-processing parameters are dynamically adjusted 

according to some optimization criterion, either on a sample-by-sample or on a frame-by-

frame basis. In some cases, the filter parameters can be calibrated to a particular environment 

or user. For example, a calibration scheme is designed for a hands-free telephone environment 

in an automobile [78]. A series of typical target signals from the speaker, as well as jammer 

signals from the hands-free loudspeaker, are captured in the car and used for initial calibration 

of the parameters of a filter-and-sum beamforming system. These parameters are then adapted 

based on the stored calibration signals and updated noise estimates.  

In [74], robustness of the adaptive technique (GSC) was improved by reducing the 

signal cancellation that results from tracking errors. These adaptive methods are very handy 

and used in many speech processing applications. As an example, in [79], efforts have been 

made to improve the speech recognition task in the environments where close-talking 
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microphone is not available and the speech is captured by an array of microphones located 

some distance from the user.  

A filter-and-sum array-processing algorithm called Likelihood Maximizing 

Beamforming (LIMABEAM) in which the filter parameters are optimized in a data-driven 

fashion using the statistical models of a speech recognition system is developed in [80] . The 

optimization of the filters parameters is formulated as a maximum-likelihood parameter 

estimation problem. In addition, a subband filtering approach to LIMABEAM, called 

Subband-Likelihood Maximizing Beamforming (S-LIMABEAM) is also investigated in [81] . 

In this algorithm, processing is performed in the DFT domain, treating each DFT coefficient 

over time as a time-series.  

Noise suppression and echo cancellation in speech technologies are used in different 

environments like in car, air cockpit etc. A speech reinforcement system for car cabin 

communication is proposed in [82] . The system uses a set of acoustic echo cancellers, echo 

suppression filters and noise reduction stages based on Wiener filters for its implementation. A 

combined fixed/adaptive beamforming for speech recognition in car environments had been 

studied in [83].  

2.4.2 Blind source separation  

Blind source separation is generally a technique for estimating original sources from observed 

mixed signals without a-priori information about the source signals, hence the term blind. It 

has been an emerging field of interest due to a number of interesting applications in audio, 

speech, image signal processing and many other applications. Many different approaches have 

been attempted by numerous researchers using artificial learning, higher order statistics, 

minimum mutual information, beamforming based adaptive signal separation and noise 

cancellations, each claiming various degrees of success.  

The blind source separation problem was viewed from an information theoretic 

framework in [84]. They also demonstrated the separation and the deconvolution of mixed 

sources. But their adaptive methods were different from the cumulant based cost functions 

[85].  
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But the common factor between most of the BSS techniques is that they rely on 

statistical independence as its separation criterion. Independence, as the term suggests, is 

about making the signals statistically independent by reducing mutual information between the 

signals. The author in [86] described that the joint approximate diagonalization of eigen-

matrices (JADE) is equivalent to informatic approaches. The contrast function used in their 

work is effectively a measure of mutual information between the cross-cumulants of signals.  

Principal component analysis (PCA) is a second order statistical method that 

decorrelates the data and reduces the dimension of the problem, but does not achieve full 

independence [87]. In this context, independent component analysis (ICA) has the capacity to 

make the signals fully independent, since it is a higher order statistical method [84]. 

Sometime, combination of the PCA with ICA is used for BSS [88]. The reason for combining 

them is to reduce the dimension of the problem before implementing the ICA algorithm, thus 

making it easier for the ICA algorithm to solve the problem. In such cases, the PCA is 

implemented using a recursive method and the information maximization is implemented for 

the ICA.  

In [89], the authors were the first to capture higher order statistics by decorrelating 

nonlinear transformations of the signals. The authors in [90] [91], presented a simple 

algorithmic architecture which in effect performs density estimation and is based on prior 

knowledge of the cumulative density function of the source signals. The author made 

modifications to the updated equations to dramatically improve convergence and 

computational costs [92].  

In case of convolutive mixtures of the signals, general broadband approach based on 

second order statistics is presented in [93]. The proposed algorithm avoids several known 

limitations of the conventional narrowband approximation, such as internal permutation 

problem. The higher order statistics generally produces better separation [94] [95]. It has been 

proposed and implemented a higher order cumulant based contrast function for the separation 

problem. The authors considered the separation problem for the convolutive mixtures in the 

case where non-Gaussian source signals are not necessarily the filtered version of independent 

and identically distributed sequence. The separation is done through a deflation method, where 

sources are extracted one by one. 
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Some work in this area was inspired from semi-blind approaches. As in [96], a new 

contrast function that makes use of reference signals is proposed. The main advantage of this 

approach consists in the quadratic form of the criteria; the extraction of one source thus 

reduces to a simple optimization task, for which comparatively fast and efficient algorithms 

are available. The separation of the other sources from the mixtures is then carried out by an 

iterative deflation method. 

In case of multichannel blind signal processing for the convolutive mixtures, a „Triple-N 

ICA for convolutive mixtures‟ (TRINICON) framework is presented in [97]. It deals with both 

blind source separation and multichannel blind deconvolution (MCBD). It is based on the use 

of multivariate pdfs and a compact matrix notation, which considerably simplifies the 

representation and handling of the algorithms. In that work, the authors exploited three 

fundamental signal properties: non-whiteness, non-gaussianity and non-stationarity by using a 

information theoretic cost function. 

The blind source separation techniques are expected to be computationally complex. 

Interestingly, a real-time broadband convolutive BSS has been implemented [98]. It uses the 

same algorithms like in [97], which is based on second order statistics and a block-on-line 

update method for de-mixing filters. The system is tested in a reverberant room with moving 

speakers. In [99], a recursive method for BSS or/and for ICA is proposed. The relation of this 

recursive method of BSS/ICA with the conventional gradient-based method is quite similar to 

the relation of the RLS method with the LMS method in adaptive filtering. 

2.4.3 Time-frequency sparseness 

Time-frequency sparseness based source separation has been very popular research area for 

source separation. In [100], a time-frequency sparseness based technique that uses BSS of a 

time-varying number of moving sources is presented. They develop two online algorithms 

based on time-frequency sparseness and are able to track and separate moving sources in 

mildly reverberant environments in real-time. The advantage of this approach is that it does 

not require the number of sources or an initialization of DOAs. In [101], the authors have 

proposed a spectrogram image features, based on the visual signature extracted from the 
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sound‟s time-frequency representation for sound event classifications in the mismatched 

conditions.  

Overlapping sound event recognition using local spectrogram features with the 

generalized Hough transform (GHT) is attempted in [102] [103]. The local features are 

extracted from the interest-points in the spectrogram. Then the features are clustered for each 

sub band and a general temporal distribution function for each feature cluster is generated. 

These are called codebook clusters. While recognizing, matching of the codebook entries are 

done using GHT which detects shapes in the image through a voting procedure. In the 

recognition, the matching of the features is done through a temporal distribution function 

which acts as a voting function to perform GHT.  

An underdetermined blind source separation (BSS) using a compressed sensing (CS) 

approach is proposed in [104] . It contains two stages. In the first stage, a modified K-means 

method is used to estimate the unknown mixing matrix. The second stage is to separate the 

sources from the mixed signals using the estimated mixing matrix from the first stage. In the 

second stage a two-layer sparsity model is used. The two-layer sparsity model assumes that 

the low frequency components of speech signals are sparse on K-SVD dictionary and the high 

frequency components are sparse on discrete cosine transformation (DCT) dictionary. This 

model, taking advantage of two dictionaries, can produce effective separation performance 

even if the sources are not sparse in time-frequency (TF) domain. A framework for separating 

and reconstructing multichannel speech sources from compressively sensed linear mixtures is 

explored in [105]. The conventional approaches for blind speech separation are almost based 

on the Nyquist sampling theory. The author proposed an approach which uses the 

multichannel compressive sensing theory for blind speech separation. The linear programming 

and gradient based methods are used to separate the sources and has a lower computational 

complexity. Compared with the conventional blind speech separation, the proposed approach 

can reduce the requirements of sampling speed and operating rate of the devices. 

2.4.4 Non-negative matrix factorization 

Among the other popular techniques applied in the noisy or overlapped audio recognition, 

non-negative matrix factorization (NMF) is the one that produces successful separation and 
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could assist other tasks like automatic music transcription, object coding, special sound 

effects, acoustic scene analysis etc.  

In [106], the author presented a framework featured by two approaches: un-directed and 

directed NMF model. The un-directed NMF model decomposes the mixing data in an 

unsupervised manner but requires human interaction for clustering. The directed NMF is 

performed under the direction of pre-trained models and provided with isolated training data, 

does not need any user interaction.  

In [107], the authors used a convolutive NMF based approach for detecting and 

modeling the acoustic events. As NMF is useful for parts based decompositions of data; in this 

work authors have used to discover a spectro-temporal patch bases that best describes the data, 

with the patches corresponding to the event like structures. Then the features are derived from 

these activations of the patch bases. They performed the AED task with 16 meeting room 

acoustic events in the presence of added noise.  

A sound event detection system that uses a sound source separation in the front end for 

natural multisource environments is proposed in [108]. The audio is pre-processed using NMF 

and is capable of separating upto four individual signals from the overlapping events. The 

NMF is calculated by minimizing the Kullback-Leibler divergence between the original 

spectrogram and a reconstructed spectrogram. The magnitude spectrum of the time domain 

signal calculated before performing NMF. After factorization, the complex spectrum is 

reconstructed and then converted back to the time domain signal.  

A multichannel high resolution NMF for modelling convolutive mixtures of non-

stationary signals in the time-frequency domain is explored in [109]. The authors presented a 

unified probabilistic model called HR-NMF that permits to overcome this limit by taking both 

phases and local correlations in each frequency band into account. This model is estimated 

with a recursive implementation of the Expectation-Maximization (EM) algorithm.  

In [110], author proposed an algorithm for separating monaural audio signals by non-

negative tensor factorization of modulation spectrograms. The modulation spectrogram is able 

to represent redundant patterns across frequency with similar features, and the tensor 

factorization is able to isolate these patterns in an unsupervised way. The method overcomes 

the limitation of conventional non-negative matrix factorization algorithms to utilize the 
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redundancy of sounds in frequency. In the proposed method, separated sounds are synthesized 

by filtering the mixture signal with a Wiener-like filter generated from the estimated tensor 

factors.  

2.5 Classifiers in the AED task 

Any recognition task requires a classification. The task of classification is to provide a label 

for an unseen input pattern. However, a poor feature processing can hardly be compensated by 

a good classification. One of the very first works on audio classification used a minimum 

distance classification model, i.e. a simple distance based classifier with the Euclidean 

distance between extracted features [111]. The minimum distance classifiers choose a class 

according to the closest training sample. A little more complex algorithms determine the k-

nearest neighbours to an unknown input, and then they choose the class that is most 

represented by them. In that case, classification becomes very complex when a lot of training 

data is used, as one must measure a distance to all the training samples. By using clustering 

and storing only the centers of the clusters (class prototypes) the computational efficiency can 

be improved. The mentioned algorithms and other related optimization steps for audio 

classification have been reviewed in [112].  

A rule based classification algorithm that initially also relies on a good feature extraction 

has been used in [113]. In that work, several task-specific features have been proposed with a 

set of heuristic classification rules.  

Among other classification paradigms, a way to classify audio data consists to use already 

developed and well-tested speech recognition algorithms. In ASR, usually GMMs and HMMs 

are used. They are well suited to work with time series data, and to deal with the information 

included in the temporal evolution of the audio signal. Many audio recognition works have 

exploited the mentioned techniques. GMMs have been used in [112] [114], and HMMs in [4] 

[115] [116] [117] [118] [119].  

Instead of using generative classification models as GMM, discriminative classification 

models have been used in a number of works, like ANN in [87] [120] [121], linear vector 

quantization in [122], decision trees in [123], support vector machines in [2] [124]. Most 

common practice is to use supervised training for event recognition. However, in [125], 
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authors presented a semi-supervised learning which helps in sound event classification. They 

showed that adding unlabelled sound event data to the training set based on sufficient 

classifier confidence level after its automatic labeling level could significantly enhance 

classification performance. Like in speech recognition, the authors in [126], developed a 

technique for detecting signature audio events which is based on identifying patterns of 

occurrences of automatically learned atomic units of sound called acoustic unit descriptors. 

2.5.1 Missing feature techniques 

Missing features technique is a method to deal with the problem of noisy or overlapped audio 

recognition. Speech recognition systems perform poorly in the presence of corrupting noise. 

Missing feature methods attempt to compensate for the noise by removing noise corrupted 

components of spectrographic representations of noisy speech and performing recognition 

with the remaining reliable components.  

Conventional classifier-compensation methods modify the recognition system to work 

with the incomplete representations so obtained. This constrains them to perform recognition 

using spectrographic features, which are known to be less optimal than cepstra. In [127], two 

missing-feature algorithms that reconstruct complete spectrograms from incomplete noisy 

ones are presented. Cepstral vectors are then derived from the reconstructed spectrograms for 

recognition. One algorithm uses MAP procedures to estimate corrupt components from their 

correlations with reliable components. The other one clusters spectral vectors of clean speech. 

Corrupt components of noisy speech are estimated from the distribution of the cluster that the 

analysis frame is identified with.  

In [128], the authors presented an automatic speech recognition system that uses a 

missing data approach to compensate for challenging environmental noise containing both 

additive and convolutive components. The unreliable and noise corrupted “missing” 

components are identified using a Gaussian mixture model (GMM) classifier based on a 

diverse range of acoustic features. To perform speech recognition using the partially observed 

data, the missing components are substituted with clean speech estimates those are computed 

using both sparse imputation and cluster based GMM imputation. Compared to two reference 

mask estimation techniques based on interaural level and time difference-pairs, the missing 
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data approach in that work significantly improved the keyword accuracy rates in all signal-to-

noise ratio conditions when evaluated on the CHiME reverberant multisource environment 

corpus. Of the imputation methods, cluster based imputation was found to outperform sparse 

imputation.  

The conventional missing features techniques require either the substitution of 

spectrogram elements (imputation) or the classifier modification (marginalization) [54]. But in 

[129], a noise robust cepstral feature called missing feature linear-frequency cepstral 

coefficients (MF-LFCC) is used that transforms both clean and noisy signals into a similar 

representation. They have used a computer vision technique called blob detection to separate 

the reliable signal from the noisy or unreliable background in the time-frequency domain.  

2.6 Acoustic source localization 

Most of the existing indoor acoustic source localization systems in the state of the art are 

based on the time difference of arrival (TDOA) of the waves captured by microphones placed 

at different locations. Considering the relative slow speed of sound in air (around 342 m/s) in 

indoor environments, the localization systems rely on these small differences between signals. 

This kind of approach faces three problems: detecting the number of sources at a given time 

(detection), gathering the corresponding position of every detected source (localization), and 

estimating their trajectories over time (tracking). The small time differences are determined by 

the source position and the microphone constellation. These differences are usually obtained 

by the following methods in a nonexclusive form. 1) Time delay: the time needed by the 

signal to reach every microphone is different. It is possible to reconstruct the source position, 

assuming the exact location of the microphones. This approach does not require a prior 

knowledge about the environment, and therefore is the preferred option in most of the 

practical applications. Usually omnidirectional microphones are employed. 2) Impulse 

response: for every source position and microphone location, the signal travels across different 

channels, which has a varying effect in the impulse response of every microphone. A model 

based approach, which consists of creating a complete map of the impulse response for every 

location of the meeting room and each microphone, enables the possibility to estimate the 

source position. The Multiple Inputs Multiple Outputs (MIMO) channel identification task 
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[97] [130], tightly related to the BSS task, aims at estimating the impulse responses online 

without any calibration step. This approach would permit the localization and the separation of 

the signals of multiple acoustic sources present in the room. This task is still open to research, 

with preliminary tests published in [131]. 3) Microphone channel: recently has been proposed 

to use directional microphones placed in the same position, but pointing to different directions 

[132]. In this case, it could be possible to take advantage of the knowledge of the microphone 

direction-dependent response to reconstruct the speaker position. This kind of approach may 

be combined with the previous ones. 

2.6.1 Time difference of arrival estimation 

The approaches to TDOA estimation based on the cross-correlation between pairs of 

microphones are the most common and popular in speech applications. In the particular case 

of an scenario with multiple acoustic sources and only one pair of microphones available, an 

alternative technique to estimate multiple time delays is the Adaptive Eigenvalue 

Decomposition Algorithm [133]. However, in the general case of multiple microphone pairs 

and multiple acoustic sources (or multiple reflections), the task of relating the numerous time-

delays provided by each microphone pair with the exact position of every source becomes 

non-obvious.  

2.6.1.1 Techniques based on correlation 

Consider a room provided with a set of N microphones from which we choose M microphone 

pairs. Let p denote a position in space. Considering the speed of sound is vs, the time delay of 

arrival τi,j of an hypothetical acoustic source located at p between two microphones i, j with 

position mi and mj is: 

 
,

p m p m
i j

i j v
s


  
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The cross-correlation function is a measure of the similarity between signals for any 

given time displacement and ideally it should exhibit a prominent peak in correspondence to 
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the delay between the pair of signals [134]. The presence of disturbing factors such as noise or 

path differences from the audio source to the microphones can considerably mask this peak 

and the effect of reverberation is specially harmful for the quality of the recorded speech 

[135]. In order to increase robustness against these factors, the cross-correlation function is 

usually weighted attending to different optimality criteria, in what is named Generalized 

Cross-Correlation (GCC) [136]. It can be expressed in terms of the inverse Fourier transform 

as follows: 
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 is the estimated cross power spectrum and ψ(f) is the weighting 

function. And the TDOA is estimated: 
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GCC has different properties depending on the weighting function. Some weighting 

functions can improve the TDOA estimation against reverberation, while others offer more 

immunity against additive noise. As a result, weighting functions should be adapted to the 

environmental conditions of the corresponding application. In environments that are 

characterized by the presence of high additive noise, whose spectrum is known, a function 

widely used in audio processing is the Maximum Likelihood (ML). One of the main 

drawbacks of this technique is that in many applications it is not possible to know the noise 

spectrum beforehand. On the other hand, reverberation is the most harming phenomenon 

present in room applications and the ML function does not provide any special robustness 

against reverberant conditions.  

A widely used weighting function in acoustic source localization is the Phase Transform 

(PHAT), also known in the literature as cross power-spectrum phase (CSP) [137] [138] 

technique that is usually considered useful in reverberant scenarios and defined as: 
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The magnitude of the PHAT-weighted cross-power spectrum is constant and equal unity for 

all frequencies, and therefore, all time-delay related information lies within the phase. This has 

a normalizing effect in the cross-correlation function, being GCC-PHAT directly comparable 

between microphone pairs independently of the microphone gains, which avoid the need for 

tedious microphone calibration. On the other hand, the PHAT weighting is very convenient 

since it does not depend on the noise spectrum and its whitening effect on the cross-power 

spectrum removes from the cross-correlation function the periodicities produced by the voice 

autocorrelation. Finally, the main strength of GCC-PHAT is its inherent robustness against 

reverberation by giving equal importance to every frequency independently of the signal, 

under the assumption that the signal to reverberant ratio is constant for all the frequencies. For 

each pair of sensors, the loci of all points, which have the same TDOA, lie in the surface of a 

hyperboloid. An estimate of the 3D source location is then given as the location which best fits 

the potential source surfaces across all sensor pairs, which leads to the minimization of an over 

determined and nonlinear error function. There are many works in the literature for finding the 

best fit. Some of them are explained in [139] [140] [141] [142] [143]. A ML approach can be 

found in [144] based on the TDOA estimation from M different microphone pairs, defined as: 
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where E(p) is the ML error-function, τm(p) is the theoretical TDOA from a potential source at 

position p to the microphone pair m, and  ˆ
m

  and 
2

ˆm
 are the estimated TDOA and it variance 

at the m-th microphone pair. The most likely position for a given set of TDOA consists of the 

minimization of: 

 ˆ argmin ( )p E p
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For real-time applications, closed-form estimators that approximate the minimization 

problem to a suboptimal solution at a very low computational cost have been developed. 

Triangulation is the simplest solution [145], however, it is difficult to take advantage of 

multiple sensors and the TDOA redundancy. In general, most closed-form algorithms employ 

a least-squares approach to construct the error function based on the multiple TDOAs. The 

minimization of different error functions result in many different estimators with varying 

performance and complexity. Examples of closed-form estimators are plane intersection [146], 

spherical intersection [147], spherical interpolation [142], etc. In general, closed-form 

algorithms make no additional assumption about the distribution of measurement errors, 

making them very sensitive to errors in the TDOA estimation.  

2.6.2 SRP-PHAT technique 

In real scenarios dealing with high levels of reverberation and distant sources, the performance 

of the most of the above-mentioned techniques are very poor and SRP based approaches are 

better suited. In the last years, much research efforts have been devoted to develop direct 

approaches, able to estimate the source position in a single step. Algorithms in this class 

commonly aim to maximize, or minimize a given objective error function either iteratively or 

exploring over a grid of predefined locations. Direct approaches have not been often 

considered in past years because of their high computational demands. However, recently 

there is a growing interest in this type of approaches, since the increasing availability of 

computing power makes some solutions feasible. Some iterative algorithms like the simplex 

method presented in [148] try to solve the ML error function 2.10. Unfortunately, iterative 

methods suffer from the drawback of needing an initial estimate close to the real source 

position in order to avoid instability problems, reaching local minima, or slow convergence.  

The simplest example of exploration algorithm is to scan the set of predefined possible 

locations with a delay-and-sum beamformer [149]. Signals received at each sensor are aligned 

according to the theoretical propagation delays to each location, then compute the energy of 

the sum of all aligned signals. When the beamformer focuses near the real source position, the 

energy of the combined output signal presents a maximum peak. This type of exploration 

method is known as the Steered Response Power (SRP) algorithm. First research works on this 
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field were developed by Alvarado when he introduced the concept of power field in [150]. 

However, in noisy and reverberant environments the energy is not a reliable feature. 

Silverman and Kirtman introduced in [151] an alternative method to power field which 

employs the cross-correlation function in a two-stage search algorithm. Later, the Global 

Coherence Field (GCF) was described in [137] and proposes to use a steered beamformer 

based on a coherence measure instead of power. More recently, a particular implementation of 

GCF based on GCC-PHAT function and referred to as SRP-PHAT was investigated by 

DiBiase in [152]. Among the all methods based on steered beamforming (SB) [153], the most 

popular is the SRP [150] [154] [68]. The SRP-PHAT algorithm performs very robustly in 

reverberant environments due to the PHAT weighting, and actually, it has turned out in one of 

the most successful state-of-the-art approaches to microphone array sound localization [136] 

[155].  

A localization technique based on ML using a noise model, which is closely related to 

SRP, has been reported in [156]. In [157], a source localization method is presented using the 

generative model based fitting with sparse constraints. The generative model is defined to 

explain the acoustic power maps obtained by the SRP strategies. An optimization approach is 

then used to fit the model to real input SRP data and estimate the position of the acoustic 

source. While optimizing, sparse constraints in the parameters of the model are included, 

enforcing the number of simultaneous active sources to be limited. In addition, a subspace 

analysis is used to filter out portions of the input signal that cannot be explained by the model. 

Speaker localization and the orientation in a multimodal and smart-room environment is 

carried out in [158]. The work describes the development of a robust speaker tracking system 

based on the audio signals captured by a set of distributed microphones in UPC‟s smart-room. 

The location estimates gathered by the acoustic localization algorithms are usually 

contaminated by spurious measurements due to noises or reflections of the voice with adjacent 

objects. Two approaches to filter the noise-corrupted location estimates according to a motion 

model to obtain a reliable smooth track of the acoustic sources are used based on the Kalman 

filter and sequential Monte Carlo methods. The acoustic localization and tracking algorithms 

have been adapted to other speech technologies like speaker identification, speaker diarization 

and acoustic event detection. 



Acoustic source localization 

36 

 

Generally, the SRP based techniques use computationally intensive grid search methods 

to find a global maximum. Attempts to reduce the computational load of the exhaustive peak 

search have also been investigated, like stochastic region contraction [159], coarse-to-refine 

search [160]. A computationally viable SRP has been proposed in [161], where an inverse 

mapping is introduced that maps the relative delays to a sets of candidate locations. In [162] 

[161] [163], the authors discussed the computational issues and proposed optimization 

methods so that the SRP based techniques can be implemented in real time.  

2.6.3 Multiple source localization 

Indeed, the localization of simultaneously active sources with the energy or energy-like based 

approaches has to face a stronger challenge than for the single source case. A method for 

tracking the positional estimates of multiple talkers in the operating region of a microphone 

array has been presented in [164], where initial talker location-estimates are provided by a 

time-delay based localization algorithm. These raw estimates are spatially smoothed by a 

Kalman filter derived from a set of potential source motion models. Data association 

techniques based on the estimate clustering and source trajectories are incorporated to match 

location observations with individual talkers.  

Multiple source localization in the reverberant environment is attempted in [165]. The 

approach is based on a disturbed harmonics model of time delays in the frequency domain and 

employs the well-known ROOT-MUSIC algorithm, after a preliminary distributed processing 

of the received signals. Candidate source positions are then estimated by clustering of raw 

TDOA estimates.  

For single sound source localization, the CSP (cross-power spectrum phase analysis) 

method has been widely used. However, when localizing multiple sound sources, the CSP 

method has a problem that the localization accuracy is degraded due to cross-correlation 

among different sound sources. To solve this problem, in [166], the authors propose a new 

method which suppresses the undesired cross-correlation by synchronous addition of CSP 

coefficients derived from multiple microphone pairs. Experimented in a real room 

environment, they have showed that the method improves the localization accuracy when 

increasing the number of the synchronous addition.  
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A method for locating multiple sound sources using only a local segment of data from a 

large-aperture microphone array is proposed in [167].  The proposed method employs the 

proven robust SRP-PHAT as a functional, then an agglomerative clustering, and a low-cost 

global optimization (stochastic region contraction). Of course, these approaches rely on some 

kind of measurement of the acoustic energy as a function of space, and require additional 

methods with some optimization for localizing sources in a multiple source environments. But, 

the identity of the sound is not used at all. 
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2.7 Chapter summary 

In this Chapter, we have quickly reviewed the work done so far in the area of acoustic event 

detection from the application point of view. In that context, the temporal overlapping 

problem is mentioned and how this problem affects the different areas of speech technologies 

has been presented briefly. Some of the possible solutions of the overlapping problem are also 

mentioned. Source separation prior to detection could be a reasonable one. Then, a literature 

review of different source separation techniques and their applications in different speech 

technologies has been presented. In the later part of this Chapter, a brief state of the art of 

acoustic source localization has been presented. A short review of ASL in multi source 

environment is also presented. 
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Chapter 3. Basic techniques used in this thesis 

3.1 Chapter overview 

The detection and localization of acoustic events in a room environment has to face the 

challenge of overlapped sounds, i.e. sounds that occur simultaneously. The detection problem 

can be tackled by carrying out some kind of source signal separation followed by detection 

(that includes identification) of each of the overlapped sounds. In this Chapter, either blind 

source separation based on the deflation method or beamforming is used for signal separation. 

The beamformers are designed with two or three microphones per array. An alternative 

detection approach relies on modeling all possible overlapping combinations of acoustic 

events. Both detection approaches are explored in our work.  

An alternative solution to the overlapping problem, which is based on source separation, 

is presented in Section 2. The Section also describes the different source separation 

approaches, like BSS and beamforming based technique. A full detection system that is based 

on the beamforming based source separation is presented in Section 3. The fuzzy integral 

based fusion of information sources, which could be used in the decision block of the system 

is presented in Section 4. Acoustic scenario and the databases, which will be used in this thesis 

work, are described in Section 5. And the Chapter summary is presented in Section 6. 
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3.2 Source separation based approach 

The problem of overlapping can be solved at the signal level by source signal separation, i.e. 

the signals are separated first, and then detected.The advantage of these methods over the 

model based one is that they do not require the extra models for the overlapped signals. But, 

on the other hand, an extra separation block is needed at the first stage of the system. Two 

very different techniques are considered in this work: 1) a blind source separation (BSS) 

technique which employs a contrast function based deflation method [94], and 2) a 

computationally simpler array processing based separation technique which employs null 

steering beamforming (NSB). The first technique is expected to produce better separation than 

the second, but it can hardly be implemented in real-time. The second one is a partial 

separation method which, when the number of microphones is very low, as in our case, does 

not achieve a quality of the separated signals as good as the first, but it still may be useful for 

detection and localization. 

3.2.1 Source separation based on deflation 

In blind source separation, a number of signals are separated from the set of mixed signals 

with or without the aid of information about the source signals or the mixing process. The 

block diagram of the BSS based AED system is depicted in Figure 2. For our work, we have 

selected an iterative BSS technique where the source signals are extracted from the mixtures 

one by one [94] [95].  The main assumptions are: the signals are stationary and statistically 

mutually independent, there are more sensors than sources, and the mixing system is a FIR 

filter. After separation, the output signals correspond in any order to the source signals passed 

through a scalar filter. If the sources are temporally independent and identically distributed, 

the scalar filter further reduces to a delay and scaling factor. Here we will use a deflation 

based BSS approach which consists of using a contrast function to transform the original 

problem into an optimization problem [96]. There are several contrast functions which can be 

used for this optimization. In this work, to reduce time complexity, we have used a quadratic 

contrast function with 4
th

 order cumulants, like in [96]. 
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Figure 2 : Blind source separation based AED 

3.2.2 Source separation based on beamforming 

In this second approach, source separation is based on signal processing using a null steering 

beamformer (NSB). In the first stage, the NSB adapts the microphone array pattern by steering 

the main beam towards the desired source and placing nulls in the directions of the 

interference sources as described in Figure 3. Thus the contribution of one of the simultaneous 

sounds to the beamformer output is expected to be lower than its contribution to the 

beamformer input. In the case of two sources, we will have two NSB in parallel, so each of 

them will nullify a different source signal. Indeed, beamforming is based on the prior 

knowledge of the direction of the desired and interference sources, which can be provided by 

an ASL system. Thus, each NSB has two inputs: 1) the multimicrophone signal, and 2) the 

position coordinates or direction of arrival (DOA) of the sources. In the reported experiments, 

a linear array of either only two or three microphones is used. 
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Figure 3 : Beamforming based AED 

3.2.3 Null steering beamforming 

Null steering beamforming (NSB) is one of the earliest, but potentially very useful, 

beamforming techniques. It belongs to a class of very popular and widely used beamforming 

techniques called multiple side lobe cancellers (MSC) [56] [72]. NSB adapts the sensor array 

pattern by steering the main beam towards the desired source and placing nulls in the direction 

of the interference sources [75]. Here, beamforming is based on the prior knowledge of the 

direction of the desired and interference sources. Two types of beamforming are attempted in 

our work: 1) frequency dependent beamforming, and 2) frequency invariant beamforming. 

Both are discussed in the following sub-sections. 

3.2.3.1 Frequency dependent beamforming 

In this type of beamforming, the radiation pattern of the beamformer is dependent on 

frequency and direction of arrival. Two types of implementations are possible: 1) time domain 

and 2) frequency domain. In the general scenario, we may have a desired source or target with 

several other spatially distributed interference sources.  So a first-order NSB is needed which 

uses multiple microphones [56] [64]. If N is the number of microphones and M is the total 

number of sources overlapped temporally, the output of a beamformer can be expressed for 

each time instant as 

 
H

x W  (3.1) 
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where X is the Nx1 input signal vector, and W is the Nx1 weight vector, which is the solution 

of the equation 

 H HS W e  (3.2) 

where e = [1 0….0] is 1xM matrix, and S=[Sm,n] is a MxN matrix whose elements are defined 

by the equation: 

   , exp 2 ( -1) cos /m n m ss j f n d v   (3.3) 

being n the microphone index, s1,n the steering vector for the target source, and s2,n to sm,n is 

the steering vector for the interfering sources, which are a function of the direction of arrival 

(DOA) θm;  f is the operating frequency (narrow-band signals are assumed), d is the spacing 

between the consecutive microphones of the linear uniform array, and vs is the velocity of 

sound in m/sec. In case of two simultaneous sources, one is the target and other is an 

interference source that has to be nulled. In that case, steering vectors are: 

 
 

 

111 12

221 22

1 2

1 2

S

S

exp( j f d cos / vs s

exp( j f d cos / vs s

   
    

    
S

 (3.4)

 

So, we have to use a minimum of two microphone signals to solve Eq. 3.2. Within the each T-

shaped array of our room, we have maximum three microphones linearly spaced. So, using the 

above mentioned technique with three microphone signals, it is possible to separate a target 

signal from the maximum of two other interference sources. As the steering vectors are 

dependent on f and θm, the effective radiation pattern of the beamformer is strongly influenced 

by the frequency. It imposes some kind of limitations to this time domain beamforming with 

the narrowband consideration in spite of its simplicity. However, the problem of frequency 

dependency can be overcome by converting the time domain signal into frequency domain and 

using the narrowband beamforming for each frequency bin, as indicated in Figure 4 [57]. Here 

each of the microphone signals is converted to a frequency domain representation by using 

DFT and then applying beamforming for each frequency bin before conversion back to time 

domain by inverse DFT. Another possibility is to use a frequency invariant beamforming 

which is discussed in the following sub-section. 
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Figure 4 : Frequency domain beamforming 

3.2.3.2 Frequency invariant beamforming 

The main objective of this method is to introduce a broadband beamforming by decoupling the 

spatial selectivity from the frequency selectivity through a parameterization of the filter 

coefficients. Once the decoupling is done, the frequency invariant response is obtained by 

choosing the same coefficients for multiple frequencies. Generally, the broadband frequency 

invariant beamforming mostly requires a continuous aperture of sensors with large number of 

microphones on a specific geometry. However, this method uses a numerical approach to 

construct an optimal frequency invariant response for an arbitrary array configuration with a 

very small number of microphones (as much less as 2) [69] and capable of nulling many 

interference sources simultaneously. Moreover, it is possible to steer the resulting frequency 

invariant response by combining it with the spherical decomposition of the beam pattern. As 

depicted in Figure 5, the frequency invariant beamforming (FIB) method first decouples the 

spatial selectivity from the frequency selectivity by replacing the set of real sensors by a set of 

virtual ones, which are frequency invariant. Then, the same array coefficients can be used for 

all frequencies.The filter array response in frequency domain is represented as: 

 ( ) ( ) ( , )n n

N
h f, = c f g f

n=1
   (3.5)  
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Figure 5 : Frequency invariant beamforming 

where N denotes the number of real sensors in any array geometry. This equation can be seen 

as a parameterization of the filter array response for each frequency f with coefficients cn(f) 

and basis function gn(f,θ). Modifying coefficients cn(f) will affect the frequency and spatial 

response simultaneously because gn(f,θ) depends on both frequency f and direction of arrival θ. 

The goal of this frequency invariant beamforming is to find a new parameterization for cn(f), 

 ˆ( ) ( ) ( )ln nl

L
c f = b f c f

l=1


 (3.6) 

such that bnl(f) is the basis transform that converts the array response into frequency invariant 

array response by replacing N sensors indexed by n  by a new set of L virtual sensors indexed 

by l, 

 ˆ( , ) ( ) ( )
1

n nl l

L
g f b f g

n
 

  (3.7) 

These virtual sensors are frequency invariant. Note that the 

coefficients  are same for all frequencies. For the calculation of bnl(f) in Eq. 3.7; it is required 

to use an elegant analytic inversion formula which imposes some limitations like l<N and all 

the sensors are placed equidistant in a defined geometry. To overcome the problem of the 

restricted number of sensors and the restrictions on sensor location imposed by analytic 

inversion, least squares solution is used [168]. The arrival angle in this case is discretized by 

θq, q=1, 2,….,Q and the Eq. 3.6 can be rewritten in matrix format  as: 

 

ˆ( ) ( )f f G B G  (3.8) 

Spectral-spatial 

decoupling 
 

Spatial 

beamforming 

ˆ ( )lc f
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where [G(f)]qn = gn(f,θq) , [B(f)]nl = bnl(f) and [Ĝ]ql= ĝl(θq). The least squares solution to this 

equation is defined by, 

 

† ˆ( ) ( )f fB G G  (3.9) 

Where G
†
(f) is the pseudo inverse of G(f). After calculation of this basis transform B(f), it is 

made steerable by spherical harmonics. To elaborate the whole methodology in a compact 

form, we can write the array response in the following format, 

 

ˆ( ) ( , ) ( ) ( ) ( )h f, f f c f      g B D  (3.10) 

where g(f,θ) is a vector of N sensor responses to a plane wave, B(f) uncouples the spatial 

response from spectral response, D(α,β,γ) steers the spatial response into an arbitrary direction 

and is the rotation matrix commonly known as Wigner rotation matrix which is a function of 

azimuth α, elevation β and the spin angle about z-axis γ. Therefore the basis transform has a 

rotations to any directions specified by (α, β, γ) and ĉ(f) defines it‟s spatial profile for each 

frequency separately. Choosing the same coefficients for all frequencies yields an array 

response that is frequency invariant. When computing the basis B by Eq. 3.9, it is required that 

matrix G to be of full rank. Generally, the matrix is ill conditioned for lowest frequencies and 

therefore cannot be accurately inverted when computing pseudo inverse G
†
(f). This is to be 

expected that at lower frequencies, the less separation between sensors prevents effective 

spatial resolution. Similarly at higher frequencies, finite and comparative more separation 

between sensors generates side lobes and thus generates non invertible G
†
(f). In this situation 

of numerical inversion, the instability leads unwanted gains for the noise content of the signal 

which affect the desired signal destructively. So, for the calculation of the optimum basis 

transform B, an added term Σ(f) is introduced in Eq. 3.9 considering the presence of an 

uncorrelated and homogenous noise in space.  

 
1 ˆ( )

H H
 B G G Σ G G  (3.11) 
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where Σ is a NxN square diagonal matrix with powers σ
2
(f) on the diagonal which result in the 

conventional regularization of the pseudo inverse and thus reduce the effect of the unwanted 

amplification of the noise signals. 

3.3 Scheme for the whole detection system based on beamforming 

The basic schematic diagram of the whole system that could be used either for detection, or 

for localization, or for joint detection and localization is presented in Figure 6. The system at 

its front end uses a beamforming based source separation. The overall system is an integration 

of several subsystems. These sub-systems are: 1) beamforming based signal processing, 

placed at the front end of the system after the audio acquisition, 2) feature extraction, 3) 

classifiers, and 4) decision block.  

The proposed system at its front end consists of a set of null steering beamformers. 

These beamformers are designed to work with as much less as two microphones and allows us 

to design a sensor array pattern that steers the main beam towards the desired source, and 

places nulls in the direction of interferent sources. Given the broadband characteristics of the 

audio signals, in order to determine the beamformer coefficients we can use frequency 

invariant beamforming (FIB). The method, explained in the previous Section, uses a numerical 

approach to construct an optimal frequency invariant response for an arbitrary array 

configuration with a very small number of microphones, and it is capable of nulling several 

interferent sources simultaneously [69]. As depicted in Figure 5, the FIB method first 

decouples the spatial selectivity from the frequency selectivity by replacing the set of real 

sensors by a set of virtual ones, which are frequency invariant. Then, the same array 

coefficients can be used for all frequencies.  
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Figure 6 : Block diagram of a source separation (beamforming) based detection system 

An illustrative example is shown in Figure 7; note how the null beams are rather 

constant along frequency. Indeed, in our case we cannot expect with this approach a perfect 

separation of the different mixed signals at the output of the NSB, since we use a small 

number of microphones per array, and also because of echoes and room reverberation. 

Actually, with such few microphones, it is expected that the beamformers have wider lobes 

and the sources are less well separated. But on the other hand, it facilitates a computationally 

efficient working environment. 
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Figure 7 : Beam patterns for null steering beamformer 

In the second stage of the system, feature extraction block extracts a set of audio 

spectro–temporal features for each signal frame. In all the applications, we have considered 

the frame length of 30 ms with 20 ms shift, and a Hamming window is applied. We have used 

frequency-filtered log filter-bank energies (FF-LFBE) for the parametric representation of the 

spectral envelope of the audio signal [169]. For each frame, a short-length FIR filter with a 

transfer function z-z
-1

 is applied to the log filter-bank energy vectors and end-points are taken 

into account. Here, we have used 16 FF-LFBEs along with their 16 first temporal derivatives, 

where the latter represents the temporal evolution of the envelope. Therefore, the dimension of 

the feature vector is 32. 

In the next stage, we have used a HMM-GMM classifier. The HTK toolkit is used for 

developing the HMM-GMM based classifier [170]. There is one left-to-right HMM with three 

emitting states for each AE and silence. The observation distribution of these states is 

Gaussian mixture with continuous density, and consists of 32 components with diagonal 

covariance matrix. Each HMM is trained with the signal segments belonging to the 

corresponding event class using the standard Baum–Welch training algorithm [171]. 

In the final stage, the decision block takes decision depending on the application of the 

system with the scores and hypothesized class from the previous HMM-GMM classification 

stage. In such type of system based on multiple arrays and working in a complex scenario with 

multiple simultaneous acoustic sources, it may require to combine the scores and class 

hypothesis in the decision block [172]. In case of combining classifier scores, add or product 
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rule could be adopted. It is also possible to use some machine learning approach for these 

kinds of combinations for the decision. Also the classifiers working in parallel could be 

considered as an individual information sources for the decision block. In such case, fuzzy 

integral (FI) based fusion of these information sources often beneficial for the performance of 

the overall system [173].  

3.4 Fuzzy integral fusion of information sources 

In the proposed scheme described in the last Section, the information fusion is done at the 

decision levels. Here, we use a specific classifier at each path from the output of beamformers 

and then combine the output scores of these classifiers. Each such classifier or some specific 

combination of classifiers acts as an independent “expert”, giving its opinion about the 

unknown class. The fusion rule then combines the individual experts. In the presented work, 

fusion is carried out using fuzzy integral (FI) [172] [173] fusion approach at the decision level. 

Unlike non-trainable fusion operators (mean, product), the statistical FI avoid the assumption 

of equal importance of information sources. Moreover the FI fusion operator also takes into 

account the interdependences among the information sources. The main motivation here is to 

compensate possible misclassification errors of a certain classifier with other available 

classifiers and to end up with a more reliable overall decision. 

We are searching for a suitable fusion operator to combine a finite set of information 

sourcesZ= {1,….,z}. Let D= {D1, D2, ….,Dz} be  a set of trained classification systems and Ω 

= {c1, c2,…cn} be a set of class labels. Each classification system takes as input a data point xϵ

n  and assigns it to a class label from Ω. Alternatively, each classifier output can be formed 

as an N-dimensional vector that represents the degree of support of a classification system to 

each of N classes. It is convenient to organize the output of all classification systems in a 

decision profile: 
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where a row is classifier output and a column is a support of all classifiers for a class. We 

suppose these classifier outputs are commensurable, i.e. defined on the same measurement 

scale (most often they are posterior probability-like).  

Let‟s denote by hi, i=1, 2,…, z, the set of output scores of the z classification systems for 

the class cn (the supports for class cn, i.e. a column for decision profile) and before defining 

how FI combines information sources, let‟s look to the conventional WAM fusion operator. A 

final support measure for the class cn using WAM can be defined as: 

 ( ) iWAM
i Z

M i h


   (3.13) 

where  ( ) 1
i Z

i


 , for μ(i)≥0 for all i Z  

The WAM operator combines the score of z competent information sources through the 

weights of importance expressed by μ(i). For the weights in WAM operator we use uniform 

class noise model with the weights computed as 
1

(1 )
E Ei i
i iE Ei


  , where Ei is the training 

error of class ci [172]. The main disadvantage of the WAM operator is that it implies 

preferential independence of the information sources. 

Let‟s denote with }),({),( jiji   the weight of importance corresponding to the couple 

of information sources i and j from Z. If  is not additive, i.e.       jiji  , for a given 

couple Zji },{ , we must take into account some interaction among the information sources. 

Therefore, we can build an aggregation operator starting from the weighted arithmetic mean, 

adding the term of “second order” that involves the corrective coefficients

      jiji  , , then the term of “third order”, etc. Finally, we arrive to the definition of 
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the FI: assuming the sequence hi, i=1,..,z, is ordered in such a way that zhh  ...1 , the 

Choquet fuzzy integral can be computed as 

    



z

i

iFI hzizihM
1

,...,1,...,),(   (3.14) 

 

where 0ø)()1(   z . The value µ(S) can be viewed as a weight related to a subset S of 

the set Z information sources. It is called fuzzy measure (FM) for S,T Z  it has to meet the 

following conditions: 

1)( 0,ø)(  Z , Boundary 

( ( )S T S )  T    , Monotonicity 

For instance, as an illustrative example let‟s consider the case of 2 information sources 

with unordered system outputs h1=0.4 and h2=0.3, and corresponding fuzzy measures 

μ(1)=0.6 and μ(2)=0.8. Note that μ(0)=0 and μ(1,2)=1. In that case, the Choquet fuzzy integral 

is computed as MFI(μ,h) = (μ(1,2)- μ(1))h2 + μ(1)h1=0.36. 

A large flexibility of the FI aggregation operator is due to the use of FM that can model 

importance and interaction among criteria. And although the FM )(i provides an initial view 

about the importance of information source i, all possible subsets of Z that include that 

information source should be analysed to give a final score. For instance, we may have

0)( i , suggesting that element i, Ti , is not important; but if, at the same time,

)()( TiT   , this actually indicates i is an important element for the decision. For 

calculating the importance of the information source i, the Shapley score [174] is used. It is 

defined as: 

 )]()([
!

!)!1(
),(

\

TiT
Z

TTZ
i

iZT

 


 


 (3.15) 

Generally, Eq. 3.15 calculates a weighted average value of the marginal contribution

)()( TiT   of the element i over all possible combinations. It can be easily shown that the 

information source importance sums to one. 
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3.5 Acoustic scenario and databases 

State-of-the-art empirical and statistical data driven methods in audio recognition depend to a 

large extend on sufficient and appropriate sample data, often covering a particular domain, 

acoustic environment, recording channel or modality. One of the problems when dealing with 

multimodal AED task in the meeting-room environment is lack of the annotated data to 

evaluate the performance of the proposed techniques. There exists a relatively large database 

of sounds, like RWCP sound scene database [175], but only a small part of the sounds 

included in that database can be considered as usual or at least possible in a meeting room and 

only audio modality is available for those sounds. Another relatively large and multimodal 

AMI corpus [176] contains only a limited number of AE instances that is not appropriate to 

develop AED technologies. 

For meeting-room environments, the task of AED is relatively new; however, it has 

already been adopted as a semantically relevant technology in CHIL European project (2004-

2007) and two international evaluation campaigns: in CLEAR (Classification of Events, 

Activities, and Relationships evaluation campaigns) 2006 [38], by three participants, and in 

CLEAR 2007 [39], by six participants. To support these evaluations a large multimodal and 

multi-site corpus for AED in meeting-room environment has been created. 

Since the employed cameras in CLEAR‟07 evaluation corpus do not provide a close 

view of the subjects under study, a new database has been recorded at UPC smart-room with 5 

calibrated cameras and 6 T-shaped 4-microphone clusters. This database includes two kinds of 

datasets: 8 recorded sessions of isolated AEs, where 6 different participants performed 10 

times each AE, and a spontaneously generated dataset which consists of 9 scenes about 5 

minutes long with 2 participants that interact with each other in a natural way: discuss certain 

subject, drink coffee, speak on the mobile phone, etc. Although the interactive scenes were 

recorded according to a previously elaborated scenario, we call this type of recordings 

“spontaneous” since the AEs were produced in a realistic seminar style with possible overlap 

with speech. Manual annotation of the data has been done to get an objective performance 

evaluation. This database is publicly available from the author and the detailed description of 

this database is presented in. 
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The above mentioned databases include 13 semantic classes (classes of interest), i.e. 

types of AEs that are: “door knock”, “door open/slam”, “steps”, “chair moving”, “spoon/cup 

jingle”, “paper work”, “key jingle”, “keyboard typing”, “phone ring”, “applause”, “cough”, 

“speech”, “silence”. Among them, there is one AE, “silence” which is never evaluated. The 

details of the database in terms of the number of occurrences per AE class are shown in Table 

1.  
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Table 1 : Number of occurrences per acoustic event class 

Event Type Label 

Number of Occurrences in audio-visual database 

UPC iso multimodal 

(S-recordings) 

UPC spontaneously generated 

(T-recordings) 

Door knock [kn] 79 27 

Door open/slam [ds] 256 82 

Steps [st] 205 153 

Chair moving [cm] 242 183 

Spoon/cup jingle [cl] 96 48 

Paper work [pw] 91 146 

Key jingle [kj] 82 41 

Keyboard typing [kt] 89 81 

Phone ring [pr] 101 29 

Applause [ap] 88 9 

Cough [co] 90 24 

Speech [sp] 74 255 

Silence [si] Not annotated explicitly 

 

Figure 8 shows the Universitat Politècnica de Catalunya (UPC)'s smart-room, with the 

position of its six T-shaped 4-microphone arrays on the walls. For training, development and 

testing of the system in this thesis, we have used part of a publicly available multimodal 

database recorded in the UPC‟s smart-room. Concretely, we use 8 recording sessions of audio 

data which contain isolated acoustic events (S-recordings). The approximate source positions 

of the acoustic events (AE) are shown in Figure 8. Each session was recorded with all the six 

T-shaped microphone arrays. The overlapped signals used for development and testing of the 

systems were generated adding those AE signals recorded in the room with a speech signal, 

also recorded in the room, both from all the 24 microphones. To do that, for each AE instance, 

a segment with the same length was extracted from the speech signal starting from a random 

position, and added to the AE signal. The mean power of speech was made equivalent to the 

mean power of the overlapping AE. That addition of signals produces an increment of the 

background noise level, since it is included twice in the overlapped signals; however, going 

from isolated to overlapped signals the SNR reduction is slight: from 18.7dB to 17.5dB. 

Although in our real meeting-room scenario the speaker may be placed at any point in the 
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room, in the experimental dataset its position is fixed at a point at the left side (SP, in Figure 

8).  

 

Figure 8 : Smart-room layout, with the positions of microphone arrays (T-i), acoustic events 

(AE) and speaker (SP) 

In case of spontaneous recordings (T-recordings), two participants take the positions P1 and 

P2. They interact with each other through a conversation and the all AEs are produced from 

the positions as specified in Figure 8. 

All signals were recorded at 44,1 kHz sampling frequency, and further converted to 16 

kHz. 
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3.6 Chapter conclusions 

In this Chapter, we have discussed the problem of source overlapping. This problem not only 

affects the performance of the AED system, but also severely affects the other associated 

system. Several solutions to overcome this problem are also discussed here. Model based 

approach is one of the baseline systems that performs well in a limited scenario but suffers 

from a scalability problem. It means that the model based approach is hardly feasible in multi-

source scenarios where either the number of events or the number of simultaneous sources is 

large, since all the possible combinations of events have to be modelled. Alternatively, the 

problem can be tackled at levels other than the model one, like at the signal level. In such case, 

some kind of source signal separation is carried out and followed by detection (that includes 

identification) of each of the overlapped sounds. A beamforming based source separation 

technique which is computationally less demanding than a BSS based technique is desirable 

due to its possibility of being implemented in the real-time system. A system of such kind has 

been proposed, which consists of a null steering beamforming based partial signal separation 

technique, followed by a likelihood ratio based classifier and a decision block. Moreover, the 

similar structure of this kind of system could be used for different applications, like detection, 

localization, resolving the permutation problem in multisource scenario etc. Different types of 

beamforming techniques and their application possibilities in the proposed system are also 

discussed in this Chapter. It is also discussed the acoustic scenario associated with the 

multimodal database that will be used in this thesis work. 
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Chapter 4. Source ambiguity resolution of overlapped sounds in a 

multi-microphone room environment 

4.1 Chapter Overview 

When several acoustic sources are simultaneously active in a meeting-room scenario, and both 

the position of the sources and the identity of the time-overlapped sound classes have been 

estimated, it remains the problem of assigning each source position to one of the sound 

classes. To solve this source ambiguity problem, we present in this Chapter a position 

assignment (PA) system that performs a one-to-one correspondence between the set of source 

positions and the set of class labels. Both frequency dependent and frequency invariant 

beamformers are designed and used in the experiments. Moreover, both signal based fusion 

and score level fusion of pairs of microphones are also proposed. Inclusion of speech model in 

the classifier with the acoustic event models and fusing the scores would be a possibility for 

improving the performance of the overall system. 

The source ambiguity problem is described in Section 2. The position assignment system 

with different possibilities is presented in Section 3. Experiments are reported in Section 4, 

along with some practical issues about the system implementation and the used metrics. A 

conclusion is presented in Section 5. 
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4.2 Problem of source ambiguity 

Sound is a rich source of information. For that reason, machine audition [177] plays an 

important role in many applications. In particular, in meeting room scenarios, acoustic event 

detection (AED) systems try to determine the identity of an occurring sound and the time 

interval when it is produced. Acoustic source localization (ASL) systems estimate its position 

in space. Both tasks become much more challenging when there exists sound simultaneity, i.e. 

several sounds overlapping in time in a given space.  

In a typical meeting-room acoustic scene where a person is speaking at a given time, and 

other non-speech sounds may happen simultaneously with the speaker‟s voice, the problem is 

dealt by detecting and localizing the acoustic event that may be temporally overlapped with 

speech. The detection of overlapping events may be dealt with different approaches, either at 

the signal level, at the model level, or at the decision level. In [3], a model based approach was 

adopted for detection of events in our meeting-room scenario with two sources, one of which 

is always speech, and the other one is a different acoustic event from a list of 11 pre-defined 

events. The same approach is used in the current real-time system implemented in our UPC's 

smart-room that includes both AED and ASL [48].  

In that model based approach, we face a permutation problem. In fact, the AED system 

gives the hypothesized identities of the overlapped sounds, but does not associate each of them 

to one of the available source positions that are provided by the ASL system. The same 

problem may be encountered by using other AED approaches; for instance, if a blind source 

separation technique is used prior to the detection of each of the isolated events.  

To have an unambiguous spatial analysis in any one of the detection approaches, each of 

the detected acoustic events has to be assigned to one of the given or estimated source 

positions. Therefore, to solve the source ambiguity problem, we present a position assignment 

(PA) system that performs a one-to-one correspondence between the set of source positions 

and the set of class labels. It is based on partial source separation achieved using 

beamforming, followed by a log-likelihood ratio based classifier. 
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4.3 Source position assignment 

The block diagram of the whole system that performs position assignment from the outputs of 

the acoustic event detection and localization systems is depicted in Figure 9. The AED and 

ASL techniques used in our system are described in [48]. The AED system employs only one 

microphone and uses a model based approach. The ASL system, which employs all 24 

microphones, is based on the SRP-PHAT localization method. The model based AED system 

outputs either one or two AE hypothesis (if they are two, one of them is speech). On the other 

hand, in the online implementation at the UPC's smart-room, the ASL system provides either 

one or two source positions. Hence, there are 4 different cases for mapping the detected events 

into the detected positions: 1-1, 1-2, 2-1, and 2-2. As can easily be seen, there exists an 

ambiguity in the last three cases. In this work, we focus on the most general 2-2 case, where 

we have two detected events, i.e. E (one of the 11 possible AE) and “sp”, and two source 

positions: P1 and P2. If the problem of assigning the two events to the two positions is solved, 

the other two cases with ambiguity (1-2 and 2-1) can be solved using the same approach. In 

this Section we aim to design a system that can be deployed in real time in the room to resolve 

that ambiguity in the correspondence between detected AEs and acoustic source positions.  

 

 

Figure 9 : Block diagram of the whole system 

4.3.1 Scheme of the PA system 

Here we assume there are two simultaneous events and one of them is always speech, so at the 

output of the AED system we need only the hypothesized identity of the non-speech AE, as 
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indicated in Figure 10 by E. The ASL system provides an estimate of the two source positions: 

P1 and P2. Hence, the position assignment (PA) block actually is a binary classifier that 

assigns E to either P1 or P2.The PA system, which is shown in Figure 10 for one array, has at 

its front-end two null-steering beamformers (NSB), which work in parallel. The main beam of 

each NSB is steered towards the desired source and a null is placed in the direction of the 

interferent source, so each NSB will nullify a different source signal. Thus the contribution of 

one of the simultaneous sounds to the beamformer output is expected to be lower than its 

contribution to the beamformer input. Indeed, beamforming is based on the prior knowledge 

of the direction of the desired source and the interferent source, which can be provided by an 

ASL system. Thus, each NSB requires two inputs: 1) the multimicrophone signal, and 2) the 

position coordinates or direction of arrival (DOA) of the sources. 

 

 

Figure 10 : Position assignment system 

Each of the beamformers is followed by feature extraction (FE) and likelihood 

computation (LC), which uses the HMM model corresponding to the acoustic event E as 

shown in Figure 11. Finally, a decision block makes the assignment based on the computed 

log likelihoods LLi, i=1,2.The two log-likelihood scores indicated in Figure 11 are combined 
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in the decision block to compute the following single-array score S in terms of the log-

likelihood-ratio LLR1.  

 S=LLR1= (LL1 - LL2)  (4.1) 

If S is positive, the AE E is associated to the position P2, and if S is negative, it is 

associated to P1. 

 

Figure 11 : Classifier and decision block of PA system 

4.3.2 Null steering beamforming 

Null steering beamforming adapts the sensor array pattern by steering the main beam towards 

the desired source and placing nulls in the direction of the interference sources [75]. In a 

general scenario, we may have a desired source with several other spatially distributed 

interference sources. So a first-order NSB is needed which uses multiple microphones [56] 

[64]. The solution for the weight matrix in this type of beamformer is achieved by setting to 

unity the desired response at the direction of the target sound, and setting it to zero at the 

direction of the interferent sources. In our particular scenario, as we have only two sources, 

one is the target and the other is the interference that has to be nulled. Therefore, we need to 

use a minimum of two microphone signals to get a solution for the weight matrix. As in each 

T-shaped array from our room there are three linearly spaced microphones, with three 

microphone signals it is possible to separate a target signal from two interferences.  

Two types of beamforming are tried in our work: frequency dependent beamforming, 

and frequency invariant beamforming. In frequency dependent beamforming (FDB), the 
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radiation pattern of the beamformer is dependent on the direction of arrival and also on the 

frequency, since a narrow-band signal is assumed. Hence, in spite of its simplicity, this 

approach requires tuning the frequency to the particular conditions of the scenario. Given the 

broadband characteristics of the audio signals, another possibility is to determine the 

beamformer coefficients using a technique called FIB. The method, proposed in [69] [168], 

uses a numerical approach to construct an optimal frequency invariant response for an 

arbitrary array configuration with a very small number of microphones, and it is capable of 

nulling several interferent sources simultaneously. The FIB method first decouples the spatial 

selectivity from the frequency selectivity by replacing the set of real sensors by a set of virtual 

ones, which are frequency invariant. Then, the same array coefficients can be used for all 

frequencies. 

4.3.3 Combination of pairs of microphones at the signal level and at the decision level 

At least two microphone signals are required to implement a 1
st
 order beamformer [64]. Each 

T-shape array in our smart room has maximum of three linearly spaced microphones. In this 

work, we consider the use of either 2 or 3 microphones, linearly arranged, from those T-shape 

arrays. When using the 3-microphone array, we can work with two pairs of microphone 

signals [178]. The outputs of the two 1
st
-order beamformers are combined either at the signal 

level or at the classifier level. The signal level combination is shown in Figure 12. In the first 

stage of the system, we have two 1
st
 order beamformers and both of them are designed with 

two linearly spaced and consecutive microphones. Here we choose to work with the 

consecutive microphones because the spacing between them is smaller compared to the 

alternately selected microphones. In fact, the microphone spacing in the earlier case is half of 

the spacing in the later one. Then these two pairs of microphones are combined at the second 

stage. In addition, the combination at the classifier level is the option taken in the scheme of 

Figure 13. The weight vectors wi,j in each of the NSB are calculated from the positions 

provided by the ASL block, where i indicates the number of the beamformer, and j is the 

number of the pair of microphone for each beamformer. 
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Figure 12 : Signal level combination 

 

 

Figure 13 : Classifier level combination of microphone pairs 

4.3.4 PA system with AE and speech model based classifier 

In order to get the most from the available information, the classifier can include a speech 

model besides the AE model. Indeed, we can work separately with only either the speech 

model based classifier or the AE model based classifier. All those options have been tested 

and the results are reported in Section 4.4. As shown in Figure 14, two different NSBs are 

needed, in general, for each parallel path of the system; one will be steered to the AE source 

and the other to the speech source. Moreover, when time-domain FDB is used, a different 

beamformer is needed for each acoustic event class, since the frequency f is tuned to a 

particular event. In case of FIB, one beamformer is sufficient at each parallel path.   
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Figure 14 : PA system based on AE and speech models for one array 

4.3.4.1 Single-array classification stage 

As shown in Figure 14, the classification stage of the PA system with a single array consists of 

feature extraction, followed by log-likelihood calculation, and a binary decision block. 

Features are extracted from the audio signals with frame length of 30ms, and 20ms frame 

shift. As features, we use frequency-filtered log filter-bank energies (FF-LFBE). In our 

experiments, we consider a 32 dimension feature vector (16 FF-LFBE and their first temporal 

derivatives). As shown in the scheme of Figure 14, there is a set of two likelihood calculators 

for each parallel channel, one of them to calculate the model based log-likelihood for the AE 

label (E), provided by the AED system, and the other to calculate it for speech. Here we 

employ Hidden Markov Models (HMM), where Gaussian Mixture Models (GMM) is used to 

calculate the emission probabilities. 32 Gaussian components with diagonal covariance 

matrices are used per model. 11 HMM are trained with isolated events using the Baum-Welch 

algorithm.  

The four log-likelihood scores (LLi, i=1,2,3,4) indicated in Figure 14 are combined in 

the decision block to compute the following single-array score Sin terms of the log-likelihood-

rations LLR1 and LLR2 : 
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 S= LLR1 + LLR2 = (LL1 - LL2) + (LL3 - LL4)  (4.2) 

If S is positive, the AE E is associated to the position P2, and if S is negative, it is 

associated to P1. Let's illustrate it with a particular case. Assume P1 truly corresponds to 

speech and P2 to the acoustic event E. When using the AE model, it is expected to get 

comparatively higher log-likelihood from the output of NSB1 (LL1) than from the output of 

NSB2 (LL4). For the clean speech model, we expect to get comparatively higher log-likelihood 

from the output of NSB2 (LL3) than from the output of NSB1 (LL2). If that is the case, the 

decision is taken that speech is at P1 and E is at P2, which is the correct decision. Note that 

with this type of combination, the decision block gives equal importance to all the four 

likelihood calculator outputs. 

As we have already mentioned that in order to get the most from the available 

information, the classification stage includes a speech model besides the AE model. Indeed, 

the system could also work with only either the speech model based classifier or the AE model 

based classifier. To study the contribution of each one of the models, all those options have 

been tested and the results are reported in Section 4.4. For the decision, if only either the AE 

or the speech based classifier is used, just either LL1-LL4 or LL3-LL2, respectively, is needed. 

4.3.4.2 Multi-array fusion 

As it was mentioned above, in our position assignment system we use all the six 3-microphone 

linear arrays deployed in the room. For taking the assignment decision, the six sets of scores 

LLR1 and  LLR2, computed as indicated in Eq. 4.2 are combined either with a uniformly-

weighted average of the 12 values or by fuzzy-integral based fusion. The scores at the output 

of the classification stage can be linearly combined by using an optimal fusion approach that 

assigns an individual weight to each of them. However, in this work we are going to consider 

a more sophisticated weighting technique that considers all subsets of information sources: the 

fuzzy integral (FI) approach [173]. 

The scores at the output of the classification stage can be linearly combined by using an 

optimal fusion approach that assigns an individual weight to each of them. However, in this 
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work we are going to consider a more sophisticated weighting technique that considers all 

subsets of information sources: the fuzzy integral (FI) approach [173].  

Let‟s denote by hi, i=1,2,…,z, the set of output scores (LLR1 and LLR2) of the z/2 single-

array systems. Assuming the sequence hi, i=1,2,…,z, is ordered in such a way that h1≤….≤hz, 

the Choquet fuzzy integral can be computed as 

 
1

( , ) [ ( ,...., ) ( 1,..., )] iFI
i

z
M h i z i z h  


    (4.3) 

where µ(z+1)=0. The value µ(M) can be viewed as a weight related to a subset M of the set Z 

of z information sources. It is called fuzzy measure and, if M and T are subsets of Z, it has to 

meet the following conditions: 

 Boundary:  µ(ø)=0, µ(Z)=1 

 Monotonicity:  ( ) ( )M T M T     

In this work, we have used a supervised gradient based training algorithm for learning 

the fuzzy measures from the training data with cross-validation [179]. 

4.4 Experiments 

The PA experiments are done under the assumption that there is always an AE overlapped 

with speech. We also assume that the identity of the AE event is known, to avoid the 

propagation of the AED errors to the PA system. Additionally, we assume that the 

approximate position in the room of the AE source and the speaker are known. Thus, the PA 

system only has to make a binary decision (the AE is from position P1 or position P2), that will 

be either correct or incorrect. And in the latter case it will be counted as an error. 

4.4.1 Evaluation metrics 

To design and evaluate the performance of the system, we define the position assignment rate 

(PAR) metric for a given AE class as the quotient between the number of correct decisions and 

the total number of occurrences of that class in the testing database. Then, the PAR will be 

averaged over the classes to have the final evaluation measure. For reference, we also consider 

a second metric, called Diff_LL, which is the value of the S score provided that the assignment 
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is correct (LL1-LL4 for the AE based system, or LL3-LL2 for the speech based one, or S when 

both the AE model and the speech model are used, according to the Figure 14). Actually, that 

score can be considered as an estimate of the degree of source separation carried out by the 

beamformers when a correct assignment is made. While maximization of the PAR is our main 

criterion for evaluation, Diff_LL has been used with a second level priority. When tuning the 

frequency f for the FDB case, sometimes occurs that, the PAR for an AE is the same for 

several frequency values, since the number of AE occurrences is not high enough. Then, the 

frequency f that maximizes Diff_LL is chosen. 

4.4.2 System implementations 

In this paper, we consider two types of beamforming at the front end of the PA system: FDB 

and FIB. Their design requires the DOA angles corresponding to the target and the null, i.e. 

the DOA from the source positions P1 and P2. For both of them, we have worked with 

approximate angles from visual inspection during recording. Alternatively, for the AE position 

we have used the output of a one-source ASL system. Regarding the speech source position, in 

our all experiments, we have used the speaker‟s position specified during recording. 

The formulation of the FDB approach is comparatively simpler than the FIB one. As the 

audio signals are wideband, two types of implementations are considered for the FDB 

approach: 1) in the time domain, and 2) in the frequency domain. The former approach, as it 

assumes a narrow-band signal, requires frequency tuning to get optimal results. Therefore, the 

beam patterns for this type of NSB are heavily dependent on both the DOA and the frequency 

f. As we are looking to design our system for different types of acoustic events with diverse 

spectra, the choice of a frequency value for each specific event becomes necessary. Here, we 

adopted an exhaustive search technique for that. We varied the frequency from 100 Hz to 8 

KHz with intervals of 100 Hz, and observed the performance of the system for each acoustic 

event separately. 

In the frequency domain implementation, beamforming is applied to each frequency bin. 

Moreover, as the separation between the microphones (20cm) is suited to an operating 

frequency smaller than 1 KHz [61], we have low-pass filtered the input signal with 1 KHz cut-
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off frequency. The main advantage of this frequency domain implementation is that it does not 

require any frequency tuning. 

4.4.3 Experiments with the FDB based system 

To assess the performance of the PA system, several experiments have been conducted. In our 

offline experiments, we use data from seven sessions (S02-S08) for training the system and 

tuning the frequency f in the FDB case, and one session (S01) is left for testing. Six of the 

seven training sessions are used for training the AE models, and the remaining session is used 

for testing each frequency value. Cross-validation is used to have a better statistical meaning. 

The frequency that shows the best average behavior according to the PAR metric is chosen. 

An initial experimental results obtained from the training database (sessions S02-S08), with 

two microphones (first-order FDB) from array T6, are presented in Table 2. It is worth 

mentioning that the AEs source positions and the speech source position are physically rather 

well separated from the viewpoint of the array T6. We assume in these first tests that only the 

speaker position is known, and the AE position is estimated with a one-source ASL system. 

We also assume that the identity of the AE event is known, to avoid the propagation of the 

AED errors to the PA system.The first column indicates the label of the acoustic events 

overlapped with speech. The second, third and fourth columns indicate, respectively, the 

position assignment rate (PAR), the difference of log-likelihoods (Diff_LL), and the selected 

operating frequencies. Those frequencies are estimated, like the HMM models, from the seven 

training sessions of the database. 
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Table 2 : PA metrics values and optimized frequencies for the FDB case 

AEs PAR (%) Diff_LL 
Operating 

Frequency (Hz) 

ap 87 1.15 600 

cl 80 1.34 600 

cm 94 1.68 700 

co 70 0.97 1000 

ds 83 0.91 700 

kj 95 1.79 700 

kn 87 1.01 600 

kt 99 3.17 800 

pr 94 1.49 600 

pw 100 1.14 200 

st 95 1.22 500 

Average 89 1.44  

 

The frequency domain implementation with two microphones is compared with the time 

domain implementation for FDB. The results obtained with only the AE models, are shown in 

Table 3, for both metrics, and averaging over all acoustic event occurrences in the testing 

dataset. Like the previous test, here also we assume that only the speaker position is known, 

and the AE position is estimated with a one-source ASL system. To have a better statistical 

meaning, the testing results are obtained with all 8 sessions with a leave-one-out criterion, i.e. 

we recursively keep one session for testing, while all the other 7 sessions are used for training. 

Notice that the PAR score of the frequency domain system is lower than that of the time 

domain system. However, its performance is much higher in terms of Diff_LL, which 

indicates that it achieves a better NSB based signal separation when the position assignment 

decision is correct.  

Table 3 : PA performance comparison of the time-domain and frequency-domain 2-

microphone based FDB 

 Time-domain  Frequency-domain with LPF 

PAR (%) 87 81.6 

Diff_LL 1.38 3.6 
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FDB is implemented and tested initially using two microphones and then extending it to 

three. While using the maximum of 3 microphones in an array, we combine the two elemental 

beamformers which are designed with as much less as 2 microphones. The combination of the 

two beamformers at both the signal level and at the classifier level has been tested. For 

comparing these two alternatives, we used beamformers implemented in the time domain. The 

results obtained with only the AE models, for both metrics, and averaging over all acoustic 

event occurrences in the testing dataset are shown in Table 4. The classifier level likelihood 

combination proves to be preferable to the signal level one. 

Table 4 : FDB based PA performances of signal level and classifier level combination 

 Signal level comb. Classifier level comb. 

PAR (%) 88.4 89.3 

Diff_LL 2.47 2.28 

 

All the previous experiments are done using only AE models. As explained in the 

previous sub-Section 4.3.4, we also have the possibility of using speech models along with AE 

models. To check the performance of the PA system when either only the AE model or only 

the speech model is used, we have performed experiments for the array T6. Four types of 

configurations are considered: 1) the classifier is based only on AE models, 2) the classifier is 

based only on the speech model, 3) the likelihood (LL) combination introduced in sub-

secction 4.3.4.1 that uses the outputs of both the AE-model based and the speech-model based 

classifiers, and 4) the fusion of likelihood scores with the FI technique. In the FI based fusion, 

we have used a supervised gradient-based training algorithm for learning the fuzzy measures 

from the training data with cross-validation [179]. And for that, we have used a 5-fold cross 

validation on the training data to stop the training process so that it is not over trained. The 

results obtained with both metrics, averaging over all the testing dataset, are presented in 

Table 5. In that table, we observe that the LL combination and the FI fusion improve the 

performance of the system with respect to the use of only one type of model. Between both 

types of combination/fusion, the FI one shows a better performance. 
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Table 5 : PA rate and Diff_LL for the PA system with the T6 array alone: only the AE model, 

only the speech model, the combination of models with the S scores, and their FI based fusion 

for FDB 

 AE 

model 

Speech 

model 

Average of 

LLR scores 

FI based 

fusion 

PAR (%) 87 88.3 89.4 90.2 

Diff_LL 1.38 1.23 1.48 1.62 

 

4.4.4 Experiments with the FIB based system 

Similar to the FDB based system, the design of the frequency invariant beamformers also 

require the DOA angles corresponding to the target and the null, i.e. the DOAs from the 

source positions P1 and P2. We have considered two different options regarding the 

approximate positions of the acoustic events from which the DOAs are extracted. First, we 

have used the position of the event estimated by an ASL system based on the SRP-PHAT 

technique. So, in that case, the beam steers to the direction of the specific event position. The 

beampttern of that type of FIB is shown in Figure 15. Note that the right side beampattern has 

narrower main lobe.   And, in the second option, we have considered, for each array, the same 

approximate DOA for the whole set of acoustic events. It is obtained as a DOA average over 

the AE source positions, which are known from visual inspection during recording. In the 

latter case, we have designed a beampattern with a broader main lobe (as shown in the right 

side of Figure 16) to approximately encompass all the positions of the acoustic events. 
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Figure 15 : Beampattern of the FIB. Left: null towards speech; right: null towards an AE, a 

narrow beam 

 

 

Figure 16 : Beampattern of the FIB. Left: null towards speech; right: null towards the AEs in 

the case of a wide beam encompassing the DOAs of all the AEs 

 

To assess the performance of the FIB based PA system that is depicted in Figure 14, 

several experiments have been conducted. The testing results are obtained with all the 8 

recording sessions (S01-S08), using a leave-one-out criterion, and averaging over all the 

testing dataset. In all the FI-based fusions, we have used a 5-fold cross validation on the 

training data to stop the training process and avoid over-fitting. To check the performance of 
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the PA system when either only the AE model or only the speech model is used, we have 

performed experiments for the array T6, using visually inspected positions for AEs and a 

broad beam. The results are shown in Table 6.  

Table 6 : PA rate and Diff_LL for the PA system with the T6 array alone: only the AE model, 

only the speech model, the combination of models with the S scores, and their FI based fusion 

for FIB 

 AE 

model 

Speech 

model 

Average of 

LLR scores 

FI based 

fusion 

PAR (%) 86.2 81 87.1 91.2 

Diff_LL 1.44 1.07 2.53 2.88 

 

We can observe, from the results in Table 6 that the combination of the two models with 

the S score, that averages the scores LLR1 and LLR2, improves the performance of the system 

with respect to the use of only one type of model. The improvement is much more noticeable 

using the FI based fusion of the two scores. Notice that the AE-model based system works 

much better than the speech model based one. In fact, the former uses a more specific model, 

because the speech model is obtained from the whole set of speech sounds. In that table, we 

also show the Diff_LL score. Notice that, in general, it is well correlated with the PAR one. 

However, there is a large difference between the values of Diff_LL for the AE-based case and 

the LL combination case, in contrast with the very small difference there is in terms of PAR. It 

means that the use of both models allows to achieve a much stronger confidence on the PA 

decision when it is correct. 

Table 7 shows the PAR scores when all six-microphone arrays are employed, either 

alone or in combination. The results are given for the two types of DOA settings mentioned 

above. Also, two types of intra-array combinations are considered, as in Table 6 (second 

column of Table 7):  the average of LLR scores given by (1), and the FI based fusion. 
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Table 7 : PA performance (in %) for each single array and for the two considered 

combinations of the six arrays 

DOA setting 
Intra-array 

combination 
T1 T2 T3 T4 T5 T6 

Average 

of 

LLR 

scores 

FI 

based 

fusion 

Broad-beam   

nulling angle 

 

Average of 

LLR scores 
83.1 77.3 81.3 88.9 88.2 87.1 89.8 93.5 

FI based 

fusion 
83.5 77.1 82.3 92.8 92.7 91.2 - 93.6 

ASL-

estimated 

AE positions 

Average of 

LLR scores 
88.2 85.6 89.8 91.2 92.1 91 93.6 95.4 

FI based 

fusion 
88.3 84.9 90.2 92.7 93 92.2 - 95.7 

 

In the first columns of Table 7 we have the PAR (in %) when each one of the arrays is 

used alone. Notice that the PAR scores of the upper half of the array numbers (T4, T5, and T6) 

are higher than the ones of the lower half, what is in agreement with the reason given above to 

choose the array T6 for the experiments presented in Table 6. 

Note from the two last columns in Table 7 that the accuracy obtained from either the 

average of LLR scores or the FI based fusion of the whole set of arrays is higher than the 

accuracy obtained from any of the single arrays. Comparing both types of fusion, the FI one 

shows a noticeable better performance for both DOA setting cases, arriving to a PA error of 

only 4.3%. 

The use of intra-array FI based fusion improves significantly the PAR scores with 

respect to using a uniformly-weighted average of LLR scores, for the upper-half arrays. So, 

though by employing the FI approach there is the cost of having to learn the fuzzy measures 

from data, it may be a good choice when the quality of the signal separation is not too low, 

like it presumably happens with the upper-half arrays.  

Regarding the type of DOA setting, the ASL-estimated AE position based system works 

always better than the one that uses an average DOA based on visual inspection (i.e. a broad-

beam nulling angle). That could be expected, since the beam pattern is specific of each event 

class, whereas the broad beam encompasses all the angles of the AE source positions. While 
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the latter design simplifies the overall system, as it does not require a precise source position 

and may avoid an additional external ASL block, it is specific of the given scenario, so it has 

to be re-designed when the scenario changes. 
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4.5 Chapter conclusions 

In this Chapter, an attempt to resolve the source identification ambiguity that appears when an 

acoustic event overlapped with speech is detected is carried out. A position assignment system 

consists firstly of a set of null-steering beamformers to carry out different partial signal 

separations for each microphone array has been proposed and tested. The beamformers are 

followed by model-based likelihood calculations, using both the acoustic event model and the 

speech model, to obtain a couple of likelihood ratios, which are multiplied to get a final score 

per array. 

Two types of beamforming techniques are compared. Both acoustic event models and 

speech models are used for the likelihood computation with a fusion technique in the decision 

block. A product rule based combination of their likelihood calculators improves the 

performance of the system. The formulation of frequency dependent beamformer is simpler 

than the frequency invariant one, but it is more dependent on the particular conditions of the 

production of acoustic events in the room. On the other hand, the alternative FIB technique 

does not require frequency tuning and thus it is less dependent on the concrete scenario. 

Moreover, the FIB based position assignment performance has been observed with all 

the microphone arrays distributed in the room, and the inter-array level fuzzy integral based 

likelihood fusion shows a further improvement. The FI based fusion of the six scores, one per 

array, yields the best assignment error that is smaller than 5%. Although the position 

assignment system has been developed for the problem encountered in our current scenario 

with two acoustic sources, its new formalism can be extended to more sources, as it will be 

done in the next Chapters for AED and ASL. 
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Chapter 5. Real time multi-microphone classification and 

detection of simultaneous acoustic events 

5.1 Chapter overview 

Time overlapping of acoustic signals, which so often occurs in real life, is a challenge for 

current state-of-the-art sound recognition systems. In this Chapter, we propose efficient 

approaches for classifying, detecting, identifying, and positioning a set of simultaneous 

acoustic events in a room environment, using multiple arbitrarily located microphone arrays, 

and working in real time. 

Assuming both the end-points of the events and a set of acoustic source positions, the 

use of a frequency invariant null-steering beamformer for each position and each array yields a 

set of signals, which show different balances among the various acoustic sources. For each 

signal, a model based likelihood computation is carried out to obtain a matrix of likelihood 

scores. Then a MAP criterion is used to jointly classify the event and assign each of them to a 

given source position. 

In this Chapter, we also propose an acoustic event detection method that uses all the 

available microphone arrays. This approach does not require any assumptions about the start 

and end time stamps of the occurred events. Using the same framework, the system is also 

able to assign each detected event to each source position. 

The system for classification and position assignment of simultaneous acoustic events is 

described in Section 2. The detection approach is presented in Section 3. Experimental work 

on event classification and detection is reported in Section 4, and a conclusion is given in 

Section 5. 
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5.2 MAP based overlapped event classification and position assignment 

A computationally efficient approach, which is based on signal separation by using multiple 

linear microphone arrays that are composed of a small number of microphones, is proposed. 

Let us assume that several acoustic source positions are provided. They may have been either 

provided from the visually inspected positions during recording or estimated by an external 

localization system that uses the available set of microphone arrays. As mentioned in the 

previous Chapters, in the proposed approach, the arrays can be located arbitrarily. For 

deployment, this is an advantage with respect to using spatially structured array 

configurations. Assuming a set of P hypothesized source positions, a set of P beamformers is 

used to separate up to some extent each hypothesized source from the others. Using those 

(partially) separated signals, acoustic event classification is carried out using a maximum-a-

posteriori (MAP) criterion. Moreover, each hypothesized event is assigned to a given source 

position using the same framework. The beamformers are based on a frequency invariant null 

steering approach. 

5.2.1 Scheme for a multiple array based classification system 

As shown in Figure 17, in the proposed system, firstly the multi-channel signal collected by 

each of the microphone arrays is driven to a set of null-steering beamformers (NSB). Each 

beamformer is steering to a different source position while placing nulls at the direction of the 

other source positions.  

Feature extraction (FE) is applied at the output of each beamformer, to subsequently 

compute a likelihood score (LC), by using previously trained models of the acoustic event 

classes. At last, a decision module carries out the classification of the event identities by 

integrating the likelihood scores using a MAP criterion. Both the beamformer design and the 

MAP classification are presented in the two following sub-sections.  
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Figure 17 : Scheme of the whole classification system using K arrays 

A null-steering beamformer (NSB) is capable of placing nulls at different positions in 

the sensor array patterns. The beamformers are based on a frequency invariant null steering 

approach as described in Chapter 3, which uses a numerical approach to construct an optimal 

frequency invariant response for an arbitrary array configuration with a very small number of 

microphones, and it is capable of nulling several interferent sources simultaneously. Here, we 

have designed the beamformer using 3 linearly spaced microphones for each array. An 

illustrative example is shown in Figure 18; note how the null beams are rather constant along 

frequency.  
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Figure 18 : FIB beam pattern; there is a null at 15 degrees 

Indeed, in our case we cannot expect with this approach a perfect separation of the 

different mixed signals at the output of the NSB, since we use a small number of microphones 

per array, and because of echoes and room reverberation. 

A MAP criterion is used in our system. To determine the likelihoods, the acoustic events 

are modeled with Hidden Markov models (HMM), and the state emission probabilities are 

computed with continuous density Gaussian mixture models (GMM). 

Let's assume we have a set of N simultaneous events Ei, 1≤i≤N, that belong to a set of C 

classes, a set of P acoustic source positions, and a set of K microphone arrays. Each array 

steers a NSB to each of the source positions while nulling the others. So from array 

processing, we have a set of PK output signals, and after likelihood computations, we have a 

PxK-dimensional matrix of likelihood scores. We will assume also that each class ci has a 

prior probability p(ci), and each estimated source position sj has an associated probability p(sj). 

The latter may be provided by the ASL system. 

Performing null steering beamforming with the k-th microphone array, which has at its 

input the multi-channel signal Xk (notice that, to simplify notation, we do not consider time 

indices), P output signals will be obtained, one for each NSB pattern. Let us denote with sj the 

NSB that has the position sj as target and the other positions as nulls. We want to determine 

the posterior probability of a given class ci for that k-th array through all the P NSBs (note that 

our NSBs only separate the signals partially, so a class actually produced at position sj may 

still be observed in all the NSBs that do not steer at sj). By using the product combination rule 

[172] (i.e. assuming the output signals of the beamformers are independent), we have 
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 (5.1) 

where ( | , )p X c si jk  
is the likelihood of class ci obtained from its corresponding HMM-GMM 

model. 

For combining the posterior probabilities from the various microphone arrays, we will 

use again the product combination rule, so the optimal class co will be obtained with 

 argmax ( | )
1

K
c p c Xi ko

kci

 


 (5.2) 

In the case of N simultaneous sources and assuming they correspond to N different classes, the 

recognized identities of those classes are obtained by applying Eq. 5.2 N consecutive times 

and leaving each time the recognized class out. 

This beamforming based approach for AED allows to easily assign the optimal class to 

one of the given source positions. In fact, the optimal position 
iso of the i-th event source out 

of the N simultaneous sources will be chosen as the one steered by the beamformers whose 

outputs show a maximum product of posteriors over all arrays given the optimal class: 

 

argmax ( , )
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1

Kis p s c Xj o ko
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
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 (5.3)

5.3 MAP based detection of overlapped acoustic events 

Acoustic event detection requires both segmentation of the audio stream, and classification of 

the segments. We perform simultaneous segmentation and classification using state-of-the-art 

methods similar to the continuous speech recognition ones [180]. 
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The goal of AED for a single channel can be formulated as follows: find the event 

sequence that maximizes the posterior probability of the event sequence Ω = (c1, c1, …,cM) 

given the observations O = (o1, o2, …,oT): 

 )()|(maxarg)|(maxargˆ 


POPOP  (5.4) 

The acoustic model P(O|Ω) for each AE uses HMM-GMM. P(Ω) is a prior probability of AE 

sequence Ω. In order to avoid the dependence of AE sequence to the particular recording 

scenario we assume that all sequences of AEs are equally probable. Feature set consists of 16 

FF LFBE coefficients with their first time derivatives as described in Chapter 3. The 

observation distributions of the states are incrementally-trained Gaussian mixtures with 

continuous densities. Each HMM is trained with the signal segments belonging to the 

corresponding event class from development data, using the standard Baum–Welch training 

algorithm [171]. The HTK toolkit [170] is used for training and testing the HMM–GMM 

system. The HMM topology for each AE is determined during a cross-validation procedure on 

the development data. The number of emitting states and Gaussian mixtures per state depends 

much on the amount of available training data. Usually the number of emitting states for each 

meeting-room AE ranges from 1 to 5 and the number of Gaussian mixtures ranges from 2 to 

16. For testing, the Viterbi algorithm is used to find the sequence of states with the highest 

probability, resulting in a sequence of detected AEs [171] [53]. 

For a set of K microphone arrays and P beamformers per array, we need to perform the 

detection at each path and we have to find the event sequence that maximizes the posterior 

probability of the event sequence Ω = (c1, …..,cM) given observations X
k,j

=(X1, ……, XT) for 

channel j of array k: 

 

, ,
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,
argmax ( | ) ( )

k j k j
p X

k j
p X p

  

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

 (5.5) 

By using the Viterbi decoding separately at each channel of each array for a given 

segment of observation, we have a PxK set of hypothesis, each having a sequence of detected 

events and their corresponding end-points. In the decision stage, the best channel for deciding 
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the start and end time-stamps of the event is chosen by maximizing the posterior probability 

among all the channels from all the arrays: 

 
,ˆ argmax ( | )

,

k j
p Xo

k j
    (5.6) 

Only the segmentation information about the events (the end-points) is used obtained from the 

Eq. 5.6. However, to decide the class identity, we follow the classification methods described 

in Eq. 5.1 and 5.2. This detection methodology has an advantage of utilizing information from 

all the channels and from all the arrays.  

Finally, the assignment of each optimal class to one of the given source positions is 

performed by Eq. 5.3.  

5.4 Experiments 

In our experimental work, we consider a meeting room scenario with a predefined set of 11 

acoustic events plus speech [3] [48]. Like in [48], there may exist either 0, 1 or 2 simultaneous 

events, and, in the last case, one of the events is always speech. However, the reported 

experiments correspond to the case of two overlapped events, since it is the most general one. 

For training, development and testing of the system, we have used, as in [48], part of a 

publicly available multimodal database recorded in the same smart-room. 

As the number of sources is P=2 in our scenario, two frequency invariant beamformers are 

used per array: NSB1 and NSB2. This beamformers are specific for each array. In our 

experiments, to set the directions of arrival of the beamformers (for both the target source and 

the null source) we use those positions, knowledge about which was gathered during the 

recording. One angle corresponds to the speech source (the speaker's position is static), and the 

other one is for the acoustic event. In this way, for a particular array, NSB1 steers to the AEs 

and nulls speech, and NSB2 steers to speech and nulls AEs. 

Here, we have considered two different options regarding the positions of the acoustic 

events from which the DOAs are extracted. First, we have considered, for each array, the 

approximate DOA for the whole set of acoustic events. It is obtained as a DOA average over 

the AE source positions, which are known from visual inspection during recording. In this 
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case, we have designed a beampattern with a broader main lobe to approximately encompass 

all the positions of the acoustic events.So the beamformers are not adapted to each particular 

AE instance.And, in the second option, we have used the position of each specific event and 

therefore the beamformers are adapted to each particular AE instances.In this latter case,  the 

beam steers to the direction of the specific event position and thus beampattern has narrower 

main lobe. 

5.4.1 Metrics 

To evaluate the performance of the systems, we have used two metrics: one for the evaluation 

of the classification system and the other for detection system. 

The metric used for the evaluation of the classification system is the quotient between the 

number of correctly classified and the total number of occurrences of that class in the testing 

database, i.e. the classification accuracy (CA). 

To evaluate the detection system, we use the metric AED-ACC. In support of CHIL 

evaluation campaigns a specific metric for AED technology evaluation has been defined. The 

metric referred to AED-ACC is employed to assess the accuracy AED systems. This metric is 

defined as the F-score (the harmonic mean between precision and recall): 

 
2 * Precision* Recall

AED ACC
Precision Recall

 


 (5.7) 

where 

 ,
number of correct system output AEs

Precision
number of all system output AEs

  

 

 
det

.
number of correctly ected reference AEs

Recall
number of all reference AEs

  

 

A system output AE is considered correct if at least one of two conditions is met: 1) 

There exists at least one reference AE whose temporal centre is situated between the 
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timestamps of the system output AE, and the labels of the system output AE and the reference 

AE are the same. 2) Its temporal centre lies between the timestamps of at least one reference 

AE, and the labels of both the system output AE and the reference AE are the same. Similarly, 

a reference AE is considered correctly detected if at least one of two conditions is met: 1) 

There exists at least one system output AE whose temporal centre is situated between the 

timestamps of the reference AE, and the labels of both the system output AE and the reference 

AE are the same. 2) Its temporal centre lies between the timestamps of at least one system 

output AE, and the labels of the system output AE and the reference AE are the same.  

The AED-ACC metric was used in the last CLEAR‟2007 [39] international evaluation, 

supported by the European Integrated project CHIL [37] and the US National Institute of 

Standards and Technology (NIST). 

5.4.2 Classification and detection results 

The HTK toolkit is used for training and testing the HMM-GMM based classification system 

[170]. As described in Chapter 3, there is one left-to-right HMM with three emitting states for 

each AE and silence. 32 Gaussian components with diagonal covariance matrix are used per 

state. Initially, each HMM is trained with the standard Baum-Welch algorithm using signals 

that have been processed with the beamformer NSB1 of a particular array. Indeed, when 

testing, the knowledge about the relative position (left/right) of AEs and speech is not used. 

For each array, the likelihoods are computed by using the same set of AE+silence models for 

the two beamformer outputs. 

The testing results are obtained with all the 8 sessions (S01-S08) with a leave-one-out 

criterion, i.e. we recursively keep one session for testing, while all the other 7 sessions are 

used for training. As one of the purposes is to compare the new signal separation based 

approach with other methods (e.g. model based and BSS based methods as explained in 

Chapter 3), in the reported experiments, classification is performed uniformly for all the 

methods, i.e. the annotated time marks of the events are used. For the new technique, 

classification is carried out by combining the likelihood scores as indicated in Eq. 5.1. Both 

classes and positions are assigned flat prior probabilities in the reported tests. When using two 

http://chil.server.de/
http://www.nist.gov/
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arrays, the optimal class is obtained by integrating the posterior probabilities according to Eq. 

5.2. 

Table 8 shows the classification results obtained with the proposed system, averaging 

over all the eight testing datasets, for all arrays, and their combination using a product rule. 

We have performed experiments for all the arrays, using visually inspected positions for AEs 

and a broad beam angle that approximately encompasses all the AE positions. It can be 

observed that a better result is obtained for the combination of all arrays than using any 

individual array. 

Table 8 : Classification results obtained using a beamformer having a broad beam angle for 

all arrays individually and their combinations 

 T1 T2 T3 T4 T5 T6 
Product rule based 

combination 

CA(%) 73.6 71.8 75.1 79.2 78.1 77.8 81.5 

 

 

Similarly, we present the detection accuracy in Table 9. In detection, we observed that 

the product rule based combination of scores from all six arrays could not perform the best in 

terms of detection accuracy, but it is close to the highest accuracy that we get with individual 

array T5 and much better than the lowest one. 

Table 9 : Detection results obtained using a beamformer having a broad beam angle for all 

arrays individually and their combinations 

 T1 T2 T3 T4 T5 T6 
Product rule based 

combination 

AED-ACC (%) 69.1 64.4 70.2 73.2 76.3 73.1 75.1 

 

We have also performed experiments in order to check the performance of the system 

when the beamformer is used for each occurrence of event instead of using one beamformer 

with a broad beam angle that encompasses all the AE positions. The experiments are 

conducted for the two types of DOA settings: 1. visually inspected AE positions during the 

recording of the database 2. ASL estimated AE position. As the ASL system used for 

estimating positions in 1-source scenario, i.e. when a single event occurs at any given time, the 
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second setting is presented here only as a reference. In addition, to check the performance of 

the system using the models generated from the signals only processed either by NSB1 or only 

by NSB2, we have performed experiments. Table 10 shows the classification scores when all 

six-microphone arrays are employed, either alone or in combination for the all above-

mentioned situations. Two types of combinations are considered in these experiments: 1. 

Product rule based combination of likelihood scores 2. FI based fusion.  

Table 10 : Classification performances of individual array and their combination 

DOA 

setting 

Models 

generated by 

processing 

signals from 

Array 
Product rule 

based 

combination 

FI 

Fusion T1 T2 T3 T4 T5 T6 

Visually 

inspected 

AE 

positions 

 

NSB1 87.5 82.9 82.9 80.2 86.3 86.7 87.6 87.6 

NSB2 85.2 86.4 85.3 84.5 78.1 87.3 89.2 88.8 

NSB1 and NSB2 87.5 86.8 85.4 83.7 83.7 86.1 89.1 88.5 

ASL-

estimated 

AE 

positions 

NSB1 84.9 83.5 84.6 82.8 83.8 83.6 88.3 88.6 

NSB2 86.2 88.3 88 87.2 76.9 88.7 90.8 90.4 

NSB1 and NSB2 88.2 88 89.2 86.9 82.4 88.1 90.7 89.8 

 

Note from the last two columns in Table 10 that the accuracy obtained from either the 

product rule based combination or the FI based fusion of the whole set of arrays is always 

higher than the accuracy obtained from any of the single arrays. Among the two types of 

combination, product rule based combination works slightly better than the FI based one. The 

use of both the models generated from the signals processed by NSB1 and NSB2 improves 

significantly the CA with respect to using either one of them. It is also observed that most of 

the time we get higher CA while using the models generated from the NSB2 processed signals 

than using the models generated from signals processed by NSB1. Regarding the type of DOA 

setting, the ASL-estimated AE position based system works better than the one that uses the 

DOA from the visually inspected and approximate AE position during the recording of the 

database. On the other hand, designing the beamformer for each AE proves improvement than 

using an average DOA based on visual inspection (i.e. a broad-beam nulling angle presented 
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in Table 8). That could be expected, since the beam pattern is specific of each event class, 

whereas the broad beam encompasses all the angles of the AE source positions. While the 

latter design simplifies the overall system, as it does not require a precise source position 

(hence a single beamformer is used for all AEs) and may also avoid an additional external 

ASL block, it is specific of the given scenario, so it has to be re-designed when the scenario 

changes. The detection results for all the possibilities discussed above are presented in the 

following Table 11. As usual, most of the time the accuracy obtained from either the product 

rule based combination or the FI based fusion of the whole set of arrays is higher than the 

accuracy obtained from any of the single arrays. In some cases, the combinations of arrays do 

not give better accuracies, but always it is very close to the highest one and much better than 

the lowest one produced by an array. 

Table 11 : Detection performance (AED-ACC in %) for each single array and their 

combination 

DOA 

setting 

Models 

generated by 

processing 

signals from 

Array 
Product rule 

based 

combination 

FI 

Fusion T1 T2 T3 T4 T5 T6 

Visually 

inspected 

AE 

positions 

 

NSB1 86.8 81 81.5 78.9 85.5 82.4 85.8 85.9 

NSB2 83.4 85.2 82.9 82.8 77.7 85.4 86.3 86.1 

NSB1 and NSB2 85.6 84.8 82.9 82.6 82.8 85.1 87.2 86.9 

ASL-

estimated 

AE 

positions 

NSB1 84.3 81.9 83.3 82.3 83 82.5 86.1 86.2 

NSB2 85.8 86.5 86.1 84.7 77 86.8 88.1 87.7 

NSB1 and NSB2 87.2 86.4 87.6 85.7 81.8 87.1 88.7 88.7 

 

In addition, for comparison purposes, classification results obtained with two very 

different techniques are reported in Table 12. In coherence with how we train the models for 

our proposed technique, separated signals have been used for training the corresponding blind 

source separation (BSS)based system, which is based on the deflation method [94]. The model 

based technique uses a set of 11 models (plus silence) for the acoustic events overlapped with 

speech. The BSS based system also uses three microphones (T6), and the model based system 
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uses signal from only one microphone from the same array. The technique presented in this 

Chapter is using a frequency invariant beamforming at its front end. So we represent it as FIB 

from now onwards. From the RA results presented in the Table 12, it is clear that the FIB 

based AE classification system that uses all the six microphone arrays produces superior 

performance than the other two systems. The model based system shows a higher accuracy 

than the more computationally demanding BSS based system when both arrays are used. 

Table 12 : Comparison of classification results for three different systems 

 
Source separation based 

Model based 
FIB BSS 

CA(%) 89.1 80.8  83.8 

The AED results of the above mentioned 3 systems are presented in the following Table 

13. Our proposed FIB based system again outperforms the other two by a significant margin.  

Table 13 : Detection accuracies of the three compared systems 

 
Source separation based 

Model based 
FIB BSS 

AED-ACC (%) 87.2 77.6 80.1 

 

To verify the reliability of the proposed method, we have also performed experiments with the 

other database (T recordings) where AEs and speech are already overlapped in the recordings 

from a real scenario. In this database, as explained in Chapter 3, two persons interact 

spontaneously and the AEs are produced along with speech. The classification results of the 

proposed system when using either the models generated from the signals processed by both 

NSB1 and NSB2, for all the arrays, or their combinations are presented in Table 14. The 

testing results are obtained with all the 9 sessions (T01-T09) with a leave-one-out criterion, 

i.e. we recursively keep one session for testing, while all the other 8 sessions are used for 

training. The classification results shown in Table 14 are obtained by averaging over all the 

classes and all the nine testing datasets, for all arrays and their combination. Like in the 

previous experiments, it is observed that a better result is obtained for the combination of all 

arrays than using any individual array. The FI based fusion slightly improved the classification 

performance with respect to the product rule based combination. The detection results are 
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presented in Table 15. As a comparison, the detection result for the model based AED system 

is also shown in the same table. The model based system that uses only one microphone is 

evaluated with the same experimental setup that the proposed FIB based AED system. It is 

evident from the experimental results that the FIB based AED performance is little superior to 

the model based AED. Here the combination could not produce the best result but it is very 

close to the highest accuracy that we get using individual array and far better than the lowest 

one.  

Table 14 : Classification results with T-recording 

 T1 T2 T3 T4 T5 T6 
Product rule based 

combination of arrays 
FI fusion 

CA (%) 82.9 82.2 82.9 80.6 80 82.7 83.7 84.3 

 

Table 15 : Detection accuracy comparison of the proposed FIB based and the model based 

AED using T-recording 

 

FIB based AED 
 

Model 

based AED 
T1 T2 T3 T4 T5 T6 

Product rule 

based 
combination of 

arrays 

FI 

fusion 

AED-

ACC (%) 
79.1 79.2 77.1 77 75.5 79.9 78.7 78.2 65.6 

 

5.4.3 PA result 

It is also noticeable that, among the different evaluated techniques, only the proposed FIB 

based system is able to assign the hypothesized classes to the given source positions without 

requiring an extra system for that. Its position assignment capability is evaluated with the 

following experiments. 

To have a complete description of the acoustic scene in the smart room, there is still the 

need of assigning each one of the two positions to each one of the two detected events. The 

position assignment is done at the decision block according to Eq. 5.3, after the optimal class 
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is chosen through event classification. In our particular scenario, the optimal event class (1 of 

11 AEs) is assigned to one of the source positions, and the other position is assigned to speech.  

A position assignment rate (PAR) and difference in log-likelihood (Diff_LL) metrics are 

used for the PA evaluation and described in the previous Chapter 4. The results with those 

metrics, averaging over all AEs in the 8 S-recording testing datasets, are presented in the 

Table 16, for all individual arrays and for the product rule based combination of likelihood 

ratios. The PA results with the T-recordings are presented in Table 17. Again, the combination 

of arrays produces the best result. In this case, the tests have been carried out by using two 

models, which are generated from the processed signals by NSB1 and NSB2. In the decision 

block, instead of maximizing the product of likelihoods, we maximize the product of the 

likelihood ratios corresponding to each beamformer. As presented in the Table 16, this system 

produces better PAR than the best PA result reported in the previous Chapter 4. This 

improvement may be due to the models used for calculating the likelihood scores. Here, we 

have used the separated signals after the beamforming for generating those models. However, 

the system explained in the previous Chapter 4 uses the models generated from the mono-

event signals, not from the separated signals. Therefore, in that case, there is a mismatch 

between the training and testing dataset, which may be the reason for the reduction of PA 

accuracies. As usual, with the proposed system, a significant PAR improvement is obtained 

when using the whole set of arrays with respect to the case of using only a single array.  

Table 16 : Position assignment results with S recordings 

 PA after T1 T2 T3 T4 T5 T6 
Product rule based 

combination of LR 

PAR (%) 
Classification 87.2 87.3 91.1 93.6 94.4 94.6 98.2 

Detection 87.4 86.1 90.5 93.4 93.5 93.4 97.1 

Diff_LL 
Classification 0.78 1.41 1.12 1.5 1.2 1.1 6.6 

Detection 0.7 1.37 1.04 1.3 1.1 0.9 6.4 
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Table 17 : Position assignment results with T recordings 

 PA after T1 T2 T3 T4 T5 T6 
Product rule based 

combination of LR 

PAR (%) 
Classification 92.6 93.8 93.1 92.9 95.2 92.4 98.5 

Detection 92.2 93 93.1 93.1 94.6 91.1 97.9 

Diff_LL 
Classification 0.96 2.31 4.6 0.76 5.71 0.85 15.8 

Detection 0.82 2.22 4.49 0.8 5.99 0.66 15.3 

 

 



Chapter 5 

99 

 

5.5 Chapter conclusions 

In this Chapter, a new approach for computationally efficient classification/detection and the 

positioning of acoustic events that result from the combination of a beamforming based partial 

signal separation and a MAP based decision has been presented. Assuming both the source 

positions and the start/end timestamps of the events, the proposed system has been tested for 

classification and position assignment in a scenario with two sources. In addition, assuming 

only the source positions, a system is proposed that performs the detection task and outputs 

both the class identity and the start/end timestamps of the detected events. The core system 

consists firstly of a set of frequency invariant null steering beamformers to carry out different 

partial signal separations for each microphone array. The beamformers are followed by model 

based likelihood calculations, using the models generated from the signals processed by the 

beamformer from each of the parallel path in order to get the maximum information from the 

scenario to obtain the posteriors. These scores are then combined using product rule in the 

decision block, a MAP is used to get the optimal class, and the optimal position for PA. 

The proposed system performance is compared with a model based and BSS based 

systems. The model based system, which is the previous baseline, has a problem of limited 

scalability regarding both the number of event classes and the number of simultaneous 

sources. However, the proposed system can overcome this problem. On the other side, the 

BSS technique is computationally demanding and not suitable for real-time applications. The 

proposed technique is computationally efficient and can overcome this problem as well. In 

spite of having these advantages, the proposed FIB based system that uses several small, 

distributed microphone arrays performs significantly better than the other two methods 

mentioned above. As the used beamforming technique only partially separates the different 

sources, we have tried to use as much information as possible from the given scenario by 

using the models generated from the signals processed by all the beamformers. We found a 

noticeable improvement in the performance of the system while combining the microphone 

arrays using a product rule based combination in the decision block before the MAP criterion 

is applied.  
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Additionally, both the model based and the BSS based approaches suffer from the 

permutation problem. They require a separate PA system to solve it. However, the proposed 

technique includes the posterior assignment of event hypothesis to source positions that the 

other two techniques do not have. 
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Chapter 6. Acoustic event localization in a meeting-room 

scenario 

6.1 Chapter overview 

Automatic acoustic scene analysis in a room environment using distributed microphone arrays 

is a very challenging task. The task is even more difficult in a multiple source scenario. In this 

context, acoustic source localization and sound recognition are common acoustic scene 

analysis tasks that are usually considered separately. Most source localization techniques rely 

on some kind of measurement of the acoustic energy as a function of space In this Chapter, a 

new source localization technique is proposed that works jointly with a sound recognition 

system. Once the identities and the endpoints of the simultaneous sounds are known, the 

proposed technique uses the statistical models of those sounds to compute a likelihood score 

for each model and each position in the room space. Those scores are subsequently combined 

to find the MAP-optimal positions in the room. 

The experimentation of this technique is carried out in the scenario considered in this 

thesis, consisting of meeting-room acoustic events, either isolated or overlapped with speech.  

A brief description about the existing localization technique is presented in Section 2. In 

Section 3, we present our proposed sound-model-based localization technique in detail. 

Experimental work on acoustic event localization is reported in Section 4, and a conclusion is 

given in Section 5. 
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6.2 SRP-PHAT based acoustic source localization 

The task of source localization in smart environments itself is a very challenging due to the 

presence of influencing factors like noise, reverberations, directivity of the acoustic sources. 

The task is even more difficult in the situation when multiple acoustic sources are active 

simultaneously.  

In this Section, we describe a standard source localization technique based on SRP-

PHAT algorithm. The reason for choosing this algorithm for the baseline system is due to its 

robustness against reverberation and its relative independence on speaker orientation [155] 

[181]. 

The basic operation of the SRP-PHAT algorithms consists of exploring the 3-

dimensional (3D) space, searching for the maximum of the global contribution of the PHAT-

weighted cross-correlations from all the microphone pairs. The 3D room space is quantized 

into a set of positions with typical separation of 5-10 cm. The theoretical TDOA τ,p,i,j from 

each exploration position to each microphone pair are pre computed and stored. The estimated 

acoustic source location is the position of the quantized space that maximizes the contribution 

of the cross-correlation of all microphone pairs: 

 ˆ argmax ( )
, ,,

p Rm m p i ji jp i j S
 


 (6.1)

  

where S is the set of microphone pairs and the cross-correlation with PHAT weighting is 

computed as: 

 ( )

G  (f)m m j2 fi j
 e  dfRm m

i j
G  (f)m mi j

 



 


 (6.2) 

The set of cross-correlation functions can also be combined to create a Spatial 

Likelihood Function (SLF) ϕ(p), which gives a score for each position x in space by means of 

the following equation: 
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 (6.3)

  

 

The phase transform (PHAT) is an especially effective weighting of a GCC for finding a 

TDOA from acoustic signals in highly reverberant environment. The process is thus to explore 

over the whole volume and ultimately find the set of one or more distinct maxima. The 

calculation of any particular point is called a functional evaluation. For the SRP-PHAT 

functional, a point-source location in the room that gives the maximum value of cross-

correlation is determined. Instead of a grid-search, which requires functional evaluation on a 

fine grid throughout the room, a stochastic region contraction (SRC) is used to find the global 

maximum as presented in [162]. The basic idea of the SRC algorithm is, given an initial 

rectangular search volume containing the desired global optimum and perhaps many local 

maxima or minima, gradually, in an iterative process, contract the original volume until a 

sufficiently small sub-volume is reached in which the global optimum is trapped. The 

contraction operation on iteration is based on a stochastic exploration of the SRP-PHAT 

function in the current sub-volume. The main advantages of using the fast optimization 

technique like SRC are: 1) a more robust procedure against an early wrong decision, and 2) an 

allowance of the optimum being on the continuum. 

6.3 Sound-model-based acoustic source localization 

In this Section, we propose that the information about the content of the signals that are 

captured by distant and distributed microphones may be effectively used for localization of the 

sources in the space domain. In fact, instead of relying only on energy-like based measures, 

we propose a similarity measure delivered by a classifier. As the classifier uses models for the 

different sound classes, we have named this method as sound-model-based (SMB) 

localization. The identity of the simultaneous sounds and their time positioning are given by 

an acoustic detection system (AED) as the one presented in previous Chapter 5. Therefore, the 

sound models are shared by both AED and ASL systems. 
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In this work, we assume that detection has already been carried out, so the identities and 

the end points of a set of acoustic events are known. The acoustic events may occur either 

isolatedly or simultaneously. The proposed system is shown in Figure 19. Let us assume a 

room with a set of K microphone arrays which can be located arbitrarily; for deployment, this 

is an advantage with respect to using spatially-structured array configurations. The 2-D room 

space is divided into a set of P pre-defined small-area cells.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19 : Sound model-based acoustic source localization system 

Note that the vertical coordinate is not considered in this study, but it could also be 

included. For each microphone array, there is a set of P beamformers (NSB), each one 

attenuating the signals from all the directions except the center of one of the cells. This 

beamformer is capable of attenuating signals for the different positions in the sensor array 

patterns. To determine the beamformer coefficients for the wide band audio signals, we use a 

technique called frequency invariant beamforming (FIB) which is already described in 

Chapter 3. 
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6.3.1 Use of the MAP criterion 

The output signal of each beamformer enters a classification system. After the feature 

extraction (FE), a likelihood score (LC) is computed for each of the event classes 

(hypothesized from an external AED system), by using previously trained acoustic event 

models (that may be the same models used by the AED system). Let us assume a room with K 

microphone arrays, and a set of N (possibly simultaneous) events Ei, 1≤i≤N, that belong to a 

set of C different classes. Given a grid of positions sj, 1≤j≤P, in the room, for each array, there 

is a set of P NSBs, so that the j-th NSB is placing nulls in the directions of the P positions 

except that of position sj. Therefore, there is a set of P output signals from each array 

processor. For a given event Ei, a set of P likelihood scores are obtained from the NSB outputs 

and using the model of the class Ei. The optimal position so
i
 of that i-th event out of the N 

events is chosen to maximize a product of posterior probabilities, i.e. 

 

argmax ( , )
1

argmax ( , ) ( ) / ( )
1

Kis p s E Xj i ko
ks j

K
p X E s p s E p Xk i j j i kks j

 


 


 (6.4) 

To determine the likelihoods, the acoustic events are modeled with Hidden Markov 

models (HMM), and the state emission probabilities are computed with continuous density 

Gaussian mixture models (GMM). An illustration of how the log-likelihood score varies along 

the angles is shown in Figure 20; there is a minimum for a specific angle, which is the true 

DOA of the given class. 
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Figure 20 : FIB beam pattern; nulls of the beamformer are placed in other directions except 

the center of a pre-defined cell 

6.4 Experiments 

In our experimental work, we consider a meeting room scenario with a predefined set of 11 

acoustic events. Like in our previous experiments, we assume that there may simultaneously 

exist 0, 1 or 2 events, and, in the last case, one of the events is always speech. In the reported 

experiments, we localize the isolated events (1 source) and overlapped events (2 sources). 

The steered-beamforming sound-model-based (SB-SMB) system in Figure 19 is used to 

localize the acoustic event sources in the room environment. The nulls of the beamformers are 

placed in other directions except the centers of the pre-defined cells. To facilitate real time 

processing, we have considered a relatively large cell: 0.6x0.8m. Though a larger cell reduces 

the resolution of the ASL in the room, it indeed reduces the number of beamformers, which in 

turn ensures less computational load. In the proposed system, the beamformers are designed to 

work with the horizontal row of 3 microphones each array in the smart-room has. 

In the feature extraction block of the system depicted in Figure 19, like the experiments in 

the previous Chapters, a set of audio spectro–temporal features is computed for each signal 

frame. The frames are 30 ms long with 20 ms shift, and a Hamming window is applied. We 

have used frequency-filtered log filter-bank energies (FF-LFBE) for the parametric 

representation of the spectral envelope of the audio signal. For each frame, a short-length FIR 

filter with a transfer function z-z
-1

is applied to the log filter-bank energy vectors and end-
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points are taken into account. Here, we have used 16 FF-LFBEs along with their 16 first 

temporal derivatives, where the latter represents the temporal evolution of the envelope. 

Therefore, the dimension of the feature vector is 32.The HTK toolkit is used for developing 

the HMM-GMM based classifier. There is one left-to-right HMM with three emitting states 

for each AE and silence. 32 Gaussian components with diagonal covariance matrix are used 

per state. Initially, each HMM is trained with the standard Baum-Welch algorithm using the 

beamformed signals for a particular array. For each array, the likelihoods are computed by 

using the same set of acoustic event models for all the beamformer outputs. 

The optimal source position is obtained by maximizing the integrated posterior 

probabilities over all microphone-arrays for the given optimal class according to 6.4.  All the 

positions are assigned flat prior probabilities in the reported tests. The number of position that 

we need to estimate is assumed and could be provided by the AED system. For 0 sources, as 

silence is detected, therefore the system does not need any output position. In the experiments 

with both isolated and overlapped acoustic events, the optimized position is found by 

maximizing the integrated posterior over all the arrays, given the optimal class. 

6.4.1 Proposed metrics 

To test the performance of the model based localization system, we will use two metrics. 1) 

Acoustic source localization cell error (Cell error): it is defined as the quotient between the 

number of localization errors and the total number of event occurrences in the testing 

database. For an event i, a localization error occurs when the cell assigned to the true position 

is not the same as the one estimated by the ASL system. The true position for each event was 

obtained from visual inspection during the recording of the signal. 2) Root-mean-squared error 

for localization (RMSE), which is defined as: 

 

2

1
RMSE

1

ref reftest testx x y yNe i i i i

N x yie

 
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 
 

 

 
   (6.5) 

where (xi
test

 , yi
test

 ) is the 2-D estimated position of the test event, and (xi
ref

 , yi
ref

) is its 

corresponding reference (true) position. ∆x and ∆y are the separations along x and y axis of the 



Experiments 

108 

 

pre-defined positions which are considered by quantizing the room space. Ne is the total 

number of event samples in the testing session. 

6.4.2 Results 

The testing results are obtained with all the 8 sessions (S01-S08) with a leave-one-out 

criterion, i.e. we recursively keep one session for testing, while all the other 7 sessions are 

used for training. Table 18 shows the results obtained with two metrics for the evaluation of 

the proposed SB-SMB system. As a comparison, in the same table we have also put the result 

for a SRP-PHAT localization system. The results with the two metrics, averaging over all AEs 

in the 8 testing datasets, are obtained using all the six arrays (T1 to T6) available in the room. 

Table 18 : Performance comparison of isolated (1-source) ASL systems 

 SB-SMB SRP-PHAT 

Cell error (%) 13.4 13.8 

RMSE 0.41 0.44 

 

The results obtained with the SB-SMB system consider flat values for both p(sj|Ei) and 

p(Xk). It is worth noticing that, in the proposed method, we follow an event based approach, 

which means we localize the whole event. Due to that event based approach, we have to 

assume that during the whole event the acoustic source is not moving along space. For that 

reason, we exclude „steps‟ and „chair moving‟ from the evaluation. In our approach, the source 

position is estimated assuming the identity of the event class, and also the start and end points 

of its occurrence are known. In addition, instead of using the AED system output to set the AE 

model used by the likelihood calculators in the classifier, the ground truth was used, so the 

errors from the AED system are not affecting in our tests the measure of localization 

performance. 

In the experiments, the proposed system shows a slightly lower cell error rate than the 

conventional SRP-PHAT system.  

In Table 19, we present the performance scores for the acoustic events in the overlapped 

case (when an acoustic event is overlapped with speech). In this case, the proposed system 
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clearly outperformed the SRP-PHAT based system. Also notice that the cell error rate for the 

proposed technique is only around 1.2% higher than the case of isolated events for the 

proposed system. Note also that the proposed method may take advantage of the knowledge 

about the a-priori probabilities of the pre-defined positions for each event class. 

Table 19 : Sound-model-based ASL system performance for overlapped (2- source) acoustic 

events 

 SB-SMB SRP-PHAT 

Cell error   (%) 14.5 44.2 

RMSE 0.53 2.6 
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6.5 Chapter conclusions 

In this Chapter, a novel approach for acoustic source localization based on models of the 

sounds has been presented which combines a set of beamformers and a MAP based decision. 

When tested in a meeting-room scenario, the one-source localization performance of the 

proposed system is slightly better than that of the widely used SRP-PHAT based system, while 

it is significantly better in the more complex two-source scenario, provided that the exact 

information about classes and time end-points are available. Note that, unlike the SRP-PHAT 

system, the SBSMB system requires the identities and the time end-points of the events. 

However, it may take advantage of the a-priori probabilities of the pre-defined positions for 

each event class, though they were not used in the experiments. In summary, the presented 

SBSMB localization technique can be an alternative for localization in a multiple source 

scenario when it works together with an acoustic event detection system, with the additional 

advantage that both use the same framework.  
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Chapter 7. Joint classification and localization of meeting-room 

acoustic events using distributed microphone arrays 

7.1 Chapter overview 

Acoustic scene analysis usually requires several sub-systems working in parallel for carrying 

out the various required functionalities. Focusing to a more integrated approach, in this 

Chapter we present an attempt to jointly recognize and localize several simultaneous acoustic 

events that take place in a meeting room environment, by developing a computationally 

efficient technique that employs multiple arbitrarily located small microphone arrays. First, a 

joint technique for classification and direction of arrival estimation (which is localization from 

just one array) will be considered. Assuming a set of simultaneous sounds, for each array a 

matrix is computed whose elements are likelihoods along the set of classes and a set of 

discretized directions of arrival. MAP estimation is used then to decide about both the 

recognized events and the estimated directions. In a second step, 2D localization that 

integrates information from all the arrays in the room environment will be considered.  

The classification plus direction-of-arrival estimation technique is presented in Section 

2. In Section 3, classification plus sound-model-based localization technique will be presented 

in detail. In the same section, a joint, parallel classification and localization technique is 

described. Experimental work on both of these methods is reported in Section 4, and a 

conclusion is given in Section 5. 
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7.2 Classification plus direction-of-arrival estimation 

Although classification and localization may work separately for the acoustic scene analysis 

task, it can be expected that an integrated approach offer advantages in terms of system 

performances. In Chapter 5, we have implemented a classification system based on signal 

separation that can easily work in real time by using multiple distributed linear microphone 

arrays composed of a small number of microphones. The signal separation was done using a 

frequency independent beamforming at the front end, and assuming the source positions. In 

this Section, we aim to take a step further in the direction of the integrated approach, by 

avoiding the assumption that the various acoustic source positions are known, so avoiding the 

need of an external and specific ASL sub-system. In fact, we present here a new technique as 

an attempt of jointly recognizing and estimating DOAs, in an unambiguous way, the classes, 

and the positions of the N simultaneous sounds. Assuming only the x-y plane is needed; this is 

done by discretizing, for each microphone array, the direction of arrival (DOA) with M angles, 

and building for each event class a sequence of posterior probabilities along the angle axis. In 

this way, for each array, i.e. for each multi-channel signal, we have a matrix, where each 

element of that matrix is the likelihood for a given class and a given angle. The hypothesized 

event classes are determined from that likelihood matrix by applying the MAP criterion. The 

angle for which the posterior of a given hypothesized class shows a minimum is taken as the 

estimated localization angle. 

7.2.1 Methodology 

In this approach, we aim to build for each microphone array a posterior matrix that contains 

information about both the identity of the acoustic events that are simultaneously present in 

the room and the direction of arrival of their acoustic waves to the array. Then, both the 

identities of the sounds and their DOAs will be estimated with a MAP criterion. As shown in 

Figure 21, at the front end of the proposed system, the multi-channel signal collected by each 

of the microphone arrays is driven to a set of null-steering beamformers (NSB). Each NSB is 

placing a null to a different value of the angular variable θ, which is discretized in M values 

that uniformly span the angle interval (–,). Note that the vertical coordinate is not 
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considered in this study. Feature extraction (FE) is then applied at the output of the 

beamformer, to subsequently compute a set of likelihood scores (LC), by using previously 

trained HMM-GMM models for the set of C acoustic event classes.  

 

 

Figure 21 : Joint event classification and localization system 

Consequently, when K arrays are used, KxMxC likelihood scores are fed to the last 

block, where a MAP criterion is used to take the decision about the identity of the acoustic 

events E1…EN, and their directions of arrival 1…N. Note that the number N of acoustic 

sources is hypothesized in this work. 

7.2.1.1 Beamformer placing null at the direction of interest 

Null steering beamforming (NSB) allows us to design a sensor array pattern that steers the 

main beam towards a specific direction, places null in that direction and allows the signals to 

pass from the rest of the directions. The detail of this technique is described in Chapter 3. 

Indeed, in our case we cannot expect with this approach a perfect separation of the different 

mixed signals at the output of the NSB, since we use a small number of microphones per 

array, and because of echoes and room reverberation.  
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Assuming the end-points of the events are known, it becomes a classification problem. 

To determine the likelihoods, the acoustic events are modeled with Hidden Markov models 

(HMM), and the state emission probabilities are computed with continuous density Gaussian 

mixture models (GMM), like the previous systems in the last Chapters. 

Let us assume we have a set of N simultaneous events Ei, 1≤i≤N, that belong to a set of C 

classes. For each of the K microphone arrays, there is a set of M beamformers, each one 

having a null to a different angle θj. So there is a set of M output signals for each array, and, 

after likelihood computations with the HMM-GMM models, we have a MxC-dimensional 

matrix of likelihood scores, that can be seen as a set of C patterns along the angle variable. An 

example of such patterns for two different events is shown in Figure 22.  

 

 

Figure 22 : Patterns of log-likelihood along the 11 models for two different events 

Let‟s denote with Xk the multi-channel signal corresponding to the k-th array (notice that, 

to simplify notation, we do not consider time indices). We want to determine the posterior 

probability of a given class ci for the k-th array through all the NSBs. Note that our NSBs only 

separate the signals partially, so a class actually produced at the angle θj may still be observed 

in all the NSBs that do not place nulls at θj. We will assume that each angle θj has an 

associated prior probability p(θj). By using the product combination rule [172] (i.e. assuming 

the output signals of the beamformers are independent), we have: 

 



Chapter 7 

117 

 

 

( | ) ( | , ) ( )
1

( | , ) ( ) ( ) / ( )
1

M
p c X p c X pi j ki jk j

M
p X c p c p p Xk i j i j kj

 

 

 


 


 (7.1) 

where p(Xk|ci,θj) is the likelihood of class ci for the multichannel signal Xk after it goes through 

beamformer j, which is obtained from the corresponding HMM-GMM model. 

For combining the posterior probabilities from the various microphone arrays, we will 

use again the product combination rule, so the optimal class co will be obtained with 

 argmax ( | )
1

K
c p c Xi ko

kci

 


 (7.2) 

In the case of N simultaneous sources, and assuming they correspond to N different classes, 

the recognized identities of those classes are obtained by applying Eq. 7.2 N consecutive times 

and leaving each time the recognized class out. In this work we use a data-dependent 

likelihood-to-posterior transformation to compute the probabilities p(ci|θj,Xk) involved in the 

first line of Eq. 7.1. 

The optimal DOA θo
i
 of the i-th event source out of the N simultaneous sources is 

chosen according to: 

  

argmin ( , )

argmin ( , ) ( )

i p c Xo j i k
j

p X c pi j jk
j

 


 






 (7.3) 

where the minimum is taken because a null is placed by the beamformers in the direction of 

the position, not a maximum. Figure 23 shows an illustration of the variation of the likelihood 

scores along the angles; and there is a minimum for a specific angle, which actually is the true 

DOA of the given class. 
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Figure 23 : Log-likelihoods along angles 

7.2.1.2 Beamformer attenuates signal from all directions other than the direction of 

interest 

This type of beamforming allows us to design a sensor array pattern that steers the main beam 

towards the desired source, and attenuates the signal from rest of the directions. Unlike the 

previous case, it allows to pass the signals from a very narrow direction in the given space. 

Here also, we use Eq. 7.1 and 7.2 for the classification decision. We have explored two 

options. 1) Classification decision is made from the likelihoods generated from the HMM-

GMM classifiers using the second line of Eq. 7.1 and then applying Eq. 7.2. 2) A data-

dependent likelihood-to-posterior transformation is used to compute the probabilities 

p(ci|θj,Xk) involved in the first line of Eq. 7.1 and then applying Eq. 7.2, just like the system 

explained in the previous sub-section. 

The optimal DOA θo
i
 of the i-th event source out of the N simultaneous sources is 

chosen according to: 

 

argmax ( , )

argmax ( , ) ( )

i p c Xo j i k
j
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j
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 (7. 4) 

where the maximum is taken because the beamformer allows the signal to pass from the 

direction of of interest, not attenuating.  
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7.3 Joint classification and localization 

In this Section, we present a new technique as an attempt of jointly recognizing and localizing, 

in an unambiguous way, the classes, and the positions of the N simultaneous sounds. Although 

it is possible to localize the sources, after estimating DOAs for each array and then combining 

them using intersection [139] [143], but the sound-model-based (SB-SMB) localization 

technique from Chapter 6 is considered to be used with the classification system for this joint 

approach. It has been seen that the SB-SMB localization technique that performs well even in 

multiple source scenarios and competes favorably with a standard SRP-PHAT based 

localization technique. 

The block diagram of the methodology is similar to the one depicted in Figure 21. Let us 

assume a set of K microphone arrays, which can be located arbitrarily. The 2-D room space is 

divided into a set of P pre-defined small-area cells. Note that the vertical coordinate is not 

considered in this study, but it could also be included. For each microphone array, there is a 

set of P beamformers (NSB), each one attenuating signals from all the directions except of the 

centre of one of these pre-defined cells. The output signal of each beamformer enters a 

classification system. After feature extraction (FE), a likelihood score (LC) is computed for all 

the event classes, by using previously trained acoustic event models generated from the signals 

processed by the beamformer. It means that the beamformers allow the signal to pass from the 

true source direction and attenuating signals from all other directions. Finally, a decision 

module carries out the localization of the events by combining the likelihood scores using a 

MAP criterion. 

7.3.1 Classification-plus-localization  

Given a room with K microphone arrays, let us assume we have a set of N (possibly 

simultaneous) events ci, 1≤i≤N, which belong to a set of C different classes. Given a grid of 

positions sj, 1≤j≤P, in the room, for each array, there is a set of P NSBs, so that the j-th NSB is 

placing nulls in the directions of the P positions except that of position sj. So from array 

processing, we have a set of P output signals for each array, and after likelihood computations 

with the models of all classes, we have a PxCxK-dimensional vector of likelihood scores. We 
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want to determine the posterior probability of a given class ci for the k-th array through all the 

beamformers. Note that our beamformers only separate the signals partially, so a class actually 

produced at the position sj may still be observed in all the other beamformers that allow the 

signal to pass other than sj. We will assume that each angle sj has an associated prior 

probability p(sj). By using the product combination rule (i.e. assuming the output signals of the 

beamformers are independent), we have: 

 

( | ) ( | , ) ( )
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p c X p c s X p si j ki jk j
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

 


 (7.5) 

where p(Xk|ci,sj) is the likelihood of class ci for the multichannel signal Xk after it goes through 

beamformer j, which is obtained from the corresponding HMM-GMM model. 

For combining the posterior probabilities from the various microphone arrays, we will 

use again the product combination rule, so the optimal class co will be obtained with: 

 argmax ( | )
1

K
c p c Xi ko

kci

 


 (7.6) 

In the case of N simultaneous sources, and assuming they correspond to N different 

classes, the recognized identities of those classes are obtained by applying Eq. 7.6 N 

consecutive times and leaving each time the recognized class out. For classification, we have 

explored two options like we did in the previous Section: 1) Classification decision is made 

from the likelihoods generated from the HMM-GMM classifiers using the second line of Eq. 

7.5 and then applying Eq. 7.6. 2) A data-dependent likelihood-to-posterior transformation is 

used to compute the probabilities p(ci|sj,Xk) involved in the first line of Eq. 7.5 and then 

applying 7.6. 

Once the classification decision is made, the optimal position so
i
 of the i-th event source 

out of the N simultaneous sources is chosen to maximize a product of posterior probabilities, 

i.e. 
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To determine the likelihoods, the acoustic events are modeled with HMM, and the state 

emission probabilities are computed with continuous density GMM like in the previous cases.  

7.3.2 Joint, parallel classification and localization 

In this approach, both classification and localization decisions are made jointly in parallel. The 

whole system is similar to the one that is depicted in Figure 21. We have a set of P output 

signals for each array, and after likelihood computations with the models of all classes, we 

have a PxCxK-dimensional vector of likelihood scores. We want to determine the posterior 

probability of a given class ci and position sj for the k-th array, 

  ( , | ) ( | , ) ( ) ( ) / ( )j k i jp c s X p X c s p c p s p Xi i jk k
   (7.8) 

For combining the posterior probabilities from the various microphone arrays, we will 

use the product combination rule, so the optimal class co and the optimal position sj is chosen 

to maximize a product of posterior probabilities, i.e.  

 , argmax ( , | )
1,

K
c s p c s Xi j ko o

kc si j

 


 (7.9) 

In the case of N simultaneous sources, and assuming they correspond to N different 

classes, the recognized identities of those classes and the corresponding positions are obtained 

by applying Eq. 7.9 N consecutive times and leaving each time the recognized class and its 

corresponding position out.  
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7.4 Experiments 

7.4.1 Joint classification and DOA estimation results 

The proposed event classification system at its front end consists of a set of frequency 

invariant beamformers that span all the angles in the room. The beamformers are designed to 

work with the horizontal row of 3 microphones each array in the smart-room has. With such a 

small number of microphones, it is expected that the beamformers have wide lobes and the 

sources are not well separated. On the other hand, it facilitates a computationally efficient 

working environment. 

In the feature extraction block of the multi-array signal separation based system depicted 

in Figure 21, a set of audio spectro–temporal features is computed for each signal frame like 

we did in our all previous experiments. The HTK toolkit is used for training and testing the 

HMM-GMM system. For working with the null steering beamforming based system, each 

HMM is trained with the standard Baum-Welch algorithm using mono-event signals from a 

microphone and for a particular array. This approach actually introduces a mismatch between 

training and testing conditions, which is a source of classification errors. 

Therefore, to compensate for that mismatch, in the decision block we have employed a 

machine learning based non-linear transformation technique that is unique for all classes. It is 

trained, in a supervised way, with the likelihoods obtained from the separated signals (the 

NSB outputs). We have used a multi-layer feed-forward neural network (NN) and a back-

propagation training algorithm. The NN consists of three layers: input, hidden and output. We 

have optimized the number of hidden nodes in the NN through cross-validation. The tan-

sigmoid transfer function is used at the output stages of the hidden and the output layers. A 

fast-scaled conjugate-gradient-based training algorithm is used [182]. At the output of the NN, 

we apply the MAP criterion according to Eq. 7.1 and Eq. 7.2. In the experiments, all the 

angles are assigned flat prior probabilities. 

The testing results are obtained with all the 8 sessions (S01-S08) with a leave-one-out 

criterion, i.e. we recursively keep one session for testing, while all the other 7 sessions are 

used for training. Table 20 shows a performance comparison of the proposed system, 
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averaging over all the eight testing datasets, for six different arrays (T1-T6) and their 

combination. Here, we have used a machine learning based technique to transform the 

likelihoods generated from the HMM-GMM based classifier to the posteriors and then a MAP. 

In comparison with the classification results obtained when the positions of the acoustic 

sources are known (already presented in Chapter 5), it is observed that CA is degraded. This 

degradation might be due to the uniform combination of the scores from all the DOAs, also 

including the unknown desired directions, which are estimated later using the classification 

hypothesis. Moreover, the number of undesired directions are much larger than the desired 

directions (in this case, desired directions are only two) that possibly affect the classification 

performance of the system.    

Table 20 : Classification performance of the system with the beamformer placing a null at the 

direction of interest 

 
Arrays Product rule based  

combination of arrays T1 T2 T3 T4 T5 T6 

CA (%) 77.2 75.4 79.1 83.1 81.6 81.4 83.3 

 

The hypothesized classes from the recognizer are used to localize the sources in terms of 

DOA estimation. It is performed at the decision block with the likelihood scores from HMM-

GMM likelihood calculators. Using the mono-event signals instead of the separated signals for 

generating the HMM-GMM models, it is expected to get more variations in the likelihood 

scores along the angle and consequently, that choice should help to produce a better 

estimation. The optimal DOAs of the events for each array are obtained by using Eq. 7.3. Here 

also, we consider flat prior probabilities p(θj) for all angles. 

To test the performance of the localization system, we will use the normalized root 

means squared error for direction of arrival (RMSE_DOA) given by the following equation: 

 

2

1
RMSE_DOA

1

reftestNe i i
N ie

 




 
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 (7.8) 



Experiments 

124 

 

where θi
test 

is the estimated DOA for an event i, θi
ref

  is its reference DOA, and Ne is the total 

number of event samples in the testing session. The reference DOA for each event class is 

taken from visual inspection during the recording of the signal. In our experiments, the null 

beam width ∆θ is always kept constant (9 degrees). 

The testing results for DOA estimation are obtained using all the 8 sessions (S01-S08) 

with a leave-one-out criterion. Table 21 shows the DOA estimation results obtained for the 

proposed metric Eq. 7.8, averaging over all the 8 testing datasets, for all different arrays (T1-

T6). Since the DOA estimations are made using the individual arrays, and not combining them 

together, the errors are large.  

Table 21 : DOA estimation performance of the system with the beamformer placing a null at 

the direction of interest 

 
Arrays 

T1 T2 T3 T4 T5 T6 

RMSE_DOA 3.2 3.7 2.9 2.1 2.9 2.6 

 

The classification results for the system that uses beamformers, which place nulls at all 

the directions other than the direction of interest, are presented in Table 22. As mentioned 

earlier, two options regarding the classification decision are evaluated with this system: 1) 

Only MAP is used with the scores from HMM-GMM classifier (referred as MAP in the table), 

2) MAP after transforming the likelihoods from HMM-GMM classifier to the posteriors by a 

machine learning technique (referred as ML-MAP in the table). For the experiments with the 

first option, we consider flat prior probabilities p(θj) for all angles and p(Xk) for all the arrays. 

And the experiments with the second option, flat prior probabilities p(θj) are considered. Here, 

the classification accuracy (presented in the second row of the table) is slightly reduced from 

the previous case (reported in Table 20). This might be the due the difference in the type of 

beamforming used in these two cases. Note in this case, it is also possible to classify the 

events, only using the MAP and without likelihood to posterior transformation, with 1.8% 

reduction in CA. However, it was not possible in the previous case (reported result in Table 

20), which requires this transformation (ML) before using the MAP.     
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Table 22 : Classification performance of the system with the beamformer placing nulls at all 

the directions other than the direction of interest 

  
Arrays Product rule based 

combination of arrays T1 T2 T3 T4 T5 T6 

CA (%) 
MAP 75.6 74.4 77.3 81.7 79.3 80.1 80.7 

ML-MAP 76.8 75 78.1 82.1 80.8 80.9 82.5 

 

The corresponding testing results for DOA estimation are obtained and presented in 

Table 23 for the proposed metric Eq. 7.8, averaging over all the 8 testing datasets, for all 

different arrays (T1-T6). Since the DOAs are estimated using the classification hypothesis, the 

classification performance has an impact on DOA estimations. It is observed from the result in 

the Table 23, that for the better CA, the lesser DOA estimation errors are obtained. The same 

trend is observed while comparing this result with the previous case (presented in Table 21).  

Table 23 : DOA estimation performance of the system with the beamformer placing nulls at all 

the directions other than the direction of interest 

  
Arrays 

T1 T2 T3 T4 T5 T6 

RMSE_DOA 
MAP 3.9 3.8 3.1 2.8 3.2 2.9 

ML-MAP 3.4 3.5 3.1 2.3 3.1 2.7 

 

7.4.2 Joint classification and 2D localization results 

The testing results are obtained with all the 8 sessions (S01-S08) with a leave-one-out 

criterion, i.e. we recursively keep one session for testing, while all the other 7 sessions are 

used for training. The classification results for the system that uses beamformers, which place 

nulls at all the directions other than the direction of interest are presented in Table 24. Like in 

the later system described in the previous sub-section, two options regarding the classification 

decision are evaluated: 1) only MAP is used with the scores from HMM-GMM classifier 

(referred as MAP in the table), 2) MAP is employed after transforming the likelihoods from 

the HMM-GMM classifier to posteriors by a machine learning technique (referred as ML-

MAP in the table). For the experiments with the first option, we consider flat prior 

probabilities p(sj) for all angles and p(Xk) for all the arrays. And, for the experiments with the 
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second option, flat prior probabilities p(sj) are considered. From the presented result in Table 

24, it is clear that the likelihood to posterior transformation before the MAP produces better 

results than using only MAP. Again, in comparison with the classification results obtained 

when the positions of the acoustic sources are known (presented in Chapter 5), it is observed 

that CA is degraded. This degradation might be due to the uniform combination of the scores 

from all the positions, also including the unknown desired positions, which are estimated later 

using the classification hypothesis. Moreover, the number of undesired positions is much 

larger than the number of desired ones (two, in the experimental scenario), what may possibly 

affect the classification accuracy of the system.  

 

Table 24 : Classification results of the system with the beamformer attenuating signals from 

all the directions other than the direction of interest 

  
Product rule based 

combination of arrays 

CA (%) 
MAP 78.1 

ML-MAP 82.8 

 

Table 25 shows the localization result obtained with two metrics for the proposed joint 

classification and localization system. The results with the two metrics, averaging over all AEs 

in the 8 testing datasets, are obtained using all the six arrays (T1 to T6) available in the room. 

The localization results are obtained by considering flat values for both p(sj|Ci) and p(Xk).   

Table 25 : 2D localization performance of classification-plus-localization system 

 MAP ML-MAP 

Cell error (%) 23 19.1 

RMSE 0.72 0.65 

 

It is worth remembering that, like in Chapter 6, in the proposed method, an event based 

approach is followed, which means the localization is performed from a whole event.  

Due to that event based approach, we have to assume that during the whole event the 

acoustic source is not moving along space. For that reason, we exclude „steps‟ and „chair 
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moving‟ from the evaluation. In our approach, the source position is estimated using the 

identity of the event class from the classification hypothesis, but assuming the start and end 

points of the event are known.  

Note that the errors are reduced in the case when likelihood to posterior transformation 

is applied before the MAP. It is also noticeable that these errors are increased around 5% in 

comparison with the error that is produced when the localization decision is made assuming 

the true label of the event class (Table 19 in Chapter 6). Indeed, the proposed method might 

take advantage of the knowledge about the a-priori probabilities of the pre-defined positions 

for each event class.  

The classification results for the joint parallel system are presented in Table 26. Only MAP 

is used with the scores from the HMM-GMM classifier according to Eq. 7.9. For that, we 

consider flat prior probabilities p(Xk) for all the arrays. 

Table 26: CA of the joint and parallel classification and localization system 

  
Product rule based 

combination of arrays 

CA (%) MAP 84.4 

 

In comparison with the results obtained with the classification-plus-localization system 

(first row of Table 24), it is observed that CA is improved in this joint parallel approach. 

However, it could not achieve the CA obtained when the positions of the acoustic sources are 

previously known (presented in Chapter 5).  

Table 27 shows the localization result obtained with two metrics for the proposed joint 

parallel classification and localization system. The results with the two metrics, averaging over 

all AEs in the 8 testing datasets, are obtained again using all the six arrays (T1 to T6) available 

in the room. The localization results are obtained by considering flat values for p(Xk). As the 

event based approach is followed, again we exclude „steps‟ and „chair moving‟ from the 

evaluation, since they are moving sources.  
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Table 27: 2D localization performance of the joint  parallel classification and localization 

system 

 MAP 

Cell error (%) 15.8 

RMSE 0.58 

 

Note that, the errors are reduced around absolute 3.3% in comparison with the 

classification-plus-localization system (first column of Table 25). Indeed, the proposed 

method might take advantage of the knowledge about the a-priori probabilities of the pre-

defined positions for each event class. 
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7.5 Chapter conclusions 

In this Chapter, a combined approach for classification and localization of simultaneously 

occurring meeting room acoustic events is presented. For classification, a computationally 

efficient beamforming based source separation technique followed by a HMM-GMM based 

likelihood computation has been presented, either where the estimation is done with a MAP 

criterion alone or a MAP criterion after applying a data-dependent non-linear transformation. 

Contrarily to what it was assumed in Chapter 5, here the system does not require any 

information about the event source positions, since, by using the hypothesized outputs of the 

recognizer, the system is also able to localize the acoustic events in terms of either DOA or 2D 

position estimation, so avoiding the need of an external localization system. It is observed that 

the classification accuracy suffers degradation in the classification-plus-localization approach 

with respect to the case where the source positions are known. It is also observed that in the 

classification-plus-localization method, the degradation of classification accuracy increases 

the localization errors. However, with a joint parallel approach, it is observed that both the 

classification and localization performances are improved significantly in comparison with the 

classification-plus-localization approach. Alternatively, the proposed method might take the 

advantage of the knowledge about the a-priori probabilities of the pre-defined positions for 

each event class for a better localization performance.  
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Chapter 8. Conclusion and future work 

8.1 Summary of conclusions 

This thesis presents the work done by the author in the area of acoustic event detection and 

localization focusing on the problem of signal overlapping using distributed microphone 

arrays. The work done could be broadly categorized into two: 1) Event detection that consists 

of two stages. First, a set of null steering beamformers is used to carry out partial signal 

separations, by using multiple arbitrarily located linear microphone arrays that are composed 

of a small number of microphones. Second, acoustic event classification and detection are 

carried out from the beamformer outputs using a maximum-a-posteriori criterion. 2) A novel 

sound-model-based event localization technique that could be used either separately or jointly 

with the event detection system. The HMM-GMM classifier is chosen as the basic technique 

for both detection and localization. 

There are several contributions of this thesis work. To solve the problem of source 

overlapping, source separation is carried out prior to the detection (that includes identification) 

of each of the overlapped sounds. This solution is reasonable because it could also be 

applicable to the case where either the number of events or the number of simultaneous 

sources is large. This is not feasible with the previous baseline model based approach that 

suffers from the scalability problem. Beamforming based source separation technique that is 

computationally less demanding than usual BSS based techniques is desirable due to its 

possibility of being implemented in real-time system. A system of such kind has been 

proposed, which consists of a null steering beamforming based partial signal separation 

technique, followed by a likelihood ratio based classifier and a decision block. Moreover, a 

similar system structure can be used for different applications, like detection, localization, 

resolving the permutation problem in a multisource scenario, etc.  

In this thesis, a new approach for computationally efficient classification/detection and 

the positioning of acoustic events that result from the combination of a beamforming based 

partial signal separation and a MAP based decision has been presented. Assuming both the 

source positions and the end-points of the events are known, the proposed system has been 

tested for classification and position assignment in a scenario with two sources. In addition, 
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assuming only the source positions, a system is proposed that performs the detection task and 

outputs both the class identities and the endpoints of the events. The core system consists 

firstly of a set of frequency invariant null steering beamformers to carry out different partial 

signal separations for each microphone array. The beamformers are followed by model based 

likelihood calculations. The scores from the arrays are then combined in the decision block, 

and finally a MAP criterion is used to get the optimal class, and also the optimal position. 

The proposed system is compared with a model based system and a BSS system in the 

case of two sources, one of which is speech. Unlike the model based system, it does not have 

the problem of limited scalability. On the other hand, unlike the BSS technique, which is 

computationally demanding, the proposed technique is computationally efficient. So, it is 

more suitable to real-time applications. Besides having these advantages, the proposed FIB 

based system that uses several small, distributed microphone arrays, performs significantly 

better than the other two methods mentioned above. As the used beamforming technique only 

partially separates the different sources, we have tried to use as much information as possible 

from the given scenario by using the models generated from the signals processed by all the 

beamformers. We found a noticeable improvement in the performance of the system both in 

terms of classification, detection, and position assignment while combining the microphone 

arrays using a product rule based combination in the decision block before the MAP criterion 

is applied.  

Additionally, both the model based and the BSS based approaches suffer from the 

permutation problem. In fact, they require a separate position assignment system to solve it. 

However, the proposed technique includes the posterior assignment of event hypothesis to 

source positions that the other two mentioned techniques do not have. In this thesis, an attempt 

is presented to resolve the source identification ambiguity that appears when an acoustic event 

overlapped with speech is detected. A position assignment system has been proposed and 

tested in the smart room environment. The already mentioned set of beamformers is followed 

by model based likelihood calculations, using both the acoustic event model and the speech 

model, to obtain a couple of likelihood ratio per beamformer, which are multiplied to get a 

final score. Finally, either a product rule or FI based fusion is used to integrate the scores from 

all the arrays. Two types of beamforming techniques, a frequency dependent one, and a 
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frequency invariant one are compared. While, a careful frequency tuning is required in the 

former case, the alternative frequency invariant technique does not require frequency tuning 

and thus it is less dependent on the concrete scenario. Important enough, the fusion of the 

scores from the arrays, yields the best assignment error that is smaller than 5%.  

Another significant contribution of this thesis is source localization. A novel approach 

for acoustic source localization based on the models of sounds has been presented which 

combines a set of beamformers and a MAP based decision. It has been tested in a limited 

scenario with one and two sources. The 1-source localization performance of the proposed 

system is slightly better than the standard SRP-PHAT based system, and it performs 

significantly better in the more complex 2-source scenario. Therefore, the presented sound-

model-based localization technique may be an alternative for event-level localization in a 

multiple source scenario. Moreover, the proposed technique would obviously find a place at 

least when it has to work together with a recognition system, since both use the same 

framework. Interestingly enough, in the case of two simultaneous events, one of which is 

speech, the acoustic events are localized with a not much worse accuracy than when they 

occur alone.  

In the thesis work, a combined approach for classification and localization of 

simultaneously occurring meeting room acoustic events is also presented. For classification, a 

computationally efficient beamforming based source separation technique followed by a 

HMM-GMM based likelihood computation has been presented, either where the estimation is 

done with a MAP criterion alone or a MAP criterion after applying a data-dependent non-

linear transformation. Contrarily to what it was assumed in the previously described 

classification work, here the system does not require any information about the event source 

positions. By using the hypothesized outputs of the recognizer, the system is also able to 

localize the acoustic events in terms of either DOA or 2D position estimation, so avoiding the 

need of an external localization system. It is observed that the classification and localization 

accuracies suffer degradation in this classification based localization approach. On the other 

hand, working with a joint and parallel approach, it is observed that both the classification and 

localization performances are improved significantly in comparison with the classification-

plus-localization approach. Additionally, it is also observed that the proposed SB-SMB based 
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localization technique can work independently and without using the class identities from the 

classification system. Moreover, the proposed method might take advantage of the knowledge 

about the a-priori probabilities of the pre-defined positions for each event class for a better 

localization performance. Although classification and localization may work separately for the 

acoustic scene analysis task, the integrated approach can offer advantages in terms of resource 

and design. 
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8.2 Future work 

The following list contains the most important points requiring improvements as well as a few 

directions for future work. 

8.2.1  Joint detection and localization 

In Chapter 5 of this thesis, both acoustic event classification and detection systems are 

presented. In addition, in Chapter 7, a joint classification and localization method is proposed 

and tested. In the future work, a joint detection and localization system can be tested. 

8.2.2 Event level to frame level localization, source tracking 

In this thesis, a sound-model-based event localization system that works at the event level (not 

at the frame level), since the localization is performed for the whole event, is proposed. 

Performing localization with the proposed method, the system has to assume that for the 

duration of the whole event, the sources do not change their spatial position, which means that 

they are static sources. Because of that assumption, we had to keep some events out from the 

evaluation: „steps‟ and „chair moving‟. It could be interesting to see the performance of the 

system when the same proposed technique is used at the frame level instead of localizing for 

the whole event. If the system is designed to work at the frame level, it can be possible to 

evaluate it with those moving events. Moreover, source tracking could be thought of when the 

system works at the frame level. 

8.2.3 Inclusion of vertical axis for 3D localization and better separation 

In all the reported experiments of this thesis work, three linearly placed microphones for each 

of the T-shaped arrays are used. It means that the work has been done in the horizontal (i.e. 

XY plane) plane, so the vertical axis has never been considered. The fourth microphone of 

each array is aligned vertically with the other three linear, horizontally-placed microphones. 

Inclusion of the fourth microphone will enable the localization system to work in the vertical 

axis as well. Therefore, it will be possible to localize the event in the 3D space. In addition, it 

will be interesting to see that how the inclusion of this fourth microphone affects the amount 

of signal separation with these beamformers, and thus influences the recognition accuracy. 
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8.2.4 Overlapping of more than 2 sources 

In this thesis work, the systems are proposed to work in a multisource environment. They are 

tested in a scenario where a maximum of up to two sources are active simultaneously. Future 

work can be carried out to test the proposed system in a situation that has more than two 

simultaneous acoustic sources.  

8.2.5 Working with other databases, cross site event detection and localization 

For the experiments in this thesis, two types of signals are used: 1) artificially overlapped 

signals by superposition of different signals recorded separately in a real room environment, 2) 

signals overlapped in a natural way through the interaction of two persons in the room 

environment (both AEs and speech are produced and overlapped in a natural way). The 

recognition accuracy is decreased while working with the second type of signals than the first 

one. One possibility for further research could be to work with different types of overlapped 

signals and under different noise conditions. However, creating the database with signal 

overlaps produced in a natural way is difficult problem.  

A possible direction of further research could be the cross-site event detection, i.e. the 

case when acoustic models are created using the database from one site, and testing is 

performed using the database from another site. This is a natural requirement for many 

practical applications to work equally well in different conditions and environments. In fact, 

within the CHIL European project different databases with AEs were recorded from UPC, 

UKA, IBM, AIT and ITC sites [37], which can be used.  
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