425 research outputs found

    An unsupervised learning algorithm for membrane computing

    Get PDF
    This paper focuses on the unsupervised learning problem within membrane computing, and proposes an innovative solution inspired by membrane computing techniques, the fuzzy membrane clustering algorithm. An evolution–communication P system with nested membrane structure is the core component of the algorithm. The feasible cluster centers are represented by means of objects, and three types of membranes are considered: evolution, local store, and global store. Based on the designed membrane structure and the inherent communication mechanism, a modified differential evolution mechanism is developed to evolve the objects in the system. Under the control of the evolution–communication mechanism of the P system, the proposed fuzzy clustering algorithm achieves good fuzzy partitioning for a data set. The proposed fuzzy clustering algorithm is compared to three recently-developed and two classical clustering algorithms for five artificial and five real-life data sets.National Natural Science Foundation of China No 61170030National Natural Science Foundation of China No 61472328Chunhui Project Foundation of the Education Department of China No. Z2012025Chunhui Project Foundation of the Education Department of China No. Z2012031Sichuan Key Technology Research and Development Program No. 2013GZX015

    Informational Paradigm, management of uncertainty and theoretical formalisms in the clustering framework: A review

    Get PDF
    Fifty years have gone by since the publication of the first paper on clustering based on fuzzy sets theory. In 1965, L.A. Zadeh had published “Fuzzy Sets” [335]. After only one year, the first effects of this seminal paper began to emerge, with the pioneering paper on clustering by Bellman, Kalaba, Zadeh [33], in which they proposed a prototypal of clustering algorithm based on the fuzzy sets theory

    Machine learning-based algorithms to knowledge extraction from time series data: A review

    Get PDF
    To predict the future behavior of a system, we can exploit the information collected in the past, trying to identify recurring structures in what happened to predict what could happen, if the same structures repeat themselves in the future as well. A time series represents a time sequence of numerical values observed in the past at a measurable variable. The values are sampled at equidistant time intervals, according to an appropriate granular frequency, such as the day, week, or month, and measured according to physical units of measurement. In machine learning-based algorithms, the information underlying the knowledge is extracted from the data themselves, which are explored and analyzed in search of recurring patterns or to discover hidden causal associations or relationships. The prediction model extracts knowledge through an inductive process: the input is the data and, possibly, a first example of the expected output, the machine will then learn the algorithm to follow to obtain the same result. This paper reviews the most recent work that has used machine learning-based techniques to extract knowledge from time series data

    Advances in Meta-Heuristic Optimization Algorithms in Big Data Text Clustering

    Full text link
    This paper presents a comprehensive survey of the meta-heuristic optimization algorithms on the text clustering applications and highlights its main procedures. These Artificial Intelligence (AI) algorithms are recognized as promising swarm intelligence methods due to their successful ability to solve machine learning problems, especially text clustering problems. This paper reviews all of the relevant literature on meta-heuristic-based text clustering applications, including many variants, such as basic, modified, hybridized, and multi-objective methods. As well, the main procedures of text clustering and critical discussions are given. Hence, this review reports its advantages and disadvantages and recommends potential future research paths. The main keywords that have been considered in this paper are text, clustering, meta-heuristic, optimization, and algorithm

    SciTech News Volume 71, No. 1 (2017)

    Get PDF
    Columns and Reports From the Editor 3 Division News Science-Technology Division 5 Chemistry Division 8 Engineering Division Aerospace Section of the Engineering Division 9 Architecture, Building Engineering, Construction and Design Section of the Engineering Division 11 Reviews Sci-Tech Book News Reviews 12 Advertisements IEEE

    A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications

    Get PDF
    Particle swarm optimization (PSO) is a heuristic global optimization method, proposed originally by Kennedy and Eberhart in 1995. It is now one of the most commonly used optimization techniques. This survey presented a comprehensive investigation of PSO. On one hand, we provided advances with PSO, including its modifications (including quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO), population topology (as fully connected, von Neumann, ring, star, random, etc.), hybridization (with genetic algorithm, simulated annealing, Tabu search, artificial immune system, ant colony algorithm, artificial bee colony, differential evolution, harmonic search, and biogeography-based optimization), extensions (to multiobjective, constrained, discrete, and binary optimization), theoretical analysis (parameter selection and tuning, and convergence analysis), and parallel implementation (in multicore, multiprocessor, GPU, and cloud computing forms). On the other hand, we offered a survey on applications of PSO to the following eight fields: electrical and electronic engineering, automation control systems, communication theory, operations research, mechanical engineering, fuel and energy, medicine, chemistry, and biology. It is hoped that this survey would be beneficial for the researchers studying PSO algorithms
    • …
    corecore