1,290 research outputs found

    Analysis of electroencephalograms in Alzheimer's disease patients with multiscale entropy

    Get PDF
    The aim of this study was to analyse the electroencephalogram (EEG) background activity of Alzheimer’s disease (AD) patients using the Multiscale Entropy (MSE). The MSE is a recently developed method that quantifies the regularity of a signal on different time scales. These time scales are inspected by means of several coarse-grained sequences formed from the analysed signals. We recorded the EEGs from 19 scalp electrodes in 11 AD patients and 11 age-matched controls and estimated the MSE profile for each epoch of the EEG recordings. The shape of the MSE profiles reveals the EEG complexity, and it suggests that the EEG contains information in deeper scales than the smallest one. Moreover, the results showed that the EEG background activity is less complex in AD patients than control subjects. We found significant difference

    A Review on Machine Learning Techniques for Neurological Disorders Estimation by Analyzing EEG Waves

    Get PDF
    With the fast improvement of neuroimaging data acquisition strategies, there has been a significant growth in learning neurological disorders among data mining and machine learning communities. Neurological disorders are the ones that impact the central nervous system (including the human brain) and also include over 600 disorders ranging from brain aneurysm to epilepsy. Every year, based on World Health Organization (WHO), neurological disorders affect much more than one billion people worldwide and count for up to seven million deaths. Hence, useful investigation of neurological disorders is actually of great value. The vast majority of datasets useful for diagnosis of neurological disorders like electroencephalogram (EEG) are actually complicated and poses challenges that are many for data mining and machine learning algorithms due to their increased dimensionality, non stationarity, and non linearity. Hence, an better feature representation is actually key to an effective suite of data mining and machine learning algorithms in the examination of neurological disorders. With this exploration, we use a well defined EEG dataset to train as well as test out models. A preprocessing stage is actually used to extend, arrange and manipulate the framework of free data sets to the needs of ours for better training and tests results. Several techniques are used by us to enhance system accuracy. This particular paper concentrates on dealing with above pointed out difficulties and appropriately analyzes different EEG signals that would in turn help us to boost the procedure of feature extraction and enhance the accuracy in classification. Along with acknowledging above issues, this particular paper proposes a framework that would be useful in determining man stress level and also as a result, differentiate a stressed or normal person/subject

    Anomaly Detection in Activities of Daily Living with Linear Drift

    Get PDF
    Anomalyq detection in Activities of Daily Living (ADL) plays an important role in e-health applications. An abrupt change in the ADL performed by a subject might indicate that she/he needs some help. Another important issue related with e-health applications is the case where the change in ADL undergoes a linear drift, which occurs in cognitive decline, Alzheimer’s disease or dementia. This work presents a novel method for detecting a linear drift in ADL modelled as circular normal distributions. The method is based on techniques commonly used in Statistical Process Control and, through the selection of a convenient threshold, is able to detect and estimate the change point in time when a linear drift started. Public datasets have been used to assess whether ADL can be modelled by a mixture of circular normal distributions. Exhaustive experimentation was performed on simulated data to assess the validity of the change detection algorithm, the results showing that the difference between the real change point and the estimated change point was 4.90−1.98+3.17 days on average. ADL can be modelled using a mixture of circular normal distributions. A new method to detect anomalies following a linear drift is presented. Exhaustive experiments showed that this method is able to estimate the change point in time for processes following a linear drift

    Exploring the Landscape of Ubiquitous In-home Health Monitoring: A Comprehensive Survey

    Full text link
    Ubiquitous in-home health monitoring systems have become popular in recent years due to the rise of digital health technologies and the growing demand for remote health monitoring. These systems enable individuals to increase their independence by allowing them to monitor their health from the home and by allowing more control over their well-being. In this study, we perform a comprehensive survey on this topic by reviewing a large number of literature in the area. We investigate these systems from various aspects, namely sensing technologies, communication technologies, intelligent and computing systems, and application areas. Specifically, we provide an overview of in-home health monitoring systems and identify their main components. We then present each component and discuss its role within in-home health monitoring systems. In addition, we provide an overview of the practical use of ubiquitous technologies in the home for health monitoring. Finally, we identify the main challenges and limitations based on the existing literature and provide eight recommendations for potential future research directions toward the development of in-home health monitoring systems. We conclude that despite extensive research on various components needed for the development of effective in-home health monitoring systems, the development of effective in-home health monitoring systems still requires further investigation.Comment: 35 pages, 5 figure

    EEG characterization of the Alzheimer's disease continuum by means of multiscale entropies

    Get PDF
    Alzheimer's disease (AD) is a neurodegenerative disorder with high prevalence, known for its highly disabling symptoms. The aim of this study was to characterize the alterations in the irregularity and the complexity of the brain activity along the AD continuum. Both irregularity and complexity can be studied applying entropy-based measures throughout multiple temporal scales. In this regard, multiscale sample entropy (MSE) and refined multiscale spectral entropy (rMSSE) were calculated from electroencephalographic (EEG) data. Five minutes of resting-state EEG activity were recorded from 51 healthy controls, 51 mild cognitive impaired (MCI) subjects, 51 mild AD patients (ADMIL), 50 moderate AD patients (ADMOD), and 50 severe AD patients (ADSEV). Our results show statistically significant differences (p-values < 0.05, FDR-corrected Kruskal-Wallis test) between the five groups at each temporal scale. Additionally, average slope values and areas under MSE and rMSSE curves revealed significant changes in complexity mainly for controls vs. MCI, MCI vs. ADMIL and ADMOD vs. ADSEV comparisons (p-values < 0.05, FDR-corrected Mann-Whitney U-test). These findings indicate that MSE and rMSSE reflect the neuronal disturbances associated with the development of dementia, and may contribute to the development of new tools to track the AD progression.This research was supported by European Commission and European Regional Development Fund (FEDER) under project “Análisis y correlación entre el genoma completo y la actividad cerebral para la ayuda en el diagnóstico de la enfermedad de Alzheimer” (Cooperation Programme Interreg V-A Spain-Portugal, POCTEP 2014-2020); by “Ministerio de Ciencia, Innovación y Universidades” and FEDER under projects PGC2018-098214-A-I00 and DPI2017-84280-R; and by “Fundação para a Ciência e a Tecnologia/Ministério da Ciência, Tecnologia e Inovação” and FEDER under projects POCI-01-0145-FEDER-007274 and UID/MAT/00144/2013

    Review of medical data analysis based on spiking neural networks

    Full text link
    Medical data mainly includes various types of biomedical signals and medical images, which can be used by professional doctors to make judgments on patients' health conditions. However, the interpretation of medical data requires a lot of human cost and there may be misjudgments, so many scholars use neural networks and deep learning to classify and study medical data, which can improve the efficiency and accuracy of doctors and detect diseases early for early diagnosis, etc. Therefore, it has a wide range of application prospects. However, traditional neural networks have disadvantages such as high energy consumption and high latency (slow computation speed). This paper presents recent research on signal classification and disease diagnosis based on a third-generation neural network, the spiking neuron network, using medical data including EEG signals, ECG signals, EMG signals and MRI images. The advantages and disadvantages of pulsed neural networks compared with traditional networks are summarized and its development orientation in the future is prospected

    Brain entropy, fractal dimensions and predictability: a review of complexity measures for EEG in healthy and neuropsychiatric populations

    Get PDF
    There has been an increasing trend towards the use of complexity analysis in quantifying neural activity measured by electroencephalography (EEG) signals. On top of revealing complex neuronal processes of the brain that may not be possible with linear approaches, EEG complexity measures have also demonstrated their potential as biomarkers of psychopathology such as depression and schizophrenia. Unfortunately, the opacity of algorithms and descriptions originating from mathematical concepts have made it difficult to understand what complexity is and how to draw consistent conclusions when applied within psychology and neuropsychiatry research. In this review, we provide an overview and entry-level explanation of existing EEG complexity measures, which can be broadly categorized as measures of predictability and regularity. We then synthesize complexity findings across different areas of psychological science, namely, in consciousness research, mood and anxiety disorders, schizophrenia, neurodevelopmental and neurodegenerative disorders, as well as changes across the lifespan, while addressing some theoretical and methodological issues underlying the discrepancies in the data. Finally, we present important considerations when choosing and interpreting these metrics

    Characterization of the spontaneous EEG activity in the Alzheimer's disease continuum: from local activation to network organization

    Get PDF
    La presente Tesis Doctoral se presenta como un compendio de cuatro publicaciones indexadas en el Journal Citation Reports. El objetivo de estas publicaciones es la caracterización de los cambios neuronales subyacentes en las diferentes etapas de la enfermedad de Alzheimer (EA) y su etapa prodrómica, el deterioro cognitivo leve (DCL), siguiendo tres niveles de análisis: activación local, interacción entre pares de sensores, y organización de red. Los principales cambios encontrados a medida que progresa la enfermedad son: (i) una lentificación, y una pérdida de complejidad e irregularidad de la actividad EEG espontánea; (ii) una disminución significativa de la conectividad en bandas altas de frecuencia y un aumento en las bandas bajas; y (iii) una pérdida en la integración y la segregación de las redes neuronales. Estos hallazgos han proporcionado información adicional sobre las alteraciones cerebrales de la EA en sus diferentes etapas, útiles para comprender mejor sus mecanismos fisiopatológicos.Departamento de Teoría de la Señal y Comunicaciones e Ingeniería TelemáticaDoctorado en Tecnologías de la Información y las Telecomunicacione
    corecore