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Abstract: Alzheimer’s disease (AD) is a neurodegenerative disorder with high prevalence, known
for its highly disabling symptoms. The aim of this study was to characterize the alterations in the
irregularity and the complexity of the brain activity along the AD continuum. Both irregularity and
complexity can be studied applying entropy-based measures throughout multiple temporal scales.
In this regard, multiscale sample entropy (MSE) and refined multiscale spectral entropy (rMSSE)
were calculated from electroencephalographic (EEG) data. Five minutes of resting-state EEG activity
were recorded from 51 healthy controls, 51 mild cognitive impaired (MCI) subjects, 51 mild AD
patients (ADMIL), 50 moderate AD patients (ADMOD), and 50 severe AD patients (ADSEV). Our results
show statistically significant differences (p-values < 0.05, FDR-corrected Kruskal–Wallis test) between
the five groups at each temporal scale. Additionally, average slope values and areas under MSE
and rMSSE curves revealed significant changes in complexity mainly for controls vs. MCI, MCI
vs. ADMIL and ADMOD vs. ADSEV comparisons (p-values < 0.05, FDR-corrected Mann–Whitney
U-test). These findings indicate that MSE and rMSSE reflect the neuronal disturbances associated
with the development of dementia, and may contribute to the development of new tools to track the
AD progression.

Keywords: Electroencephalography (EEG); multiscale sample entropy (MSE); refined multiscale
spectral entropy (rMSSE); Alzheimer’s disease (AD); mild cognitive impairment (MCI);
AD continuum

1. Introduction

Alzheimer’s Disease (AD) is a progressive neurodegenerative disorder, which is associated with
cognitive impairment, behavior disorders and memory loss, among others. AD is the most common
cause of dementia, with an estimated 60–80% of cases [1]. In 2018, 50 million people worldwide
were coexisting with some type of dementia [2]. This number is expected to be more than tripled
by 2050, rising to 152 million [2]. AD can be considered a highly disruptive disorder, not only for
patients, but also for families and caregivers, being the main cause of dependence and disability for
older people [3]. AD is particularly costly for the society, reaching a global economic burden of about
US$ 1 trillion per year in 2018 [2].
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A transitional period is likely to occur between normal ageing and the diagnosis of early dementia
due to AD. This state is described as mild cognitive impairment (MCI). MCI patients are usually
diagnosed with slight cognitive deficits, but insufficient to categorize them as dementia patients [4].
AD may eventually develop from this point through three main stages of progressive severity. Firstly,
mild AD patients (ADMIL) are characterized by clear-cut impairments on careful clinical interview and
deficits manifestations in areas such as reduced knowledge of recent events, difficulty to recall personal
information, and decreased ability to handle finances or travel. Secondly, moderate AD patients
(ADMOD) are unable to recall important events in their lives and suffer disorientation regarding with
current place and time. Finally, severe AD patients (ADSEV) are completely dependent for survival.
Patients in this stage are generally oblivious about their surroundings, time, place and recent events.
They tend to remember some but sketchy details about their long-term life experiences [5].

Nowadays, the methods for AD diagnosis are complex and mainly subjective. Some of the
procedures applied include examination of medical history, neurological exams and diagnostic tests,
along with other techniques [1,6]. Unfortunately, the gold standard for AD diagnosis according to
the National Institute on Aging and Alzheimer’s Association (NIA-AA) criteria is the histological
examination of brain tissue through biopsy or autopsy [7]. This practice confirms the presence of
neurofibrillary tangles and Aβ peptide, which are strongly associated with AD [8]. For these reasons,
the development of new tools for AD diagnosis appears to be relevant.

Electroencephalography (EEG) is a non-invasive technique that allows the measurement of the
electrical brain activity. EEG devices can record the transient and rapid nature of brain signaling
due to its high temporal resolution. In the last decades, EEG analyses with spectral and non-linear
measures have provided new insights into the understanding of physiological dynamics, including
alterations due to dementia. Among them, entropy measures have received great attention. Entropy
estimates the randomness of a series, which is directly related with its predictability [9]. Several
entropy methods have been developed, such as spectral entropy (SpecEn) [10], approximate entropy
(ApEn) [11], sample entropy (SampEn) [12], fuzzy entropy (FuzEn) [13] or permutation entropy
(PermEn) [14]. Remarkably, many studies have revealed a strong correlation between cognitive decline
and loss of EEG irregularity [15–19].

Traditional entropy measures analyze a single temporal scale and, sometimes, they are not
able to express the physiological dynamics of more complex processes of the brain. To address this
issue, Costa et al. [20] suggested the application of multiscale entropy methods. Difference between
regularity and complexity was also remarked, pointing the importance of “meaningful structural
richness” [20]. From the physiological point of view, biosignal complexity is associated with the
adaptation capability of a living system in a changing environment [20]. For this reason, loss of
complexity has been described as a common feature of neuropathology [21,22]. The analysis of this
feature requires integrative multiscale functionality, which is unable to be studied by traditional entropy
methods [20]. In this regard, multiscale entropy (MSE) describes the complexity of underlying neural
systems working in a wide-range of temporal scales. Costa et al. [20] proposed MSE as an extension
of SampEn, basing its calculation on coarse-grained time series. Other authors have previously used
MSE to examine spatiotemporal patterns of the EEG in order to assess neural background activity
in AD [23,24].

Spectral analyses have also been carried out to study the AD progression. EEG signals from AD
patients show a shift in the power spectral density (PSD) towards lower frequencies (theta and delta
bands) and a decrease of power in alpha and beta bands [25,26]. Abásolo et al. [17] suggested that
spectral analyses might be complementary with non-linear analyses in AD categorization. For this
reason, the combination of both kinds of measures may lead to obtain a better description of its
disturbances on the dynamics of neural activity. Entropies based on extensive information, such as
Shannon and Rényi entropies, and based on non-extensive information, as Tsallis entropy, have been
used to quantify the irregularity of the spectrum in AD [27]. Other studies have revealed lower
SpecEn values in AD patients against controls [17,18]. Even though plenty of work has been
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conducted in this regard, the application of SpecEn from a multitemporal-scale approach is very
limited. Humeau-Heurtier et al. [28] proposed the use of multiscale SpecEn (MSSE) to microvascular
data to distinguish young from elderly subjects. MSSE measures the irregularity of the PSD of the
coarse-grained versions of a signal, calculated on different scale factors. This study also provides
the algorithm to compute the refined version of MSSE (rMSSE), improving its robustness against
aliasing. The application of this measure may reveal complexity alterations of EEG signals from a
spectral analysis standpoint. To the best of our knowledge, rMSSE has not been previously applied to
characterize the brain activity in AD.

The aim of this study was to ascertain the relation between EEG signal complexity and the
degree of cognitive impairment among five subject groups of different AD severity. For this purpose,
multitemporal-scaled entropy measures in time and frequency domains were calculated. We also
proposed to assess complexity in a quantitative way, making use of global analysis parameters.
Additionally, we tested the classification power of the combination of MSE and rMSSE in order
to distinguish subjects of each group and, hence, assessing the diagnostic ability of the procedure.
The results obtained in this research could offer new insights into how the structural complexity of the
EEG may be affected by neurodegeneration caused by dementia.

2. Materials

2.1. Subjects

Two hundred fifty-three subjects took part in this study: 51 control subjects, 51 MCI subjects,
51 ADMIL patients, 50 ADMOD patients and 50 ADSEV patients. Every subject with MCI or dementia
due to AD was diagnosed and categorized according to the criteria of the NIA-AA [7]. Minimental
State Examination (MMSE) scoring was used to evaluate the cognitive mental state of the patients [29].

For AD and MCI patients, inclusion criteria included ages older than 65 and a diagnosis of
dementia or MCI due to AD, respectively. Exclusion criteria included the presence of atypical signs in
evolution, history of active or treatment neoplasia, history of recent surgery or hypercatabolic states,
chronic alcoholism or any indications of components of vascular pathology in clinical history. On the
other hand, control subjects were required to meet the following criteria to participate in the study.
Inclusion criteria were ages older than 65 and MMSE scores higher than 27. Exclusion criteria included
the presence of neurological history or major psychiatric disorders. All subjects and caregivers gave a
written consent to participate in this study, according to the recommendations of the Code of Ethics of
the World Medical Association (Declaration of Helsinki). The protocol was approved by The Ethics
Committee at the Porto University (Porto, Portugal). Table 1 provides a summary of the demographic
data of the participants.

Table 1. Demographic data. SD, standard deviation.

Group N Age (Mean ± SD) (Years) Gender (Female:Male) MMSE Score (Mean ± SD)

Controls 51 80.14 ± 7.09 25:26 28.82 ± 1.13
MCI subjects 51 85.53 ± 7.25 36:15 23.33 ± 2.84

ADMIL patients 51 80.69 ± 7.05 30:21 22.49 ± 2.27
ADMOD patients 50 81.30 ± 8.04 43:7 13.60 ± 2.76
ADSEV patients 50 79.98 ± 7.82 43:7 2.42 ± 3.70

2.2. EEG Recording

For each subject, five minutes of EEG activity were acquired with a 19-channel Nihon Kohden
Neurofax JE-921A EEG System at electrodes F3, F4, F7, F8, Fp1, Fp2, T3, T4, T5, T6, C3, C4, P3, P4,
O1, O2, Fz, Cz, and Pz of the international 10–20 system, with common average reference. Sampling
frequency was established at 500 Hz. Subjects were asked to stay in a relaxed state with eyes closed in
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a noise-free environment to minimize artifact presence. Researchers made sure to avoid drowsiness of
the participants during the procedure.

EEG data were stored in a personal computer as ASCII files and were preprocessed according to
the following steps [30,31]: (i) mean removal; (ii) 50 Hz notch filtering; (iii) bandpass filtering with a
Hamming window between 0.4 and 98 Hz; (iv) independent component analysis (ICA), to remove
components associated with myographic, cardiographic and oculographic noise; (v) segmentation
into 5 s epochs; and (vi) visual rejection of epochs contaminated by artifacts. An average number of
38.94 ± 13.12 (mean ± SD) artifact-free epochs per subject were selected. Every digital process in this
study was carried out with MATLAB R© (R2017a version, Mathworks, Natick, MA).

3. Methods

3.1. Multiscale Sample Entropy

MSE is a non-linear technique that allows perceiving the irregularity of a time series at different
temporal scales to assess complexity. Costa et al. [21] pointed out that traditional methods (i.e.,
single-scale entropy measures) fail to quantify complexity in physiologic dynamics. To overcome
this drawback, MSE was proposed, based on the calculation of SampEn at different time scales.
MSE algorithm is computed through two steps: a coarse-grained procedure and the entropy
calculation [20,21]. The algorithm is computed as follows:

1. Firstly, given a one-dimensional discrete time series, [x1, ..., xi, ..., xN], successive coarse-grained
time series Yτ are built according to the scale factor τ. This process is performed by calculating
the average value of the data points from non-overlapping windows of length τ [20,24]:

Yτ
j =

1
τ

jτ

∑
i=(j−1)τ+1

xi, 1 ≤ j ≤ N
τ

= N(τ). (1)

It is worth noting that the number of samples for each subsequent coarse-grained series is reduced
by a factor of τ, hence Y1 resulting in a sequence equal to the original time series.

2. Afterwards, SampEn is calculated for each Yτ
j . SampEn algorithm is detailed in the contribution of

Richman and Moorman [12]. SampEn is a non-linear measure that allows assessing the degree of
irregularity of a signal [12], developed as an improvement of ApEn [11,12]. SampEn accounts as
an embedding entropy, the calculation of which is based on the similarity with a delayed version
of the time series itself [32]. Given m, a positive integer, and r, a positive real number, SampEn is
defined as the negative logarithm of the conditional probability that two sequences of length m
from the time series are similar within a r threshold at the next point, excluding self matches [12].
Setting tolerance as r times the standard deviation of the original time series grants robustness
to variations, such as magnification, reduction or shift by a constant [20,24]. Setting the values
of r and m is crucial in the performance of SampEn. However, there are no absolute guidelines
to optimize these variables [24]. It has been found that excessively low r values may cause the
calculation to fail, while excessively high values may introduce some bias [24,33]. Previous
SampEn studies obtained good statistical reproducibility setting m = 1 and r = 0.25 for sequences
larger than 100 points [24,33]. For this reason, the maximum scale factor was established to τMAX
= 25, implying a minimum length of 100 samples for any coarse-grained time series.

This measure allows estimating EEG irregularity in the time domain (SampEn for scale 1, but also
for other scale factors) as well as complexity. Different approaches have been proposed for the
complexity estimation from MSE profiles, such as slope values [24] and areas under the curve [34,35].
In this study, both average slope values and areas under MSE curves were used to estimate EEG
complexity. These parameters were calculated for the whole scales range as well as for low and high
scale factors. In MSE, low scales were considered scale factors from 1 to 10, and high scales were
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considered scale factors from 11 to 25. This division was established because control group tend to
decrease at this particular scale.

3.2. Refined Multiscale Spectral Entropy

In this study, we applied rMSSE to complement the information provided by MSE calculations.
Humeau-Heurtier et al. [28] proposed to evaluate cardiovascular data on different time scales by means
of rMSSE. This refined version of the MSSE method enhances the robustness against aliasing and,
hence, spurious oscillations between 0 Hz and the filter cutoff frequency due to downsampling [36].
rMSSE is built from the multiscale application of the SpecEn. SpecEn is a measurement of irregularity
of a signal according to its PSD. Powell and Percival defined the term, which provides a measure of
the distribution of the frequency components [10]. Analogously with MSE, SpecEn was applied to
each coarse-grained series previously calculated. The rMSSE algorithm is computed as follows [28]:

1. Given a one-dimensional discrete time series, [x1, ..., xi, ..., xN], a coarse-grained process is applied
using the method described in Equation (1).

2. The PSD of the coarse-grained time series Yτ is calculated. The PSD consists of the distribution of
power into frequency components. In this work, the PSD was obtained by calculating the fast
Fourier transform (FFT) of the autocorrelation function of the EEG data. For each scale factor τ,
the normalized PSD (nPSD) of the coarse-grained time series is computed as nPSDτ( f j), where
1 ≤ j ≤ N

2τ , being N
2τ the length of the power spectrum of Yτ . The value of τMAX for the rMSSE

study was established to 25 to maintain consistency with the MSE analysis. The nPSD is evaluated
as follows:

nPSDτ( f j) =
PSDτ( f j)

∑
N/(2τ)
j=1 PSDτ( f j)

. (2)

3. Then, the normalized rMSSE is calculated as the Shannon entropy of the PSD:

rMSSEτ = − 1
ln( N

2τ )

N/(2τ)

∑
j=1

nPSDτ( f j)ln[nPSDτ( f j)]. (3)

The resulting rMSSE values are within the range between 0 and 1, assuming the lowest value
according to a signal with a unique frequency component (i.e., a sinusoidal signal), and the
highest value corresponding to a signal with an equally distributed power in all frequencies (i.e.,
white noise).

Analogously with MSE analysis, rMSSE slope values and areas under the rMSSE curves were
calculated to assess complexity attending to EEG frequency alterations. In this case, we considered
scale factors from 1 to 3 as low scales, due to the particular shape that all groups show for the
aforementioned scales, while scale factors from 4 to 25 were considered as high scales.

3.3. Statistical and Classification Analyses

To study normality and homoscedasticity of the data, Kolmogorov-Smirnov and Shapiro–Wilk
tests were applied. As our results did not meet parametric assumptions, the evaluation of statistical
differences among the five groups was performed by Kruskal–Wallis test, while the evaluation of
statistical differences between pairs of groups along AD continuum was performed by Mann–Whitney
U-test. A false discovery rate (FDR) correction was applied to comparisons between multiple classes to
avoid falsely rejected hypotheses [37].

Additionally, a classification procedure was performed to study the discriminant capability of
MSE and rMSSE. The 62 classification features were the averaged MSE and rMSSE values at each scale
factor, averaged slope values of MSE and rMSSE for all, low and high scales, and areas under MSE
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and rMSSE curves for all, low and high scale factors. Firstly, a stepwise multilinear regression (SMR)
with a conditional forward selection approach was employed to select the most optimal features for
classification. The feature selection process was carried out making use of a leave-one-out (LOO) cross
validation (CV) scheme to avoid bias in the results [38]. Afterwards, a quadratic discriminant analysis
(QDA) was used. QDA has advantages over linear discriminant analysis (LDA). While LDA assumes
data homocedasticity and normality to model each class-conditional density function for an input
feature, QDA does not [39]. QDA classifies each class obeying quadratic decision boundaries between
classes, while LDA discriminates by a linear decision threshold, thus minimizing misclassification [39].

4. Results

4.1. Irregularity Analyses

MSE and rMSSE were calculated for 51 control subjects, 51 MCI subjects, 51 ADMIL patients,
50 ADMOD patients, and 50 ADSEV patients. Figures 1 and 2 illustrate the grand-average of MSE
and rMSSE values along all temporal scales for each group. FDR-corrected Kruskal–Wallis test was
calculated to ascertain statistical differentiation among groups, obtaining p-values lower than 0.05 for
all temporal scales with both measures. MSE figure exhibited an increasing tendency for each group at
low temporal scales, while rMSSE adopted the same trend for scale factors τ ≥ 3. Groups associated
with healthier cognitive states tend to stabilize or even decrease at higher temporal scales. For scales
4–8 for MSE, and scales 2–7 for rMSSE, groups appear sorted by AD stages.

FDR-corrected Mann–Whitney U-tests were computed between all consecutive stages of AD to
categorize the disease progression. The results are indicated on the top of Figures 1 and 2 . Several
observations from the statistical analyses were noticed. Firstly, MSE revealed significant differences
between controls and MCI (p-values < 0.05, FDR-corrected Mann–Whitney U-test) for scale factors 1, 2,
3 and from 13 to 25, while rMSSE showed statistically significant differences for scale factors 19–25.
Secondly, only MSE can detect the alterations for MCI vs. ADMIL comparison (scale factors 6–17).
Thirdly, neither MSE nor rMSSE reported significant differences for ADMIL vs. ADMOD comparison.
Finally, ADMOD and ADSEV showed differentiation for scale factors from 5 to 22 for MSE and higher
than 2 for rMSSE.

Figure 1. Averaged MSE profiles for each group. On the top of the figure, statistically significant
p-values are displayed for each scale factor and for each comparison between pairs of consecutive
groups (∗: p-value < 0.05, †: p-value < 0.01, FDR-corrected Mann–Whitney U-test).
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Figure 2. Averaged rMSSE profiles for each group. On the top of the figure, statistically significant
p-values are displayed for each scale factor and for each comparison between pairs of consecutive
groups (∗: p-value < 0.05, †: p-value < 0.01, FDR-corrected Mann–Whitney U-test).

4.2. Complexity Analyses

To quantify EEG complexity, averaged slope values and areas under the MSE and rMSSE curves
were calculated. Figures 3 and 4 display the distribution of these parameters for all the scale factors
and also for low and high scales. Complexity parameters derived from MSE profiles (Figure 3),
revealed statistically significant differences mainly for controls vs. MCI, MCI vs. ADMIL and ADMOD

vs. ADSEV comparisons, but also for ADMIL vs. ADMOD when the slope values for high scales were
analyzed. On the other hand, areas under rMSSE curves detected significant differences between AD
patients at moderate stage and patients at severe stage (see Figure 4a–c). Finally, statistically significant
differences were reported between controls and MCI subjects for the slope values of rMSSE curves (see
Figure 4d–f).

4.3. Classification Analysis

A classification analysis was carried out in order to assess whether MSE and rMSSE values
could discriminate between groups at different stages of AD. Throughout this process, 253 SMR
LOO-CV iterations were performed, excluding a different subject from the training set in each fold.
Afterwards, the subject left out was classified with the predictor built with the data from the other
subjects [40]. Subsequently, the remaining subjects were classified according to the features previously
selected. Feature selection results exhibit five features that were predominantly selected throughout
the CV process: scale factors 12 and 24 of MSE, averaged MSE slopes at high temporal scales, scale
factor 2 of rMSSE, and averaged rMSSE slopes at high temporal scales. The classifier employed in
this study was QDA. Table 2 shows the confusion matrix corresponding to the classification results
(Cohen–Kappa, CK = 0.254). Additional classification computations were carried out with MSE features
and rMSSE features separately; however, the combination of both approaches outperformed either of
them individually (CK = 0.219 for MSE, CK = 0.200 for rMSSE).
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The AD groups were classified against subjects which did not suffer from AD with an accuracy of
69.7% (sensibility = 0.818, specificity = 0.585). In addition, classification of the control group vs. AD
group, excluding MCI subjects, was performed obtaining an accuracy of 79.1% (sensibility = 0.888,
specificity = 0.523). It is worth mentioning that, if the classifier predicts a subject as an ADMIL, ADMOD

or an ADSEV patient, the subject suffers, at least, from MCI with roughly a 90% chance.

Table 2. Confusion matrix obtained from the QDA classification.

True Class
Est. Class Controls MCI Subjects ADMIL Patients ADMOD Patients ADSEV Patients

Controls 22 16 6 4 3
MCI subjects 14 27 2 7 1
ADMIL patients 12 14 4 10 11
ADMOD patients 4 13 3 15 15
ADSEV patients 4 1 1 10 34

Figure 3. Distribution of complexity parameters: (a) area under the whole MSE curve; (b) area under
the MSE curve for scale factors from 1 to 10; (c) area under the MSE curve for scale factors from 11 to
25; (d) average slope values of MSE curve; (e) average slope values of MSE curve for scale factors from
1 to 10; and (f) average slope values of MSE curve for scale factors from 11 to 25. Significant differences
along AD continuum are indicated (∗: p-value < 0.05, †: p-value < 0.01, FDR-corrected Mann–Whitney
U-test).
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Figure 4. Distribution of complexity parameters: (a) area under the whole rMSSE curve; (b) area under
the rMSSE curve for scale factors from 1 to 3; (c) area under the rMSSE curve for scale factors from 4 to
25; (d) average slope values of rMSSE curve; (e) average slope values of rMSSE curve for scale factors
from 1 to 3; and (f) average slope values of rMSSE curve for scale factors from 4 to 25. Significant
differences along AD continuum are indicated (∗: p-value < 0.05, †: p-value < 0.01, FDR-corrected
Mann–Whitney U-test).

5. Discussion

EEG background activity was analyzed from 51 control subjects, 51 MCI subjects, 51 ADMIL

patients, 50 ADMOD patients, and 50 ADSEV patients by means of MSE and rMSSE. Our main goal
was to characterize the progression of AD through irregularity and complexity assessment. For this
purpose, multiscale entropy analyses were applied to the EEG data.

5.1. Multiscale Entropies for Irregularity Estimation

MSE and rMSSE results at scale 1 (i.e., conventional definitions of SampEn and SpecEn) show
a decrease of irregularity in AD patients comparing with control subjects as it can be observed in
Figures 1 and 2. Previously, entropy measures have been used in EEG irregularity evaluation, being the
lowest entropy values associated to patients with dementia [17,18,41]. The decreased irregularity
in AD patients might be due to widespread neuronal death, alongside with deficit in synapses
efficiency due to both neurotransmitter synthesis alterations and lack of connectivity of the local neural
networks [19,42,43]. Inactivation of brain tissue due to these effects may be linked to cognitive decline,
however, the exact physiological reasons are not clearly known [19].

Entropy values at other temporal scales were also assessed, obtaining remarkable similarities
between MSE and rMSSE. For instance, both measures showed lack of statistical difference of EEG
average entropy between ADMIL and ADMOD subjects. Furthermore, ADMOD vs. ADSEV groups
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comparison reported the highest discrimination among all temporal scales. Remarkably, control
and MCI groups exhibited statistical differences in both measures at the highest temporal scales.
This distinction is particularly interesting, since it may be useful to detect early symptoms of the AD
and, thus, allow early and more effective therapies. Our results show a weak separation between study
groups at scale 1, widening at larger temporal scales. This observation agrees with other research on
the field [44–46]. MSE and rMSSE curves also revealed that the five study groups appeared sorted by
the degree of severity for some scale factors. This supports the idea of certain temporal scales being
better than others for distinguishing groups, which can only be studied by multiscale methods.

5.2. Multiscale Entropies for Complexity Estimation

Two measures derived from MSE and rMSSE profiles may be used to estimate the EEG
complexity: averaged slope values and areas under MSE and rMSSE curves. In previous research,
slope values [24] and areas under MSE curves were used to elucidate the complexity of the EEG [34,35].
In the current study, averaged slope values at high scales tend to increase with the severity of
the disease. The opposite tendency was observed at low scales. Previous research aimed to the
differentiation between AD patients and healthy controls replicated similar cross-over patterns as
temporal scale increases [23,24,44]. For instance, Escudero et al. [24] obtained similar dynamics along
all temporal scales comparing AD patients and healthy controls, showing a relation between healthy
neurophysiology and low entropy values at high temporal scales. Moreover, Labate et al. [47] studied
the relation between multiscale permutation and sample entropy, obtaining similar entropy trends
with the scale factor and the progression of the disease. Accordingly with this issue, Mizuno et al. [44]
stated that AD may not only be characterized by decreased irregularity in EEG signals, but also by an
entropy increase at higher temporal scales. Besides, they indicate the importance of these increments
for being pathophysiologically meaningful, because of the correlation with measures of cognitive
impairment [44]. This statement agrees with our results, showing a relation between slope values at
higher scale calculations and severity of the disease. Changes in long-range neuronal dynamics may
be due to disturbances in brain structural pathways, interpreted as abnormal interactions between
neuronal systems.

In addition, areas under MSE and rMSSE apparently contain information about cognitive decline.
Given two signals, Costa et al. [20] suggested that, if one of them exhibits higher values in most
of the time scales, this signal is more complex than the other. However, there is no consensus on
the quantitative definition of complexity [20]. Previous research has been aimed to assess EEG
complexity by the calculation of areas under MSE curves [34,35]. For this reason, we employed this
parameter as an estimator of the term. Therefore, time-series associated with higher areas under
MSE and rMSSE curves were considered more complex. Indeed, area values in this study were
directly related with the severity of the disease, observing the lowest values on the ADSEV group.
Exceptionally, MCI group showed the highest values in both measures when all temporal scales were
analyzed. This observation supports that the EEG signals from MCI subjects show the highest degree
of resting-state complexity against other subjects. These changes in MCI subjects may be related to an
augmented complexity to compensate functional deficits. Evidence of the brain plasticity capabilities
attempting to compensate early neurodegeneration in pre-clinical AD patients, even before symptoms
begin to emerge, has been previously reported [48]. Jeong [19] remarked complexity decrements
in non-linear analyses as evidence that AD patients are less capable of processing information than
healthy controls and, hence, as clinical signs of dementia. Therefore, our results can be considered as
indicators of neurodegeneration.

5.3. Multiscale Entropies for Classification Purposes

The QDA model combining features from both entropy measures achieved higher classification
performance than QDA models considering MSE or rMSSE entropy values separately. This point
suggests that spectral analysis may provide complementary information to non-linear measures.
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Regarding with feature selection, a variety of scale factors different than 1 were chosen to build the
models. This point implies that multiscale calculations provide data more suitable to categorize
classes. Moreover, complexity parameters were also selected, denoting significance in the development
of the AD. Previously, other studies were carried out to address AD classification. For instance,
Escudero et al. [24] achieved an accuracy of 77.27% discriminating AD patients from control subjects
using EEG data from channels P3, P4, O1 and O2 in their MSE study. Fan et al. [23] also calculated
their classifier performance using MSE features across 20 temporal scales, obtaining a test accuracy
of around 80% with regularized learning methods. Studies aimed at categorizing AD subjects by
means of single-scale entropy methods have been also carried out. For instance, Ruiz-Gomez et al. [31]
evaluated the discrimination ability of Cross-SampEn from EEG data to categorize controls, MCI
subjects and AD patients, obtaining an accuracy of 82.4% in controls vs. AD patients comparison.
However, it is important to note that these results come from different databases and, thus, should be
interpreted cautiously. AD classification in this study reached a value of 69.7%. An essential aspect
of this contribution is the analysis of EEG dynamics among five different classes. This feature is a
grade of novelty worth to be considered, since little research has been done assessing AD progression.
This is crucial to take into account when evaluating the classification results. It is obvious that the
higher is the number of classification groups, the lower is the performance of the classifier. Although
our accuracy results are not superior to other studies, its tradeoff for the study of the continuity of the
disease is justified. Besides, our classification method showed a 90% chance for a classified AD patient
to suffer from MCI or AD. This classification could lead to an AD estimator with high sensibility that
may be useful to diagnose the disease.

5.4. Limitations

Even though multiscale entropy analyses allow to categorize distinction of neural dynamics of
subjects in different AD stages, including its prodromal form, several issues must be taken into account
in future studies. Firstly, although we worked on a quite large database, consisting in 253 subjects,
significance of the outcomes in a five-group classification could be improved enlarging the sample
size. Secondly, a longitudinal study of MCI subjects may be of interest, in order to verify those who
progress to AD. This practice would allow gaining new insights on the mechanisms that lead to each
type of dementia. Finally, this study is heavily gender unbalanced (177 females against 76 males).
This issue might be due to the higher longevity associated with women. Living longer than men
and outlasting other death causes, such as infectious diseases, might affect the likelihood to develop
dementia eventually, so this phenomenon seems a natural genetic consequence of gender. Additionally,
previous work suggested that other physiological gender-dependent causes may lead to higher AD
prevalence in women [49].

6. Conclusions

This study investigated MSE and rMSSE from EEG signals in MCI and AD patients at 25 temporal
scales. Our results suggest that multiscale application of entropy measures can be useful to characterize
the underlying effects of neurodegeneration along the AD continuum. Findings provided by this
research suggest a high correlation between severity of the AD and parameters of the global analyses
in MSE and rMSSE (i.e., averaged slopes and areas under the curves). We can conclude that both
entropy analyses are able to identify AD progression. Despite this relationship between MSE and
rMSSE, classification performance achieved higher values by combining both measures. This point
supports the idea that spectral analyses combined with non-linear analyses may expose underlying
components generally hidden. In summary, our results reveal that the disease progression is more
evident when it is analyzed from a multiscale approach.
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rMSSE Refined Multiscale Spectral Entropy
SampEn Sample Entropy
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SMR Stepwise Multilinear Regression
SpecEn Spectral Entropy
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