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Abstract 
The aim of this study was to analyse the electroencephalogram (EEG) background 
activity of Alzheimer’s disease (AD) patients using the Multiscale Entropy (MSE). The 
MSE is a recently developed method that quantifies the regularity of a signal on 
different time scales. These time scales are inspected by means of several coarse-
grained sequences formed from the analysed signals. We recorded the EEGs from 19 
scalp electrodes in 11 AD patients and 11 age-matched controls and estimated the MSE 
profile for each epoch of the EEG recordings. The shape of the MSE profiles reveals the 
EEG complexity, and it suggests that the EEG contains information in deeper scales 
than the smallest one. Moreover, the results showed that the EEG background activity is 
less complex in AD patients than control subjects. We found significant differences 
between both subject groups at electrodes F3, F7, Fp1, Fp2, T5, T6, P3, P4, O1 and O2 
(p-value < 0.01, Student’s t-test). These findings indicate that the EEG complexity 
analysis performed on deeper time scales by the MSE may be a useful tool in order to 
increase our knowledge of AD. 
 
Keywords: Alzheimer’s disease, electroencephalogram, multiscale entropy, complexity, 
time scales 
 
PACS number(s): 05.45.Tp, 87.19.La, 87.80.Tq 

1. Introduction 

Alzheimer’s disease (AD) is the most frequent cause of dementia in western countries (Bird 
2001): approximately 50-60% of patients with dementia over 65 years are clinically related with 
AD and the number of patients is expected to increase continuously (Lahiri et al 2002). 

AD is characterized by generalized neuronal cell loss, neurofibrillary tangles inside the 
cells and senile plaques among the neurons in different brain regions. Reduced brain weight, 
cortical atrophy and ventricular enlargement are also important deficiencies in the brain of AD 
patients. All these neuropathologies cause progressive cognitive and intellectual deficits and 
behaviour disturbance (Bird 2001). 

AD can only be diagnosed without any probability of error by necropsy, but a differential 
diagnosis with other types of dementia and major depression is usually attempted. Mental status 
test, such as the Folstein’s Mini Mental State Examination (MMSE) (Folstein et al 1975), are 
frequently used in order to help to determine the severity of the dementia, and methods of 
medical imaging, such as magnetic resonance imaging or computed tomography, can also be 
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useful in diagnosis in medium stages of the AD. In order to complete the diagnosis, the use of 
the EEG as a diagnostic tool for AD and other kinds of dementia has been researched for several 
decades (Jeong 2004). Simple conventional visual analysis of the EEG in AD patients has 
demonstrated a slowing of the dominant posterior rhythm, an increase in diffuse slow activity, a 
reduction in beta and alpha activities and a decreased coherence among cortical areas (Jeong 
2004). However, in the early stages of AD the frequencies of the EEG may look normal 
(Markand 1990). On the other hand, computerized EEG spectral analysis has also shown a 
decrease in the mean frequency and an increase in delta and theta bands power with a 
simultaneous decrease in alpha and beta power in AD patients (Jeong 2004). In general, the 
severity of the cognitive impairments and the degree of the EEG abnormalities are correlated 
(Jeong 2004). 

Until the introduction of new analysis methods derived from non-linear dynamics, the 
only tools which were available to analyse EEG signals were the linear techniques based on 
coherence and spectral calculations (Jeong 2004). Nevertheless, the ability of the brain to 
perform sophisticated cognitive tasks supports the hypothesis that the brain may not be 
completely stochastic (Zhang et al 2001). Furthermore, the neurons are governed by non-linear 
phenomena, like the threshold and saturation processes, so the behaviour of the brain can be 
classified as non-linear. Based on these hypotheses, the non-linear dynamical techniques may 
provide more suitable methods than the traditionally used linear tools to understand and 
characterize pathologic brain states by means of the EEG activity examination. 

The first non-linear analysis techniques applied to EEGs were the correlation dimension 
(D2) (Grassberger and Procaccia 1983a) and the first Lyapunov exponent (L1) (Wolf et al 1985). 
D2 quantifies the number of independent variables which are necessary to describe the dynamic 
of the system, so higher D2 values have been related to more complex systems. Several studies 
have proven that D2 can provide potentially useful diagnostic information from mental diseases 
using both time time-delay (Babloyantz and Destexhe 1988, Besthorn et al 1995, Hornero et al 
1999, Jeong et al 1998) and spatial embedding (Stam et al 1995) methods to reconstruct the 
attractor. In AD, the widespread loss of synapses and neurons may produce lower D2 values, as 
several studies have proven (Jelles et al 1999, Jeong et al 1998, 2001a, Stam et al 1995). 
Whereas D2 provides a static characterization of the system, L1 is a relatively dynamic measure, 
since it describes the divergence of trajectories that start at similar initial states (Wolf et al 
1985). L1 is usually interpreted as a measure of the flexibility of the system to reach different 
states from almost identical initial states. A few studies (Jeong et al 1998, Stam et al 1995) have 
also revealed the potential usefulness of L1 in the diagnosis of AD. 

Nevertheless, the application of both D2 and L1 on physiological data has some major 
problems. First, the amount of data required to obtain meaningful results is beyond the length of 
the physiological data that can be collected experimentally (Eckmann and Ruelle 1992). 
Besides, the algorithms used to estimate the D2 require the recordings to be stationary, 
something that is almost impossible when working with biological data (Grassberger and 
Procaccia 1983b). 

Due to these major drawbacks of D2 and L1, it becomes necessary to use other non-linear 
methods to study the EEG background activity. Several of these alternative methods are based 
on the concept of “complexity”. Roughly speaking, complexity is related to “meaningful 
structural richness” (Costa et al 2005). Several studies associate complexity with irregularity or 
with the ability of the systems to create information. For instance, the Approximate Entropy 
(ApEn) (Pincus 1991) quantifies the regularity of a time series by evaluating the appearance of 
repetitive patterns. ApEn has been used on biological data providing potentially useful 
information to diagnose different pathological states (Hornero et al 2005, Pincus 2001). Another 
complexity measure that has been extensively applied to biological data is the Lempel-Ziv (LZ) 
Complexity (Lempel and Ziv 1976). LZ complexity is related to the number of distinct 
substrings and the rate of their recurrence along the analysed signal, with larger values 
corresponding to more “complex” data (Lempel and Ziv 1976). Both ApEn and LZ complexity 
have been already used to analyse EEGs of several brain states (Abásolo et al 2005, 2006b, 
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Ferenets et al 2006, Radhakrishnan and Gangadhar 1998, Zhang et al 2001, Zhang and Roy 
2001). 

On the other hand, for other authors “complexity” has a more restricted meaning. In this 
context, complex systems are neither absolutely regular nor absolutely random (Costa et al 
2005, López-Ruiz et al 1995, Tononi et al 1998). Although measures like ApEn or LZ 
complexity have shown potentially useful results, they return high values when they are applied 
to random data (Hornero et al 2005). Thus, such kind of statistics would be not strictly 
complexity measures, but regularity estimators (Goldberger et al 2002). From this point of view 
a complexity measure should vanish for both completely regular and completely random system 
(Costa et al 2005, López-Ruiz et al 1995, Tononi et al 1994). Estimators of complexity which 
satisfy this requirement were introduced in (Costa et al 2002, López-Ruiz et al 1995, Tononi et 

al 1994). In this paper we adopt this idea of “complexity”. 
A new complexity measure that fulfils the requirement of vanishing for absolutely 

random or regular systems was proposed in Costa et al (2002). This complexity measure is the 
Multiscale Entropy (MSE) (Costa et al 2002, Costa et al 2005). MSE has been proposed to give 
potentially useful information for diagnosis (Costa et al 2005, Ferrario et al 2006) or to analyse 
complex biological systems (Bhattacharya et al 2005). MSE focuses on determining the 
information expressed by the signals on multiple time scales, and it has the advantage of being 
applicable to series of finite length (Costa et al 2005). 

In this pilot study we have examined the EEG background activity in AD patients and 
age-matched control subjects using the MSE. We wanted to test the hypothesis that the MSE 
analysis of EEG background activity might differentiate AD patients from control subjects. 

This paper is organized as follows. In section 2 we explain the selection of patients and 
controls, and how the EEG was recorded and reviewed by a specialist physician to get artefact-
free epochs. The MSE and the statistical analysis carried out are also introduced in this section. 
Section 3 summarizes our results. Finally, in Section 4 we discuss the results previously 
presented and we relate them with other studies of EEG background activity in AD patients with 
non-linear analysis method. We present our conclusions in the last part of this paper. 

2. Materials and Methods 

2.1. Selection of patients and control subjects 

In the current pilot study, the EEG was recorded from 11 AD patients and 11 control subjects. 
The 11 patients − 5 men and 6 women; age = 72.5 ± 8.3 years, mean ± standard deviation (SD) 

− were recruited from Alzheimer’s Patients’ Relatives Association of Valladolid (AFAVA). All 
of them fulfilled the criteria of probable AD. The EEG was registered in the University Hospital 
of Valladolid (Spain) after all the patients had undergone a meticulous clinical evaluation which 
included clinical history, neurological and physical examinations, brain scans and a MMSE in 
order to evaluate their cognitive ability (Folstein et al 1975). Although the mean MMSE score 
for the AD group was 13.1 ± 5.9 points (mean ± SD), indicating that the average degree of the 
disease is moderate, five patients had a MMSE score below 12 points, and therefore their degree 
of dementia is severe. Two subjects were having a lorapezam treatment, which may enhance 
beta activity with therapeutic doses, although no prominent rapid rhythms were observed in the 
visual inspection of these two subjects’ EEG recordings. The other patients did not use any 
medication that could be expected to influence the EEG. 

The 11 age-matched, elderly subjects who made up the control group had not got any past 
or present mental disorder − 7 man and 4 women; 72.8 ± 6.1 years ± SD −. The MMSE score 

values for all of them were 30. 
The local ethics committee approved the study. All control subjects and all caregivers of 

the patients gave their informed consent for participation in the current study. An EEG was 
recorded from all patients and controls. 
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2.2. EEG recording 

The EEG data were recorded from each subject by a Profile Study Room 2.3.411 EEG 
equipment (Oxford Instruments) at electrodes F3, F4, F7, F8, Fp1, Fp2, T3, T4, T5, T6, C3, C4, 
P3, P4, O1, O2, Fz, Cz and Pz of the international 10-20 system. More than 5 minutes of EEG 
data were recorded from each subject. While the recording process was taking place, the 
subjects were asked to remain in a relaxed state, with closed eyes and awake in order to reduce 
the presence of artefacts in the recordings. EEG data were sampled at 256 Hz, with a 12 bits A-
to-D precision. 

The recordings were visually inspected by a specialist physician to select data with 
minimal movement, electromyographic activity or electrooculographic artefacts. Artefact-free 
epochs of 5 s (1280 points) were chosen from the EEG data. Thus, an average number of 30.0 ± 
12.5 artefact-free epochs (mean ± SD) were selected at each electrode for each one of the 
subjects. 

These data were copied to ASCII files for off-line analysis on a personal computer. 
Before the nonlinear analysis, the selected epochs were digitally filtered with a bandpass filter 
with cut-off frequencies at 0.5 Hz and 40 Hz developed with MATLAB®. 

 
2.3. Multiscale Entropy (MSE) 

MSE was introduced as a tool to achieve a quantification of the signal complexity considering 
several time scales (Costa et al 2002). It is based on successive computations of the Sample 
Entropy (SampEn) (Richman and Moorman 2000) estimated on coarse-grained sequences, each 
of which represents the system dynamics on a different time scale. The use of the SampEn has 
important positive aspects: it is independent of the sequence length and the model. Moreover, it 
can be applied to relatively short, noisy data sets (Richman and Moorman 2000). 

Formally, given a one-dimensional discrete time series, {x1, …, xi, …, xN}, first we must 
build successive coarse-grained time series, {Y

(τ)}, corresponding to the scale factor τ. To 
accomplish this task, we divide the original time series into non-overlapping windows of length 
τ, and then we average the values of the data points inside each window. It is possible to 
summarize this process (Costa et al 2005) in the following way: 
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Obviously, the coarse-grained sequence for time scale τ = 1, {Y

(1)}, is simply the original 
time series, and the length of each coarse-grained sequence is τ times shorter than the length of 
the original signal. 

Once those coarse-grained time series are built, we calculate their SampEn, which assigns 
a non-negative value to each coarse-grained sequence. This procedure is called multiscale 
entropy analysis (Costa et al 2005). Briefly, SampEn measures the negative of the logarithmic 
conditional probability that sets of patterns which are closer than a tolerance, r, for m 
contiguous points remain similar at the next point (pattern length m+1), where self-matches are 
not included in calculating the probability. More irregularity in the data produces larger SampEn 
values (Richman and Moorman 2000). The algorithm that computes the SampEn can be found 
in Richman and Moorman (2000), Costa et al (2005) or Abásolo et al (2006a). 

Like ApEn or SampEn, the values of m and r are critical in the performance of MSE, and 
comparisons between time series can only be done with values of m, r and N unchanged (Costa 
et al 2005). However, there are no guidelines to determine the optimum values for m and r. In 
order to avoid a significant contribution of noise in the estimation of SampEn, r must be higher 
than most of the signal noise (Pincus 1991). In addition, if a too narrow tolerance (too small r) 
is used, the estimation of the SampEn might fail. The reason is that runs of m+1 points that 
match continuous patterns of m points may not be found if r is too small and the analysed time 
series is not large. Furthermore, the accuracy and confidence of the SampEn improve as smaller 
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values for m (short templates) and larger values for r (wide tolerance) are used, since the 
number of matches of length m and m+1 increases (Lake et al 2002). However, some problems 
may arise when the matching criteria is too relaxed (Pincus 1991). It is convenient to normalize 
the tolerance by the standard deviation of the original time series (Costa et al 2005). Nikulin and 
Brismar (2004) have recently indicated that the MSE profiles are sensitive to both variance and 
entropy because the effective filter, r, is fixed but not normalized for the estimation of the 
SampEn on larger time scales. However, the entropy of a sequence depends on both its variance 
and correlation properties (Costa et al 2004), and there is no straightforward relationship 
between variance and entropy for non-trivial signals (Costa et al 2005). Hence, the value of the r 
parameter should not be normalized again in larger time scales because the changes of the 
variance of the coarse-grained sequences have information about the whole original signal 
(Costa et al 2005). 

In this study we have chosen m = 1 and r = 0.25 times the standard deviation of the 
original time series. This set of parameters has been used in a previous study of EEG 
background activity in AD patients using SampEn (Abásolo et al 2006a). The maximum 
analysed time scale was τMAX = 12. In such a way, the shortest coarse-grained sequence built has 
more than 100 points. Our selection of the m and r parameters is able to produce good statistical 
reproducibility when the length of the analysed series is larger than 100 points, as the coarse-
grained sequences we are considering (Lake et al 2002). 

Owing to the non-linear character of the EEG signals and several studies related with AD 
and non-linear dynamics (Abásolo et al 2005, 2006a, b, Jelles et al 1999, Jeong et al 1998, 
2001a, Pritchard et al 1994, Stam et al 1995), we hope that MSE could be used as a tool to 
discover differences in the background EEG activity of patients of AD against control subjects. 
In order to obtain information from the deeper time scales not yet explored, we represent the 
SampEn values versus the time scale (Costa et al 2005). 

Is this pilot study the calculations of MSE from the EEG signals were carried out with a 
software developed with MATLAB®. 

 
2.4. Statistical analysis 

Student’s t-test was used to evaluate the statistical differences between the MSE of AD patients 
and control subjects. If the p-value was lower than 0.01, the differences were considered 
significant. In addition, correlations between AD patients’ MMSE scores and the parameters 
that provided significant differences between both groups were computed with Pearson’s 
correlation coefficient (ρ). We also calculated the corresponding p-values for testing the 
hypothesis of no correlation against the alternative that there is a non-zero correlation. The 
correlation was considered significant when the p-value was below 0.01. 

Moreover, we used Receiver Operating Characteristic (ROC) curves (Zweig and 
Campbell 1993) to evaluate the ability of the MSE in discriminating AD patients from control 
subjects at the electrodes where p-value < 0.01. ROC curves are obtained by plotting the 
sensitivity values (the proportion of patients with a diagnosis of AD who test positive, i.e. the 
true positive rate) on the y axis against their equivalent {1-specificity} values (specificity 
represents the percentage of controls correctly recognized, i.e. the true negative rate) for all the 
possible set of cut-off points. We used a computer program developed with MATLAB® that 
automatically selected different cut-off points and calculated the sensitivity/specificity pair for 
each one of them. Accuracy is a related parameter that quantifies the total number of subjects 
(AD patients and control subjects) precisely classified. The optimum threshold is the cut-off 
point in which the highest accuracy (minimal false negative and false positive results) is 
obtained. It can be determined from the ROC curve as the closest value to the left top corner 
(100% sensitivity, 100% specificity). 

3. Results 
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The MSE algorithm was applied for channels F3, F4, F7, F8, Fp1, Fp2, T3, T4, T5, T6, C3, C4, 
P3, P4, O1 and O2 with m = 1 and r = 0.25 times the standard deviation of the original time 
series. These results were averaged based on all the artefact-free 5 s epochs within the 5-min 
period of EEG recordings. 

We performed a visual inspection of the obtained MSE profiles representing the SampEn 
values of each coarse-grained sequence versus the scale. We could see that these MSE profiles 
were characterized by a steep slope on the smaller time scales. Next, the slope decreased and the 
SampEn values were approximately constant on the larger time scales. Thus, it is possible to 
divide the MSE profiles into two parts: the first one corresponds to the steep increasing slope, 
whereas the second part contains the time scales where the slope of the SampEn values is much 
smoother. In order to characterize every MSE profile and hence, every EEG recording: 

a) We estimated the slope of the MSE profile for 1 ≤ τ ≤ 5 (t ≤ 20 ms). It shows how the 
EEG complexity evolves for small time scales. 

b) Similarly, the slope of the MSE profile for 6 ≤ τ ≤ 12 (t ≥ 23 ms) was calculated. It 
provides information about the increase or decrease of the MSE profile for large time 
scales. 

Both slopes were estimated by means of the least square method. 
We computed the average slope values of the MSE profiles for small time scales and 

calculated the p-values of the Student’s t-test to determine whether there exist significant 
differences between both groups. Table 1 summarizes the results (Mean ± SD) and the p-values. 
No significant differences were found (p-value > 0.01). 

 
Table 1. Average slope values of the MSE profiles for small time scales (τ ≤ 5) of the EEGs for both 

groups for all channels with m = 1 and r = 0.25 times the standard deviation of the original data sequence. 

Electrode 
AD patients 
(Mean ± SD) 

Control subjects 
(Mean ± SD) 

Statistical 
analysis 
p-value 

F3 0.1971 ± 0.0361 0.1841 ± 0.0325 0.3843 
F4 0.2017 ± 0.0268 0.1841 ± 0.0238 0.1197 
F7 0.1789 ± 0.0407 0.1849 ± 0.0309 0.7049 
F8 0.1821 ± 0.0379 0.1810 ± 0.0315 0.9410 

Fp1 0.1684 ± 0.0437 0.1805 ± 0.0308 0.4613 
Fp2 0.1812 ± 0.0281 0.1794 ± 0.0291 0.8867 
T3 0.1623 ± 0.0479 0.1644 ± 0.0369 0.9062 
T4 0.1499 ± 0.0617 0.1688 ± 0.0332 0.3822 
T5 0.2062 ± 0.0220 0.1950 ± 0.0379 0.4048 
T6 0.2035 ± 0.0294 0.1945 ± 0.0353 0.5226 
C3 0.1956 ± 0.0353 0.1911 ± 0.0304 0.7494 
C4 0.1927 ± 0.0428 0.1936 ± 0.0328 0.9542 
P3 0.2181 ± 0.0193 0.2094 ± 0.0318 0.4458 
P4 0.2236 ± 0.0179 0.2115 ± 0.0378 0.3508 
O1 0.2060 ± 0.0288 0.1907 ± 0.0435 0.3434 
O2 0.2083 ± 0.0278 0.1888 ± 0.0422 0.2172 

 
There were important differences between the MSE profiles of control subjects and AD 

patients. First, whereas the irregularity of the coarse-grained time series decreased on the larger 
time scales in the control group, the coarse-grained sequences of the AD patients were usually 
slightly more irregular as we analyse larger time scales. Therefore, the maximum SampEn value 
was usually reached on smaller time scales in the control subjects than in AD patients. 
Furthermore, the SampEn values were higher for control subjects than for AD patients, apart 
from the largest time scales, suggesting that the control subjects have a more complex EEG 
background activity than the AD patients (Costa et al 2005). The averaged MSE profiles for the 
control subjects and AD patients for all electrodes are shown in figure 1. 
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Figure 1. MSE analysis of the 11 control subjects (full curve) and the 11 AD patients (dotted curve) with 
m = 1 and r = 0.25 times the standard deviation of the original data sequence. Sixteen electrodes of the 

international 10-20 system were analysed. (a) F3. (b) F4. (c) F7. (d) F8. (e) Fp1. (f) Fp2. (g) T3. (h) T4. (i) 
T5. (j) T6. (k) C3. (l) C4. (m) P3. (n) P4. (o) O1. (p) O2. 
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Table 2 summarizes the average slopes (Mean ± SD) of the MSE profiles for AD patients 

and control subjects for large time scales (τ ≥ 6), along with the p-values of the Student’s t-test. 
Whereas this slope decreases at all electrodes for the control subjects, the AD patients have an 
increasing slope at all electrodes except for T3, T4, C3 and C4. At ten electrodes significant 
differences between both groups have been found: F3, F7, Fp1, Fp2, T5, T6, P3, P4, O1 and O2 
(p-values < 0.01). 
 

Table 2. Average slope values of the MSE profiles for large time scales (τ ≥ 6) of the EEGs for both 
groups for all channels with m = 1 and r = 0.25 times the standard deviation of the original data sequence. 

Significant group differences are marked with an asterisk. 

Electrode 
AD patients 
(Mean ± SD) 

Control subjects 
(Mean ± SD) 

Statistical 
analysis 
p-value 

   F3*  0.0056 ± 0.0141 -0.0159 ± 0.0159 0.0032 
   F4  0.0021 ± 0.0144 -0.0152 ± 0.0162 0.0156 
   F7*  0.0067 ± 0.0116 -0.0135 ± 0.0184 0.0061 
   F8  0.0004 ± 0.0199 -0.0152 ± 0.0117 0.0359 
   Fp1*  0.0065 ± 0.0097 -0.0158 ± 0.0135 0.0002 
   Fp2*  0.0098 ± 0.0101 -0.0135 ± 0.0174 0.0010 
   T3 -0.0089 ± 0.0251 -0.0273 ± 0.0254 0.1018 
   T4 -0.0139 ± 0.0342 -0.0297 ± 0.0175 0.1888 
   T5*  0.0092 ± 0.0202 -0.0260 ± 0.0186 0.0004 
   T6*  0.0061 ± 0.0208 -0.0234 ± 0.0166 0.0015 
   C3 -0.0067 ± 0.0173 -0.0237 ± 0.0213 0.0532 
   C4 -0.0092 ± 0.0218 -0.0275 ± 0.0221 0.0652 
   P3*  0.0089 ± 0.0206 -0.0259 ± 0.0185 0.0005 
   P4*  0.0043 ± 0.0245 -0.0299 ± 0.0194 0.0017 
   O1*  0.0061 ± 0.0206 -0.0309 ± 0.0157 0.0001 
   O2*  0.0055 ± 0.0230 -0.0289 ± 0.0189 0.0010 

 
Moreover, we assessed whether the severity of the dementia was correlated with the 

changes in the average slope values of the MSE profiles for large time scales at the electrodes 
which provided significant differences between both subjects groups. Thus, we computed the ρ 
values between the AD patients’ MMSE scores and their average slope values for τ ≥ 6 at 
electrodes F3, F7, Fp1, Fp2, T5, T6, P3, P4, O1 and O2. The results showed that none of the 
correlations was significant (p-values > 0.01). 

Finally, we evaluated the ability of the slope for large time scales to discriminate AD 
patients from control subjects at the electrodes in which significant differences were found 
using ROC plots. Figure 2 depicts the corresponding ROC curves. These curves allowed us to 
determine the optimum threshold (value of the slope for the largest time scales) to classify 
subjects from both groups. According to these optimum thresholds, the minimum accuracy of 
the diagnostic test was obtained at electrode F7 (77.27%), while the maximum value was 
reached at Fp1 (90.91%). The highest sensitivity was reached at Fp2 (100%; i.e. all AD patients 
were correctly classified), although with a small specificity (72.73%). On the other hand, the 
highest specificity was reached at electrodes Fp1, P3, P4 and O1 (90.91%). Another interesting 
parameter that can be obtained from ROC plots is the area under the curve. The value for the 
area under the ROC curve can be interpreted as follows: an area of 0.9174 (electrode O1, for 
example) means that a randomly selected individual from the control subjects’ group has a slope 
value smaller than that of a randomly chosen individual from the AD patients’ group in 91.74% 
of the time (Zweig and Campbell 1993). In general, the larger the area under the curve, the 
better the diagnostic test. The largest area under the curve was obtained at Fp1 (0.9339), which 
is the electrode where the highest accuracy was obtained. Table 3 summarizes these results. 
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Figure 2. ROC curves for the average slope values of the MSE profiles for large time scales (τ ≥ 6) with m 
= 1 and r = 0.25 times the standard deviation of the original data sequence at the electrodes in which p-

value < 0.01. (a) F3. (b) F7. (c) Fp1. (d) Fp2. (e) T5. (f) T6. (g) P3. (h) P4. (i) O1. (j) O2. 
 

Table 3. Test results for the slope of the MSE profiles (τ ≥ 6) on the channels in which the differences 
between both groups were significant. The optimum threshold to discriminate AD patients and control 

subjects is included. 

Electrode Threshold 
Sensitivity 

(%) 
Specificity 

(%) 
Accuracy 

(%) 

Area under 
the ROC 

curve 
F3 -0.0037 81.82 81.82 81.82 0.8430 
F7 -0.0020 81.82 72.73 77.27 0.8347 

Fp1 -0.0026 90.91 90.91 90.91 0.9339 
Fp2 -0.0113 100 72.73 86.36 0.8512 
T5 -0.0167 90.91 81.82 86.36 0.9174 
T6 -0.0155 81.82 81.82 81.82 0.9008 
P3 -0.0119 81.82 90.91 86.36 0.9174 
P4 -0.0097 72.73 90.91 81.82 0.8512 
O1 -0.0116 81.82 90.91 86.36 0.9174 
O2 -0.0079 81.82 81.82 81.82 0.8760 
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4. Discussion and Conclusions 

In this pilot study, we have studied the EEG background activity of 11 AD patients and 11 age-
matched, elderly control subjects by means of the MSE, which assesses the signal complexity 
estimating the regularity of coarse-grained sequences on different time scales. The MSE is a 
suitable method to analyse physiological signals, since it can be applied to relatively short, 
noisy time series, irrespective of whether their origin is stochastic or deterministic (Costa et al 
2005). The MSE curves can be used to compare qualitatively the signal complexity of different 
time series (Costa et al 2005). Particularly, a monotonic decrease of the SampEn values with τ 
indicates that the analysed signal is a completely independent random sequence, since it 
contains information only on the smallest time scale (Costa et al 2005). In contrast to this 
relatively simple MSE profile that characterizes randomness, the EEG MSE curves can be 
divided into two different parts. The first one corresponds to the small time scales, and it is 
characterized by a steep increasing slope. On the other hand, in the second part of the MSE 
profiles the slope is much smoother, and it can be either increasing or decreasing. Thus, the 
EEG MSE profiles suggest that the EEG do not have a completely stochastic origin (Costa et al 
2005). Moreover, the MSE analysis revealed the EEG complex structure and showed the 
presence of long-range correlations (Costa et al 2005), which have been associated with 
complex physiological systems (Goldberger et al 2002). 

The MSE analysis reveals that the AD patients usually have lower SampEn values on the 
small and medium time scales at most electrodes of the 10-20 system. If most scales present 
higher SampEn values for one signal than for another, the former is considered more complex 
than the latter (Costa et al 2005). Therefore, we can infer that brain activity is less complex in 
AD patients than in control subjects. This result agrees with other studies that revealed less 
complexity (Besthorn et al 1995, Jelles et al 1999, Jeong et al 1998, 2001a, Pritchard et al 1994, 
Stam et al 1995) or less irregularity (Abásolo et al 2005, 2006a, b) in the EEG recordings of AD 
patients than in control subjects. For instance, Besthorn et al (1995) found significant lower D2 
values in AD patients than control subjects. Besides, those values were correlated with the 
severity of AD, and an accuracy of 70% in the classification of subjects was reached. In 
Pritchard et al (1994) it was proven that the addition of D2 and a neural network classification 
algorithm to the traditional linear methods could improve the classification accuracy of AD 
patients against control subjects up to 92%. Similarly to D2, L1 could be also considered as a 
kind of complexity measure, since it estimates the flexibility of a system to reach different states 
from almost identical initial states (Wolf et al 1985). In this sense, L1 is interpreted as a measure 
of the brain flexibility to process information. Several studies have verified that the difficulties 
to process information of AD patients produce lower L1 values than control subjects (Jeong et al 
1998, 2001a, Stam et al 1995). These kinds of complexity reduction have been related to a drop 
of the subject adaptive capabilities (Goldberger et al 2002). 

The aforementioned increased regularity on nearly all scales may have their origin in a 
widespread complexity loss in the brain of AD patients (Jeong 2004). Although such 
complexity reduction seems to be associated with the AD deficiencies in information 
processing, its physiological origin is not clear. The main reasons for the lower complexity 
might be an extensive neuronal death, a general effect of neurotransmitter deficiency or a 
decrease in the connectivity of local neural networks due to nerve cell death (Jelles et al 1999, 
Jeong 2004, Tononi et al 1998). Whatever the physiological cause is, the impairments in 
information processing of AD patients could be produced by either an inactivation of previously 
active neural networks or a decline in the dynamical responsivity to outer stimuli (Jeong 2004). 

The slope of the MSE profiles on the small time scales (τ ≤ 5) revealed no significant 
group differences. We can infer that the EEG background activity of control subjects and AD 
patients evolves in a very similar way on these time scales. However, we have found important 
differences in the MSE profiles on the larger time scales. In fact, the slopes of the MSE profiles 
of both groups for τ ≥ 6 are significantly different (p-value < 0.01) at ten electrodes located in 
the left frontal (F3 and F7), frontopolar (Fp1 and Fp2) and posterior brain regions (T5, T6, P3, 
P4, O1 and O2). The main discrepancy between both groups was that the irregularity of the 
coarse-grained sequences tended to decrease for the control group whereas it remained almost 
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constant or slightly increased for AD patients. It shows that the correlation in the EEG 
background activity of the control subjects weakens on the largest time scales (Costa et al 
2005). This finding suggests that it might be more difficult to predict the EEG background 
activity in control subjects than in AD patients, which agree with the steeper slopes of the Auto-
Mutual Information found by Jeong et al (2001b) in control subjects than in AD patients. 

We used ROC curves in order to assess the ability of the slope on the large time scales to 
assist in clinical classification of AD patients against control subjects. Whereas the minimum 
accuracy of the ROC curves was obtained at electrode F7 (77.27%), the highest accuracy and 
larger area under the ROC curves were found at electrode Fp1, in which the accuracy was 
higher than 90% (90.91%). Accuracy values close to 90% were also obtained at electrodes Fp2, 
T5, P3 and O1 (86.36%). Nevertheless, these accuracy results should be taken with caution 
because of the small sample size. 

Previous studies had observed that the severity of the AD was correlated with the D2 
values (Besthorn et al 1995) and with the decrease of the Auto-Mutual Information function 
(Jeong et al 2001b) in AD patients. However, we found no correlation between the AD patients’ 
MMSE scores and the average slope values of the MSE profiles for large time scales. A possible 
explanation for this fact may be that Besthorn et al (1995) analysed EEG signals from a larger 
database than ours (50 AD patients). Moreover, the AD group studied by Jeong et al (2001b) 
was also more severely demented (MMSE = 9.4 ± 3.43 points, mean ± SD) than the AD patients 
analysed in this study. 

Our study has some limitations which need to be paid attention on. First of all, the sample 
size was small. In this study, we set a strict significance level (α = 0.01) to minimize the type I 
error (the error of statistically rejecting a true null hypothesis). As a result, this may have 
increased the probability of a type II error (the error of statistically accepting a false null 
hypothesis). Moreover, the probability of a type II error may be taken into consideration due to 
the wider confidence interval associated with the small sample size. Therefore, although the 
results seem to indicate that the MSE could help in the diagnosis of AD, the study should be 
extended on a much larger patient population before it could be accepted as a diagnostic tool 
with clinical value. Besides, other physiological and pathological states of the brain should be 
analysed with MSE in order to know whether our findings are specific to AD or not, since other 
researches have found an increase of regularity in other diseases and states of the brain, 
including sleep (Burioka et al 2003), anaesthesia (Zhang and Roy 2001, Ferenets et al 2006), 
Parkinson’s disease (Stam et al 1995) and epilepsy (Hornero et al 1999). The ageing process 
can also produce a wide-ranging loss of physiological complexity (Kyriazis 2003). Thus, it is 
possible that some of these diseases or states may produce MSE profiles similar to those from 
AD. 

Despite these drawbacks, the MSE analysis has important advantages over other 
traditionally used non-linear analysis methods, such as D2 and L1: the MSE can be applied to 
relatively noisy, short physiological time series, and it is model-independent (Costa et al 2005). 
Other non-linear analysis methods that have recently been applied to EEG signals have also 
these desirable properties (e.g.: ApEn, SampEn or LZ complexity). Nevertheless, the MSE 
analysis may be a more suitable method to analyse the EEG recordings due to some of its 
specific characteristics. On the one hand, ApEn and SampEn are regularity estimators derived 
from the entropy analysis of the signals (Costa et al 2005). They are based on evaluating the 
appearance of repetitive patterns in the time series (Pincus 1991, Richman and Moorman 2000). 
Particularly, ApEn is derived from the Kolmogorov-Sinai entropy in the sense that the limits r 
→ 0, N → ∞ and m → ∞ can be relaxed (Ferenets et al 2006). On the other hand, LZ complexity 
is a complexity measure in the Kolmogorov’s sense. It is a non-parametric method which 
measures the number of different substrings and the rate of their recurrence along the original 
signals (Lempel and Ziv 1976). However, LZ complexity characterizes the randomness of a 
system, and not its complexity in a strict sense (Tononi et al 1998), as noted by Lempel and Ziv 
(1976) in their original study. Contrary to ApEn, SampEn or LZ complexity, the MSE fulfils the 
criterion that has been adopted in this study for a real complexity measure. The MSE 
distinguishes both completely random and completely ordered signals from real complex ones 



J Escudero et al 

 

(Costa et al 2005). Moreover, the MSE is based on the idea that physiologic systems are 
governed by mechanisms that operate across multiple time scales. Therefore, the MSE analysis 
shows features of the signal that simultaneously depend on several time scales. Thus, the real 
underlying dynamics of the generating system can be revealed (Costa et al 2005), providing a 
useful insight into the signal structure. In addition, the importance of the external measure white 
noise is reduced as deeper time scales are inspected, due to the averaging process employed in 
the calculation of the coarse-grained sequences. Furthermore, our results suggest that the MSE 
analysis of EEG is coherent with the theory of complexity loss in disease (Goldberger et al 
2002), which relates disease to less complex biomedical signals. Due to these specific 
characteristics of the MSE, it may be more helpful in the diagnosis of AD than other non-linear 
analysis techniques. In the following lines we compare the results of the current study with 
several studies which used the ApEn (Abásolo 2006), SampEn (Abásolo et al 2006a) and LZ 
complexity (Abásolo et al 2006b) to distinguish AD patients from control subjects. The 
comparison is straightforward since the same data set was used in all the analyses. A summary 
of the accuracies and area under the ROC curve values obtained with ApEn, SampEn and LZ 
complexity in those studies is shown in table 4. 

 
Table 4. Summary of the accuracy and area under the ROC curve values obtained applying ApEn, 

SampEn and LZ complexity to the same data set used in this study. Only the electrodes where 

significant differences between control subjects and AD patients were found (p-value < 0.01) are 

shown. 

Non-linear analysis method Electrode 
Sensitivity 

(%) 
Specificity 

(%) 
Accuracy 

(%) 

Area under 
the ROC 

curve 

ApEn with m = 1 and r = 
0.25SD (Abásolo 2006) 

P3 72.73 81.82 77.27 0.8595 
P4 63.64 81.82 72.73 0.8264 
O1 81.82 72.73 77.27 0.8595 
O2 90.91 63.64 77.27 0.7769 

SampEn with m = 1 and r = 
0.25SD (Abásolo et al 

2006a) 

P3 72.73 81.82 77.27 0.8512 
P4 63.64 90.91 77.27 0.8347 
O1 81.82 72.73 77.27 0.8595 
O2 90.91 63.64 77.27 0.7769 

LZ complexity with a three 
symbol conversion (Abásolo 

et al 2006b) 

T5 72.73 72.73 72.73 0.8017 
P3 81.82 81.82 81.82 0.8926 
P4 72.73 90.91 81.82 0.8430 
O1 90.91 72.73 81.82 0.8512 

 
The comparison of these results should be taken with caution due to the small database 

size. However, comparing tables 3 and 4, we can realize that the MSE analysis provided 
statistically significant differences in more electrodes (ten electrodes of the 10-20 system) than 
LZ complexity, ApEn or SampEn did (4 electrodes in all cases). Moreover, the accuracy and 
area under the ROC curve values found using the MSE analysis were usually higher than the 
corresponding values of the other methods. For example, the MSE was able to differentiate 
control subjects from AD patients with accuracies higher than 85 % at five electrodes (Fp1, Fp2, 
T5, P3 and O1). In contrast, none of the other methods provided accuracy values over 85 %. In 
addition, the areas under the ROC curves were larger than 0.900 for the MSE analysis at 
electrodes Fp1, T5, T6, P3 and O1, whereas values this high were not reached with ApEn, 
SampEn and LZ complexity. Furthermore, the improvement in the accuracy values of the MSE 
analysis is due to an improvement in both sensitivity and specificity parameters. Table 3 shows 
that in seven of the ten electrodes both sensitivity and specificity values were higher than 80 %. 
This improvement in the classification rate could be due to simultaneous inspection of several 
time scales that the MSE analysis performs. 

To sum up, we found significant differences between AD patients and control subjects on 
the large time scales at ten electrodes (F3, F7, Fp1, Fp2, T5, T6, P3, P4, O1 and O2). Although 
this pilot study is only a first step in the inspection of the EEG with MSE, and it has the reported 
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limitations, our results suggest that AD is characterized not only by changes in the brain activity 
on the shortest time scale, but also by an abnormal behaviour on deeper time scales. However, 
the MSE analysis of the EEG cannot yet be applied in the diagnosis of AD and further studies 
with a larger sample size must be carried out to confirm our results. 
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