5 research outputs found

    Klasifikasi Habitat Perairan Dangkal Menggunakan Logika Fuzzy dan Maximum Likelihood pada Citra Satelit Multispektral

    Get PDF
    Logika fuzzy memiliki aplikasi di berbagai bidang, namun memiliki arti khusus untuk penginderaan jarak jauh. Logika fuzzy memungkinkan keanggotaan parsial, bagian yang sangat penting dibidang penginderaan jarak jauh, karena keanggotaan parsial diterjemahkan secara dekat dengan masalah piksel campuran. Penelitian ini bertujuan untuk menerapkan algoritma klasifikasi logika fuzzy untuk memetakan habitat dasar Perairan dangkal pada Citra Satelit SPOT 7 dan Sentinel 2A, menguji tingkat akurasinya dan membandingkan algoritma klasifikasi logika fuzzy dengan maximum likelihood. Pengambilan data lapang berlokasi di gusung Karang Lebar dan Karang Congkak, Kepuluan Seribu pada tanggal 6 Desember sampai dengan 10 Desember 2017. Keseluruhan hasil uji akurasi menunjukan bahwa algoritma logika fuzzy masih memiliki tingkat akurasi yang baik dibandingkan dengan algoritma maximum likelihood. Perbedaan ukuran pixel (resolusi spasial) dari citra satelit juga mempengaruhi hasil akurasi, dimana citra satelit SPOT 7 memiliki tingkat akurasi yang lebih besar dibandingkan dengan Sentinel 2A

    Color Image Segmentation Using Fuzzy C-Regression Model

    Get PDF
    Image segmentation is one important process in image analysis and computer vision and is a valuable tool that can be applied in fields of image processing, health care, remote sensing, and traffic image detection. Given the lack of prior knowledge of the ground truth, unsupervised learning techniques like clustering have been largely adopted. Fuzzy clustering has been widely studied and successfully applied in image segmentation. In situations such as limited spatial resolution, poor contrast, overlapping intensities, and noise and intensity inhomogeneities, fuzzy clustering can retain much more information than the hard clustering technique. Most fuzzy clustering algorithms have originated from fuzzy c-means (FCM) and have been successfully applied in image segmentation. However, the cluster prototype of the FCM method is hyperspherical or hyperellipsoidal. FCM may not provide the accurate partition in situations where data consists of arbitrary shapes. Therefore, a Fuzzy C-Regression Model (FCRM) using spatial information has been proposed whose prototype is hyperplaned and can be either linear or nonlinear allowing for better cluster partitioning. Thus, this paper implements FCRM and applies the algorithm to color segmentation using Berkeley’s segmentation database. The results show that FCRM obtains more accurate results compared to other fuzzy clustering algorithms

    Some generalization of Fuzzy Entropy measure and its applications.

    Get PDF
    This thesis represents only a small section of the different issue and topics that I was involved since 2010. Yet, it shows one of the consequences of my engagements during the past few years. Over these years, I had the historical opportunity to read and witness the rise and the fall of the important theories and results that are cited in this study and my involvements in these topics became a part of my whole academic life. Fuzzy SetTheory has come a long way since it was formally introduced by L.A. Zadeh in his classic paper entitled ‘Fuzzy Sets’ published in the journal ‘information and Control’ in the year 1965. Since that time the subject has been applied to every branch of knowledge. Many research investigations by mathematicians, scientists and social scientists, computer and management scientists and engineers all over the world have been made in the theory and applications of the subject. Applications of fuzzy logic and fuzzy set theory in decision-making, Pattern recognition, Image processing, Control systems, Neural networks, Genetic algorithm and in many other areas has given significant results.Digital copy of ThesisUniversity of Kashmir

    Intelligent Medical Image Segmentation Using Evolving Fuzzy Sets

    Get PDF
    Image segmentation is an important step in the image analysis process. Current image segmentation techniques, however, require that the user tune several parameters in order to obtain maximum segmentation accuracy, a computationally inefficient approach, especially when a large number of images must be processed sequentially in real time. Another major challenge, particularly with medical image analysis, is the discrepancy between objective measures for assessing and guiding the segmentation process, on the one hand, and the subjective perception of the end users (e.g., clinicians), on the other. Hence, the setting and adjustment of parameters for medical image segmentation should be performed in a manner that incorporates user feedback. Despite the substantial number of techniques proposed in recent years, accurate segmentation of digital images remains a challenging task for automated computer algorithms. Approaches based on machine learning hold particular promise in this regard because, in many applications, including medical image analysis, frequent user intervention can be assumed as a means of correcting the results, thereby generating valuable feedback for algorithmic learning. This thesis presents an investigation of the use of evolving fuzzy systems for designing a method that overcomes the problems associated with medical image segmentation. An evolving fuzzy system can be trained using a set of invariant features, along with their optimum parameters, which act as a target for the system. Evolving fuzzy systems are also capable of adjusting parameters based on online updates of their rule base. This thesis proposes three different approaches that employ an evolving fuzzy system for the continual adjustment of the parameters of any medical image segmentation technique. The first proposed approach is based on evolving fuzzy image segmentation (EFIS). EFIS can adjust the parameters of existing segmentation methods and switch between them or fuse their results. The evolving rules have been applied for breast ultrasound images, with EFIS being used to adjust the parameters of three segmentation methods: global thresholding, region growing, and statistical region merging. The results for ten independent experiments for each of the three methods show average increases in accuracy of 5\%, 12\% and 9\% respectively. A comparison of the EFIS results with those obtained using five other thresholding methods revealed improvements. On the other hand, EFIS has some weak points, such as some fixed parameters and an inefficient feature calculation process. The second approach proposed as a means of overcoming the problems with EFIS is a new version of EFIS, called self-configuring EFIS (SC-EFIS). SC-EFIS uses the available data to estimate all of the parameters that are fixed in EFIS and has a feature selection process that selects suitable features based on current data. SC-EFIS was evaluated using the same three methods as for EFIS. The results show that SC-EFIS is competitive with EFIS but provides a higher level of automation. In the third approach, SC-EFIS is used to dynamically adjust more than one parameter, for example, three parameters of the normalized cut (N-cut) segmentation technique. This method, called multi-parametric SC-EFIS (MSC-EFIS), was applied to magnetic resonance images (MRIs) of the bladder and to breast ultrasound images. The results show the ability of MSC-EFIS to adjust multiple parameters. For ten independent experiments for each of the bladder and the breast images, this approach produced average accuracies that are 8\% and 16\% higher respectively, compared with their default values. The experimental results indicate that the proposed algorithms show significant promise in enhancing image segmentation, especially for medical applications
    corecore