428 research outputs found

    Evaluating Rank-Coherence of Crowd Rating in Customer Satisfaction

    Get PDF
    AbstractCrowd rating is a continuous and public process of data gathering that allows the display of general quantitative opinions on a topic from online anonymous networks as they are crowds. Online platforms leveraged these technologies to improve predictive tasks in marketing. However, we argue for a different employment of crowd rating as a tool of public utility to support social contexts suffering to adverse selection, like tourism. This aim needs to deal with issues in both method of measurement and analysis of data, and with common biases associated to public disclosure of rating information. We propose an evaluative method to investigate fairness of common measures of rating procedures with the peculiar perspective of assessing linearity of the ranked outcomes. This is tested on a longitudinal observational case of 7 years of customer satisfaction ratings, for a total amount of 26.888 reviews. According to the results obtained from the sampled dataset, analysed with the proposed evaluative method, there is a trade-off between loss of (potentially) biased information on ratings and fairness of the resulting rankings. However, computing an ad hoc unbiased ranking case, the ranking outcome through the time-weighted measure is not significantly different from the ad hoc unbiased case

    Makan@local chatok: mobile eatery recommendation system based on local knowledge

    Get PDF
    This paper discusses a unique business model of eatery recommended system based on local knowledge using mobile platform. The business model is developed to define the business concept of the innovation which is a rural innovation involving multiple entities (locals, eatery owners and users who are searching for eatery). The innovation highlights on local knowledge crowd sourced from the participation of locals through ramification activities included in the mobile app. In achieving the aim, the design science methodology was adapted in this study which consists of 4 phases: (i) Awareness of Problem, (ii) Suggestion, (iii) Evaluation, and (iv) Conclusion. The proposed business model was developed through a few activities including literature review, comparative study and preliminary study. Then, the study continued with developing a prototype known as Makan@Local Chatok (M@LC) app and evaluated the app in terms of its usability aspects. Results from the usability testing concludes that the app is perceived as easy to use. It was also found that the proposed business model has been well-accepted by users. In conclusion, it is hoped that this study will not only demonstrate the potential and impact of mobile eatery recommendation system using local knowledge, but also provide a capstone on business research in the field of tourism industry

    Fuzzy multicriteria analysis and its applications for decision making under uncertainty

    Get PDF
    Multicriteria decision making refers to selecting or ranking alternatives from available alternatives with respect to multiple, usually conflicting criteria involving either a single decision maker or multiple decision makers. It often takes place in an environment where the information available is uncertain, subjective and imprecise. To adequately solve this decision problem, the application of fuzzy sets theory for adequately modelling the uncertainty and imprecision in multicriteria decision making has proven to be effective. Much research has been done on the development of various fuzzy multicriteria analysis approaches for effectively solving the multicriteria decision making problem, and numerous applications have been reported in the literature. In general, existing approaches can be categorized into (a) multicriteria decision making with a single decision maker and (b) multicriteria group decision making. Existing approaches, however, are not totally satisfactory due to various shortcomings that they suffer from including (a) the inability to adequately model the uncertainty and imprecision of human decision making, (b) the failure to effectively handle the requirements of decision maker(s), (c) the tedious mathematical computation required, and (d) cognitively very demanding on the decision maker(s). This research has developed four novel approaches for effectively solving the multicriteria decision making problem under uncertainty. To effectively reduce the cognitive demand on the decision maker, a pairwise comparison based approach is developed in Chapter 4 for solving the multicriteria problem under uncertainty. To adequately meet the interest of various stakeholders in the multicriteria decision making process, a decision support system (DSS) based approach is introduced in Chapter 5. In Chapter 6, a consensus oriented approach is presented in multicriteria group decision making on which a DSS is proposed for facilitating consensus building in solving the multicriteria group decision making problem. In Chapter 7, a risk-oriented approach is developed for adequately modelling the inherent risk in multicriteria group decision making with the use of the concept of ideal solutions so that the complex and unreliable process of comparing fuzzy utilities usually required in fuzzy multicriteria analysis is avoided. Empirical studies of four real fuzzy multicriteria decision making problems are presented for illustrating the applicability of the approaches developed in solving the multicriteria decision making problem. A hospital location selection problem is discussed in Chapter 8. An international distribution centre location problem is illustrated in Chapter 9. A supplier selection problem is presented in Chapter 10. A hotel location problem is discussed in Chapter 11. These studies have shown the distinct advantages of the approaches developed respectively in this research from different perspectives in solving the multicriteria decision making problem

    A personalised and adaptive insulin dosing decision support system for type 1 diabetes

    Get PDF
    People with type 1 diabetes (T1D) rely on exogenous insulin to maintain stable glucose levels. Despite the advent of diabetes technologies such as continuous glucose monitors and insulin infusion pumps, the majority of people with T1D do not manage to bring back glucose levels into a healthy target after meals. In addition to patient compliance, this is due to the complexity of the decision-making on how much insulin is required. Commercial insulin bolus calculators exist that help with the calculation of insulin for meals but these lack fine-tuning and adaptability. This thesis presents a novel insulin dosing decision support system for people with T1D that is able to provide individualised insulin dosing advice. The proposed research utilises Case-Based Reasoning (CBR), an artificial intelligence methodology, that is able to learn over time based on the behaviour of the patient and optimises the insulin therapy for various diabetes scenarios. The decision support system has been implemented into a user-friendly smartphone-based patient platform and communicates with a clinical platform for remote supervision. In-silico studies are presented demonstrating the overall performance of CBR as well as metrics used to adapt the insulin therapy. Safety and feasibility of the developed system have been assessed incrementally in clinical trials; initially during an eight-hour study in hospital settings followed by a six-week study in the home environment of the user. Human factors play an important role in the clinical adoption of technologies such as the one proposed. System usability and acceptability were evaluated during the second study phase based on feedback obtained from study participants. Results from in-silico tests show the potential of the proposed research to safely automate the process of optimising the insulin therapy for people with T1D. In the six-week study, the system demonstrated safety in maintaining glycemic control with a trend suggesting improvement in postprandial glucose outcomes. Feedback from participants showed favourable outcomes when assessing device satisfaction and usability. A six-month large-scale randomised controlled study to evaluate the efficacy of the system is currently ongoing.Open Acces

    Mass Production Processes

    Get PDF
    It is always hard to set manufacturing systems to produce large quantities of standardized parts. Controlling these mass production lines needs deep knowledge, hard experience, and the required related tools as well. The use of modern methods and techniques to produce a large quantity of products within productive manufacturing processes provides improvements in manufacturing costs and product quality. In order to serve these purposes, this book aims to reflect on the advanced manufacturing systems of different alloys in production with related components and automation technologies. Additionally, it focuses on mass production processes designed according to Industry 4.0 considering different kinds of quality and improvement works in mass production systems for high productive and sustainable manufacturing. This book may be interesting to researchers, industrial employees, or any other partners who work for better quality manufacturing at any stage of the mass production processes

    Exploiting the conceptual space in hybrid recommender systems: a semantic-based approach

    Full text link
    Tesis doctoral inédita. Universidad Autónoma de Madrid, Escuela Politécnica Superior, octubre de 200

    Affinity-Based Reinforcement Learning : A New Paradigm for Agent Interpretability

    Get PDF
    The steady increase in complexity of reinforcement learning (RL) algorithms is accompanied by a corresponding increase in opacity that obfuscates insights into their devised strategies. Methods in explainable artificial intelligence seek to mitigate this opacity by either creating transparent algorithms or extracting explanations post hoc. A third category exists that allows the developer to affect what agents learn: constrained RL has been used in safety-critical applications and prohibits agents from visiting certain states; preference-based RL agents have been used in robotics applications and learn state-action preferences instead of traditional reward functions. We propose a new affinity-based RL paradigm in which agents learn strategies that are partially decoupled from reward functions. Unlike entropy regularisation, we regularise the objective function with a distinct action distribution that represents a desired behaviour; we encourage the agent to act according to a prior while learning to maximise rewards. The result is an inherently interpretable agent that solves problems with an intrinsic affinity for certain actions. We demonstrate the utility of our method in a financial application: we learn continuous time-variant compositions of prototypical policies, each interpretable by its action affinities, that are globally interpretable according to customers’ financial personalities. Our method combines advantages from both constrained RL and preferencebased RL: it retains the reward function but generalises the policy to match a defined behaviour, thus avoiding problems such as reward shaping and hacking. Unlike Boolean task composition, our method is a fuzzy superposition of different prototypical strategies to arrive at a more complex, yet interpretable, strategy.publishedVersio

    Geographic Information Systems and Science

    Get PDF
    Geographic information science (GISc) has established itself as a collaborative information-processing scheme that is increasing in popularity. Yet, this interdisciplinary and/or transdisciplinary system is still somewhat misunderstood. This book talks about some of the GISc domains encompassing students, researchers, and common users. Chapters focus on important aspects of GISc, keeping in mind the processing capability of GIS along with the mathematics and formulae involved in getting each solution. The book has one introductory and eight main chapters divided into five sections. The first section is more general and focuses on what GISc is and its relation to GIS and Geography, the second is about location analytics and modeling, the third on remote sensing data analysis, the fourth on big data and augmented reality, and, finally, the fifth looks over volunteered geographic information.info:eu-repo/semantics/publishedVersio

    Indicators and their functions

    Get PDF
    • …
    corecore