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Abstract

People with type 1 diabetes (T1D) rely on exogenous insulin to maintain stable glucose

levels. Despite the advent of diabetes technologies such as continuous glucose monitors

and insulin infusion pumps, the majority of people with T1D do not manage to bring back

glucose levels into a healthy target after meals. In addition to patient compliance, this is

due to the complexity of the decision-making on how much insulin is required. Commercial

insulin bolus calculators exist that help with the calculation of insulin for meals but these

lack fine-tuning and adaptability.

This thesis presents a novel insulin dosing decision support system for people with T1D

that is able to provide individualised insulin dosing advice. The proposed research utilises

Case-Based Reasoning (CBR), an artificial intelligence methodology, that is able to learn

over time based on the behaviour of the patient and optimises the insulin therapy for various

diabetes scenarios. The decision support system has been implemented into a user-friendly

smartphone-based patient platform and communicates with a clinical platform for remote

supervision.

In-silico studies are presented demonstrating the overall performance of CBR as well as

metrics used to adapt the insulin therapy. Safety and feasibility of the developed system

have been assessed incrementally in clinical trials; initially during an eight-hour study in

hospital settings followed by a six-week study in the home environment of the user. Human

factors play an important role in the clinical adoption of technologies such as the one pro-

posed. System usability and acceptability were evaluated during the second study phase

based on feedback obtained from study participants.

Results from in-silico tests show the potential of the proposed research to safely auto-

mate the process of optimising the insulin therapy for people with T1D. In the six-week

study, the system demonstrated safety in maintaining glycemic control with a trend sug-

gesting improvement in postprandial glucose outcomes. Feedback from participants showed

favourable outcomes when assessing device satisfaction and usability. A six-month large-

scale randomised controlled study to evaluate the e�cacy of the system is currently ongoing.
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Chapter 1

Introduction

1.1 Background and Motivation

1.1.1 Diabetes Mellitus

Diabetes mellitus is a chronic condition where the pancreas is unable to produce su�cient

insulin in order to keep blood glucose levels within a physiological range [1]. In a healthy

body, � � cells located in the pancreas produce insulin that enables cells the uptake of

glucose from the bloodstream. Glucose is an essential source of energy for the cells within

the body and is supplied by carbohydrates contained in the food we eat. Carbohydrates are

broken down during meal digestion into mono- and disaccharides, most of which is glucose.

There are two types of diabetes. Type 1 diabetes (T1D) is an autoimmune disease, where

the � � cells are destroyed by antibodies, which results in an absolute deficiency of insulin

and leads to elevated blood glucose levels (hyperglycaemia). In type 2 diabetes (T2D), the

pancreas is still able to produce insulin but either not su�cient to function properly (relative

insulin deficiency) or the cells in the body are not responding to the existing insulin (insulin

resistance). Figure 1.1 shows an example of the glucose excursion followed after a meal that

contains carbohydrates for healthy individuals and for people with T1D or T2D who rely on

exogenous insulin, respectively. In people without diabetes, glucose levels rise slightly after

the meal, but usually stay within the defined target range of post-prandial normoglycaemia

(i.e. 3.9-10 mmol/l or 70-180 mg/dl [2]). However, if there is not enough insulin available,

the glucose in the bloodstream cannot enter the cells and the glucose concentration remains

high after the meal. Severe hyperglycaemia can lead to potentially life-threatening diabetic

ketoacidosis [3], which occurs when the body switches its main energy source from glucose
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to fatty acids and toxic acidic ketone bodies are produced as a by-product. The resulting

symptoms of prolonged high glucose levels include polydipsia, polyuria, polyphagia, blurred

vision, tiredness and loss of weight.

The onset of T1D is associated partly with genetic predisposition and external triggers

such as diet or infections [4], while for T2D there is an additional strong link to lack of

exercise and obesity [1]. In early stages of T2D, insulin resistances may be improved with

changes in lifestyle, such as weight loss and exercise, whereas later stages require either

medications or insulin to lower blood glucose levels. In contrast to early T2D, T1D is not

reversible and solely relies on exogenous insulin administration. The World Health Organi-

zation (WHO) has reported that an estimate of 171 million people su↵ered from diabetes

in 2000, expecting this number to be doubled in 2030 [5]. T1D accounts for about 10-15

percent of all cases. From a global perspective, diabetes represents a great burden for the

health system [6] and its incidence is still increasing for both T1D and T2D.

Figure 1.1: Example of a glucose response after a meal for a healthy individual (blue line),
a person with T1D on optimal (green line) and suboptimal (red line) insulin therapy
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1.1.2 Complications and Treatment

There are several long-term complications that can occur if diabetes is not well managed.

Long-term elevated glucose levels may lead to loss of vision, renal failure, cardiovascular

diseases, nerve damage and complications during pregnancy. Large-scale randomised stud-

ies [2, 7] have shown that it is possible to prevent or delay the onset of complications with

intensive diabetes management aiming for tight glycemic control. This involves frequent

checks of capillary glucose levels using finger-prick blood glucose meters and the injection of

insulin up to six times a day. However, intensive insulin treatment has also been linked to

an increased risk of hypoglycaemia (low blood glucose concentration) [8] and hypoglycaemia

unawareness (the inability of the body to show symptoms for low glucose levels). Severe

hypoglycaemia can lead to seizures, unconsciousness and the ‘dead-in-bed’ syndrome. Di-

abetes technologies, such as continuous glucose monitors (CGM) for glucose sensing and

continuous insulin infusion pumps (CSII) for insulin delivery, exist and aim to support peo-

ple with the challenge to achieve optimal glycemic control without recurrent hypoglycaemia.

However, these technologies do not provide su�cient decision support to assist people to

improve glucose control. A detailed overview of the state-of-the-art and ongoing research

in diabetes management will be given in Chapter 2.

1.1.3 Challenges in Diabetes Management

Despite improvements in diabetes technology, people with T1D still struggle to achieve

target in glycemic control and prevent long-term complications. The National Diabetes

Audit reports that only 27.3% of people with T1D achieved a target HbA1c of less than

7.5% (58mmol/mol), analysing 177.475 patient records between the years 2012 and 2013

[9]. There are several reasons for the low number of people reaching this target. For

one, fear of hypoglycaemia [10] has been reported as a factor why people do not deliver

enough insulin. Also, people with T1D would need to know the composition of consumed

meals and, more importantly, be able to estimate the exact carbohydrate content of the

meal. Patient education programmes, also referred to as ‘structured education’, aim to

teach participants how to estimate the amount of carbohydrates and perform insulin dose

adjustments. However, only a low percentage (0.9%) [9] of newly diagnosed people are

reported to have attended structured education. Calculating an insulin dose also requires

basic arithmetic skills and low numeracy among people with T1D is a significant problem

[11], which often results in erroneous calculations. Some blood glucose meters and CSII
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pumps incorporate simple insulin bolus calculators with the aim to assist people with T1D to

perform insulin dosing calculations. Although the clinical benefit of using bolus calculators

has been demonstrated [12, 13], their performance remains suboptimal. This is mainly due

to the fact that the amount of bolus insulin not only depends on the current blood glucose

level (to compensate for initial high or low glucose concentration) and the anticipated

amount of carbohydrates but also on various and often unaccounted factors, such as stress,

physical activity and the time of the day. These factors are not only subject to the individual

but their e↵ect on the insulin sensitivity is also likely to change over time. Some bolus

calculators allow to set rules for certain situations (e.g. reduce the amount of insulin by

10% for exercise) but are neither able to assess the outcome of these empirical rules, nor are

they able to react to changes in the insulin sensitivity. It is hypothesised that a personalised

and adaptive insulin advisory system will provide better glycemic control than state-of-the-

art bolus calculators and, thus, has the potential to reduce long-term complications of

diabetes.

1.1.4 Proposed Research and Challenges

The aim of this research is the development of a real-time and personalised decision support

tool for meal insulin dosing that provides enhanced adaptability and flexibility to current

bolus calculators. The hypothesis is that personalised insulin decision support results in

improved glycemic control and therefore reduces the onset of secondary diabetes-related

complications. Insulin requirements depend on multiple environmental and biological fac-

tors, such as exercise or stress, which are likely to change over time. Therefore, the decision

support system must be able to adapt to changes in the insulin sensitivity of people with

T1D. The work in this thesis proposes the use of Case-Based Reasoning (CBR), an artificial

intelligence technique, in order to provide insulin dosing decision support for various meal

scenarios (e.g. large dinner after exercise) with the ability to react to changes to insulin

sensitivity based on the glycemic outcome of similar scenarios from the past. CBR learns

from comparing the current meal scenario to past similar meals. Meal scenarios can be

represented through cases, where each case is described through a set of chosen parameters

e.g. time of meal, alcohol, exercise before or after the meal. One challenge in this research

is to identify key parameters that have an influence on the glucose regulatory system and

how they can be represented within a case. Furthermore, the research addresses how such

cases can be compared to a current scenario and what solutions (e.g. insulin dosage, injec-

tion site and time) can be proposed to the person with T1D. Another research challenge
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is how to assess the outcome of the proposed solutions (i.e. glucose excursion after a meal

with insulin). Moreover, potential methods need to be investigated to optimise the solution

if the glucose outcome is clinically not optimal. The final challenge is to develop a user-

friendly, mobile and safe system that implements the decision support algorithm for insulin

dosing. The system needs to be able to provide insulin therapy advice in real-time, as well

as implement safety features to ensure only clinically safe insulin doses are recommended.

Safety features providing risk mitigation and risk control for the proposed advisory system

need to be evaluated. Furthermore, a clinical system for remote supervision is required

that is able to communicate with the proposed insulin dosing advisory system in order to

enable clinical experts to supervise and approve insulin therapy adjustments. The concept

of a mobile patient platform providing insulin recommendations that communicates with a

clinical supervision platform can be seen in Figure 1.2. Usability and acceptability are key

for the adoption of the proposed research and the developed system needs to be easy to

use for both clinicians and people with T1D. In order to enhance usability, manual user in-

tervention should be minimised by automatically acquiring necessary features. Eventually,

safety and e�cacy of the insulin dosing decision support system need to be demonstrated

in clinical practice.

Figure 1.2: Smartphone-based patient platform (left) providing insulin bolus advice and
sending data to a clinical platform (right) for remote supervision.
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1.1.5 Key Contributions and Findings

Based on the proposed research objectives, this section lists some of the key contributions

arising from this work:

• Integration of CBR into a novel insulin bolus advisory system to provide more flexi-

bility and adaptability compared to standard bolus calculators

• Identification of key parameters that have impact on glucose control and how they

can be represented within a case

• Implementation and optimisation of the CBR process steps (i.e. retrieval, reuse,

revision and retention) for the proposed system

• Development and evaluation of methods for automatic adaptation of the proposed

solution, as well as metrics to assess the outcome of insulin recommendations

• Development of a user-friendly decision support system, which includes a mobile pa-

tient platform for real-time insulin bolus advice for people with T1D and a clinical

platform for remote supervision of performed changes in insulin therapy

• Clinical evaluation assessing safety and feasibility of the proposed insulin dosing ad-

visory system in clinical and real-life setting

• Optimisation of the presented system based on results of clinical trials (i.e. usability,

safety, etc.)

1.2 Thesis Organisation

Based on the proposed research objectives, the thesis will be organised in the following

sections:

1.2.1 Chapter 1: Background and Motivation

The first chapter introduces the reader to the background of diabetes and explains the need

for better decision support in diabetes management, and more specifically, for insulin dosing.

The shortcomings of current technologies and therapies are discussed and how the research
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proposed in this thesis aims to overcome these limitations and enhances the state-of-the-art

insulin therapy. The final part of the chapter describes the challenges of the research and

lists research objectives that are addressed in the following chapters.

1.2.2 Chapter 2: Diabetes Management and Decision Support

The second chapter gives an overview of current technologies and decision support in dia-

betes management. State-of-the-art methods for sensing glucose concentration and insulin

delivery, as well as the ongoing research for closed loop control of glucose, are presented.

A commercially available decision support tool for insulin dosing, the bolus calculator, will

be discussed in more detail. The chapter concludes with the benefits and shortcomings of

current bolus calculators and what can be done to improve them.

1.2.3 Chapter 3: Case-Based Reasoning for Insulin Decision Support

Chapter 3 describes the research towards a novel decision support system, which acts as an

enhanced insulin advisory system for personalised insulin bolus recommendations.

Initially, the concept of Case-Based Reasoning (CBR) is presented and its potential to

improve the performance of the proposed advisory system by enabling it to learn based

on past experiences, thus providing more personalised insulin dose recommendations. Key

parameters are identified, which influence the glucose regulatory system and can be utilised

in CBR to describe meal scenarios in the form of cases. In CBR the process of learning from

past experiences follows a four-step cycle (retrieval, reuse, revision and retention of cases)

and the implementation of all steps is explained next. Moreover, various methods on how

to adapt case solutions are shown, as well as ways to assess the outcome of an insulin advice

based on glucose information from continuous glucose monitors. Finally, simulation results

are presented from in-silico studies evaluating the performance of the CBR as learning

methodology, as well as metrics which can be used for case revision.

1.2.4 Chapter 4: Advanced Bolus Calculator for Diabetes System

This chapter describes the development and evaluation of a CBR-based ‘Advanced Bolus

Calculator for Diabetes’ (ABC4D). The system architecture and the implementation of CBR

as the core learning methodology are described. Initial usability and acceptability results of
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ABC4D are presented, which have been obtained after ten people with T1D continuously

used the system over a period of six weeks.

1.2.5 Chapter 5: Clinical Evaluation

The final goal of the research is to assess the system in clinical and real-life settings used

by people with T1D. Chapter 5 will introduce the reader to the various phases of clinical

trials, starting with a short safety study in a clinical environment, followed by a six-week

feasibility study. Finally, the work towards a large randomised e�cacy study in the home

setting of people with T1D is described. Based on the results of each trial phase, the insulin

bolus advisory system has been optimised and improved. The chapter presents the clinical

outcomes and resulting improvements for the first two study phases.

1.2.6 Chapter 6: Outlook and Conclusion

The final chapter provides an outlook on potential future developments and research, as

well as summarises and discusses achievements and contributions of the presented research.

1.3 Conclusion

T1D represents a major burden for both individuals with diabetes and more globally for

the healthcare system. Current treatment involves intensive self-management, which aims

to keep the blood glucose concentration at a constant level. However, the task of maintain-

ing healthy blood glucose levels is challenging and people with T1D often lack structured

education and numeracy skills to perform insulin dosing calculations. Yet failure to achieve

good glucose control can lead to serious short- and long-term complications, as described

in this chapter. The amount of insulin required in order to achieve target control is deter-

mined according to the current blood glucose concentration, the quantity of carbohydrates

consumed and other factors including time of day, exercise and illness. As many people

with T1D struggle to include all this information into their insulin therapy, it is of interest

to provide support with intelligent consultations based on available glucose related data.

Some commercially available technologies, such as blood glucose meters and insulin pumps,

integrate bolus calculators to calculate the amount of insulin needed for a meal but these

formulas are very basic and their simplicity leads to several shortcomings. In this research,
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an adaptive insulin bolus advisory system for personalised insulin recommendations is pre-

sented that aims to outperform state-of-the-art bolus calculators and improve glycemic

control of people with diabetes. Even though this research focuses on decision support for

people with T1D to optimise the insulin therapy and achieve healthy glucose levels after

a meal, the same technology can potentially be used for people with T2D in progressed

stages, when relying on exogenous insulin.
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Chapter 2

Diabetes Management and Insulin
Dosing Decision Support

The main goal of diabetes management is to keep blood glucose levels within a pre-defined

target range. To achieve this, people with T1D rely on exogenous insulin to lower blood

glucose levels after meals, while trying to minimise time spent in hyper- and hypoglycaemia

(i.e. high and low blood glucose levels). Insulin injections are based on information given

by glucose measurements from finger-prick blood samples. The long-term goal of diabetes

management is to reduce or control glycated haemoglobin (HbA1c) and to prevent the long

complications as described in Chapter 1. The Diabetes Control and Complications Trial

(DCCT) was a large-scale study published in 1993 that dealt with the e↵ect of intensive

treatment and the progression of long-term complications of T1D. It involved more than

1400 volunteers over a period of 6.5 years and showed that intensive management reduced

complications by 50-76% compared to conventional therapy at the expense of increasing

the risk of hypoglycaemia [1]. Intensive treatment can be encouraged by providing diabetes

education for people with T1D. The National Institute of Clinical Excellence (NICE) recom-

mends structured education (e.g. DAFNE ‘Dose Adjustments For Normal Eating’ program)

to adults that are newly diagnosed with diabetes. This chapter discusses state-of-the-art

technologies for diabetes management, such as continuous glucose monitoring systems and

insulin infusion pumps, as well as decision support systems (DSS) for both patients and

clinicians.

12



Diabetes Management and Insulin Dosing Decision Support

2.1 Glucose Monitoring

2.1.1 Blood Glucose Meters

Intensive diabetes treatment involves multiple daily insulin injections and frequent blood

glucose measurements (4-6 times a day). Blood glucose (BG) meters can be used for cap-

turing capillary glucose levels and adjusting the insulin therapy accordingly. Figure 2.1

shows a standard BG meter displaying the glucose value after a measurement. Readings

are obtained by piercing the finger using a lancet and applying a drop of blood to a dispos-

able chemical test-strip, which is then inserted into the meter. Standard BG meters use an

electrochemical approach where the blood drop on the test strip reacts with glucose oxidase,

which acts as a catalyst and produces a current that is proportional to the blood glucose

concentration. The result of the measurement is displayed on the screen of the device in

either mM/l or mg/dl, depending on the geographical region. Most BG meters provide

simple statistics (e.g. mean values over a fixed time period) and allow data export of past

readings either via cable or Bluetooth to a computer or smartphone for further analysis.

Figure 2.1: BG meter showing the current blood glucose level after a finger-prick measure-
ment.
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2.1.2 Continuous Glucose Monitors (CGM)

In contrast to BG meters, which provide only a single reading per use, CGM devices con-

tinuously (e.g. every 5 minutes) sample glucose concentration in the subcutaneous tissue

from a disposable sensor. CGM systems use an amperometric method to indirectly measure

the concentration of glucose. The tip of the inserted sensor contains an enzyme (glucose

oxidase) that reacts with the surrounding glucose and produces hydrogen peroxide, which

is proportional to the concentration of the glucose and measured by the sensor electrode.

The usual lifespan of a sensor is about one week before it needs to be replaced. Glucose

measurements performed by a CGM system can be either blinded (data is only available

retrospectively after calibration) or real-time. In real-time systems, a transmitter is used

to send glucose measurements to an external receiver to display readings and additional

glucose related information, e.g. trends and predictions (see Figure 2.2). More recent real-

time CGM devices are able to transmit readings directly to a smartphone or insulin pump.

The temporary use of retrospective CGM systems can be beneficial to recognise patterns

in glucose variations and detect recurring hypoglycaemia for people with hypoglycaemic

unawareness. A commonly reported problem with CGM devices is their accuracy compared

to blood glucose measurements.

Figure 2.2: Continuous Glucose Monitor (CGM) by Dexcom with a G4 sensor attached to
a transmitter (right) sending glucose data in real-time to a body-worn transmitter (left)
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As the glucose concentration is measured in the interstitial fluid, readings lag behind changes

in blood by several minutes. This lag is even more prominent when glucose concentration

changes rapidly [2] (e.g. after a meal or exercise). Although the accuracy of CGM systems

improved over the last decade, the majority of CGM systems are not approved to be used as

a replacement for blood glucose meters and people with T1D are still advised to use blood

glucose measurements before making therapy decisions. In 2015, Dexcom Inc (California,

USA) released the G5 R� Mobile CGM system that allows (in Europe only) the use of the

CGM readings for diabetes management decisions, thus eliminating the need for confirma-

tory finger-prick measurements (capillary glucose testing is still required twice a day for

calibrating the system). Multiple studies [3] [4] [5] have shown the benefit of CGM devices

to help people with T1D to manage their blood glucose levels and achieve greater average

glucose control (HbA1c) without increasing hypoglycaemia.

2.2 Insulin Therapy

2.2.1 Multiple Daily Injections (MDI)

At the moment, the majority of people with T1D use a basal/bolus insulin regime, which

requires multiple daily injections of long acting insulin to keep glucose levels within target

in fasting condition (basal insulin) and rapid acting insulin to lower the blood glucose levels

after each meal (bolus insulin). The amount of basal insulin (e.g. Lantus R�, Levemir R�)

is usually based on the total daily dose (TDD) of required insulin, while meal boluses

depend on the meal content. Glucose measurements from blood glucose meters are required

before each insulin injection in order to prevent severe hypoglycaemia, if glucose levels are

already low. Additional insulin is often given in combination with meal boluses to correct

for eventual high glucose levels.

2.2.2 Insulin Pump Therapy

Continuous subcutaneous insulin infusion pumps (CSII) are body worn devices with the

size of a pager that are able to deliver insulin to the subcutaneous tissue. Connected to

the pump is an infusion set, consisting of a small plastic tube and a soft cannula that is

inserted under the patient’s skin. CSII pumps can be used as an alternative to multiple

daily injections and provide continuous delivery of insulin for intensive insulin therapy,

aiming for improved glycemic control. A common reason for people to switch from MDI
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to CSII therapy is severe hypoglycaemia, as it allows better tuning of the insulin delivery.

Instead of the long-acting insulin for basal, CSII pumps deliver a varied dose of fast-acting

insulin continually throughout day and night at a pre-set rate. Furthermore, it is possible

to manually set an insulin bolus dose in order to cover a meal. Reported disadvantages are

the limitation of physical activity of the patient and the constant reminder that the wearer

has diabetes. Several studies have shown the benefit of CSII therapy in T1D over MDI [6].

2.2.3 Combined CGM and Insulin Delivery Systems

In recent years, pump manufacturers presented CSII systems that can communicate with

CGM systems (Medtronic REAL-TIME Paradigm R� with Medtronic Enlite CGM and An-

imas Vibe with Dexcom G4 R� CGM), enabling the user to see recent glucose levels on the

display of the pump. In 2009, Medtronic released the Paradigm R� VeoTM into the marked

that is able to automatically stop the insulin delivery based on low glucose readings from

a continuous glucose monitor. The successor of this product, the MiniMed R� 640G system,

enhanced the feature of suspending the pump by incorporating a prediction algorithm that

aims to detect low glucose levels 30 minutes in advance. However, none of the commer-

cially available systems are able to automatically deliver insulin based on CGM readings.

Fully automated insulin delivery in a closed-loop fashion is currently investigated by several

research groups.

2.3 Artificial Pancreas Systems

The idea of developing closed-loop control of blood glucose concentration exists since the dis-

covery of artificial insulin. In the late 1970s, the Biostator [7] was introduced as a ‘Glucose

Controlled Insulin Infusion System’, which continuously sampled venous blood, measured

blood glucose concentration and infused either glucose or insulin intravenously. The amount

of insulin was calculated by an algorithm in a computer, which made the Biostator one of

the very first in-hospital closed loop systems for glucose control.

A closed loop system with automatic insulin delivery, also defined as an artificial pancreas

(AP) system, is based on three core components: the glucose sensor for acquiring new mea-

surements, a control system for calculating the required insulin dose and an infusion pump

to deliver the calculated insulin to the human body. Most study groups investigating closed

loop control systems utilise algorithms that derive either from control engineering tech-
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Figure 2.3: Bio-inspired Artificial Pancreas System [11] (centre) communicating with a
continuous glucose sensor (Dexcom G4 R�) and an insulin pump (Roche ACCU-CHECK R�)

niques, e.g. proportional integral derivative (PID) control [8] and model predictive control

(MPC) [9], or artificial intelligence techniques, e.g. fuzzy logic [10]. A di↵erent approach

was proposed by our group [11] using mathematical models to mimic the physiology of the

insulin secreting beta-cells. The system, called the Bio-inspired Artificial Pancreas (BiAP)

(see Figure 2.3), demonstrated safety and feasibility of the algorithm performing in various

clinical settings [12] [13]. While several studies show encouraging results during over-night

or fasting periods, post-meal control of glucose is still challenging for algorithms, which is

down to the significant delays that occur when sensing glucose and delivering insulin in

the interstitial compartment. Control for unannounced meals has been tested but leads

to much higher postprandial glucose excursions because of the slow dynamics of current

insulin formulations. Therefore, the majority of study groups provide methods to manually

announce the size of meals and then deliver a meal insulin bolus based on a patient-specific

insulin-carbohydrate ratio (ICR), which describes how much insulin is needed to cover a

certain amount of carbohydrates. In this semi-automated mode, the postprandial glycemic

outcome greatly depends on the meal bolus. Safety features have been implemented into

AP systems to stop the insulin delivery if the drop of glucose levels is predicted to be too

low. However, without a counter-regulatory hormone (i.e. glucagon), manual insulin de-

livery for meals can still lead to hypoglycemic episodes. Therefore, AP systems with meal

announcement will still rely on optimal ICR settings to achieve clinically acceptable glucose

excursion after meals.
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2.4 The Need for Insulin Decision Support

At the moment, parameters ICR and ISF (i.e. insulin-sensitivity factor describing how

much insulin is needed to correct for elevated glucose levels) are commonly used by peo-

ple on MDI or CSII therapy to calculate the amount of insulin needed. These factors are

subject dependent and usually defined by clinicians at the time of diagnosis. Many people

with T1D use di↵erent ICR values for breakfast, lunch and dinner. The reason for this is

because of the body’s sensitivity to insulin, which is known to vary according to the time

of the day. For instance, the ‘dawn phenomena’ is a commonly experienced e↵ect in people

with T1D, describing an increase in insulin resistance in the morning hours, which is due

to the release of growth hormones overnight [14].

However, in addition to the time of day, there are many other variables that have im-

pact on the glucose regulatory system and, therefore, on the insulin requirements. One of

the main hurdles for people with T1D is to correctly address these and accordingly adjust

the insulin therapy. This section discusses a selection of factors that are known to a↵ect

the glucose metabolism. A comprehensive list of key factors, their reported e↵ect and how

they could be captured and integrated as a parameter within an insulin dosing DSS can be

found in Appendix B. Factors are divided into four categories: meal information (e.g. fat

content, alcohol, ca↵eine), biological factors (e.g. hormonal cycle, time of day, sleep) and

environmental/other factors (e.g. activity, stress, temperature, smoking). The presented

list of parameters a↵ecting glucose levels is based on feedback from patients during focus

group meetings (see Chapter 4.4), discussions with the clinical study team, as well as find-

ings in the literature. Following keywords were used for the literature review (databases:

MEDLINE, PubMed and PMC): glucose, diabetes, insulin sensitivity, e↵ect, factor, param-

eter, meal composition, absorption, fat, protein, stress, exercise, hormonal, ca↵eine, alcohol,

environmental and illness.

Meal-related Factors

In addition to the amount of carbohydrates, the composition of a meal can have a great

impact on both dosage and the timing/shape of insulin delivery. There is also a reported

e↵ect of beverages containing ca↵eine and alcohol on the glucose control [15] [16].
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Glycemic Index Carbohydrate containing food can di↵er considerably in the glucose

response depending on the glycemic index (GI) of the digested food [17]. GI denotes how

quickly the blood glucose levels respond after the intake of a meal containing carbohydrates.

Consuming food with a high glycemic index results in a greater rise and fall of glucose levels

after a meal compared to the postprandial profile after a low-GI meal [18]. High-GI meals

are often used for quick recovery of hypoglycaemic episodes.

Fat and Protein Content Current insulin therapies for meal insulin dosing are mainly

focused on the carbohydrate intake. However, Wolpert et. al [19] showed in a small popu-

lation (n=7) of people with T1D that meals with a hight fat content require more insulin

and result in higher postprandial glucose levels than meals with identical carbohydrate

but lower fat content. Another study [20] in adolescents (n=33) confirmed the increase in

glucose excursion for high fat meals and further observed a delayed postprandial rise of

glucose.

Ca↵eine Several studies have shown the e↵ect of ca↵eine on glucose levels. A review

by James Lane [15] analysing existing studies concludes that ca↵eine (found in co↵ee, tea

and energy drinks) consumed in combination with carbohydrates causes transient insulin

resistance resulting in exaggerated glucose and insulin responses for non-diabetics as well

as people with T2D. Only little evidence on the e↵ect of ca↵eine on people with T1D has

been collected. Watson et al. report that modest amount of ca↵eine enhance the intensity

of hypoglycaemia warning symptoms [21].

Alcohol Consumption Moderate alcohol consumption is known to a↵ect insulin sensi-

tivity and hepatic glucose output in non-diabetics [22]. For people with diabetes, alcohol

is recognised as a risk factor for hypoglycaemia. However, while studies failed to show any

acute changes in glucose or insulin concentration after alcohol consumption [23] [24], an

increased risk of hypoglycaemia has been reported by several groups the next morning after

alcohol consumption in the evening [25] [16].
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Biological Factors

Stress and Illness

Illness and stress can cause an increase in the release of hormones, such as cortisol and

adrenaline, which reduce insulin sensitivity and can lead to elevated glucose levels [26].

Hormonal Cycle

The e↵ect of the menstrual cycle on glucose control and insulin sensitivity has been demon-

strated and literature suggests considering the follicular and luteal phases in the insulin

therapy for women with T1D [27].

Environmental and other Factors

Physical Activity

Physical exercise is known to result in a drop of basal plasma insulin concentration [28],

amplification of glucose uptake by the working tissue [29] and elevated hepatic glycogenolysis

[30]. Thus, energy expenditure before and after a meal is an important parameter for

calculating an optimised insulin bolus solution. A simple qualitative value (no, mild or

moderate activity) of the parameter can be obtained manually through the user by entering

recent and expected activity. Automatic detection of physical activity can be achieved by

using data collected from an accelerometer [31, 32] or heart rate monitor, which has been

validated as a surrogate for physical activity in people with T1D by Breton [33]. Figure 2.4

shows an implementation of an exercise model utilising heart rate as input and the drop in

basal glucose concentration for various intensities. It can be seen that the drop in glucose

concentration is still noticeable after 20 hours. Therefore, exercise performed in the evening

can potentially still a↵ect the insulin requirements the next morning.

2.5 Decision Support in Diabetes Management

With the advent of information technologies and a vast amount of data available from glu-

cose sensors and insulin pumps, DSS have the potential to assist both patients and clinicians

in the complex task of diabetes management.
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Figure 2.4: MATLAB R� simulation of the glucose response after 30 min of mild (HR=105)
and moderate (HR=140) exercise compared to resting state (HR=70) utilising exercise
model C proposed by Breton [33].

Decision support for clinicians aims at assisting diabetes experts in the management of the

chronic disease. The functionality of these systems can range from analysing patient charac-

teristics to supporting the clinical expert in their decision-making of changes to the insulin

therapy. So far the focus on DSS for diabetes (both types) has been on providing clinicians

with patient-specific assessments or recommendations to aid clinical decision-making [34].

Nilasena et al. [35] used computer-generated reminders to improve physician compliance,

while another group [36] showed the clinical benefit of implementing a diabetes electronic

management systems (DEMS) and planned care involving guideline implementation and

use of clinical information systems. Several telemedicine systems have been investigated to

remotely support people with T1D or the clinicians in their decision-making. The Telematic

Management of Insulin-Dependent Diabetes Mellitus (T-IDDM) project [37] aimed to assist

physicians in the decision-making for insulin therapy adjustments and also allowed remote

supervision of patients through tele-monitoring. METABO [38] is another project with the

aim to enhance the communication between patients and physicians in order to improve

treatment and diagnosis. The system uses a portable mobile device that communicates

with the expert control system. However, the patient device does not include any adaptive

decision support and a high degree of participation from the medical team is required. Sev-
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eral study teams investigated the utilisation of the patient’s phone to transmit blood glucose

results [39] [40] and receive consultation from the physician via phone [41] [42] or feedback

via automated text responses that contain motivational content, estimations of HbA1c or

reminders for set goals [43] [44]. The outcome of the studies showed that telemedicine trans-

mission and feedback of information is feasible and acceptable for patients, while real-time

access to data is required for insulin dosing adjustments [39].

2.6 Decision Support for Insulin Dosing

Calculating the optimal insulin dosage is key in diabetes management in order to achieve

good glycemic control and avoid short and long term complications. The amount of insulin

needed to cover a meal depends on the current BG level, target BG, amount of carbohydrates

in the meal, the ICR and the insulin-sensitivity-factor (ISF), which describes the drop in

glucose for one unit of insulin. Therefore, the ISF is used to add (or remove) insulin for

high (or low) glucose levels at the time of meal. While initially patients diligently utilise

these factors for calculations, in practice many people with T1D revert back to empirical

rules and approximations, which often results in suboptimal glucose control [45].

2.6.1 Bolus Calculators (BC)

Insulin bolus calculators (BC) have been designed to overcome this hurdle and provide more

accurate insulin calculations while at the same time improve patient adherence. BCs use a

simple formula to calculate the amount of insulin needed for a meal or to correct for elevated

BG levels [46] and are commonly integrated into insulin pumps, glucose meters and, more

recently, within smartphone applications. Table 2.1 lists input and pre-defined individual

parameters, which are commonly used by BCs to calculate a meal bolus dose B as follows:

B =
CHO

ICR
+

G�Gs

ISF
� IOB, (2.1)

where CHO is the total amount of carbohydrate of a meal (gram); ICR is the insulin-

to-carbohydrate ratio (gram/IU), G describes the current blood glucose level (mM/l); Gs

is the pre-defined glucose setpoint (mMl/l); ISF is the insulin sensitivity factor (mMl/IU)

and IOB is the insulin-on-board and denotes how much insulin is still in the body from

previous injections. The impact of each parameter will now be explained in more detail:
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Carbohydrates (CHO) Carbohydrates are nutrients found in a variety of foods (e.g.

potatoes, rice, pasta cereals and sugary drinks). They are converted into glucose by the

digestive system and serve as a main energy source for the cells in the body. The more

carbohydrates are being consumed, the more insulin is needed to keep glucose levels within

target. Therefore, information about the amount of carbohydrates is essential to calculate

the insulin dose needed to cover a meal. Nutritional labels on packaged food items or

drinks often contain the carbohydrate content, which can help people with diabetes to

achieve a better estimation of totally consumed carbohydrates. More recently, many health

applications for smartphones incorporate food databases with detailed information about

the nutrition of food items and research has investigated the use of meal databases to

capture carbohydrate, lipid and protein content [47]. However, meals that are consumed

in restaurants or where the meal composition is not known still provide a challenge to

accurately guess the correct amount of carbohydrates (see Chapter 1.1.3). Another research

team proposed to automatically assess the meal content (e.g. taking a photo of the meal and

analyse the content via image processing) but showed only limited success in practice [48].

Currently, there is no reliable automated way to determine the amount of digested food and

people with T1D still depend on manually counting the amount of carbohydrates for each

meal.

Insulin-Carbohydrate Ratio (ICR) The ICR denotes how much carbohydrates are

covered by one unit of insulin. A commonly used formula to estimate the ICR is based on

the total daily dose of insulin (TDD), where ICR is determined by dividing the TDD by

a factor of 450 or 500 (i.e. 450/500 rule). This factor has been reduced by other research

groups to 300, thus providing more conservative ICR values. More recently, Davidson and

colleagues proposed following calculations based on the retrospective analysis of 167 pump

patients that incorporated the weight (lb) of the individual:

ICR =
2.8 ⇤Wt(lb)

TDD
(2.2)

The formula was later slightly adjusted by Walsh after analysis of data from 1020 pumps to:

ICR =
2.6 ⇤Wt(lb)

TDD
(2.3)

Estimated ICR values often need to be adjusted for di↵erent times of the day and regularly

re-adjusted to compensate for changes in insulin sensitivity.
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Insulin-Sensitivity Factor (ISF) ISF is used to determine the insulin dose needed to

correct for glucose levels outside the target range. More specifically it describes how much

glucose levels drop for one unit of insulin. Similar to ICR values, rules or guidelines exist

based on the experience of clinical experts to determine the starting point of ISF for an

individual. Most rules are based on factors, which are divided by the TDD. Commonly used

factors in the literature are 1500, 1800 and 1960 (sometimes rounded to 2000) for mg/dL

and 90, 100 and 110 for mmol/l.

Insulin-on-Board (IOB) The estimated amount of bolus insulin on board (IOB or BOB)

is based on the individual duration of the insulin-action-time (IAT), which describes how

long an insulin bolus from a previous injection is still active in the body. Changing the IAT,

therefore, regulates how aggressive or conservative insulin bolus recommendations are after

previous insulin injections. Setting the correct IAT is important as an underestimation of

IOB could potentially lead to hypoglycaemia when additional insulin although active insulin

still remains in the body (i.e. insulin ‘stacking’). The calculation of IOB also depends on

the function used to describe the decay of active insulin, with linear and curvilinear plots

being the ones most commonly used by commercial bolus calculators. Curvilinear plots aim

to approximate the pharmacodynamics of insulin formulations while linear plots (Figure

2.5) make the concept of IOB easier to understand for bolus calculator users. Compared to

curvilinear plots, linear plots underestimate IOB at the beginning and slightly overestimate

the active insulin on board towards the end of the defined IAT. Conversely, curvilinear

plots yield in higher IOB in the first 30 minutes after the insulin injections, which aims to

replicate the delayed onset of insulin).

Commercial BCs

The first commercial device to incorporate a bolus calculator was the Deltec Cozmo R�(Smiths

Medical MD, Inc.,St. Paul, MN) in 2002 and since then, most insulin pumps provide some

form of bolus advise, either on the pump itself or via a remote handset. More recently, bo-

lus calculators have also been implemented into blood glucose meters (e.g. ACCU-CHEK R�

Aviva Expert and FreeStyle InsuLinx R� Blood Glucose Monitoring System) to assist people

with insulin dose calculations who do not use insulin pumps but multiple daily injections as

insulin therapy (Figure 2.6). Table 2.2 lists currently available bolus calculators and their

features.With the availability of mobile technologies such as smartphones and tablets, there

is the potential of integrating meal bolus calculators within commercially available devices.
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Table 2.1: Input and patient specific parameters of a standard bolus calculator and their
acquisition, usage, dependencies and uncertainties.

Input Parameters Acquisition Parameter Usage Dependencies/
Uncertainties

Glucose
Concentration

Manual: User enters
value from BG meter
or CGM system;
Automatic: Glucose
value is automatically
transmitted and
retrieved from BC
software

Used to correct
for initial
Hyper-/
Hypoglycaemia

Dependencies: BG
meter, CGM system.
Uncertainties:
Accuracy and delays
when using CGM as
glucose input

Amount of
Carbohydrates

Manual: User enters
estimation of amount
of carbohydrates or
selects from
meal-library;
Automatic: e.g.
scanning of bar-code of
packaged meal

Used to calculate
amount of insulin
needed to cover
the meal

Dependencies:
Knowledge of
carbohydrate counting
Uncertainties: Errors
in estimation of
carbohydrate content

Patient Specific
Parameters

Acquisition Parameter Usage Dependencies/
Uncertainties

Insulin-
Carbohydrate
Ratio

Pre-defined by clini-
cian/endocrinologist

Used to calculate
how much insulin
is needed to cover
a specific amount
of carbohydrates

Uncertainties: ICR
needs to be adjusted
based on changes to
the insulin sensitivity

Insulin-
Sensitivity
Factor/
Correction Factor
(ISF/CF)

Pre-defined by clini-
cian/endocrinologist

Used to calculate
how much insulin
is needed to cover
a specific amount
of carbohydrates

ISF needs to be
adjusted based on
factors influencing
insulin sensitivity

Insulin Action
Time (IAT)

Pre-defined by clini-
cian/endocrinologist

Used to calculate
active insulin on
board

Dependencies: Type of
insulin, insulin
injection site, type of
insulin, physical
activity

25



Diabetes Management and Insulin Dosing Decision Support

Figure 2.5: MATLAB R� simulation showing the linear decay of active insulin in the body
for various IAT settings (2-8 hours)

Huckvale et al. systematically reviewed and analysed the clinical suitability of 46 appli-

cations (apps) that provide the functionality to calculate an insulin dose for meals. The

research team exposed that the majority of insulin calculator apps do not implement any

protection for incorrect input or inappropriate use, potentially leading to harmful insulin

dose recommendations. The main reason for this is because most of the available dose calcu-

lators are not approved by corresponding regulatory authorities, such as the Food and Drug

Administration (FDA). In 2013, Volartis (Paris, France) announced the CE-marking of the

first insulin dose calculating application Diabeo R� [50], which was used in the TeleDiab 1

study [51] [49]. However, the mobile application was not made commercially available.

Figure 2.6: Bolus Wizard implemented within the insulin pump of Medtronic’s 640G (left),
the bolus advisor on ACCU-CHECK R�Aviva Expert System from Roche (centre) and the
bolus calculator built within the blood glucose meter of Abbott FreeStyle InsuLinx R� (right).
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In early 2015, Roche Holding AG (Basel, Switzerland) received FDA approval for their dia-

betes management app ACCU-CHECK R� Connect [52], which incorporates an insulin bolus

advisor and was later released for Android and iOS compatible devices. Before its first use,

the meal bolus advisory function needs to be activated by a healthcare professional.

Benefits of BCs

Several studies demonstrated the clinical benefit of using bolus calculators. In the study

presented by Gross et al. [45], the number of correction boluses for elevated glucose levels

and the number of times where carbohydrates were needed to recover from hypoglycaemic

episodes were reduced. In a paediatric population using insulin pumps, Shashaj et al. [53]

demonstrated that the bolus insulin dose calculated using a bolus calculator was more ef-

fective in improving pre-and postprandial glycemic control with fewer correction boluses,

without di↵erences in the prandial insulin requirements and without restriction to the car-

bohydrate content of meals. In another study by Garg et al. [54], an insulin guidance

software (ACCU-CHEK R� Advisor, Roche, Indianapolis, USA) was tested in a crossover

study of 12-month duration. The mean HbA1c was significantly lower from 3 to 12 months

in the experimental group (p<0.02) and an HbA1c reduction of 0.6% was maintained at 12

months in the experimental group. A study by Lepore et al. [55] demonstrated that bolus

calculators improve long-term metabolic control and reduce glucose variability in pump-

treated subjects with T1D. Finally, Barnard and colleagues [56] reported a reduced fear of

hypoglycaemia and improved confidence in dosage accuracy in people with T1D when using

bolus calculators.

Limitations of BCs

BC are considered state-of-the-art for insulin dosing decision support. However, they require

accurate carbohydrate counting skills and structured diabetes education among people with

T1D is limited (see Chapter 1.1.4). Over- or underestimating the amount of carbohydrates

can result in potentially dangerous low glucose levels. Current bolus calculators limit the

estimation of required bolus insulin for meals to the amount of carbohydrates and omit

information about glycemic index or fat content of the meal. However, they provide only

limited personalisation and are not able to react to life-style changes that a↵ect the insulin

sensitivity and, thus, require intensive and frequent re-adjustments by a clinical expert.

Currently, only one bolus calculator(Roche ACCU-CHECK R� Expert/Combo/Connect) al-
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Table 2.2: List of commercially available bolus calculators implemented in various platforms

Company/Product Platform Features Comments

Animas
OneTouch
Ping

Insulin Pump Insulin-Carb.-Ratio,
Insulin Sensitivity,
Target Glucose Range

BC incorporated in
both pump and remote
meter

Roche ACCU-
CHECK
Combo
Spirit/Avia
Expert

Combo Spirit:
Insulin Pump
+ BG Meter
Avia Expert:
BG Meter

Insulin-Carb.-Ratio,
Insulin Sensitivity,
Insulin Action Time,
Health Events:
Exercise, Illness,
Premenstrual

BC incorporated into
remote meter; allows
adapting insulin dose
based on pre-defined
percentages for various
health events

Roche ACCU-
CHECK
Connect App

Smartphone Insulin-Carb.-Ratio,
Insulin Sensitivity,
Target Glucose Range

Needs to be activated
by healthcare
professional; connects
to BG meter

Medtronic
530G/640G

Insulin Pump Insulin-Carb.-Ratio,
Insulin Sensitivity,
Insulin Action Time,
Target Glucose Range

CGM Capability

Insulet
OmniPod

Pump Handset Insulin-Carb.-Ratio,
Insulin Sensitivity,
Insulin Action Time,
Target Glucose Range

BC incorporated into
remote handset

Tandem t:slim Insulin Pump Insulin-Carb.-Ratio,
Insulin Sensitivity,
Target Blood Glucose,
Insulin Action Time

CGM capability
(Dexcom G4)

Cellnovo Pump Handset Insulin-Carb.-Ratio,
Insulin Sensitivity,
Target Glucose Range

Bolus advisor
integrated in handset,
which also acts as
glucose meter

Abbott
FreeStyle
InsuLinx

BG Meter Insulin-Carb.-Ratio,
Insulin Sensitivity,
Target Glucose Range

Setup requires access
code from health care
professional; two
modes: Easy mode
(breakfast, lunch and
dinner) and advanced
mode (carb-counting);
no IOB information

Thorpe
Products Ltd.
Calsulin

Standalone
Calculator

Insulin-Carb Ratio,
Target Glucose,
Insulin-Sensitivity
Factor physical activity

No information about
active insulin; considers
intensity of exercise
after injection28
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lows the user to reduce or increase the insulin bolus for stress and exercise. While the

inclusion of these parameters is welcome, the changes in the amount of insulin are based

on an estimate by the individual user and the performance of the applied adaptation is not

evaluated. Moreover, because of their inability to adjust the insulin therapy for the multiple

factors described in Chapter 2.4, a more intelligent solution for insulin dosing is needed.

Decision Support Systems (DSS) for Insulin Therapy Adjustments

The potential of decision support for insulin dosing has been advocated since the early

80s [57] where algorithms and techniques from the artificial intelligence domain were used

to propose therapy adjustments. The following section lists intelligent systems, which have

been proposed for insulin dosing decision support:

BCMC [58] (Better Control Medical Computers, Inc. Ontario, Canada) was one of the

first portable microprocessor devices, which implemented an algorithm to adjust the insulin

dose to a desired target value set by the physician.

IIAS [59] The IIAS (insulin infusion advisory) system was able to provide real-time esti-

mations of the insulin infusion rate for people on insulin pumps using a non-linear model

predictive controller.

DIGS [60] (Diabetes-Insulin-Guided-System by Hygieia, Inc. MI, USA) is an automated

decision support algorithm for insulin dose adjustments. In an uncontrolled study the

research group demonstrated improvements in glucose control be means of self-monitoring

of BG; however the authors note the that the most notable improvement in HbA1c was

observed at the end of the run-in phase, which may have been due to the Hawthorne

e↵ect [61].

Run-to-Run (R2R) [62] R2R is a method derived from control engineering and exploits

the repetitiveness in the process to be controlled. The algorithm relies on two finger-prick

measurements after the meal, which limits its practicality.
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DIABEO [51] is a smartphone based adaptive bolus advisor with telemonitoring capa-

bilities. The system was assessed in a six-month controlled study in a poorly controlled

population with and without the use of tele-consultation. A significant reduction in Hb1Ac

over the control group was observed in the intervention group that received tele-consultation.

DIAdvisor [63] aims to assist people with T1D and T2D by showing short-term glucose

predictions and providing therapy advice. While presented results are encouraging in terms

accurate blood glucose predictions, the system is only suitable for use within a static clinical

environment and therefore provides limited mobility.

Suggested Improvements

Based on the presented literature on existing technologies, discussions with the clinical

study team and feedback obtained from focus group meetings (see Chapter 4.4), specific

requirements for an insulin DSS have been defined that need to be addressed in order to

provide maximum clinical e�cacy and acceptability. It is hypothesised that an ideal insulin

DSS should implement following features:

- Adaptability The DSS should be able to adapt the insulin therapy (or more specifically

the patient specific parameters ICR and ISF). This can be either automated or, for safety

reasons, semi-automated after approval from a clinical expert.

- Integration of CGM Utilising data from a CGM system helps to capture fluctuations

of glucose levels and provides better information for insulin therapy adjustments.

- Multiple Input Parameters The DSS should incorporate multiple inputs that enable

the system to have access to information about factors a↵ecting glucose levels (see Chapter

2.4) and perform adaptations to the insulin therapy accordingly.

- Portability Usability is key and a DSS for insulin dosing should be mobile and unob-

trusive in order to be easily integrated into the life style of the person with T1D.
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- Remote Supervision A system that performs changes to the insulin therapy must

ensure that a mechanism is in place that allows remote supervision or approval of suggested

adjustments.

The research presented in this work describes the development of an ‘Advanced Bolus Cal-

culator for Diabetes (ABC4D)’ that was designed to meet all of these criteria and therefore

improve over existing technologies. The next chapter introduces the concept of case-based

reasoning (CBR) where multiple input parameters are used to di↵erentiate between

various situations, which include factors that have impact on the insulin requirements (e.g.

exercise). In the same chapter, a novel algorithm is presented that adapts the insulin bolus

calculator parameters ICR and ISF based on the glucose outcome collected with a CGM

system. The implementation of this algorithm into a portable smartphone-based system

is described in Chapter 4 along with a clinical platform that allows remote supervision

of therapy adaptations. Table 2.3 compares the features of the proposed ABC4D system to

other existing DSS. While all of the listed systems provided some sort of adaptability, they

lack the incorporation of additional input parameters and personalisation.

Table 2.3: Overview of DSSs for insulin dosing compared with the proposed ABC4D system.
‘X’ indicates that the feature was implemented, ‘-’ that the feature was missing or unknown

DSS Name Bolus Calc. DIAdvisor BCMC DIGS IIAS R2R DIABEO ABC4D

Approach - MBR CT CT MBR/NN CT CT CBR

Portability
X - X X X X X X

Adaptability
- X X X X X X X

CGM
data

- X - - - - - X

Remote
Supervi-
sion

- - - - X - X X

Multiple
Parameter
Input

- - - - - - - X

MBR=Model Based Reasoning, CT=Control Theory, NN=Neural Networks, CBR=Case
Based Reasoning
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2.7 Conclusion

Despite the advent of new diabetes technologies, such as continuous glucose monitors and

insulin pumps that support people with T1D to manage their diabetes, maintaining healthy

glucose levels still remains a challenging task. The reduction of the complexity of diabetes

care is therefore of benefit for both physicians and patients. Insulin bolus calculators aim

to assist people with T1D to calculate the amount of bolus insulin needed for a meal

and are implemented in insulin pumps, blood glucose meters and smartphone applications.

However, bolus calculators do not incorporate any intelligence to revise the glucose outcome

and adjust its parameters. Other decision support systems have been discussed that are

able to provide insulin dose adjustments, but they lack the utilisation of CGM data or

the ability to consider factors (e.g. exercise or alcohol) that impact glucose control after

meals. The research in this thesis aims to overcome these shortcomings by presenting a

decision support platform that is able to revise and adjust the bolus calculator parameters

for various daily life scenarios.
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Chapter 3

Case-Based Reasoning (CBR) for
Insulin Dosing Decision Support

3.1 Introduction

This chapter introduces the use of case-based reasoning (CBR) for insulin dosing decision

support. First, the concept and motivation of using CBR as a problem-solving methodol-

ogy is discussed as well as its current use in medicine and diabetes management. Insulin

dosing decision support requires detailed understanding about the ’problem’ that needs to

be solved (i.e. how much insulin is needed for a certain meal to achieve target glucose

levels) and the various parameters that have an impact on the insulin requirements of an

individual person with T1D. In CBR, a ’problem’ is represented by a number of cases within

a case base. A problem scenario can be any situation, where insulin is required. The pre-

sented system based on CBR will focus on insulin dose recommendations for meals, but

the potential of additional decision support will be discussed (i.e. recommending correction

insulin boluses or adjustments for insulin basal rates). For meal dosing recommendation,

a case contains information about various aspects of the meal scenario (i.e. description of

the meal) and environmental factors (e.g. stress, exercise), which are described through a

set of parameters. The following chapter discusses potential case parameters and how they

can be used within an insulin dosing decision support system.

Another research challenge is the assessment of the glucose outcome for proposed solu-

tions. Using data obtained from continuous glucose monitors, various outcome metrics will

be evaluated based on reliability and robustness to sensor noise.
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Finally, implementation methods of the CBR learning mechanism are presented, as well

as methods on how to adapt the solution of cases (i.e. proposed insulin therapy for a spe-

cific meal situation) based on CGM data. The chapter concludes with simulation results

evaluating the concept of a CBR-based decision support system using a T1D simulator,

which is approved by the Food and Drug Administration (FDA).

3.1.1 Concept and Motivation for using CBR

As discussed in the previous chapter, insulin therapy strongly depends on the specific situ-

ation and on various factors a↵ecting the glucose metabolism at the given time. The CBR

methodology fits well for this area as here such situations (in CBR called problems) are

described and stored within cases in a case base. New arising problems (e.g. a new meal

situation where insulin is required) are compared with cases in the case base for similarity

and the solution of the most similar case is the proposed. This concept of solving problems

in CBR is based on the way what we humans do when making decisions based on our expe-

rience. Once a new problem arises, we try to recall whether something similar has happened

in the past, and depending on whether the outcome of the solution was successful or unsuc-

cessful, either apply or avoid that solution for the current situation. If we do not have any

experience (in CBR this means that no similar case is found), we try a new solution that in

our opinion is safe and, while this trial-and-error approach may be not optimal, we hope it

will lead to a satisfactory outcome. If the applied solution fails to achieve a good outcome,

it can be either revised or discarded. Regardless of the outcome, the new situation can be

remembered (stored as a case) for future use.

Case Structure

A newly created case consists of three major parts: the problem description (e.g. high-fat

meal with increasing trend of blood glucose), the solution (e.g. amount of insulin units)

and the outcome (e.g. mean postprandial glucose excursion).

CBR Learning Cycle

The learning process in CBR has been described by Aamodt and Plaza [1] and is shown in

Figure 3.1.
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Figure 3.1: Process cycle of CBR

The proposed CBR cycle includes following four steps:

• RETRIEVE the most similar case or cases

• REUSE the information and knowledge in that case to solve the problem.

• REVISE the proposed solution

• RETAIN the parts of this experience likely to be useful for future problem-solving

The first task of the process cycle is to compare the new problem with cases stored in the

case base in order to search for the most similar one. The next steps involve modifying the

solutions of retrieved cases to fit the current problem (reuse and revision). If the new case

is identical with an older one, a simple solution transfer can be performed, otherwise major

modifications could be required. The last step is the update of the case base, which can

either involve the uptake of a newly learned case or a modification of an existing case.
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3.1.2 Successful CBR Applications in Medicine

Many applications of CBR in medicine, for both diagnosis and therapy, can be found in the

literature. One of the first CBR systems in medicine was CASEY [2], a system designed by

P. Koton at the Massachusetts Institute of Technology which combined CBR with model-

based reasoning (MBR) in order to diagnose heart failures. The system is built on top

of the Heart Failure Program, which is also the source of the cases in the case base, and

adds CBR functionality. Koton describes CASEY as a system that uses CBR to recall and

remember problems that it has seen before, and uses a causal model of its domain to justify

re-using previous solutions and to solve unfamiliar problems. PROTOS [3] is a CBR-based

classification system used for diagnosing hearing disorders. The system learns concepts by

retaining exemplars and classifies new cases by matching them to the exemplars.

An example for CBR in medical therapy is ICONS, which was designed to prescribe antibi-

otics to patients in intensive care who have bacterial infections. The prescribed antibiotic

regimen should satisfy the medical and economic constraints entered into the system. The

ICONS system seeks to give advice for a specific, acute medical problem in the form of

corrective action.

The use of CBR in diabetes has been centred on prognosis and risk of developing dia-

betes [4]. The first project to use CBR to recommend an insulin therapy was the T-IDDM

project [5], where CBR was integrated within a rule-based reasoning engine and a proba-

bilistic model describing the e↵ects of insulin on blood glucose levels. More recently, the

IDSDM project [6] used CBR as primary reasoning modality in a decision support tool for

patients on insulin pump therapy, and introduced other factors into the calculations, such

as life events that can influence blood glucose levels. However, both systems were focused

on providing decision support to the physicians using retrospective data and not real-time

decision support for people with T1D.

3.1.3 Advantages of CBR in Diabetes Management

The use of CBR is especially advantageous for applications where not only text-book knowl-

edge is available but where individual experience is an important factor to solve the problem.

This is especially true when looking at the glucose profile of individuals with T1D, which all

di↵er from each other and change over time. Because of its adaptive approach (i.e. revision

step of the CBR cycle), CBR is flexible in its reasoning such that it can react to changes in
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the glucose profile over time and provide new solutions accordingly. This flexibility is a ma-

jor advantage compared to static decision support techniques such as rule-based reasoning,

where the representational knowledge is predetermined and does not change automatically.

Arguably, more sophisticated machine learning techniques, such as support vector machines

(SVM), o↵er similar flexibility and can provide the means to di↵erentiate between various

diabetes scenarios and optimise the insulin dosage. Compared to other decision support

techniques, however, one of the biggest advantages of CBR lies in the transparency of the

reasoning on how the decision was created. In addition to providing a solution for a specific

problem scenario, CBR can give further information about the most similar retrieved case

and its usage history. Furthermore, unlike decision trees and neural networks, relatively

little work needs to be performed a priori (e.g. knowledge acquisition or training with data

sets) and CBR can start o↵ with little or none initial knowledge. Additionally, CBR is well

suited for problem situations that deal with a large amount of uncertainty and parameters

that vary with time. Some of the commonly known uncertainties in diabetes management

include:

• Accuracy of continuous glucose sensors

• Variable delays in glucose sensing and insulin action time

• Errors in carbohydrate estimation

• Changes in insulin sensitivity

Compared to a fixed set of implemented rules, CBR is able to react to uncertainties or

changes over time, where the variability is not uniform distributed (e.g. a drift or o↵set

from the norm). For instance, it is hypothesised that people with diabetes, who struggle

with estimating the correct amount of carbohydrates for a meal, will consistently perform

a similar error in over-(or under) estimation of the carbohydrate content. Over time, CBR

could potentially adapt to this specific situation (e.g. a large breakfast meal, which the

user tends to overestimate) and recommend less insulin at the next similar scenario. The

final advantage of CBR is that it enables the integration of other techniques into the CBR

learning cycle (see Chapter 3.6).
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3.2 A CBR System for Insulin Bolus Decision Support

This research proposes to utilise the advantages of CBR and enhance state-of-the-art bolus

calculators in order to provide more flexibility and adapt to changes or uncertainties in the

environment of the person with diabetes. Situations and variables that are known to have

an impact on postprandial glucose levels can be described and stored in cases while the

insulin therapy for this specific scenario can be optimised until the glucose outcome proves

to be satisfactory.

3.3 Problem Description

One of the main challenges when using CBR for reasoning is how to represent the defined

problem situation inside one case. The content of a case strongly depends on the appli-

cation of CBR. For instance, in a CBR-based bolus advisor system, a case contains all

relevant information a↵ecting the glucose profile for a certain situation. The simplest form

to represent a case is to assign attribute-value pairs to the parameters and store them in

a flat hierarchical structure, thus keeping the knowledge engineering e↵ort at a minimum.

Contexts (see 3.6.1) can be used to limit the problem space and therefore to reduce the

time of case retrieval.

3.3.1 Case Parameters

As discussed in Chapter 2.4, the optimal amount of bolus insulin depends on various factors

e.g. meal amount, current blood glucose level, psychological stress etc., all of which have

the potential to be included as parameters within a case. In order to reduce the complexity

of an insulin advisory system, only key parameters that influence glycemic control should

be considered. A detailed list of biological and environmental factors, their reported e↵ect

on the glucose regulatory system and the possible acquisition of the factor, can be found

in Appendix B. The list also includes information, whether the parameter needs to be in-

troduced manually (through user elements such as text-fields, check-boxes, slider buttons),

or if the information can be automatically obtained without any user intervention (e.g. ac-

tivity monitor, temperature sensor). While it is of interest to reduce manual user input as

much as possible, some factors like stress or illness cannot be captured by sensors and will

require manual user input. The selection process of case parameters used during clinical
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evaluation of the research is described in Chapters 5.3.3 and 5.4.2

Shepard et al. [7] presented research on the patient’s perspective on which parameters they

would find useful (thus based on their experience have an impact on the glucose control) and

would like to see integrated into a personalised glucose advisory system. Feedback was ob-

tained from 56 adults familiar with technologies such as CGM systems and insulin pumps in

several focus group meetings. While most factors, which have already been discussed in this

section, were mentioned by focus group participants, additional suggestions included: preg-

nancy, changes in schedules/routines, shift work or night work, weekend/weekday, travel-

ling/time zones, planned activities in the near future and medical procedures (e.g. surgery).

Additional Potential Case Parameters

Glucose Levels or Range Bolus calculators use information on current blood glucose

levels to provide additional insulin at meal time if glucose levels are high. However, absolute

glucose levels or their range (i.e. hyperglycaemia) may also be used as a case parameter, as

prolonged elevated glucose levels can potentially lead to an increase in insulin resistance [8].

Glucose Rate-of-Change Having access to continuous glucose information o↵ers the

possibility to derive further information about the glucose profile, such as calculating the

rate of change (ROC) of glucose levels.

Meal size/Size of Dose As the amount of carbohydrates is already being considered

within the bolus calculator formula, there is theoretically no need to include the size of

the meal as a case parameter. However, this is based on the assumption that the insulin-

carbohydrate ratio is 100% linear, something which is unlikely to be the case in reality.

Thus, for people who regularly eat meals that vary greatly in sizes, the meal amount could

potentially be used as a parameter. An additional e↵ect on the glucose levels for larger

meals is also indirectly caused by the size of the insulin dose. Larger insulin doses are

recognised to slow down the insulin absorption.

3.3.2 Number, Granularity and Weighting of Parameters

The number and weighting of parameters play a key role in determining how similar a case

is to a new meal scenario. In order to accurately describe the problem of insulin dosing for a
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meal, the optimal number of parameters is always a compromise between performance and

complexity. While a large number of parameters might achieve better personalisation of

insulin therapy, the weights (i.e. importance) of chosen parameters need to be considered,

which are, as the features themselves, patient specific. Furthermore, the more parameters

are defined, the more cases will be created which, in turn, increases the time needed for

each case to converge to an optimised solution. Granularity of case parameters describes

the level of detail in which parameters are stored in the case-base and used for retrieval.

For example, ’physical activity’ chosen as a case parameter can be broken down into ’type

of exercise’, ’intensity’, ’duration’ etc. While it is hypothesised that finer granularity of

a parameter achieves better glucose outcomes after optimisation, it also requires a more

detailed understanding on the e↵ect of the parameter on the glucose regulatory system.

However, similar to the total number of selected parameters, the use of ’finer-grained’

parameters may result in a longer time needed to optimise the solution of an individual

case.

3.4 Case Solutions

There are multiple solutions to optimise the postprandial glucose excursion. The most

common solutions in the insulin therapy involve changes in the amount of insulin as well

as the timing of insulin administration and shape of bolus (when using insulin pumps).

Figure 3.2 illustrates which of the presented case parameters have an impact on the insulin

sensitivity (amount of insulin) or the insulin absorption (time and shape of insulin).

3.4.1 Amount of Bolus Insulin

If the basal insulin has already been optimised, a possible solution is to recommend the

amount of insulin boluses for meals. In this case, the ICR can be used as a possible solution.

Required changes to the amount of insulin are usually contributed to factors a↵ecting the

insulin sensitivity and have been described in Chapter 2.4.

3.4.2 Timing and Shape of Bolus

Several parameters, which have been discussed, only report little e↵ect on the insulin sensi-

tivity but rather on the absorption time of administered insulin. While people on multiple
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Figure 3.2: Impact of case parameters on the amount (left) and the administration
time/shape (right) of the insulin bolus .

daily injections have the option to change the timing of the insulin injection as well as

’splitting’ the bolus (e.g. 50% given at the time of meal, the rest of the bolus given at a

later time), insulin pumps o↵er additional types on how the meal bolus can be delivered

over time (Figure 3.3). Therefore, a case solution could further propose the timing and

shape of the meal bolus, in addition to the amount of insulin to be delivered.

Figure 3.3: Di↵erent bolus types for insulin administration.

3.4.3 Other Solutions

Total Daily Dose of Insulin The total daily dose (TDD) of insulin is often used as

a starting point for people with diabetes to estimate their basal rate and bolus insulin.

While the adjustment of TDD would only provide very general decision support (compared

to decision support for specific meals), there is the potential to use TDD as a solution

for newly diagnosed people with diabetes, who have no prior knowledge about the insulin-
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carbohydrate ratio or insulin-sensitivity factor. Here, cases would only include information

that changes over a period of days (interday variability) such as weekday/weekend or illness.

Adjustments to Basal Insulin While the focus of this research is to provide decision

support for meal insulin dosing, future work could also provide recommendations to adjust

basal insulin. This can be achieved by analysing fasting glucose levels (e.g. during the

night). It shall be noted that the adjustment of basal insulin is challenging during meal

times if the decision support system already adapts the insulin therapy during that time.

Carbohydrate and Exercise Recommendation Additional to proposing insulin, a

decision support system for people with T1D could recommend carbohydrates to correct

for low glucose levels (i.e. ’rescue-carbs’), as well as exercise or other behavioural advice

(e.g. change of injection site )

3.5 Outcome

The outcome of the proposed solution can either a) solve the problem b) improve, but

not solve the problem or c) fail to solve the problem. A clinically acceptable outcome for

the meal insulin dosing problem is to achieve safe glucose excursions for meals by bringing

postprandial (i.e. from the start of meal intake until 4-6 hours after the meal) glucose

levels back to a pre-defined target. While short-time elevated glucose levels are di�cult

to be avoided due to slow insulin dynamics (the time needed for insulin to lower glucose

concentration), the aim is to minimise the time spent in hyperglycaemia without entering

the hypoglycaemic zone.

3.5.1 Metrics for Evaluating Outcome

The assessment if a proposed insulin dose was safe and brings glucose levels back into

target range is a key element of the decision support system. For the sake of simplicity it is

assumed that there is enough time after a meal to evaluate the outcome without any events

that alter the glucose profile (e.g. unannounced snack or exercise).
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Absolute Post-pranidal Blood Glucose Levels

Most physicians recommend people with T1D to measure glucose levels with a BG meters

two hours after the meal, which gives an indication of the e↵ect of the administered insulin

dose. However, insulin is active up until 6 hours after administration and a single mea-

surement does not give information about the trend or glucose rate-of-change. So even if

the measured glucose levels are within target range, glucose concentrations might still be

dropping because of active insulin (insulin-on-board). Two postprandial measurements at

di↵erent times would help to determine a trend of glucose levels. However, multiple BG

measurements during a short period of time might decrease utilisation and would not be

adopted by most people with diabetes.

Postprandial Glucose Minimum

Continuous glucose monitor (CGM) data can be used to capture fluctuations between blood

measurement samples. One advantage of using CGM devices is the possibility to capture

hypoglycaemic events. By analysing the lowest glucose reading for a pre-defined time win-

dow after a meal, it is possible to adapt the insulin therapy if the measurement is below or

above the target.

Postprandial Glucose Increment

Another method of assessing the outcome of a case would be measuring the glucose incre-

ment/rise after a meal, assuming that the glucose increment for meals is linear to the meal

size. In case the glucose value should be higher/lower than expected, not enough or too

much insulin has been delivered for this meal, respectively.

Time to Peak of Glucose Excursion

A similar method can be used to determine the outcome of a case using the time-to-peak

(TTP) of the glucose excursion. If the time of the glucose maximum is earlier or later

than expected, too much or too little insulin has been delivered resulting in possible hypo-

or hyperglycaemia, respectively. Using retrospective CGM data, the TTP value can be

personalised for an individual with T1D. Figure 3.4 shows the graphical representation of

the glucose increment and TTP.

51



Case-Based Reasoning (CBR) for Insulin Dosing Decision Support

Figure 3.4: Graphical representation of the postprandial glucose increment �G (left) and
time-to-peak �T (right).

Area under Curve

Another metric for evaluating the outcome of an insulin bolus after a meal is to analyse

the postprandial area-under-curve AUC (see Figure 3.5 left). The hypothesis is, that AUC

is reasonably linear with respect to the amount of ingested carbohydrates which has been

proven true in the T1D simulator (see Figure 3.5 right). Thus, for a known glucose area-

under-curve AUC
1

corresponding to an amount of carbohydrates CHO
1

, it is possible to

estimate the area-under-curve AUC
2

corresponding to a carbohydrate load CHO
2

using

the following linear relation:

AUC
2

=
AUC

1

· CHO
2

CHO
1

. (3.1)

Figure 3.5: Left: Graphical representation of the postprandial glucose area-under-curve
(AUC); Right: Linearity of AUC in respect to the amount of carbohydrates. The black line
is the measured AUC using an optimised ICR, while the red line is calculated AUC based
on a reference AUC. The green and blue lines represent the AUCs for suboptimal ICRs.
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3.5.2 In-silico and Clinical Experiments to Evaluate Outcome Metrics

In order to find out which metric is most suitable for revising the outcome of a solution, the

previously discussed continuous metrics area-under-curve, glucose increment and time-to-

peak have been evaluated. First, the T1D patient simulator [9] was used to find a correlation

between the outcome metric and the insulin-to-carbohydrate ratio (ICR). Figure 3.6 shows

the setup of the experiment. A fixed meal has been given every 24 hours while increasing

the ICR from 50% to 150% of the known optimal value. The optimal ICR was determined

a-priori for each subject using a meal tolerance test functionality provided by the simulator.

Figure 3.6: Mean glucose trend vs variable insulin-to-carbohydrate ratios for 10 adults given
a 70g meal every 24 hours.

Sensitivity of Outcome Metric to Solution

Initially, the correlation between the outcome metric and the ICR has been evaluated. The

higher the correlation, the more suitable is the metric for assessing the outcome. An ideal

setting is being assumed, thus errors in glucose measurements and carbohydrate counting

have been omitted for this experiment. Figure 3.7 shows the results for 10 adults from the

virtual population of the T1D simulator. The y-axis for each plot represents the range of

the outcome metric, whereas the x-axis denotes the percentage of the optimal ICR. Based

on the slope of the regression fit, the metric area-under-curve is most sensitive with respect
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Figure 3.7: Graphical representation of the postprandial glucose area-under-curve (AUC),
glucose increment (GI) and time-to-peak (TTP). Solid lines represent the average of 10
adult subjects of the T1D simulator and the dashed lines represent the linear regression fit.

to a change in ICR (0.44), followed by the glucose increment (0.33) and time-to-peak (0.17),

respectively. All metrics report to be fairly linear with R2 values between 0.95 and 0.97.

Robustness of CGM Outcome Metrics to Sensor Error

After showing the correlation of the measured outcome and the solution in ideal conditions,

the second experiment deals with the performance of chosen metrics in a more realistic set-

ting. The bottleneck of applications that utilise CGM data is, despite filtering of raw sensor

data, the accuracy of glucose readings. For this reason, the metric with most robustness to

CGM measurement errors will be advantageous for the performance of an insulin advisory

system.

An experiment has been conducted, where postprandial CGM data (Medtronic Guardian

REAL-Time with Enlite sensor) and venous glucose data as reference were analysed. Ve-

nous glucose concentration was measured every 15 minutes with a YSI (Yellow Spring

Instruments) analyser. All data was obtained from clinical trials evaluating the Imperial

College Bio-inspired Artificial Pancreas (BiAP) system [10]. Sensitivity to sensor noise of

54



Case-Based Reasoning (CBR) for Insulin Dosing Decision Support

the outcome metrics has been assessed using 5-hour postprandial glucose values after a

40g breakfast meal from 10 study participants with T1D by calculating the mean absolute

relative di↵erence (MARD) between the metric using CGM data and venous glucose data,

respectively. The glucose sensor has been calibrated at the time of the meal with the most

current YSI reading. A limitation of the experiment is that it does not accurately replicate

a real-life scenario. While a manual meal bolus had been given (i.e. meal announcement),

the closed-loop controller delivered additional insulin to bring the glucose levels back to

target. Further, the experiment was conducted in a clinical environment with only little

movement of the study participants. It is hypothesised that movement (e.g. exercise) has

a greater impact on the CGM sensor accuracy and leads to di↵erent measurements com-

pared to the actual glucose levels.Figure 3.8 shows the results for analysing the di↵erences

of four metrics when using YSI glucose values and glucose levels obtained from a CGM

system. Area-under-curve, the glucose minima, glucose time-to-peak as well as the rela-

tive maximum glucose increment between the meal-time and 5 hours post-meal have been

analysed. The metrics area-under-curve, glucose minimum, time-to-peak and glucose incre-

ment report di↵erences between YSI and CGM data with a mean MARD of 11.1±13.3%,

12.0 ± 14.9%, 16.1±10.9% and 18.1±14.8%, respectively. None of the metrics showed a

statistically significant di↵erence when compared to each other.

Figure 3.8: The 5-h postprandial MARDs computed for each of the 10 adults are shown,
with the mean and SD of each of those MARDs superimposed on the data for the output
metrics (di↵erences between metrics are not statistically significant).
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3.6 Four Steps of CBR

This section describes methods and algorithms that can be used within the four steps of

the CBR cycle. It is important to note that CBR is not a specific technique, but defined

as a concept or methodology to solve a problem that can incorporate and combine various

techniques from other domains such as machine learning or control engineering. Table 3.1

shows for each CBR step a list of techniques and methods that have been reported in the

literature [11] and that are applicable to the proposed insulin advisory system. Methods that

can be implemented within each of the CBR steps range from simple rules to sophisticated

techniques from the artificial intelligence or machine learning domain. While future work

aims to investigate di↵erent techniques, the methods for each of the four steps were chosen

based on practicality and are now explained in more detail:

Table 3.1: List of potential methods that can be implemented within the CBR steps re-
trieval, reuse, revision and retention

CBR Step Methods Domain

Retrieve Classification Algorithms,
Similarity Measurement
Methods, Fuzzy Logic,
Genetic Algorithms, Neural
Networks

Machine
Learning,
Artificial
Intelligence

Reuse Rule-Based Reasoning,
Decision Trees, Genetic
Algorithms, Neural Networks

Artificial
Intelligence

Revision Control Algorithms,
Rule-Based Reasoning,
Genetic Algorithms

Control En-
gineering,
Artificial
Intelligence

Retention Fuzzy Logic, Rule-Based
Reasoning, Genetic
Algorithms, Neural Networks

Artificial
Intelligence

3.6.1 Retrieval Step

Initially, each time a problem occurs, the new situation needs to be compared to cases that

are stored in the case base for similarity. Similarity is the measure that reflects the strength

of the relationship between two or more cases. Retrieval of the most similar case to a current

situation can follow either a one-step or two-step retrieval process. Two-step retrieval aims
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to narrow down the case base first to a smaller subset of cases (i.e. contexts), which contains

only cases that are similar enough for comparison. After finding the most appropriate

context (inter-class retrieval), the current problem is only compared for similarity to all

cases within the context (intra-class retrieval). The use of contexts improves the retrieving

time and further avoids comparisons between cases with low conceptual similarity. As an

example, it shall be assumed that a recurrent illness results in a severe temporary change

in insulin sensitivity for a person with T1D. If parameter ’illness’ (true/false) is not defined

as a context, then a scenario where parameter ’illness’ is true, is also compared to all cases

where parameter ’illness’ is false. Therefore, it is possible that a case where ’illness=false’

is retrieved if other features show high similarity. Using contexts prevents this problem as

the scenario is only compared with other cases within the same subset. If no case exists

within the same subset, then a new case with a clinically safe solution is created and added

to the case library. Conversely, if more than one case exists for the same context then, in

the second retrieval step, similarity measurements determine which case describes best the

current situation. Examples for contexts in diabetes management are:

• Type of meal: Breakfast, lunch, dinner.

• Glycemic range: Hypo- , Normo-, Hyperglycaemic range

• Physical activity: no, moderate and intense physical activity.

Techniques from the artificial intelligence domain, such as fuzzy logic, have been successfully

utilised in the retrieval of cases. Because only a very small number of parameters is used

for the initial evaluation of the presented DSS, simple similarity measurement metrics can

be implemented to find the closest case for a new problem. Most potential parameters for

insulin dosing decision support are represented in only one dimension e.g. absolute glucose

concentration, amount of carbohydrates, etc. Further similarity measurements found in the

literature are used for more dimensional parameters or text-based retrieval [12]. Commonly

used distance functions in CBR are based on the Euclidean distance, where the distance d is

calculated (in the one dimensional space) by the absolute value of the numerical di↵erence

of two case parameters (Px, Py):

d(Px, Py) =
nX

i=1

| (Px,i � Py,i) | (3.2)

In order to prioritise individual parameters, weights w can be assigned accordingly by:
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d(Px, Py) =
nX

i=1

| wi(Px,i � Py,i) | (3.3)

It shall be noted that some parameters require normalisation in order to make them compa-

rable with each other. Also, the asymmetry of some parameters needs to be considered. As

an example, if using absolute glucose levels as a parameter, the definition of the postpran-

dial hyperglycaemic range (>10 mmol/l ) is much greater compared to the hypoglycaemic

range (<3.9 mmol/l) and the euglycaemic range is not centred within the scale. A di↵erence

of 0.5 mmol/l in the hypoglycaemia range is therefore clinically much more significant than

the same di↵erence in the hyperglycaemic range. A symmetrisation of the blood glucose

measurement scale can be performed to compare cases in a more equitable way [13].

3.6.2 Reuse Step

When a case is successfully retrieved from the case base, two options are possible in order

to reuse the solution from the retrieved case. If the retrieved case is similar enough to the

current meal scenario, then the case solution can be used without requiring an adaptation.

Alternatively, it is possible to temporarily adapt the solution based on pre-defined rules for

certain situations. One challenge at the design process of the insulin advisory system is to

determine, whether a factor that is known to a↵ect the glucose control is implemented as a

case parameter or implemented as a general rule in the reuse-step of the CBR cycle. The

utilisation of rules in the reuse-step is beneficial if the e↵ect of the feature is well known or

in order to fine-tune the case solution for a specific parameter.

In the second phase of clinical evaluation, exercise was used as a case parameter. If the

user with T1D selected exercise (moderate or intense) when requesting an insulin recom-

mendation, the scenario was compared to all existing exercise cases in the case base for

similarity, regardless of the selected intensity. However, if the user specifies ’intense’ ex-

ercise, the solution retrieved from the most similar case containing moderate exercise was

slightly adapted to account for the variation in intensity. Based on information from the

literature and discussions with the clinician of the study team, a rule was implemented to

temporarily increase the retrieved ICR value by ten percent, and therefore provide a more

conservative solution compared to less intense exercise. In simulations (see Chapter 3.7),

the case solution has been applied without any prior modifications.
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3.6.3 Revision

A revision of the solution of a new case is required when the outcome of applying such

a solution is not satisfactory. This is even true if the same solution worked for previous

situations. The reason for this can be because of changes in the environment or the e↵ect

of an unaccounted parameter. For this purpose, it is beneficial to record the number of suc-

cessful and unsuccessful outcomes in order to determine the need to revise an existing case.

While other possible case solutions have been discussed (see Chapter 3.4), the presented

research will focus on the revision of ICR as case solution, which regulates the amount of

insulin being administered for a carbohydrate containing meal. Dynamic revision methods

of insulin therapy found in the literature follow either a knowledge-based approach (e.g.

Rule-Based Reasoning) or are based on methods found in control theory.

Rule-Based Adaptation Rule-based Reasoning (RBR) utilises rules that are stored

inside a library to update a retrieved case. Parameter values or the solution of a retrieved

case are modified once a certain adaptation rule is being satisfied. The T-IDDM project

(see Chapter 3.1.2) uses RBR to adjust the insulin therapy and utilises CBR to tune rule

parameters in order to individualise the behaviour of the rules.

Control Based Adaptation Another possibility for adjusting ICRs would be the utili-

sation of an adaptive controller, as the adaptation of a parameter for a repetitive input is

well known in control theory. For instance, Iterative Learning Control (ILC) is a control

method designed to exploit repetitiveness in the process to be controlled [14]. Its pur-

pose is to enhance performance, using a mechanism of trial and error. Owens et al. [15]

used this idea to exploit the repetitive nature of the insulin therapy regimen of diabetics.

This algorithm, referred to as Run-to-Run (R2R), uses an update law that corrects the

insulin-to-carbohydrate ratio (ICR) for the next day as follows

ICRk+1

= ICRk +K( r � k), (3.4)

where ICRk+1

is the updated insulin-to-carbohydrate ratio and ICRk is the one from the

previous day.  is the performance measure, where the super-index r represents the refer-

ence values and the sub-index k the actual value and K is a tunable gain. The performance
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measure is calculated as

 =
q
4G2

T1
+4G2

T2
, (3.5)

GT1 = GT1 �GT0 , (3.6)

GT2 = GT2 �GT0 , (3.7)

where GT1 and GT2 are the glucose concentrations at times T
1

(e.g. 60 minutes) and T
2

(e.g. 120 minutes) with respect to the meal intake, and GT0 is the glucose concentration

at the time of the ingestion. A pilot clinical study showed the e�cacy of this run-to-run

algorithm in T1D subjects [16]. More recently, a similar ILC algorithm was proposed by

Palerm et al. to adjust basal insulin infusion rates [17].

The utilisation of revision methods from the control engineering domain are specifically

of advantage if continuous time-series data exists, such as glucose data from CGM sys-

tems. A method utilising CGM glucose data to adapt the ICR parameter based on the

Run-To-Run (R2R) controller will be presented in section 3.7.2

3.6.4 Retention Step

After a new case has been generated, or the solution of an existing case has been revised,

it is stored in the case base (i.e. retained). Another important aspect of the retention step

is the maintenance of the case base. For the developed ’Advanced Bolus Calculator for

Diabetes’ system (see Chapter 4), simple rules have been implemented which handle the

detection and removal of faulty cases or multiple conflicting entries for the same situation.

3.7 In-Silico Studies

This section describes two in-silico studies [18] [19] as a result of the presented research,

which have been performed with the UVa/Padvoa T1D simulator. The first study evaluates

the performance of a run-to-run based adaptation algorithm utilising CBR and the same

algorithm without CBR functionalities. The second in-silico study assesses the performance

of an outcome metric used to adapt the bolus calculator parameter insulin-carbohydrate

ratio.
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3.7.1 UVa/Padova Type 1 Diabetes Simulator

The Uva-Padova Type 1 diabetes simulator [20] is a computer model which has been ap-

proved by the Food and Drug administration (FDA) to be used as a substitute for preclinical

trials for insulin treatments, such as closed loop insulin delivery algorithms. The commer-

cial version of the T1D simulator is able to emulate meal challenges for a population of 10

adults, 10 adolescents and 10 children. The simulator is based on data from 300 patients

and uses 26 parameters to mimic the glucose metabolism.

3.7.2 Evaluation of using CBR for Insulin Decision Support

Although multiple parameters have been identified that have an impact when calculating

an insulin dose (Chapter 3.3.1), the utilisation of the simulator for testing the validity of

the proposed algorithm limits the number of parameters that can be considered. Following

parameters were selected for the in-silico study: time of meal ingestion (breakfast, lunch

and dinner) and physical activity (none, moderate and intense). Both parameters were

equally weighted and represent changes in the insulin sensitivity. ICR was used as a case

solution. The outcome of the solution was the 5-hour postprandial AUC and the minimum

postprandial glucose value, both calculated using CGM data (see Figure 3.5). The reference

value for AUC was determined individually for each subject in the T1D simulator to tune

the controller.

Retrieval and Reuse Steps

The retrieving mechanism based on the euclidean distance function defined as

D =
KP1dP1 + · · ·+KPjdPj + · · ·+KPndPn

KP1 + · · ·+KPj + · · ·+KPn

, (3.8)

with

dPj =
abs(Pjk � Pj)

[Pj ]
, (3.9)

where Pj is a parameter from the current problem, Pjk is the corresponding parameter of

the retrieved case k from the case memory, KPj is a weight associated to the parameter Pj ,

which allows to assign the importance of a parameter on the retrieving procedure, and [Pj ]

is the range of feasible values for Pj . Then, the case from the case base corresponding to

the minimum distance D is the retrieved case. Reusing the retrieved solution to solve the

current problem is done by applying the solution into the bolus calculator formula.
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Revision and Retention Steps

For case revision, an extended version of the Run-To-Run (R2R) algorithm [15] has been

used that utilises data from a CGM to eliminate the need of the two postprandial measure-

ments. Instead, the postprandial area-under-curve is employed. The update law to adjust

the bolus calculator parameters ICR is as follows

ICRk+1

= ICRk +K(AUCr �AUCk), (3.10)

where K is a tunable gain; subindex k + 1 indicates the updated ICR and subindex k the

previous ICR; AUCk is the postprandial glucose area-under-curve (e.g. at 5 hours) and

AUCr is the reference glucose area-under-curve, which can be determined from retrospective

CGM data or from a meal tolerance test. As depicted in Figure 3.5, the AUC is calculated

considering the pre-prandial capillarity glucose measurement as the baseline. Figure 3.9

shows an in silico example of utilisation of the proposed R2R algorithm, where the ICR of a

virtual subject from the T1D simulator is initialized to a non-optimal value and it converges

towards to an optimal value and remains stable. The revision step consists of revising

the retrieved solution ICR when the obtained outcome {AUC,Gmin} is not considered

satisfactory. Then, ICR is revised if Gmin <GL, where GL is a safety threshold (e.g. 4

mM/l), then ICR is updated as

ICRk+1

= ICRk ·
GL

Gmin
, (3.11)

or

if GL > G < GH & AUCk /2

AUCr

Tol
, AUCr · Tol

�
, (3.12)

where GH is a hyperglycaemic threshold (e.g. 10 mM/l) and Tol is a tolerance to avoid

unnecessary revisions due to error measurements and uncertainty in the inputs. Then, ICR

is updated using the update rule described by Equation 3.10. In order to provide robustness

to the algorithm in front of measurement noise and manual input uncertainty (e.g. CHO

estimation), Equation 3.12 needs to be satisfied two consecutive times for the same case in

order to update ICR. For this purpose, a counter is employed that is increased by 1 each

time Equation 3.12 is satisfied and set to zero if not. Finally, parameters ISF (mM/l/IU)

is updated based on the correlation with ICR (g/IU) reported in [21]. This correlation is

ISF = 4.44 · ICR. (3.13)
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Figure 3.9: Glucose concentration resulting from applying the proposed R2R algorithm over
13 days (single meal) on subject adult 6 of the T1D simulator with an initial non-optimal
ICR. Upper and lower dashed lines indicate hyper- hypoglycemia limits.

As safety features, two constraints have been used in order to prevent an excessive update

of the solution ICR. The first constraint limits the increment (or decrement) as follows

4ICR = min(|ICRk+1

� ICRk|, C · ICR
0

), (3.14)

ICRk+1

= ICRk + S ·4ICR, (3.15)

S = sgn(ICRk+1

� ICRk), (3.16)

where C is a tuning constant, sub-index 0 refers to initialisation value, min is the minimum

function and sgn is the sign function. The second constraint limits the minimum and

maximum values of ICF as follows:

ICRk = min(max(ICRm, ICRk), ICRM ), (3.17)
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where the super-indexes m and M refer to the minimum and maximum values, and min

and max are minimum and maximum functions. When the current problem being solved

is not found in the case base, a new case is automatically generated based on the current

problem and the retrieved case. This case is then incorporated into the case base for further

utilisation.

Table 3.2: Variability on meal ingestion time and carbohydrate load

Breakfast Lunch Dinner
Time [6am, 8am] [12, 2pm] [8pm,10pm]
CHO (grams) [30-50] [40-70] [30-60]

In-Silico protocol

A scenario of one-month duration with realistic variability in meal times and carbohydrate

intakes was automatically generated. Table 3.2 shows the upper and lower bounds of such

variability. Since the T1D simulator does not incorporate intra-subject variability of insulin

sensitivity, such changes were artificially introduced by multiplying the insulin delivery (i.e.

bolus and basal) by correction gains. Insulin sensitivity was considered to vary along the day

following the standard patterns used in clinical practice to adjust basal insulin rates [17] and

further to change along the weeks in order to simulate changes in lifestyle such as physical

exercise.

Measurement errors and uncertainty

Real-time continuous glucose measurements from the T1D simulator were used to deter-

mine Gmin and AUC values. The capillary glucose measurements (G) were generated by

adding a 5% error (uniform distribution) to the plasma glucose value [22] from the T1D

simulator. Finally, because it is assumed that people with T1D introduce significant errors

when counting carbohydrates, a 20% error (uniform distribution) was considered in the

estimation of carbohydrates.
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Safety and e�cacy measures

The following safety and e�cacy measures [23] (presented as mean ± standard deviation)

were used: Mean BG (mM/l); percentage of time below target (BG < 3.9 mM/l); percentage

of time within the 3.9� 10 mM/l target range; percentage of time above target (BG > 10

mM/l); BG risk index and risk zones of the control variability grid analysis (CVGA) [24].

Results

The algorithm was evaluated during a 1-month scenario and 4 simulation runs. An initial

simulation run (Run 1) was carried out using the bolus calculator formula with non-optimal

parameters (ICR and ISF ) and without any adaptation as a reference. Run 2 consisted of

applying the algorithm based on CBR and R2R with a case base containing a unique case

with the same solution as the bolus calculator. Run 3 and 4 were like Run 1, but starting

from the case base generated in the corresponding previous runs. In order to evaluate the

benefit of enhancing the R2R algorithm with CBR compared to the R2R algorithm in a

standalone mode, the previously described runs were executed for each one of the algorithm

versions.

Tables 3.3 a) and b) show the results corresponding to the 4 runs of the simulations for

the R2R adaptation algorithm and for the CBR(R2R) algorithm, respectively. All results

are presented as mean ± standard deviation. Improvements in mean blood glucose levels,

percentage of time in hyper-/hypoglycaemic range, risk index, as well as percentage in risk

zones A+B and D+E of the CVGA, were analysed using a paired t-test with a significance

of p <0.05. Although some of the safety and e�cacy measures slightly improved with the

utilisation of the R2R algorithm in a standalone mode (i.e., mean blood glucose, time in

target and risk index), other metrics such as the time spent in hyperglycaemia got worse.

When incorporating CBR, all safety and e�cacy measures improved, or remain constant,

with respect to the previous run when the CBR(R2R) algorithm was employed. A sig-

nificant reduction can be seen in time spent in hyperglycaemia and time in target, while

virtually eliminating hypoglycaemia in both age groups. This narrowing of the glucose win-

dow translates also into a significant improvement of the risk index and in the percentage

in zone A+B of the CVGA.
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Table 3.3: Evaluation of R2R a) without and b) with the use of CBR during four runs.
Each run represents a one-month scenario with three meals per day. Mean glucose levels,
percentage time in hyper/hypoglycaemia, risk indices as well as risk zones A+B and D+E
are presented for each run.

a) R2R in standalone mode

mean BG % time % time % time risk index % A+B % D+E
10 adults (mM/l) <3.9 mM/l >10 mM/l in target

Run1 8.7±0.7 0.3±0.5 24.6±11.5 75.2±11.7 5.4±2.2 44.5±10.7 1.9±3.3
Run2 8.8±1.2 0.1±0.2 25.6±16.5 74.3±16.5 5.9±3.9 45.0±15.3 2.6±4.8
Run3 9.1±1.8 0.0±0.1 27.0±20.9 73.0±20.9 6.9±6.2 45.1±18.3 4.0±7.6
Run4 9.2±2.2 0.0±0.0 28.2±22.7 71.8±22.7 7.7±7.6 44.5±18.6 4.7±9.2

p value 0.34 0.17 0.51 0.52 0.28 1 0.19

10 adolesc.

Run1 9.4±1.1 0.0±0.0 36.5±17.8 63.5±17.8 7.8±3.5 38.1±16.2 3.1±2.6
Run2 9.2±1.3 0.1±0.3 34.8±19.1 65.1±19.0 7.3±3.8 40.6±18.8 2.6±2.8
Run3 9.3±1.4 0.1±0.1 35.2±19.8 64.7±19.7 7.5±4.0 40.3±19.7 3.0±3.5
Run4 9.3±1.4 0.1±0.1 35.3±20.2 64.6±20.2 7.4±4.0 39.7±20.4 2.7±3.5

p value 0.53 0.19 0.69 0.7 0.52 0.59 0.16

b) R2R in combination with CBR

mean BG % time % time % time risk index % A+B % D+E
10 adults (mM/l) <3.9 mM/l >10 mM/l in target

Run1 8.7±0.7 0.3±0.5 24.6±11.5 75.2±11.7 5.4±2.2 44.5±10.7 1.9±3.3
Run2 8.6±0.8 0.1±0.2 23.2±12.3 76.7±12.3 5.1±2.5 47.2±13.4 1.6±3.1
Run3 8.4±0.9 0.0±0.1 20.1±13.4 79.9±13.3 4.7±2.5 51.1±14.5 1.5±3.0
Run4 8.3±0.9 0.0±0.0 18.1±13.4 81.9±13.4 4.3 ±2.5 52.7±15.1 1.2±3.0

p value 0.031* 0.17 0.0032* 0.0029* 0.012* 0.019* 0.29

10 adolesc.

Run1 9.4±1.1 0.0±0.0 36.5±17.8 63.5±17.8 7.8±3.5 38.1±16.2 3.1±2.6
Run2 9.2±1.2 0.0±0.0 33.5±18.7 66.5±18.7 7.2±3.6 41.9±17.7 2.7±2.6
Run3 9.1±1.2 0.1±0.2 31.6±19.3 68.3±19.2 6.6±3.6 42.7±18.3 2.1±2.1
Run4 9.0±1.3 0.0±0.0 31.2±19.2 68.8±19.2 6.4±3.6 43.3±19.5 1.4±1.8

p value 0.0056* - 0.017* 0.017* 0.0021* 0.014* 0.011*
*Significant with p <0.05
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3.7.3 Evaluation of a Metric for Adapting ICRs

The same simulation environment (T1D simulator) was used to evaluate a method to adjust

the solution of a case (i.e. bolus calculator parameter ICR). Variability was added in order

to provide a more realistic scenario by introducing uncertainty in meal absorption, insulin

absorption, insulin sensitivity, as well as in glucose measurements [19].

Adaptation metric

The proposed metric utilises the correlation between ICR and ISF stated in [25] and ex-

pressed by

ISF =
1960ICR

2.6W
, (3.18)

where W is the subject’s weight in pounds. Then, by replacing Equation (3.18) into the

standard bolus calculator formula and isolating ICR, it is possible to calculate the adjusted

ICR required to deliver the insulin dose (B + IOB + Badd) that brings Gmin into the

glycemic target range. That is

ICR(k + 1,m) =
CHO(k,m) + Gc(k,m)�Gsp

1960
2.6W

B(k,m) + IOB(k,m) +Badd(k,m)
, (3.19)

where index k+1 denotes the updated value for the next day. The corresponding ISF (k+

1,m) is then obtained by applying Equation 3.18.

Study Design

Although three cases have been created for various meal times (i.e. breakfast, lunch and

dinner) to cope with intra-day variations in insulin sensitivity, further cases could not be

created as the simulator does not incorporate perturbations such as physical exercise, ill-

ness or stress. The performance of the algorithm has been compared to a standard bolus

calculator without adaptation in a 3-month scenario.
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Table 3.4: Comparison of three bolus calculator cases (i.e. breakfast, lunch and dinner)
with and without parameters adjustment on a cohort of 10 virtual adults and 10 virtual
adolescents. Results are expressed as mean±SD.

(a) 10 virtual adults

mean BG BG2[3.9,10]mM/l BG<3.9mM/l BG>10mmol/L LBGI

mM/l % time % time % time –

No adjust 7.2± 0.7 87.2± 13.9 2.7± 4.0 10.1± 10.5 1.1± 1.3
Adjust 7.4± 0.6 90.1± 8.9 0.4± 0.7 9.4± 8.8 0.3± 0.2
p-value 0.03

⇤
0.5 0.03

⇤
0.92 0.002

⇤

(b) 10 virtual adolescents

mean BG BG2[3.9,10]mM/l BG<3.9mM/l BG>10mmol/L LBGI

mM/l % time % time % time –

No adjust 8.8± 0.9 61.7± 16.8 7.1± 7.4 31.2± 12.3 2.0± 2.2
Adjust 8.8± 1.1 73.3± 18.3 1.3± 2.4 25.3± 16.6 0.7± 1.4
p-value 0.92 0.16 0.02

⇤
0.37 0.05

⇤
⇤Statistically significant p  0.05

Results

Table 3.4 shows simulation results comparing the glycemic outcomes employing three cases

(i.e. breakfast, lunch, dinner) with and without case parameter adaptation on a cohort of

10 virtual adults (Table 3.4a) and on a cohort of 10 virtual adolescents (Table 3.4b). In

summary, the proposed adaptation method statistically improved (p  0.05) all glycemic

metrics evaluating hypoglycaemia on both virtual cohorts: percentage time in hypogly-

caemia and low blood glucose index (LBGI). Figure 3.10 shows a graphical example of a

3-month simulation run of the bolus calculator without and with adaptation mechanism on

an adolescent subject. The minimum postprandial CGM values (Gmin) represented by blue

dots, are more concentrated in the glycemic target range [Gl, Gh] when using the adapta-

tion metric compared to non-adaptive bolus calculator. Figure 3.11 displays the mean of

percentage time in target (i.e. 3.9 -10 mM/l) and the mean of risk index along the 3-month

simulation corresponding to the bolus calculator with parameters adjustment for adults and

adolescents combined. On average, the adaptation metric converges in about 20 days and

remains stable along the rest of the simulation. While in-silico results of improvements in

glycemic control are encouraging, the new metric also has a practical advantage compared

to other metrics such as area-under-curve as it does not require any reference or initial tun-

ing. Therefore the proposed metric has the potential to be integrated in the CBR revision

step of the proposed decision support system.

68



Case-Based Reasoning (CBR) for Insulin Dosing Decision Support

Time (hour)
0 5 10 15 20

G
lu

co
se

 (m
g/

dl
)

40

70

100

130

160

190

220

250

280

310

(a) Bolus calculator without adaptation.
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(b) Bolus calculator with adaptation.

Figure 3.10: Graphical representation of a 3-month simulation run of the bolus calculator
without and with adaptation mechanism on an adolescent subject. From down to top,
horizontal lines represent: hypoglycaemic threshold; low target bound (Gl); mid target
zone (Gsp); high target bound (Gh); and hyperglycaemic threshold. Red solid line is the
mean blood glucose and dashed green lines represent the standard deviation. Blue dots
represent the minimum postprandial CGM values (Gmin).
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(b) Risk Index (mean± SD).

Figure 3.11: Population mean of percentage time in target (i.e. [3.9,10] mM/l) (a) and
population mean of risk index (b) along the 3-month simulation corresponding to the bolus
calculator with parameters adjustment. Solid line represents mean values and shaded area
the standard deviation.
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3.8 Discussion

When using CBR for insulin dosing decision support, the selection and representation of

case parameters are crucial for achieving optimal results. Many factors have been discussed

in the previous chapter to have an impact on glycemic control. However, incorporating a

vast number of parameters results in a longer time needed to populate the case-base, as

the number of possible cases rises exponentially with each additional parameter. Adding

more parameters may also require additional manual user input, if a parameter cannot be

captured by sensors (e.g. illness), thus potentially reducing the usability of the insulin ad-

visory system. Therefore, the number of case parameters is always a compromise between

usability and convergence time of the CBR algorithm.

Several methods exist for retrieving cases and finding the best match. Because of the small

number of parameters used for simulations and first clinical prototype, the weighted average

distance function was used. Algorithms to adapt the insulin-carbohydrate ratio have been

presented, but their performance is limited based on the assumption that insulin therapy

is a repetitive process [16] or that frequent blood glucose measurements are available that

may restrict the applicability [15]. In simulations, an extended version of the R2R algo-

rithm has been used that utilises data from a CGM system to eliminate the need of the

two postprandial measurements. The performance of assessing the outcome of a proposed

insulin dose is crucial for this research. A positive outcome of a solution means that the

solution can be remembered for future situations. Conversely, a negative outcome would

mean that the solution needs to be updated (i.e. more or less insulin will be delivered next

time for this situation) - thus accuracy of the metric determining the outcome is important.

Various glucose outcome metrics utilising continuous glucose data have been evaluated,

showing good sensitivity and robustness against sensor noise in simulations as well as when

applying the metrics on clinical data. One of the metrics (AUC) had been used for in-silico

trials, evaluating the use of CBR for insulin dosing and achieving encouraging results in

postprandial glucose control for 10 virtual adults and 10 adolescents. However, utilising

AUC as a metric requires an ideal reference; something which proves to be di�cult to de-

termine in practice. Figure 3.12 shows two post-meal glucose excursions measured with a

CGM system for two meals with the same recorded amount of carbohydrates. Although

this data was recorded by the same study participant in a similar setting (i.e. two breakfast

scenarios within the same week) and the same amount of insulin was delivered, a noticeable

di↵erence in AUC can be seen. The late rise of glucose observed in AUC 2 suggests that

this di↵erence can be due to the meal composition or preparation. While the T1D simulator
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Figure 3.12: Two postprandial glucose excursions measured with a CGM sensor for one
study participant. Although similar settings (same amount of carbohydrates during break-
fast), a noticeable di↵erence in AUC can be observed.

incorporates CGM sensor noise, it is not able to simulate di↵erent meal absorption profiles,

which would a↵ect the AUC. Therefore, another metric has been evaluated based on the

postprandial minimal glucose concentration, which showed similar robustness against sen-

sor noise compared to AUC when analysing clinical CGM data. The performance of the

metric was further evaluated during extensive in-silico trials with realistic variability and

uncertainty [19].

3.9 Conclusion

This chapter introduced the reader to the concept of CBR and its possible incorporation

into a novel decision support system for individualised insulin dosing. CBR utilises cases to

describe and di↵erentiate various meal scenarios. Multiple factors a↵ecting glucose control

have been identified that can be used as case parameters as well as possible solutions to adapt

the insulin therapy. In-silico studies and analysis from clinical data have been performed

to evaluate the best way to assess the performance of proposed solutions with continuous

glucose data. Finally, this chapter presented encouraging simulation results on the concept

of using CBR for insulin decision support as well as a novel metric for adapting the case

solution (i.e. insulin-carbohydrate ratio).
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Chapter 4

An Advanced Bolus Calculator for
Diabetes (ABC4D) System

4.1 Introduction

The final goal of this research is the development of a user-friendly system that helps people

with diabetes with the insulin decision making in an e↵ortless way. This chapter describes

the implementation of the previously presented CBR based decision support algorithm into

an ‘Advanced Bolus Calculator for Diabetes’ (ABC4D). ABC4D provides real-time meal

bolus advice for people with T1D on their smartphone, as well as integrates a clinical

platform that allows experts (e.g. endocrinologists) to supervise and approve automatically

proposed changes to the insulin therapy. This chapter presents the concept and architecture

of the CBR-based system, which comprises a patient and a clinical platform.

Human factors are key in the adoption of decision support systems and the design and

usability, therefore, play a crucial part. The aim when designing systems that are frequently

used (i.e. multiple times a day) is to reduce manual user interaction as much as possible

in order to seamlessly integrate the system into the lifestyle of the person with diabetes.

Several design prototypes are presented in this chapter, which have been used in various

phases of the clinical trials presented in Chapter 5. Before the start of each study phase,

we held focus group meetings with people with T1D and implemented their feedback in

the design process of the system used in the clinical studies. Also, the expert software for

remote monitoring and approval of insulin therapy changes was optimised for each trial

phase in collaboration with our clinical study team. Finally, the chapter present initial

results assessing system usage, usability and acceptability of the whole ABC4D system
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during a feasibility study. The ABC4D architecture, as well as the results presented in this

chapter, have been published here [1] [2].

4.2 System Concept

The concept of ABC4D is shown in figure 4.1. The main user (person with diabetes)

enters input parameters through a mobile platform (e.g. smartphone) and receives insulin

bolus advice for meals. In periodic intervals, all data used by ABC4D (e.g. CGM data,

insulin advice, case base) is sent to a clinical platform, where all cases that have been used

undergo revision. After all proposed case adaptations have been approved by a clinical

expert, the updated case base is sent back to the patient platform. For practicality reasons,

case revisions can be performed periodically (e.g. weekly). Periodic revisions also have the

advantage to filter out potential outliers if a case has been used more than once. Prior to

the start of the development of ABC4D, the following requirements have been set for the

two platforms:

Sending Data for Case Base Revision and Approval 

Sending Updated and Approved Case Base 

Patient Platform  Clinical Platform  

Parameter Inputs 

Blood Glucose

Time of Day 

Carbohydrates/
Absorption Rate

Continuous Glucose
Monitoring Data

Physical Activity

Figure 4.1: Concept of ABC4D showing input parameters of the patient smartphone plat-
form (left), which periodically sends data to the clinical platform (right) for approval of
case revisions.
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4.2.1 Requirements on the Patient Smartphone Platform

• Real-time insulin advice for meals that can be accepted or declined by the user

• User-friendly interface to capture diabetes events such as glucose measurements, ex-

ercise, insulin injections

• Event and glucose visualisation in form of a table view as well as through graphs and

charts

• Display basic statistics for various time windows (e.g. average, minima and maxima

glucose levels)

• Easy data export to clinical expert via email for remote supervision

4.2.2 Requirements on the Clinical Revision Platform

• Access and maintenance of patient profiles holding demographics and other data

needed for revision e.g. email address and smartphone ID

• Import of CGM, logbook and case base data

• Provide general overview of CGM data

• Detailed information for each insulin bolus recommendation

- Used case, parameters and solution

- Information on whether advice was accepted or not

- Show reason for declined advice and alternative insulin delivery

- Graph showing postprandial glucose profile and additional information (e.g.

meals and snacks, correction insulin, exercise, comments)

- Navigation and control buttons to switch between cases and accept or ignore

proposed case adaptation

• Function to approve cases which have been adapted multiple times (e.g using the

average of all adaptations)

• Automated summary of revision and adapted cases

• Sending updated case base to patient platform via email
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4.3 ABC4D System

The proposed ABC4D system comprises a patient platform consisting of a smartphone ap-

plication and a computer-based clinical platform (see Figure 4.2). The patient platform

allows manual user input of relevant glucose-related data and provides real-time bolus ad-

vice. The clinical platform allows a clinical expert to easily analyse and accept changes to

the insulin therapy proposed by the CBR algorithm.

4.3.1 Integration of the CBR Process Cycle

In order to warranty patient safety, the proposed platform separates the CBR cycle into two

parts. The first part, comprising the retrieval and adaptation steps, is integrated into the

patient advisory platform; while the second part, containing the revision and the retention

steps, is performed within the clinical platform. The functional separation of the CBR cycle

ensures that only clinically safe adaptations are performed. Both platforms have access to

the case base, which is synchronised after each revision.

RETRIEVE

REVISION

RE
TA

IN

REU
SECASE

BASE

New Problem:

-Late Dinner
-High Glucose Level
-Exercise Before
-Alcohol

        ADAPT CASE 
         OR CREATE 
          NEW CASE

          SIMILAR
            CASES

                APPLY                
           ADAPTED 
            SOLUTION 

CLINICAL 
PLATFORM 

PATIENT 
PLATFORM 

Figure 4.2: CBR functionalities split into the patient and clinical platform
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4.3.2 System Architecture

Figure 4.3 shows the software system architecture of both the patient advisory and clinical

supervision platforms. The main di↵erence in the structure of the architecture between

the two platforms lies in the algorithm layer. The algorithm layer of the patient platform

contains the bolus calculator formula as well as CBRs retrieval and reuse steps, while the

same layer of the clinical platform implements the revision and retention steps of the CBR

cycle.
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1. Presentation Layer

Data Export

4. Data Layer

3. Safety Layer

Risk Mitigation Risk Control 

Data Security
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Figure 4.3: Software architecture and user interaction of the ABC4D patient platform (left)
and clinical platform (right).

ABC4D Patient Smartphone Platform (PSP)

The system architecture of the ABC4D patient smartphone platform (PSP) is structured

as follows:

1. The presentation layer holds the logic for the graphical user interface, which is re-

sponsible for retrieving manual input parameters and presenting requested bolus rec-

ommendations to the patient.

2. The algorithm layer contains the retrieval and reuse steps of the CBR cycle and

the bolus calculator formula. Whenever the user requests a new bolus advice, the
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retrieval algorithm compares the current scenario with existing cases in the case base

and returns the solution (i.e. bolus calculator parameters) and, if necessary, adapts the

retrieved solution to the current scenario (reuse step). The bolus calculator formula

uses this solution to calculate the recommended insulin dose, which is sent to the

presentation layer for visualisation through the graphical user interface.

3. The safety layer implements risk mitigation and risk control measures to ensure max-

imum safety of the system. Risk mitigation is implemented to ensure that only safe

(i.e. physiological) values are entered via the user interface and to verify each param-

eter retrieved from the database. Risk control limits the maximum amount of insulin

to be advised which can be pre-defined for each user by the clinical expert.

4. The data layer is responsible for storage, maintenance, security of data stored in the

local databases, as well as providing secure transmission to the clinical platform. The

data layer contains three databases: 1) An event-database which contains log book

entries and information about all glucose related user entries and insulin requests;

2) a case database (i.e. case base) containing all generated cases and information

about their usage and 3) a settings-database to store security information, patient

details and personal settings. The data layer also manages access to automatic input

parameters (e.g. exercise information through external accelerometer.)

ABC4D Clinical Revision Platform (CRP)

The clinical revision platform is structured as follows:

1. The presentation layer is responsible for the graphical user interface of the clinical

revision platform. It allows the clinician to import the log book and cases retrieved

from the patient platform, as well as additional data (e.g. CGM data) required by the

revision algorithm. During the revision process, the user interface displays glucose

graphs, meal information, selected parameters (e.g. exercise) and retrieved cases used

for each scenario where an insulin advice has been requested. A suggested adaptation

to the solution of the retrieved case is presented to the clinical expert who needs to

approve or decline each case adaptation.

2. The algorithm layer holds the revision and reuse steps of the CBR algorithm. The

revision algorithm calculates adaptations to the solution of each case that has been

80



An Advanced Bolus Calculator for Diabetes (ABC4D) System

used. After all case adaptations have been revised, the approved cases are updated

into the case base of the patient platform (retain step).

3. The safety layer of the clinical revision platform ensures that all essential data have

been imported and checks the databases for validity. In order to avoid overly aggressive

adaptations, safety constraints limit the maximum allowed change to a case solution

by a pre-defined percentage.

4. The data layer is responsible for synchronising and storing data that has been uploaded

from the patient platform. It contains a duplicate of all databases from the phone in

addition to usage information and historical data from previous case adaptations.

4.4 System Design and Human Factors

Usability and human factors are key for the adoption of decision support systems that

require frequent user interaction such as the proposed ABC4D platform. In order to get

feedback on the system design from end-users (i.e. people with T1D), we have organised two

focus group meetings through the Imperial College Patient and Public Involvement Panel

at the NIHR/Wellcome Trust Imperial CRF Hammersmith Hospital. The first focus group

meeting was held between the first and second phase of the clinical evaluation of ABC4D

(see Chapter 5). The next meeting was organised after finishing the second study phase,

where ABC4D was used in the home setting for over six weeks, and before the start of the

final study phase. Figure 4.4 shows the evolution of changes to the user interface of the

patient smartphone platform performed after each study phase. It shall be noted that the

first version of the software looks rather ‘crowded’ and contains di↵erent input elements,

while the latest software version (right) is more consistent in the choice of user elements

and provides improved clarity for glucose and carbohydrates input fields.

Focus Group Meeting 1

Five people with T1D attended the focus group meeting (2 female, 3 male with an average

age of 51 ± 15 years). The objective of the meeting was to get feedback on the choice

of case parameters for the second trial phase and on input methods of the ABC4D-PSP

graphical user interface (GUI). Participants were happy with the selection of case parameters

exercise, alcohol and meal absorption. Users were asked about types of manual input and
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Figure 4.4: Evolution of the graphical user interface for the ABC4D patient smartphone
platform from study phase 1 (left) to phase 3 (right)

visualisation of glucose data. Based on participant’s feedback, the following changes have

been implemented in the GUI prior the start of the next study phase: Simplification of

the main menu, changing the input methods for entering carbohydrates and glucose levels

(i.e. changing scroll wheel to numeric keypad) and adding explanatory text that informs

the user in detail on how recommendations have been generated.

Focus Group Meeting 2

The second focus group meeting was organised before the start of the final study phase and

was attended by four people with T1D (2 female, 2 male with an average age of 53 ± 17

years). The objective was to review and get feedback on the ABC4D-PSP software, which

was used during the six-week study. Furthermore, participants were asked about additional

user input or case parameters and the integration of other technologies such as continuous

glucose monitors and smartwatches. The outcome of the second focus group meeting lead

to changes in the design of the GUI as seen in Figure 4.4 (right).

82



An Advanced Bolus Calculator for Diabetes (ABC4D) System

4.5 System Implementation

This section describes the system implementation of the patient smartphone platform

(ABC4D-PSP) and the clinical revision platform (ABC4D-CRP). The user manuals for

both platforms, which was used during the second phase of clinical evaluation (Chapter

5.3) can be found in Appendix D.

4.5.1 Patient Smartphone Platform (PSP)

The ABC4D-PSP is built on the presented architecture [1] and has been implemented in

an o↵-the-shelf smartphone (Hardware: iPhone 4S, Apple Inc. California; Programming

Environment: X-Code/Objective-C; Database: SQLite3). Figure 4.5 (left) shows the main

screen of the smartphone application used for requesting a new recommendation. It contains

input elements to enter manual parameters (i.e. amount of carbohydrates, meal absorption,

Figure 4.5: Main screen of ABC4D patient platform used during the second study phase
to enter manual input parameters and request an insulin advice (left); display of an insulin
bolus recommendation with the option of accepting or declining the advice, or to request
more information on how the advice has been generated (right).

83



An Advanced Bolus Calculator for Diabetes (ABC4D) System

current blood glucose level, alcohol consumption and exercise) and a button for requesting

insulin bolus advice. The insulin recommendation is then presented to the user via a

graphical user interface (see Figure 4.5 (right)). Each recommendation needs to be accepted

or declined manually, while the latter option requires the user to input the actual insulin

dose that has been delivered. Users could give reasons for declining bolus advice through

selecting one of following checkboxes:

• Too much insulin

• Too little insulin

• Other/Manual user comment

Declined recommendations by the user were used for revision. However, instead of the

solution of the retrieved case, the solution proposed by the user is revised and adapted if

the outcome was non-optimal. All user input and recommendations are locally stored in

a relational database management system (i.e. SQLite3) on the phone. This enables the

user to have access to past glucose information and recommendations at all times. Data

essential for case revision can be exported as an Excel (Microsoft) file and sent encrypted

via email to the clinical expert.

4.5.2 Clinical Revision Platform (CRP)

The clinical revision platform has been implemented in MATLAB (The MathWorks, Inc)

and is designed to run on a desktop computer. It implements the revision algorithm based

on [3] which has been described in the previous chapter.

At the start of the software, the clinical expert is asked to select a patient (or create a

profile for a new patient) and the date of revision. Next, logbook and case base data from

the patient platform as well as the CGM data for the revision period need to be uploaded.

If all data was imported successfully, an overview of the glucose data for the revision period

is shown to the user.

Example of a Case Revision

Figure 4.6 shows an example of a revision for a breakfast case. The main screen used for

the revision contains following elements:
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Figure 4.6: Clinical revision software reviewing a breakfast scenario with exercise and
proposing an adaptation to the insulin-carbohydrate-ratio (ICR) of a case.

1) Scenario Information: Shows all information and user inputs of the current meal

scenario where ABC4D has been used for bolus advice

2) Retrieved Case: Shows the retrieved (most similar) case to the current scenario, its

parameters and its solution (i.e. ICR)

3) Postprandial Glucose Excursion: Shows a detailed graph of the current meal sce-

nario including glucose data from the CGM device (blue line) and BG meter (red dots), as

well as meal information, delivered insulin and exercise.

4) Suggested Bolus Advice: Shows the calculation on how the bolus advice has been

calculated (suggested bolus) and if the user followed the advice (i.e. administered bolus)

5) User Comments and Statistics: Analyses the logbook data and indicates if a meal

or correction bolus has occurred within a pre-defined time window (i.e. 4 and 6 hours).

Comments entered by patients are displayed here. Postprandial statistics can be seen on

the right.

6) Adaptation of Case Solution: Here the revision algorithm calculates the new solution
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based on the postprandial outcome (Algorithm ICR).

7) Automated Revision Advisor: Automatically analyses the glycemic outcome and

provides a suggestion to the clinical expert on whether to approve or ignore this scenario

for revision. For instance: In case the user administered additional insulin or consumed

another meal with insulin within 4 hours after the bolus advice, then this scenario will be

excluded for revision as it is not clear if a potential bad glycaemic outcome was the result

of the initial bolus advice or because of the user intervention. However, cases solutions are

still revised in scenarios when participants consumed carbohydrates without administration

of insulin to correct for hypoglycaemia.

8) Navigation Control: Enables the expert to switch between ABC4D scenarios. The

number below shows how many cases are left to be revised.

After the revision of the cases has been completed, the software shows a summary of all

adapted cases to the clinician. If one case has been used and revised multiple times, an

average of all adaptations is calculated which, in turn, needs to be manually approved.

Finally, the case base on the patient platform needs to be updated. This can be performed

either on the phone itself through an authorised settings menu or remotely via email.

4.6 System Usage

The usage of ABC4D has been analysed during phase 2 of the clinical trial described in

Chapter 5 where 10 adults used the ABC4D-PSP over a period of six weeks.

4.6.1 Usage of ABC4D-PSP

Number of Recommendations and Logbook Entries Table 4.1 shows the ABC4D

usage of all subjects (n=10) participating in the six-week pilot study. On average, 115±21

insulin recommendations have been requested of which 103±28 (90%) were accepted by

the participants. For the majority of all declined recommendations participants found the

proposed insulin dose was not enough (64%), while for 32% of all declined advice participants

felt the insulin dose was too much. No reasons were provided by the user for the remaining

4% of declined advice.While participants used the log book function of the application less

in the last week of the study (p<0.05), no statistically significant change was observed

when analysing the average number of requested bolus recommendations when comparing

the initial study week with the last week.
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Table 4.1: Usage of the patient platform during the six weeks pilot study. Values are mean
± standard deviation. Above: Total number of bolus advice requested, average number of
bolus advice requests per day in the first and final study week and total number of accepted
and declined bolus recommendations. Below: Total number of logbook entries, average
number of logbook entries per day as well as usage time in the first and final study week,
respectively.

No Bolus Bolus Advice/Day No Accepted No Declined

Advices Week 1 Week 6 Advices Advices

115±21 2.9±0.4 2.7±0.6 103±28(90%) 12±14(10%)

No Logbook Logbook-Entries/Day Usage Time (s)

Entries Week 1 Week 6 Week 1 Week 6

121±83 4.1±2.9 2.3±1.9* 100±63 62±36**

*p <0.05 **p <0.01

Usage Time The mean time spent for requesting a bolus advice using the application

(i.e. time from opening the software until closing it) was 100±63 seconds in the first week.

This value was significantly (p<0.01) reduced to 62±36 seconds in the last week.

Usage of Case Parameters Because of the limited study time, only a small number

of case parameters were selected: meal time, exercise, alcohol, meal absorption and hy-

perglycaemia. While parameter exercise was Boolean (None/Yes), additional information

about the intensity (moderate/intense) was considered in the re-use step of the CBR cycle

by adding a pre-defined percentage to the case solution (i.e. insulin-carbohydrate-ratio).

Parameter ’hyperglycemia’ was automatically assigned, when blood glucose levels at meal

time were above 15 mM/l. Case parameter ’time of meal’ was automatically obtained by

retrieving the system clock of the phone when an insulin advice had been requested. Out of

all used cases, 30.9±6.4% were assigned to breakfast, 34.8±3.8% to lunch and 34.2±5.7%

to dinner. Parameter ’hyperglycaemia’ was observed in 8.5±10.4% of all case retrievals.

Exercise was the most frequently manually entered parameter with 8.4±6.3 %, followed by

alcohol (5.5±6.0%) and absorption rate (1.8±2.1%) of all retrieved cases.
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Table 4.2: Results of clinical revision platform analysing proposed bolus recommendations

No of total meal scenarios available 1149

No of scenarios eligible for revision 754

No of approved revisions by clinician 723 (96%)

No of declined revisions by clinician 31 (4%)

4.6.2 Usage of ABC4D-CRP

Table 4.2 shows the use of the clinical revision software, which has been used periodically

during the six-week study to revise the outcome of bolus recommendations. A total of 1149

bolus recommendations have been imported to the revision platform of which 754 advice

were eligible for revising the outcome of the cases. Other bolus advice were ignored for

revision because of either missing glucose sensor data or exclusion criteria of the adaptation

metric (e.g. a user has given additional insulin or consumed a snack shortly after the advice

received). Out of all eligible imported bolus advice, 723 (96%) proposed adaptations were

approved by the physician and uploaded to the patient platform. Only 4% of all proposed

adaptations have been declined manually by the clinician, which was due to either human

error (e.g. wrong value entered by patient) or artefactual sensor data.

4.7 User Acceptance and Usability Results

User acceptance of ABC4D-PSP was evaluated within the second phase of the clinical study

(see Chapter 5) based on the feedback from subjects that participate in the clinical trials.

The study team developed an acceptability questionnaire (see Appendix C) to assess how

user-friendly and acceptable the whole system is for everyday use and what can be done

to we can improve it. The questionnaire has been divided into two sections. The first

part assesses the ABC4D software and the user interface, whereas the second part aims to

evaluate the usability of the whole system (the ABC4D application running on a smartphone

+ continuous glucose monitoring on a regular basis). In total, the questionnaire includes

24 questions and one text field for additional comments.

Results Feedback obtained from the focus group meeting lead to changes in the graphical

user interface of the patient platform. Implemented changes included: Simplification of the
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Table 4.3: Results of the acceptability/usability questionnaire of patient platform (n=10)

Strongly Neither Agree Strongly

Agree Agree Nor Disagree Disagree Disagree

Acceptability Questions

I trusted the insulin dose
advice generated by ABC4D.

2 6 0 2 0

The use of continuous glucose
monitoring was acceptable.

4 6 0 0 0

Using ABC4D for insulin
calculation caused more
anxiety.

0 3 0 4 3

Overall, I would be happy to
use ABC4D system for bolus
calculation.

6 3 0 1 0

Usability Questions

The ABC4D main screen is
clear and was easy to read.

5 5 0 0 0

Entering data on the screen
was straightforward.

6 4 0 0 0

Using ABC4D for insulin
calculations was time
consuming.

3 2 1 3 1

I would consider the ABC4D
app user-friendly.

5 5 0 0 0

main menu, changing the input methods for entering carbohydrates and glucose levels (i.e.

changing scroll wheel to numeric keypad) and adding explanatory text that informs the user

in detail on how recommendations have been generated. Table 4.3 shows the outcome of the

questionnaire assessing system usability and acceptability after completion of the six-week

study. The majority of people considered the ABC4D platform as user-friendly, to trust

the generated advice and to be happy to use the platform. However, some participants

reported that using ABC4D for insulin bolus advice was more time consuming compared

to their conventional calculation.
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User Perception on Selected Case Parameters

Usability plays a key role in the adoption of decision support systems for insulin dosing and

implemented case parameters can only demonstrate their e�cacy when frequently used.

We hypothesise that case parameters, which need to be entered manually in the system,

will more likely be selected if they are perceived as useful or important to the person

with diabetes. Therefore we asked study participants after completion of the study for

their opinion on selected manual case parameters. Feedback was obtained through a non-

validated questionnaire about the perception of participants on the importance of selected

case parameter. Eight out of ten participants stated that it would be useful to add additional

information about case parameters alcohol and exercise. While users could choose between

two levels of intensities, the inclusion of type and duration of exercise was highlighted as a

potentially useful additional feature. Participants further pointed out that they would like

to di↵erentiate between type and amount of consumed alcohol.

4.8 Discussion

Human factors are key components to ensure adherence of patients and clinicians to infor-

mation technologies for therapeutic purposes. For maximum performance, decision support

systems for insulin dosing need to be as user-friendly as possible for both patients and

clinicians. This is why end users were involved from the beginning in the design and the

development phase of the proposed system. There is a wide scope for integrating the devel-

oped ABC4D system into routine diabetes management as it has been designed to be used

by either people on multiple daily injections or on insulin pump therapy. Insulin pumps

allow greater fine-tuning by setting hourly basal rates and are able to deliver doses with

high accuracy (0.1 units or less), while people using insulin pens need to round the dose up

or down to the nearest unit or half-unit. Depending on the insulin therapy, the developed

ABC4D system rounds to the nearest value which can be delivered by the technology used.

Initial acceptability results obtained from a six-week study are encouraging with almost

90% of all bolus recommendations have been accepted by the participants. The di↵erence

in usage of the patient platform between the first and last study week has been highlighted

in Table 4.1. Participants used the logbook less frequent at the end of the study phase to

enter daily diabetes-related events (e.g. snacks, exercise or stress). However, the number of

insulin advice requests did not significantly change over the study period. Further findings
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show, that the time needed to request an insulin advice was significantly reduced in the

last week compared to the start of the study. As the software did not provide a function to

re-use previously entered manual inputs (e.g. library of profiles), this reduction results from

the learning curve of the user to enter data more e�ciently when becoming more familiar

with the software. Nevertheless, some participants still found the use of ABC4D too time-

consuming compared to their conventional way of calculating the insulin dose. To address

this, future work could see the system being integrated into a blood glucose meter or in-

sulin pump to reduce the number of manual user inputs. Also, pre- and post-meal physical

exercise could be measured using existing commercial devices such as heart rate monitors

or accelerometers (e.g. Fitbit Inc, San Francisco, CA, USA) as study participants stressed

to find this parameter of importance. This has been confirmed when analysing the overall

usage of case parameters during the study. Cases including information about exercise and

alcohol were frequently selected, while parameter ’absorption rate’ was used least often by

participants. The reason for the little usage may be because of the additional e↵ort needed

to analyse the glycemic index of the meal and the e↵ectiveness of the parameter could be

evaluated again, if it is automatically obtained e.g. through a pre-programmed meal-library.

Safety, as well as perceived safety, are other key aspects for the adoption of ABC4D. The

proposed separation of the CBR cycle into a patient platform for advice retrieval and a

clinical platform for supervision ensures patients that all changes of their insulin therapy

are approved by a clinical expert. After completion of the study, 80 % participants stated

that they trusted the insulin advice which was generated by ABC4D (Table 4.3). A deci-

sion support system that would automatically adapt the insulin therapy without approval

by a clinical expert might receive less acceptance by patients. However, we show in our

pilot study that 96% of all proposed adaptations have been approved by the clinical experts

which indicates the potential of further automation and reduced remote supervision.

It is important to note that the presented platform can utilise various algorithms for each

of the CBR steps. While the ABC4D system can potentially hold other revision algorithms

that do not rely on CGM data (e.g. postprandial capillary measurements [4]), the algorithm

implemented in the presented system uses retrospective CGM data to learn from previous

case outcomes and further adapt the bolus calculator parameters. However, even without

CGM, the patient platform is able to provide real-time bolus advice. In this scenario, the

revision and retain steps will not be performed. For long-term usage, and once the bo-

lus calculator parameters have been optimised, CGM could be used periodically (e.g. one
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month every four months) to adapt to changes in the user’s environment. This is important

as CGM sensors are expensive and some users may not want to continuously use CGM for

longer periods. The overall clinical performance of the system will be discussed in the next

chapter.

4.9 Conclusion

This chapter presented the implementation of a CBR-based ‘Advanced Bolus Calculator

for Diabetes’ (ABC4D). ABC4D comprises a patient platform consisting of a smartphone

application and a computer-based clinical platform. The patient platform allows manual

user input of relevant glucose-related data and provides real-time insulin bolus advice. In

order to guarantee that only clinically safe adaptations are being performed, the clinical

platform allows remote supervision by a diabetes expert who can approve changes to the

insulin therapy proposed by the case-based reasoning algorithm. We have evaluated the

usability of the patient platform and have shown promising results from a pilot study,

where ten people with T1D used the ABC4D system continuously over six weeks.
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Chapter 5

Clinical Studies Evaluating Safety,
Feasibility and E�cacy

The final outcome of the research is to progress towards a system that is accepted by

both patients and clinicians and is able to demonstrate improvements in glycemic control.

The ‘Advanced Bolus Calculator for Diabetes’ (ABC4D), based on the system architecture

presented in the previous chapter, is currently being evaluated in three study phases (Figure

5.1). The first two study phases have been completed and the results [1] [2] are presented

in this chapter, while the third study phase is currently on-going at the time of writing.

Safety, usability and acceptability have been the main focus in the first two trial phases,

while the last study phase evaluates the clinical e�cacy of the system. The three phases of

the study are structured as follows:

Study Phase 1 Study Phase 2 Study Phase 3 

n = 4  n = 10 n = 150 

Proof of Concept and Safety 

Clinical Environment    

  8 hours 

Non-randomised, unblinded   

  6 weeks 

Home  Environment  

Safety and Feasibility 
Non-randomised, unblinded   

Clinical Efficacy  

Randomised, blinded   

Home  Environment  

  6 months

Figure 5.1: Study phases to evaluate safety, feasibility and e�cacy of the presented ‘Ad-
vanced Bolus Calculator for Diabetes’
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5.1 Clinical Evaluation of ABC4D - Study Phases

5.1.1 Study Phase 1 - Proof of Concept

Phase 1 was a clinical ambulatory ‘run-in’ study of one-month duration in a small group of

people with T1D to register the individual’s physiological variables influencing the glucose

through the mobile interface and di↵erent monitoring devices (e.g. glucose meters and

CGM systems). Safety was assessed by measuring post-prandial glucose for hypo- and

hyperglycaemia for two meal challenges (i.e. breakfast and lunch) in a controlled clinical

environment.

Study Outcome Primary outcome was the frequency and severity of post-prandial hy-

poglycaemic episodes within 2 hours of insulin administration.

5.1.2 Study Phase 2 - Safety and Feasibility

The objective of the second phase of the study was to demonstrate safety and technical proof

of concept of the ABC4D system in the subject’s own environment before commencing to

a large-scale e�cacy study. Ten adults with T1D on multiple daily injections have been

recruited for this study phase. As the number of participants was small, the study was not

randomised and there was no comparison or control group. The sample size was comparable

to other technology transfer studies and aimed to provide robust clinical validation and

safety data. The study was not powered to show a change in the primary or secondary

outcomes compared with usual care but is an assessment of a new technology.

Study Outcome Primary outcome was the frequency and severity of post-prandial (0-4

hours) hypoglyaemica, while secondary outcomes included post-prandial glucose at 60 and

120 minutes, post-prandial area-under-curve (AUC) at 120 minutes, glycaemic risk indices

and glycaemic variability.
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5.1.3 Study Phase 3 - Clinical E�cacy

The last phase of the study is currently ongoing and includes a large cohort of subjects

with T1D over 6 months to test the clinical e�cacy of ABC4D. In contrast to the first two

study phases, this is a randomised study with an intervention group and a control group.

The intervention group uses the ABC4D patient platform where the implemented CBR

algorithm adapts the insulin therapy over time. Subjects are blinded to which group they

belong to. Participants in the control group use the same ABC4D platform for requesting

insulin recommendations. However, the CBR learning algorithm has been disabled, thus

the software acts as a standard bolus calculator. The reason for introducing a control group

is based on the hypothesis that the use of CGM alone and an electronic logbook can already

lead to improvements in glycaemic control. Also, the Hawthorne e↵ect (alteration of the

behaviour of participants when being observed by a study team) can be eliminated as the

improvement would be noticeable in both study groups. In order to estimate the number

of participants needed to demonstrate significant changes in outcomes, a power calculation

has been performed. The calculation was based on a population mean HbA1c of 7.9% with

a standard deviation of 1.1. Results showed that 150 subjects with T1D (75 in each study

group) are required to demonstrate an HbA1c di↵erence of 0.6% with an alpha level of

0.05 and 90% power (two-tailed). In contrast to the first two study phases, both people on

multiple daily injections and insulin pump therapy are allowed to participate in the study.

Study Outcome The primary endpoint of the study will be changes in HbA1c at the end

of the 6 month period. Secondary outcomes will include changes in HbA1c after 3 months,

glucose variability, fasting glucose, weight, 24-hour insulin requirement and frequency and

severity of hypoglycaemia
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5.2 Study Phase 1 - Proof of Concept and Safety in Clinical
Environment

The trial was designed to demonstrate safety of ABC4D when used for two meals consumed

at the clinical research unit at the NIHR/Wellcome Trust Imperial Clinical Research Facility.

Further objectives were to get initial feedback from participants using the system through

a non-validated questionnaire and to use collected data for the development of the clinical

revision platform.

5.2.1 Participants

Four people with T1D (3 female and 1 male, with an average age of 38±18 years and

duration of diabetes of 14±12 years) participated in the first evaluation phase of ABC4D.

All study participants have had structured diabetes education in the past.

5.2.2 Study Protocol

Participants were advised to take their basal insulin as normal leading up to the study day.

They attended the research facility fasting at 08:00 with a standardised breakfast (40g) given

at 08:30 and a standardised lunch (50g) at 12:30. After a short induction to the software

at the beginning of the trial, the participants estimated the amount of carbohydrates and

calculated the insulin bolus dose for each meal using the ABC4D smartphone platform

and delivered the proposed insulin subcutaneously (Novorapid or Humalog) in the anterior

abdominal wall, immediately before the meal. Participants were closely supervised by the

study team. Throughout the study period (08:30-16.30) venous blood was sampled every 15

minutes during the first 2 hours after each meal and every 30 minutes for the remaining time.

Blood samples were analysed immediately for glucose concentration using a glucose analyser

YSI 2300 (Yellow Springs Instrument, Yellow Springs, OH, USA). If signs of hypoglycaemic

episodes appeared at any stage, the ABC4D study would have been terminated. After 8

hours, participants could leave the unit and continue with their usual insulin treatment.

Before leaving, each study participant was asked to complete a usability and acceptability

questionnaire.
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5.2.3 ABC4D System

Only the ABC4D patient smartphone platform (ABC4D-PSP) was used for this first study

phase. As ABC4D-PSP was used by participants only for two meals, there was no case

revision performed. However, the collected data was used as a basis for the development

of the ABC4D clinical revision platform (ABC4D-CRP), which was used in the next study

phase.

5.2.4 Results

All four participants completed phase 1 of the study. No episodes of hypoglycaemia (

<3.9 mM/l) or technical (software) faults occurred during this trial visit. All insulin dose

recommendations were accepted by the study participants. Figure 5.2 shows the average

post-prandial glucose concentration sampled with the YSI 2300 glucose analyser. Admin-

istered insulin was 5.5 ± 2.5 Units and 4 ± 1 Units for breakfast and lunch, respectively.

Lowest recorded glucose levels were 5.4 ± 1.5 mM/l after breakfast and 10 ±2.4 mM/l after

lunch. The higher post-prandial glucose excursion for lunch may be due to a conservative

insulin dosing regime and a slight underestimation of the carbohydrate content 47±2.5g

(50g exact). The estimation of carbohydrate amount for breakfast was 40±4g.

5.2.5 Conclusions From Study Phase 1

This was the first time the ABC4D patient smartphone platform was used by people with

diabetes. The aim was to learn how the user interacted with the system and get further

user feedback. Provided insulin recommendations were safe and did not result in low post-

prandial glucose levels. All data (i.e. glucose levels, carbohydrates and insulin dose) was

stored locally on the phone and has been used to build onto the clinical revision platform

needed for the next study visit. Study participants were free to decline the advice if they

did not feel comfortable with the proposed insulin dose, however, all proposed insulin advice

were accepted. The high acceptance rate of insulin recommendations can be contributed

to the ‘safe’ study environment and a conservative initial tuning of the cases but will be

further evaluated in the next study phase.
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Figure 5.2: Mean glucose concentration (n=4) measured by the YSI 2300 analyser (blue
dots) and standard deviation, with insulin (green bars) being delivered for breakfast and
lunch.

5.3 Study Phase 2 - Safety and Feasibility in Home Setting

The second evaluation phase was a non-randomised open-label study where participants

used the ABC4D for bolus calculations over a six week period in their normal environment.

The research objective was to assess safety, feasibility and usability of the whole ABC4D sys-

tem. Safety was assessed by measuring post-prandial glucose for hypo- and hyperglycaemia.

Participants wore a retrospective CGM (Enlite sensor, iPro2, Medtronic) throughout the

study. Recorded glucose data was downloaded every week allowing the research team to

update the algorithm’s case base with new cases from the preceding week. The algorithm

automatically retrieved new cases, but adaptations were approved manually by a clinical

expert.

5.3.1 Participants

Ten adult participants with T1D were recruited from the diabetes clinics at Imperial College

Healthcare NHS Trust. Inclusion criteria were >18 years of age, diagnosis of T1D for >1

year, on MDI using a basal-bolus insulin regime, structured education completed, HbA1c
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<86mmol/mol and no history of severe hypoglycaemia (defined as needing 3rd party as-

sistance) in the previous year. Exclusion criteria included recurrent severe hypoglycaemia,

pregnancy, breastfeeding, enrolled in other clinical trials, active malignancy or under investi-

gation for malignancy, Addisons Disease, gastroparesis, autonomic neuropathy, concomitant

use of GLP-1 analogues and gliptins, visual impairment and reduced manual dexterity. In-

formed written consent was obtained. As part of screening, participants underwent one

week of blinded CGM and their insulin settings (ICR, ISF and basal insulin dose) reviewed

by the study team. All participants were provided with a half-unit pen (Echo pen (Novo

Nordisk) for insulin aspart, the Junior Star (Sanofi) for insulin glulisine or the Humapen

Luxura HD (Lilly) for insulin lispro) for their rapid-acting insulin injections as the insulin

bolus advice is rounded to the nearest half unit.

5.3.2 Study Protocol

Participants attended the clinical research facility on day 1 of the study and the iPro2 CGM

(Medtronic) was inserted according to manufacturers instructions. The ABC4D patient

smartphone platform was initialised with three basic cases (i.e. breakfast, lunch and dinner)

with the existing ICR as a solution. People participating in the study were given instructions

to perform blood glucose measurements fasting, pre-meal and pre-bed. They were also

encouraged to avoid correction boluses for 2 hours post-meal unless clinically indicated (i.e.

blood glucose >15mM/l or ketosis). An ABC4D user guide, outlining how to enter the data

in the app and how to use the logbook feature, was given to all participants. Participants

then attended the clinical research facility at the end of each week over the next 6 weeks

for the revision of the case-base.

5.3.3 ABC4D System

Selection of Case Parameters

Because of the short duration of the presented study, only a limited number of case param-

eters were selected. Criteria for case parameters to be included were the frequency of usage

and the impact on glucose control. The final choice on which parameters to include was

made based on discussions with the medical study team and feedback from the focus group

meetings (see Chapter 4.4). Chosen case parameters were: time of meal, meal absorption

rate, physical exercise, alcohol consumption and hyperglycemia.
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Initialisation and Parameter Weighting

At the start of the study, the case base was initialised with three cases for each state of the

context ’time of day’ (i.e. breakfast, lunch, dinner). Initial solutions of the cases were the

ICRs, which participants used prior to the study and were optimised by a clinical expert

based on data collected from a run-in period of one week. Also, the amount of basal insulin

was revised before the start of the study. The weights for each parameter were pre-defined

as equal (i.e. 1) and remained static throughout the duration of the pilot study.

Case Retrieval

In this phase of ABCD, cases were retrieved via the k-nearest neighbour (k-NN) classifier to

find the most similar case when compared to the current meal scenario. Only the solution

of the closest case has been considered for the retrieval step (i.e. k=1). The similarity of

the best match was calculated by the weighted arithmetic mean of the distance between the

parameters of the current situation and those of the retrieved case.

Case Revision

At each study visit, data from the smartphone ABC4D application was transferred to a

study desktop computer and the CGM data was uploaded to the Medtronic Carelink iPro

software. All data was then imported and synchronised using the clinical revision platform

allowing visualisation of glucose data and the corresponding logbook data for all meal sce-

narios where ABC4D was used, as well as information about the applied case solutions.

Finally, each proposed adaptation to the case solution was manually approved prior to up-

dating the case base in the smartphone ABC4D application.

Cases were not included for revision if any of the following events occurred: a post-prandial

snack/meal ingested within 4 hours, correction bolus taken within 4 hours or insu�cient

CGM data (minimum requirement was 6 hours of CGM data post-meal). However, if a

snack/meal coincided with glucose levels of <3.9mmol/l within 4-hours of the meal bolus it

was assumed this was an intervention for correction of hypoglycaemia and therefore included

for revision. Scenarios, where participants declined the ABC4D bolus recommendation were

included for revision.
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Case Retention

In order to ensure safety, a case needs to be revised at least twice in order for the case

solution to be adapted. The final solution of the case is then calculated based on the

average of all adaptations.

Safety constraints

Safety constraints included saturation of the case adaptation to ± 20% of the existing ICR

and a maximum threshold for any recommended insulin dose. IOB was pre-set to 5 hours

for all participants and was not changed. Only correction boluses were considered in the

computation of IOB to avoid conservative insulin recommendations in the event of multiple

meals close together. The case base was not accessible to the participant at any point.

While the clinical revision platform automatically recognised if a case adaptation should be

approved or declined, for safety, each case adaptation was manually approved by the study

team. Each week the CGM sensor (Enlite, Medtronic) was then replaced. All CGM data

was blinded to the participants throughout the study.

5.3.4 A Case Study

Figure 5.3 shows the evolution of adaptations to the solution of a single case (breakfast,

medium absorption, no alcohol or exercise) for one study participant. Each graph represents

one study week and shows an overlay of pre- and postprandial glucose levels for chosen

breakfast scenarios, which were similar in size and where the user accepted the proposed

insulin dose. The case solutions (i.e. ICRs) used for insulin recommendations are shown

at the top of the graph. Week 1 started with the optimised ICR value after the run-in

period by the clinician (i.e. ICR = 30 g/U). If the minimum post-prandial glucose level

was outside the green target range, then the metric implemented in the revision step of the

CBR cycle calculated a new case solution based on the di↵erence to glucose setpoint (here

6.5 mM/l). In this example, it can be seen that the ICR values were increased during each

study week, converging to a more conservative insulin therapy for this case. The proposed

insulin dose for a similar sized meal was 3.5 units and 2 units in the first and last study

week, respectively. While one scenario in week 5 showed the post-prandial glucose minimum

in target, the overall case solution was still increased as the final case solution is calculated

based on the average of individual case adaptations.
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Figure 5.3: Evolution of changes to the insulin-carbohydrate ratio (ICR) for a breakfast case
after each study week. Each graph shows glucose levels for two similar breakfast scenarios
(above) and the amount of administered insulin proposed by ABC4D (below). The blue
line represents the glucose concentration measured with a continuous glucose monitor and
is displayed until 6 hours after the meal or until a new meal scenario occurs. Red dots
are glucose measurements from a blood glucose meter, while white circles represent the
post-prandial glucose minima used for adaptation.

5.3.5 Results

Ten adults with a mean (SD) age 47 (17), duration of diabetes 25 (16) and HbA1C 68(16)

mmol/mol (8.4 (1.5) %) completed the study. The primary outcome was the number of post-

prandial hypoglycaemic (<3.9mmol/l) episodes. Secondary outcomes were percentage time

in glucose target range (3.9 - 10.0mmol/l), euglycaemia (3.9 - 7.8mmol/l), hypoglycaemia

(<3.9 mmol/l) and hyperglycaemia (>10.0 mmol/l), mean sensor glucose, post-prandial

area-under-the-curve (AUC) and glycaemic risk measures of low blood glucose index (LBGI)

and high blood glucose index (HBGI). Overall glycaemic outcomes from week 1 were com-

pared to week 6 using the paired t-test (for normally distributed data) or the Wilcoxon

matched-pairs signed-rank test (non-normally distributed data). The number of created

cases has been analysed as well as the individual e↵ect of parameters exercise and alcohol

on the case solution (ICR) and post-prandial glucose control. During the study, retrospec-

tive CGM data was used for case revision, thus information about the glucose trend was not
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available at the time of the meal. As the final study phase will incorporate real-time CGM,

glucose rate-of-change at mealtime could be used as a potential case parameter. With the

retrospective glucose data available from the six-week study, we have evaluated the e↵ect

of glucose rate-of-change (ROC) before mealtime (15-0 min before) on the post-prandial

glucose.

Primary and Secondary Glucose Outcomes The overall post-prandial glycaemic out-

comes comparing week 1 to week 6 of the study are outlined in Table 5.1 a). Although not

statistically significant, more than a two fold reduction in the number of post-prandial

hypoglycaemic episodes was observed. There was no significant di↵erence in area-under-

the-curve (AUC) or mean post-prandial glucose. The mean (SD) number of post-prandial

rescue carbohydrate required for hypoglycaemia was 0.7 (0.9) at week 6 compared with

1.8 (1.7) at baseline (p=0.06) and the number of postprandial correction boluses taken for

hyperglycaemia was 0.6 (0.8) versus 0.1 (0.3) (P=0.06), in week 1 and week 6 respectively.

The overall changes in percentage time spent in target range, hypo- and hyperglycaemia,

mean glucose and LBGI and HBGI are outlined in 5.1 b). The small reduction in hypo- and

hyperglycaemia did not reach statistical significance. No episodes of severe hypoglycaemia

requiring third party assistance occurred during the study.

Changes in Insulin-Carbohydrate-Ratios Table 5.2 shows the mean change (week 1

vs. week 6) in ICRs of cases used for breakfast, lunch and dinner, as well as for cases that

include parameters alcohol, exercise and hyperglycaemia. Parameter meal absorption rate

was not included in this analysis because of its little usage. Cases including only exercise or

alcohol yield less insulin delivery at the end of the study compared to cases without the pa-

rameter. The resulting post-prandial outcome (30min-6 hours after meal) showed a slight

reduction in the number of hypoglycaemic events (<3.9 mM/l) per participant for cases

with parameter alcohol and exercise in the final three weeks of the study. Although pre-

sented changes are not statistically significant, the trend to reduce hypoglycaemia indicates

the importance of analysed case parameters. For cases, where blood glucose levels were

high at meal-time (case parameter hyperglycaemia), the mean ICR was slightly reduced

compared to lower glucose levels, thus more insulin was proposed towards the end of the

study. In spite of the insulin therapy being more aggressive, this did not negatively a↵ect

the number of hypoglycaemic events with 0.4±0.5 and 0.2±0.4 events in week 1-3 and week

4-6, respectively.
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Table 5.1: a) Post-prandial glycaemic outcomes (median (IQR)) in week 1 and week 6, b)
Changes in glycaemic outcomes between week 1 and week 6 (n=10). Data are expressed as
median (IQR). The p-values are calculated for di↵erences between week 1 and week 6.

a) Postprandial glucose Week 1 Week 6 p Value

Hypoglycaemic episodes
within 4 hour post-prandially

3.5(1.7-5.2) 1 (0-5) 0.2

Hypoglycaemic episodes
within 6 hour post-prandially

4.5(2.0-8.2) 2 (0.5-6.5) 0.17

Post-prandial AUC 2hrs 1118 (996-1292) 1117 (1091-1425) 0.5
Post-prandial AUC 4hrs 2095 (1860-2559) 2080 (1927-2597) 0.7
Post-prandial glucose 60 min
(mM/l)

9.6 (8.1-10.3) 8.6 (8.4-12.4) 0.7

Post-prandial glucose 120
min (mM/l)

9.3 (7.0-10.6) 8.6 (7.6-10.9) 0.5

b) Overall Glucose Week 1 Week 6 p Value
% time spent in <2.8 mM/l 0.8 (0.0-3.6) 0.4 (0.0 - 3.5) 0.5

<3.3 mM/l 2.3 (0.1-5.7) 1.2 (0.3 - 5.9) 0.7
<3.9 mM/l 5.0 (0.7-9.2) 3.6 (0.6 - 9.8) 0.7

3.9 - 7.8 mM/l 35.5 (25.7-40.7) 39.8 (29.1 - 46.7) 0.8
3.9 - 10 mM/l 55.0 (50.1-56.7) 60.9 (46.5 - 72.2) 0.9

>10 mM/l 40.5 (26.3 - 47.3) 36.9 (18.0 - 43.1) 0.5
>15 mM/l 9.3 (2.8 - 15.3) 5.5 (2.1 -19.3) 0.8

Mean Glucose (mM/l) 9.5 (8.3 - 10) 9.1 (8.1 - 10.2) 0.7
LBGI 4.3 (2.8-8.0) 2.8 (2.3-8.6) 0.9
HBGI 12.9 (8.6-14.6) 11.9 (5.8 - 17.7) 0.7

Number of Cases Figure 5.4 shows the growth of the case base through the six-week

pilot study. On average, 11.6±3.5 cases were created by the end of the study which is half

of the maximum possible number of cases (i.e. 24). The majority of cases was created

within the first week of use. Throughout the rest of the study the case base grew steadily,

but fewer cases were created compared to the initial week.

Glucose Rate of Change A total of 649 meal scenarios have been analysed. Glucose

rate of change (ROC) was categorised into three trends (falling, stable or rising). The

e↵ect of ROC trends on the minimum post-prandial (2-6 hours) glucose concentration was

evaluated. For the majority of analyzed meals (53.9%), glucose ROC was stable (-0.5 mg.dl-

1.min-1 to <+0.5 mg.dl-1.min-1) at mealtime, for 29.6% above +0.5 mg.dl-1.min-1 and for

16.5% below -0.5 mg.dl-1.min-1, respectively. For 7.5% of meals with a falling glucose
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Table 5.2: Evolution of case solutions (ICRs) of cases with parameters alcohol, exercise and
hyperglycaemia after the six-week study (above) and number of hypoglycaemic events for
weeks 1-3 and 4-6 for used case parameter (below)

a) Changes in ICR Insulin-Carb.-Ratio (1U/g)
Time of Day Week 1 Week 6 p Value

Breakfast 12.2 ± 7.0 15.3 ± 14.1 0.5

Lunch 11.3 ± 3.4 13.2 ± 6.2 0.4

Dinner 10.8 ± 3.3 10.8 ± 3.0 0.9

Parameter
Alcohol 10.5 ± 3.6 11.1 ± 4.1 0.2

Exercise 13.1 ± 3.1 14.6 ± 8.0 0.4

Hyperglycaemia 12.5 ± 3.0 10.6 ± 4.1 0.1

b) Hypogl. (<3.9 mM/l) No Hypoglycaemic Events
Parameter Weeks 1-3 Weeks 4-6 p Value

Alcohol 0.4± 0.1 0.3 ± 0.0 0.7

Exercise 0.9 ± 0.1 0.5 ± 0.1 0.2

Hyperglycaemia 0.4 ± 0.5 0.2 ± 0.4 0.4

Figure 5.4: Graph showing number of cases (mean ± standard deviation) in the case base
for each study week.
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trend, active insulin from previous insulin administrations was recorded. The post-prandial

minimum mean glucose levels were 106±52 mg.dl-1, 115±55 mg.dl-1, 128±56 mg.dl-1 for

falling, stable and rising glucose trends at meal times, respectively. The reported di↵erence

of minimum glucose levels for rising and stable glucose ROC was significant with p=0.01.

5.3.6 Conclusions From Study Phase 2

In the six-week study, the ABC4D adaptive bolus calculator provided safe insulin rec-

ommendations and maintains glycaemic control with a trend suggesting improvement in

post-prandial glucose outcomes. Observed changes of the insulin-carbohydrate ratios for

cases including exercise and alcohol information give a positive indication of the clinical

e↵ectiveness of parameters exercise and alcohol. Retrospective analyses of the results show

that including information about glucose rate-of-change for a real-time continuous glucose

monitor could potentially improve glycemic control.

5.4 Study Phase 3 - Large Scale Randomised Controlled Ef-
ficacy Study

The final study phase is a large-scale randomised controlled blinded study where participants

use the ABC4D patient smartphone platform over a period of 6 months. The aim of the

study is to evaluate the e�cacy of ABC4D with real-time CGM (RT-CGM) compared to

state-of-the-art care with RT-CGM. State-of-the-art care has been defined as MDI or CSII

therapy while using a standard bolus calculator implemented in insulin pumps or glucose

meters to calculate the amount of insulin for meals.

5.4.1 Study Design

In order to provide a fair comparison, the study is blinded to the participants and both study

groups (intervention and control) use the ABC4D patient smartphone platform to calculate

the insulin dose for meals. While the ABC4D software in the intervention group implements

the CBR algorithm with the capability to automatically adapt the insulin therapy, the

ABC4D software used by people in the control group acts as a standard bolus calculator

(without CBR adaptation). During the study, all participants have continuous access to

real-time CGM data (Dexcom G5), which shows current and past glucose data on the phone.
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After a run-in period of one month to allow users to accustom to the RT-CGM, participants

are randomised into either the intervention or control group. While the availability of

real-time CGM alone is anticipated to show improvements in the glycaemic control, this

benefit will be also noticeable in the control group. In order to ensure safety for all study

participants, follow-up visits are scheduled at one and three months after study start where

a clinician can manually perform changes to the insulin therapy. This is particularly of

importance for the control group as here the insulin-carbohydrate ratio is not adjusted by

the CBR algorithm. The primary outcome in the last study phase is the change in HbA1c

after 6 months.

5.4.2 Case Parameters

All case parameters from the second phase have been included. Because of the longer study

duration, more parameters have been added, some of which occur less frequent and were

therefore omitted in the previous study phase (e.g. illness or hormonal cycle). Additionally,

based on the results of the analysis from the second phase (see section 5.3.5) and the

availability of real-time CGM, parameter ‘glucose rate-of-change’ was introduced. Table

5.3 shows the list of case parameters included in the study and their discretised states. All

participants were asked at the beginning of the study to define a personalised parameter,

which can then be selected among the pre-defined parameters on the main screen of the

ABC4D smartphone application.

5.4.3 Case Revision

All used cases are revised at the end of each week throughout the study. In the beginning,

all individual case adaptations are approved by the study team (as in study phase 2) before

moving to a semi-automatic process where only a summary of performed adaptations re-

quires approval. Update of case adaptations is performed via email, where an encrypted file

sent as an attachment synchronises the case base on the patient platform. A confirmation

of the successful update is sent back to the research team. The end of the study envis-

ages fully automated case adaptations with the research team being informed in advance of

planned therapy changes with the potential to overwrite or decline proposed changes. The

use of RT-CGM also allows glucose data of study participants to be synchronised with a

web-based diabetes management system in real-time. This provides remote supervision and

prevents any potential system faults despite safety measures.
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Table 5.3: List of case parameters used for the third study phase, their discrete states and
default values

Parameters Discrete States Default State

Time of Day Breakfast, Lunch, Dinner -
Exercise None/Moderate/Intense None
Alcohol None/Little/Some None
Stress None/Yes None
Illness None/Yes None
Hormonal E↵ect (only
for female participants)

None/Low Glucose/High
Glucose

None

Glucose Rate of
Change

Not Available/Falling/
Stable/Rising

Not
Available

Meal Absorption Slow/Medium/Fast Medium
High Fat Content No/Yes No
Hyperglycemia (>7.8
mM/l

No/Yes -

Personalised Parameter No/Yes No

5.4.4 Preliminary Results

At the time of writing, four participants have completed the run-in phase of one month and

have been randomised into either control (n=2) or intervention (n=2) study group.

5.4.5 Cases in Case Base

The average number of cases in the case base of the two participants in the intervention

group was 66 ± 25 after one month. This is significantly larger than the number of cases

observed in the second study phase after the same time interval (10 ± 2), which is due to

the greater selection of implemented case parameters.

5.4.6 Personalised Parameter

Before the start of the study, participants have been asked to name a daily life scenario

that, in their experiences, causes changes to the glucose levels and which they would like to

see integrated within the ABC4D system. Following parameters have been chosen by the

four study participants as their ‘personal’ parameter after discussions with the study team:
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• Eating Out

• Cooking

• Lack of Sleep

• Working Late

The rationale behind the first two parameters (eating out and cooking) is that the mentioned

scenarios provide a challenge to estimate the correct amount of carbohydrates. While one

participant struggles to analyse the meal content when eating in a restaurant, another

person stated that tasting the food during cooking may be the reason for higher glucose

levels during this process. Other study participants named lack of sleep and late night work

as a reason for glucose levels to be out of range.

5.5 Discussion

After testing the performance of the developed DSS in simulations in the previous chapter,

the clinical evaluation aims to demonstrate the e↵ectiveness of the system under real-life

conditions. Initial study phases focused on the safety of the insulin advisory system. No

severe hypoglycaemic events occurred after receiving an insulin dosing advice during the

first two study phases. The performance of the system under real-life conditions was first

tested in the second trial phase where ten study participants continuously used ABC4D for

meal insulin dosing advice for six weeks. Results of this study suggested a trend to reduce

hypoglycaemia (both post-prandial and overall) and improve time in target (3.9-10mmol/l)

with no increase in hyperglycaemia. However, the di↵erences observed between week 1 and

week 6 did not reach statistical significance. The reason for this can be contributed to

the small population size of the study, which was not powered. Additionally, only a limited

number of case parameters have been considered in phase 2 and omitted factors with impact

on the glucose control could result in continuous adaptation of case solutions. Figure 5.5

shows the glucose control over 24 hours for an individual study participant during the second

trial phase, comparing the initial study week (purple) with subsequent study weeks (green)

after performed adaptation. It can be seen that the glucose control already improved in the

third study week, while the fourth week showed increased variations in glucose levels during

the night and morning as well as hypoglycaemia in the fifth study week due to changes

in the subject’s environment or other unaccounted parameters. Therefore, the number of
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Figure 5.5: Evolution of average glucose levels (± SD) during 24 hours comparing the initial
week (purple) with each subsequent week (green).

parameters was increased for the last study phase from five to eleven, aiming to capture

more factors a↵ecting the glucose control. Interim analysis performed during the third

study phase showed that the inclusion of additional parameters results in a much larger

number of cases retained in the case base. In order to ensure safety, all case adaptations

were approved by the study team in the first two study phases. To reduce the workload,

a more automated revision process has been implemented for the third study phase. As a

safety feature, a web-based diabetes management platform provides real-time glucose data

for remote supervision.

5.6 Conclusion

This chapter discussed the clinical evaluation of the ‘Advanced Bolus Calculator for Dia-

betes’ system in three phases. The first study demonstrated proof of concept in a clinical

environment, while the second study evaluated safety and feasibility of the system over six

weeks in ten people with diabetes in their normal environment. As the second study was a

non-randomised trial without a control group, no major conclusions can be drawn from the

glycaemic outcomes measured. However, the safety of the overall system was demonstrated

and initial results are encouraging, indicating improvements in glycemic control, which is

currently being further evaluated in the third study.
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Chapter 6

Outlook and Discussion

6.1 Future Work and Outlook

This section provides an outlook on future work and technologies to further enhance the

presented insulin advisory platform. It further includes the author’s vision about current

technologies that could be integrated into the ABC4D system to improve its usability,

performance and adherence.

6.1.1 Case-based Reasoning Algorithm: Additional Features

Case Parameters

Initial results from the second phase of clinical evaluations confirmed the clinical impor-

tance of the parameters mentioned in the literature, such as physical exercise and alcohol

consumption, which is consistent with the views and perceptions of participants obtained

through a questionnaire on the system’s usability. Further parameters that could be inte-

grated into the ABC4D system are listed in Appendix B. Future versions of ABC4D could

allow clinicians to select case parameters that are most relevant to a patient through the

clinical user interface while leaving out parameters that are not of relevance to the user.

For instance, a person with T1D who does not drink alcohol could omit this parameter.
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Case Retrieval Methods

The presented CBR algorithm in this thesis uses K-Nearest Neighbours (KNN) to find the

most similar case in the case-base. However, there are several other similarity measurement

metrics that can be found in the literature [1] and could be investigated (e.g. use of fuzzy

logic case retrieval [2]).

In the presented clinical trials, case parameters are equally weighted for case retrieval.

The reason for the inability to fine tune them was due to the lack of clinical data. With the

realisation of longer clinical trials, it is possible to assign weights to parameters accordingly.

Case Adaptation Methods

Case adaptation is very domain specific and there is no universal method that can be

applied. In the second phase of the clinical evaluation a rule-based method has been used

to adapt the solution of a retrieved case to the current scenario (e.g. if retrieved solution

corresponds to moderate exercise and current scenario has intense exercise, then the ICR

is increased by 20%). Other adaptation techniques could be investigated [3].

Case Revision Methods

Although the current metric for case revision has been proven to be e↵ective, both in silico

and in vivo, other revision metrics exist that could be considered. For example, area-under-

the-curve (AUC) below and above target range in a predefined time window (e.g. 4 hours

post-prandially) could be used.

Additional Bolus Calculator Parameters

Current bolus calculator use following parameters: the insulin-carbohydrate ratio (ICR),

the insulin sensitivity factor (ISF) and the insulin action time for insulin on-board estima-

tion (IOB). Additional parameters could be taken into account if more information about

the meal composition is available. For example, these parameters could be the type of bo-

lus (square bolus, dual bolus, etc.). For insulin pump users, the reduction of basal insulin

could be considered for physical exercise. Insulin action time for IOB calculations is cur-

rently considered as a constant parameter. However, it is possible to automatically adapt
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the parameter based on the analysis of glucose excursions. The bolus calculator can also

potentially incorporate an estimation of ’carbohydrates-on-board’.

Correction Bolus Recommendations

The insulin dosing decision support system presented in this thesis has been designed to

recommend meal insulin boluses only. However, it could also be used for recommending

correction boluses in between meals. If real-time CGM is available, the user could be

automatically notified about the need for a correction bolus.

Carbohydrate and Exercise Recommendation

In addition to providing insulin recommendations, future versions of the system could incor-

porate carbohydrate recommendations for hypoglycaemia prevention and exercise recom-

mendation for hyperglycaemia treatment (instead of a correction bolus). Real-time CGM

would be required for this feature.

6.1.2 Technology Integration

Currently, the ABC4D patient software runs as a stand-alone application on a smartphone

and does not communicate in real-time with any external device (e.g. glucose sensors or

insulin pumps). The integration of ABC4D into a blood glucose reader would enable direct

access to glucose readings. Alternatively, the insulin recommender can be implemented into

the handset of an insulin pump, which would allow automatic delivery of insulin if recom-

mendations are accepted by the user. In case the decision support tool is not integrated into

a blood glucose meter or an insulin pump, then direct communication of ABC4D with these

commercially available devices would enhance its usability. Blood glucose measurements

can be sent from the meter to the ABC4D software and would therefore reduce manual user

input. Interfacing ABC4D with a real-time CGM could also enable the user to receive pre-

dictive hypo- and hyperglycaemic alarms. Further methods to potentially enhance usability

and performance of ABC4D are discussed now:
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Automated Acquisition of Parameters (e.g. Exercise or Stress)

Several minimally intrusive activity monitors are currently available in the market (e.g.

Fitbit, Inc., CA, USA). Integrating one of these activity monitors into ABC4D would allow

automatic detection and quantifications of parameters such as exercise and psychological

stress. This automation could significantly reduce the need for manual user input. It is

important to remark that the precision of these devices does not need to be very high and

only a rough estimation is su�cient (e.g. intense exercise for a short duration). In order

to di↵erentiate between physical activity and stress, concurrent sensors are needed. For

example, a heart rate monitor might show an increase in heart rate but the accelerometer

indicates no physical activity. This could be a sign of stress, but also could be due to a

workout on a static bike if the accelerometer is worn on the wrist. A solution to this problem

could be asking the user if the change in heart rate is stress related or if there was any kind

of activity that was undetected by the accelerometer.

Web-based Platform for Automated Revision

Future work could also see the CBR revision algorithm implemented into a secured web-

based platform to automate the revision process and enable remote access to the data

for clinicians and patients. Clinicians could retrieve historical data and react to changes

performed by the algorithm. Patients would have access to personal historical data and past

insulin recommendations. The platform would also enable easier communication between

the clinical team and the patients. Social media could potentially motivate users to adhere

to the therapy by setting personal goals (e.g. percentage of time in target over a week) on

the mobile app and sharing them online.

Interfacing with other Mobile Devices (e.g. Smartwatch)

Another way to enhance usability and promote interaction with the ABC4D patient platform

is to utilise functionalities of other mobile devices, such as smartwatches. The ABC4D

smartphone application can be paired and connected via Bluetooth to the smartwatch

(e.g. Apple Watch, Apple Inc. or Moto 360, Motorola Mobility), which can access and

synchronize the data from the smartphone application. The menu on the watch is controlled

either via swipe or touch gestures. According to feedback from people with diabetes in focus

group meetings, users would be interested in seeing past recommendations and glucose levels
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on the watch or receive notifications and reminders. Sensors that are in-built within the

watch (e.g. accelerometer, heart rate data) can be used to detect physical activity and

stress. Figure 6.1 shows a prototype version of ABC4D interacting with a smartwatch for

requesting insulin dose recommendations, which has been developed during this work [4].

The smartwatch displays glucose information that is synchronised via the smartphone and

communicates with a CGM system in order to provide alarms if glucose levels are predicted

to be out of target range.

Continuous Glucose 
Monitor 

Smartphone 

Smartwatch

Figure 6.1: Smartwatch version of the ‘Advanced Bolus Calculator for Diabetes’ communi-
cating with the ABC4D patient smartphone platform and synchronising data from a CGM
system.

Integration of a Meal Library

Next generations of ABC4D could be linked up with existing meal libraries, which contain

detailed information about the composition of the meals. Alternatively, ABC4D users

could create their own personalised meal library. The library can potentially be co-created

personally or remotely with the help of a dietician in the set-up phase of the software.

The integration of a meal library would allow consideration of parameters such as meal

absorption, fat and protein content.
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Integration with an Artificial Pancreas

Long-term research goals in diabetes management include the development of technologies

such as the artificial pancreas, which intends to totally, or partially, remove the person

with diabetes from the decision-making process so that insulin dosing can be calculated

and administered with no user intervention. However, due to the slow pharmacodynamics

of current insulin formulations, artificial pancreas systems still require pre-meal boluses to

achieve good post-prandial glycaemic outcomes. Therefore ABC4D could potentially be

integrated into an artificial pancreas for pre-meal insulin dosing.

6.2 Summary and Discussion

People with T1D rely on frequent glucose measurements and insulin injections in order to

avoid long-term diabetes-related complications. Calculating how much insulin is required

to bring glucose levels back to a target range is a complex task and the challenges involved

have been outlined in this work.

From the user’s perspective, the two main challenges are the estimation of the meal content

and the time and e↵ort needed to perform the insulin dose calculation (either mental arith-

metic or typing into a calculator). Over- or underestimation of the carbohydrate amount is

frequent and associated with higher daily blood glucose variability in people with T1D [5].

Newly diagnosed patients are encouraged to attend structured education, which involves

carbohydrate counting, however, it has been reported that less than one percent of di-

agnosed people have undergone such training programme [6]. Providing support through

technology by integrating meal databases or automatically estimating the meal content

through image processing has been investigated, but the proposed methods are so far lim-

ited by practicality [7]. Another group proposed the use of a smartphone application that

utilises content from a meal database to capture carbohydrate, lipid and protein content and

therefore report better meal estimations [8].In order to support people with T1D with the

second challenge (performing the insulin dosing calculations) diabetes technology devices

such as blood glucose meters or insulin pumps have incorporated insulin bolus calculators

for meals and correction boluses. Although bolus calculators rely on manual user input (e.g.

amount of carbohydrates, blood glucose levels) and therefore may take up more time than

mental arithmetic (or approximations), the clinical benefit of these simple tools has been
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proven [9]. One reason for this is, apart from helping with arithmetic, that they often take

into account the residual active insulin within the body and therefore propose less insulin

shortly after meals. The calculations performed by standard bolus calculators are based

on the patient’s specific insulin-carbohydrate ratio (ICR) and insulin sensitivity factor (ISF).

From a clinical point of view, the greatest challenge is the optimal adjustment of these

individual parameters (i.e. ICR and ISF), mostly because these factors vary during the

day, are influenced by external factors e.g. exercise, stress and are also known to change

over longer periods of time. It has been shown that, because of the dynamic nature of insulin

therapy, frequent insulin dosing adjustments are required, not only to improve but to main-

tain glucose control [10]. At present, these parameters are re-adjusted when patients attend

their diabetes clinic appointments. Insulin dose adjustments are made based on available

glucose information e.g. HbA1c levels and blood glucose records. While these measures can

help to assess the overall glucose profile, they do not provide information about fluctuations

and the variability of the glucose data, most importantly hypoglycemic episodes. Continu-

ous glucose monitoring can help to capture otherwise unnoticed hypoglycaemia and provide

more detailed information to perform therapy adjustments. However, as the glucose data

is reviewed retrospectively, it can be di�cult to perform adequate therapy adjustments if

clinical visits are scheduled infrequently [11]. For this reason, proposed therapy changes are

kept mostly general (e.g. reduction of basal insulin or the total daily dose of insulin) and

rarely include changes to daily life situations such stress, illness or exercise, all of which

have an impact on the glucose regulatory system.

The research described in this thesis tries to tackle this challenge by proposing personalised

insulin dosing support that is able to di↵erentiate between the aforementioned daily life sce-

narios. It extends existing research of automatically adjusting the insulin therapy [11] [12],

by individually adapting the ICRs for various scenarios that have an impact on glucose lev-

els. The use of CBR for this application has been shown to be well suited as it enables these

scenarios to be represented within cases inside a case base. It is important to note that the

concept of CBR only tells us ‘what’ to do and not ‘how’ to do it. Therefore CBR should

not be seen as a technology such as rule-based reasoning or neural networks, but rather

as a methodology that can utilise any of the technologies from the artificial intelligence or

control engineering domain [13]. Moreover, the proposed decision support system integrat-

ing CBR as a learning methodology incorporates techniques from multiple domains. For

instance, the concept of k-nearest neighbour or other classification methods are commonly
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used in machine learning, while the methods discussed to adjust ICR values are based on

techniques derived from control engineering (e.g. iterative learning control). Although be-

yond the scope of this thesis, future work can further investigate di↵erent techniques for

each step of the CBR process cycle (see Chapter 6.1).

One of the research objectives outlined in the first chapter was to identify parameters

that can be incorporated into the insulin decision support system. Multiple factors that

can be used as case parameters have been discussed in Chapter 3.1.1 and listed in Appendix

B. Initial results of the second clinical study described in Chapter 5.2 were encouraging.

However, in order to demonstrate a clinically significant improvement in glucose control

(e.g. reduction in HbA1c), a longer study duration is needed as well as a greater selection

of case parameters to cover all factors influencing the post-prandial glucose control.

When selecting case parameters, a decision must be made on how detailed or abstract

case parameters are being defined. For practicality reasons, this research only uses observ-

able factors (e.g. exercise, stress) to describe the e↵ect on the glucose regulatory system.

As these terms are very abstract and general, it shall be noted that parameters also could

describe the e↵ect on the glucose metabolism on a more detailed level. As an example,

instead of using the general term ’stress’ as a parameter, a more detailed term describing

the e↵ect of stress to the body could be used (e.g. a rise in stress hormones adrenaline or

cortisol). For instance, cortisol plays a role in hepatic gluconeogenesis and increases insulin

resistance [14]. The advantage of using cortisol instead of stress as a case parameter is that

it can be linked to various other factors such as sleep deprivation and ca↵eine [15]. It would

then be possible to define labels (e.g. stress, sleep deprivation) within the graphical user

interface that can be selected by the user, which would eventually trigger the single case

parameter ‘high cortisol’. However, while this approach can potentially reduce the number

of case parameters, the complexity may be increased when considering that selected labels

(or a combination of labels, such as sleep deprivation and ca↵eine) have a di↵erent impact

on cortisol levels.

One of the major advantages of using CBR as learning methodology for this application is

that the exact e↵ect (or the combination of e↵ects) of a factor does not need to be known.

The CBR based advisory system simply observes the final e↵ect on the glucose level and

sees all intermediate steps as a ‘black-box’. This also enables the personalisation of the

decision support system, one of the research objectives outlined in this thesis, by includ-
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ing individual case parameters, which are chosen by the patient in the set-up phase of the

insulin bolus advisor. In the last study phase, presented in Chapter 5, study participants

could choose and name one parameter, which they think would describe an e↵ect on their

post-prandial glucose.

A crucial step in this research is the revision of used cases and the adaptation of case

solutions (e.g. ICR). Several methods to assess the outcome of adaptations and to perform

insulin dose adjustments have been proposed (see Chapters 3.5.1, 3.6.3 and 3.7), while the

adaptation algorithm used during clinical studies has been validated in-silico [16] using the

FDA-accepted T1D simulator.

After demonstrating the e�cacy of the algorithms in simulations, a mobile and user-friendly

system was designed that incorporates all presented techniques within the CBR process cy-

cle. Acceptability and usability are key for the adoption of the insulin advisory system and

the developed ‘Advanced Bolus Calculator for Diabetes’ (ABC4D) has been designed with

patients being involved from the beginning of the design process through multiple focus

group meetings as well as feedback obtained from questionnaires at the end of each study

phase. The system implementation and usability of the presented methodology in clinical

practice showed encouraging results evaluating the usability and acceptability for both pa-

tients and clinicians [17].

The implemented ABC4D system has been used in three phases of clinical evaluation,

which have been described in Chapter 5. The objective of the first study was to assess

the proof-of-concept in the clinical environment, while the second study phase evaluated

the safety of ABC4D in the normal environment of the user over six weeks. As safety was

a priority in this study, the research team approved therapy changes on a weekly basis.

While frequent (e.g. weekly) manual revisions may not be practical for clinical adoption,

presented results (Chapter 4.2.1) show that a more automated revision process is feasible

and can achieve similar performance compared to clinical experts. By providing appropriate

remote supervision, it is possible to minimise user intervention by a clinical expert. The

automated revision process is currently under investigation in the third study phase evalu-

ating the e�cacy of ABC4D. This final study phase is a six-month randomised controlled

blinded study and has been designed to evaluate the e�cacy of ABC4D with a change in

HbA1c at 6 months as the primary outcome.
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In conclusion, the work outlined in this thesis demonstrated a novel personalised and adap-

tive insulin advisory system that aims to outperform state-of-the-art bolus calculators by

providing more flexibility and individualised therapy. First results of clinical evaluation in

the home environment of people with T1D showed that the developed ABC4D system is

able to automatically perform safe insulin adjustments. It has been further demonstrated

that the concept of CBR can be used as an intelligent tool to assist people in the decision

making for insulin dosing therapy. A large randomised controlled study to prove the clinical

e�cacy is currently under way.
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Appendix B

Factors A↵ecting Glucose Levels

Table B.1: E↵ect of meal-related, biological and environmental parameters on the glucose
regulatory system and the possible integration into an insulin decision support system.
Bolus calculator parameters (e.g. carbohydrates) are not included.

Meal Factors Reported E↵ect Parameter Acquisition
Meal
Absorption

Changes in insulin
absorption [1]

Manual entry of meal type

Alcohol E↵ect on insulin sensitivity and
hepatic glucose output [2]
Increased risk of hypoglycaemia
next morning [3]

Type and quantity of alcohol
need to be manually announced
by user

Fat Content Increased insulin resistance [4]
Elevated glucose excursion [4] [5]
Delayed rise in postprandial glucose [5]

Manually entered by retrieving
information from packaged food
items; Automatic acquisition
through food databases

Protein Content Increased glucose excursion, delayed
rise in postprandial glucose and
protective e↵ect against
hypoglycemia [5]

Manually entered by retrieving
information from packaged food
items; Automatic acquisition
through food databases

Ca↵eine Decrease in insulin sensitivity [6]
Increase in post-prandial
glucose (T2D) [7]
Enhance the intensity of
hypoglycemia warning
symptoms (T1D) [8].

Manually entered by user
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Factors A↵ecting Glucose Levels

Biological Factors Reported E↵ect Parameter Acquisition
Time of
Day

Changes in insulin sensitivity
Increased insulin resistance
in the morning (”dawn
phenomena”)

Automatic: Date and time
can be obtained from system
time

Illness
Stress

Increase in the release of
hormones such as cortisol
and adrenaline, which reduce
insulin sensitivity [9]

Manually announced by user

Hormonal
Cycle

Changes in insulin
sensitivity [10]

Manually announced by user

Sleep (lack
of)

Impaired diabetes control
Greater insulin resistance [11]

Automatic by sleep tracker
and accelerometer or
manually announced by user

Environmental/
Other Factors

Reported E↵ect Parameter Acquisition

Exercise/
Physical Activity

Drop of basal plasma insulin
concentration [12]
Amplification of glucose
uptake by the working
tissue [13]
Elevated hepatic
glycogenolysis [14]

Manual: User enters type
and duration of activity
Automatic: Physical activity
monitor
Heart rate monitor
Temperature sensor

Type of
Insulin
Injection
Site

Insulin Absorption Manually announced by user

Amount of
insulin

Larger boluses remain longer
in the body compared to
smaller doses [15]

Manually announced by user

Temperature Decrease of insulin
absorption for rising
temperatures [16]

Manually announced by user
or automatic by temperature
sensors
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Clinical Assessment of an Advanced Bolus Calculator for Type 1 Diabetes (ABC4D) Acceptability questionnaire v1.0 
01/10/12 
 

Acceptability questionnaire 
 

Advanced Bolus Calculator for Type 1 Diabetes (ABC4D) 
 

The aim of this questionnaire is to assess how user-friendly and acceptable the ABC4D is for 
everyday use and how we can improve it.  For each statement/question please circle the 
answer you agree with the most. Please use the space at the end of the questionnaire to 
write any additional comments you may have about the ABC4D.  
 
Section 1: The ABC4D application 
 
The main ABC4D main screen is clear and easy to read 

Strongly disagree Disagree Neither agree nor 
disagree 

Agree Strongly agree 

 
The colour scheme used on the screen is acceptable 

Strongly disagree Disagree Neither agree nor 
disagree 

Agree Strongly agree 

 
The symbols used for glucose, meal and exercise are acceptable 

Strongly disagree Disagree Neither agree nor 
disagree 

Agree Strongly agree 

 
The size of the buttons on the touch-screen are acceptable 

Strongly disagree Disagree Neither agree nor 
disagree 

Agree Strongly agree 

 
Entering data on to the screen eg. capillary blood glucose (from fingerprick testing), amount 
of carbohydrate and/or exercise was straightforward 

Strongly disagree Disagree Neither agree nor 
disagree 

Agree Strongly agree 

 
There were enough options to describe the type of meal (slow, medium and fast absorption) 
you were about to have 

Strongly disagree Disagree Neither agree nor 
disagree 

Agree Strongly agree 

 
There were enough options to describe the type of exercise (intensity: none, medium, 
intense) that you had done or were about to do 

Strongly disagree Disagree Neither agree nor 
disagree 

Agree Strongly agree 

 
Having to enter alcohol intake with meals was inconvenient 

Strongly disagree Disagree Neither agree nor 
disagree 

Agree Strongly agree 

 
 
 
 



 
 
Clinical Assessment of an Advanced Bolus Calculator for Type 1 Diabetes (ABC4D) Acceptability questionnaire v1.0 
01/10/12 
 

It would be useful to be enter additional information such as type of alcohol(beer, wine, 
spirit) and type of exercise (running, aerobic class, weight training etc.)  
 
Please specify:……………………………………………………………………………………………………………….. 

Strongly disagree Disagree Neither agree nor 
disagree 

Agree Strongly agree 

 
The capillary blood glucose and meal information was saved and displayed in an easy-to -
understand format 

Strongly disagree Disagree Neither agree nor 
disagree 

Agree Strongly agree 

 
It was useful to be able to access the previous data of my capillary blood glucose and meals 

Strongly disagree Disagree Neither agree nor 
disagree 

Agree Strongly agree 

 
Overall, I would consider the ABC4D application user-friendly/easy to use 

Strongly disagree Disagree Neither agree nor 
disagree 

Agree Strongly agree 

 
Section 2: The ABC4D system as a whole (the ABC4D application running on a 
smartphone + continuous glucose monitoring on a regular basis)  
 
The verbal instructions given on how to use the ABC4D system at the first consultation were 
sufficient 

Strongly disagree Disagree Neither agree nor 
disagree 

Agree Strongly agree 

 
The written user guide on how to use the ABC4D was sufficient 

Strongly disagree Disagree Neither agree nor 
disagree 

Agree Strongly agree 

 
The need for regular continuous glucose monitoring(having a glucose sensor attached for a 
week) to optimise the ABC4D algorithm was acceptable 

Strongly disagree Disagree Neither agree nor 
disagree 

Agree Strongly agree 

 
Using the ABC4D for insulin calculation was more time-consuming than using my standard 
method of bolus calculation 

Strongly disagree Disagree Neither agree nor 
disagree 

Agree Strongly agree 

 
Using the ABC4D for insulin bolus calculation caused more anxiety than when using my 
standard method of bolus calculation 

Strongly disagree Disagree Neither agree nor 
disagree 

Agree Strongly agree 
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I was/would be reluctant to use the ABC4D in the following situations: 
 
While at work 

Strongly disagree Disagree Neither agree nor 
disagree 

Agree Strongly agree 

 
When travelling abroad 

Strongly disagree Disagree Neither agree nor 
disagree 

Agree Strongly agree 

 
Before/after exercise 

Strongly disagree Disagree Neither agree nor 
disagree 

Agree Strongly agree 

 
When eating out 

Strongly disagree Disagree Neither agree nor 
disagree 

Agree Strongly agree 

 
When consuming alcohol 

Strongly disagree Disagree Neither agree nor 
disagree 

Agree Strongly agree 

 
When feeling unwell 

Strongly disagree Disagree Neither agree nor 
disagree 

Agree Strongly agree 

 
I trusted the insulin dose recommendation generated by the ABC4D 

None of time Some of the time Not sure Most of the time Each time 

 
Prior to accepting the insulin dose recommendation by the ABC4D I used the feature to 
check how the advice was generated 

None of time Some of the time Not sure Most of the time Each time 

 
Overall, I would be happy to use the ABC4D system for bolus calculation 

Strongly disagree Disagree Neither agree nor 
disagree 

Agree Strongly agree 
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Please provide any additional comments that you feel will be useful for us to improve the 
ABC4D system: 
 
 

 
Thank you very much for your time and comments!  
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1. Introduction 
1.1 Intended Use of the Manual 

This document explains the usage of the ‘Advanced Bolus Calculator for Diabetes - Patient 
Smartphone Platform’ (ABC4D-PSP) after it has been setup by the clinical expert. The 
main functionality of the ABC4D-PSP is to provide real-time personalised insulin bolus 
recommendations for people with type 1 diabetes (T1D). Further, the software can be used 
to record diabetes related events e.g. blood glucose (BG) meter readings, correction 
boluses or exercise. There are no restrictions on whether the person with T1D uses 
multiple daily injections or insulin pump therapy. The software works in combination with a 
continuous glucose monitor (CGM).  
 

2. Instructions for Use 
 
 

Note: This device should be operated in accordance with the instructions 
given by your clinician, even if your clinician’s advice differs from the 
instructions outlined below. 

 
 
 2.1   Getting started: 
 
Insulin dose advice can be requested through the ABC4D application on the smartphone.  

Open the application on the smartphone by tabbing on the ‘ABC4D’ icon  on the 
home screen. The ABC4D logo appears while the application is loading. After successfully 
launching the software, the main user interface is shown on the screen (Figure 1).  
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Figure 1: Main Screen of ABC4D 

 

 
 
 
 

1) ABC4D: Main screen that appears when app is opened - used to request insulin 
bolus advice 
 

2) Log Event: Used to log additional diabetes events e.g. correction boluses, snacks, 
exercise 

 
3) History: Displays all past recommendations and logbook events in a table 

 
4) Graph: Analyses and shows blood glucose meter entries in a graph 

 
5) Settings: General settings about the user and advanced settings for the clinical 

expert (password protected) 

1 
 

2 
 

3 
 

4 
 

5 
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Blood Glucose 
Levels  

 
 
2.2 Input options for insulin dose recommendations:  
 
Once the ABC4D app has been started and the main screen appears, it is ready to give 
insulin bolus advice for meals. Figure 2 shows the input options available for insulin dose 
recommendations. The following information is needed to receive an advice.  
 

1) Blood Glucose Information: Glucose information at meal time is required which can 
be obtained from a standard blood glucose meter. The units of the blood glucose 
levels can be changed in the settings tab. Note that you will not be able to request 
an advice without entering a valid glucose value. 

 
2) Meal Information: Also, an estimation of the amount of carbohydrates to be 

consumed is required. Additional information about the meal absorption and alcohol 
consumption can be selected below.   
 

3) Exercise Information: Optionally, information about any exercise before or after the 
meal can be entered via the touch screen on the phone. 
 

 
 

Figure 2: Input options for insulin dose recommendations 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Slow 

Medium 

Fast 

None 

Medium 

Intense 

Amount of 
Carbohydrates 

Meal 
Absorption  

Physical 
Exercise 

Alcohol 
Consumption    None/Yes 
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2.1 Requesting Insulin Bolus Advice  

When used: For every meal that requires insulin and where the user would like to receive 
a bolus advice.  
 
How to request an insulin advice:  
 

1) Enter glucose levels and estimated amount of carbohydrates (grams)  
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2) Optionally change parameters absorption rate, alcohol and exercise (default values: 
medium, none, none) 
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3) Finally, press the button Get Bolus Advice to receive an insulin recommendation 

 

 

 

 

 

 

 

 

 

 

 

 

  



  Page 7 

 

 

4) Request information about bolus advice (optionally) 
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5) Accept Advice 
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6) Decline Advice  
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2.2 Log Events  

When used: Whenever a diabetes-
related event occurs.  
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2.3 History/Graph  

 
When used: For the user to review entered information and past recommendations 
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2.4 User Settings   

When used: In case the user wants to change settings (e.g. changing units form mM/L to 
mg/dL) and to send logbook/ case-base to clinical expert. The user needs to be informed 
by the clinical expert when this is required.  

 

Data export of logbook and case-base sent to 
clinical expert for case revision 
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1. Introduction 

1.1 Getting Started 

This document contains a user manual for the ABC4D Clinical Revision Platform (ABC4D-CRP). This 
manual is intended for the expert reviewing case-adaptations proposed by the revision algorithm used for the 
clinical trial assessing the ‘Advanced Bolus Calculator for Diabetes’ (ClinicalTrials.gov Identifier: 
NCT02053051) 

1.2 MATLAB Version 

The software has been designed and implemented using Matlab 2012b. To ensure maximum compatibility it 
is advised to use the same version or higher. In order to use the software, following essential files need to be 
inside the working directory of the software. 

2. Starting a new Revision 

2.1 Opening Software in MATLAB 

All files needed to run the software are included in the folder “ABC4D Clinical Revision Platform”. 
 

• Open MATLAB 

• Navigate to the directory containing the ABC4D Revision software 

• Double-click on “ABC4D_Revision_Software.m” 

• Press the green arrow (RUN) on the top of the script to start the software. 

2.2 Selecting Subject and Week 

After starting the software, a window appears (Figure 2) to enter details about the revision.  
 

• First, select the Patient ID using the drop down menu box on the top 

• Then select the current week of the revision.  

• Enter the name of the clinical expert performing the revision.  
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2.3 Initial Setup for New Patient  

 

Figure 1 – ABC4D-CRP Start Window 

First, a new patient profile needs to be added into the revision software. This has to be done only 
once for each patient before the first revision. In order to add a new patient click on the “+” symbol 
next to the Patient ID text-field (Figure 2). 

Add new Patient 
Patient 
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2.4 Adding New Patient  

 

 
Figure 2 - Adding new patient 

 
 
 
 
All text-fields except the comment text-box are required to be filled. Initial ICRs need to be 
identical to the once entered in the ABC4D-PSP. Pressing ‘Save’ adds the new patient to the 
ABC4D-CRP.  

(Optional) 

Save New Patient 
Patient 
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2.5 Entering Revision Info 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 – Starting the revision 
 
Figure 3: After a new patient has been added successfully added to the CRP, it can be selected here 
through the drop-down menu. Text-fields “Patient ID”, “Revision Nr” and at least one “Expert” 
need to be selected before being able to start the revision process.  

Click Here to Start 
The Revision  
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Figure 4 –  ABC4D-CRP Main Screen 

2.6 Clinical Revision Software  

 
After pressing the button “Start Revision” the main revision software window appears (Figure 4). 
The main graphical user interface is divided into three parts: 
 

1. On the left, an overview of the continuous glucose data is shown as well as general settings 
and parameters which have been imported from the phone 

2. In the centre, the clinical expert sees detailed information about the currently selected 
scenario and its closest matching case (top). The suggested and administered bolus is shown 
in the middle, while the suggested adaptation and the review buttons for accepting/ignoring 
cases for revision are located at the bottom  

3. The right side of the main screen shows a detailed plot containing CGM and events data (i.e. 
carbohydrates, blood glucose levels, exercise information, etc) as well as statistics about the 
currently selected meal scenario. The bottom of the screen shows navigation buttons to 
switch to the previous/next ABC4D meal scenario (left) and a clinical decision support tool, 
which analyses all data and gives advice to the clinical expert on whether the current 
scenario is eligible to be used for adaptation or not (right).  

 1  2  3 
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2.6.1 1) Uploading Data from CGM and Phone  

 
First, data from the CGM and the ABC4D-PSP (phone) need to be uploaded. For this, the three 
panels on the top left of the screen are used (Figure 5).  
 

 
   Figure 5 – Uploading Data from CGM and Phone 
 
Following files need to be selected:  
 

1. Upload Patient CGM Data (*.xls): (works for Medtronic  iPro/iPro2) This file contains the 
blinded continuous glucose data and can be downloaded and exported to .xls via the iPro 
Carelink website: https://carelink.minimed.eu/ipro/hcp/login.jsf After successful upload, an 
overview of the glucose data appears below 
(Figure 6).   
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 6 – Displaying CGM Data 
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2. Upload Patient Logbook file (*.csv): This file contains logbook events and settings from the 
ABC4D Patient Platform.  

 
3. Upload Patient Casebase (*.csv): This file contains the current case base of the Patient 

Platform  

 
Files needed for 2) and 3) are exported from the Patient Platform via Settings -> Export to .csv on 
the phone (see Manual of Patient Platform for more details). After selecting all three files the button 
‘Start Revision’ is enabled and the revision process can be started (Figure 7). 

 

 
Figure 7 – Successful Data Import 

2.7 Accepting/Ignoring Adaptations 

Next, each case which has been used for an insulin recommendation will be revised by the 
algorithm. Adaptations proposed to the ICRs need to be either accepted or ignored by the expert 
(Figure 9). The old and suggested insulin-carbohydrate-ratio as well as two buttons 
(Approve/Ignore) are located at the bottom of the main GUI. After either approving/ignoring the 
proposed adaptation, the clinical expert can move on to the next scenario using the navigation 
buttons on the right. It shall be noted that each decision can be undone using a checkbox which 
appears after pressing approve or ignore.   
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1) ABC4D Scenario: Shows all information and user inputs of the current meal scenario where 

ABC4D has been used for bolus advice 
2) Retrieved Case: Shows the retrieved (most similar) case to the current scenario, its 

parameters and its solution (i.e. ICR)  
3) Post-prandial Glucose Excursion: Shows a detailed graph of the current meal scenario 

including glucose data from the CGM device (blue line) and BG meter (red dots), as well as 
meal information, delivered insulin and exercise.   

4) Suggested Bolus Advice: Shows the calculation on how the bolus advice has been 
calculated (suggested bolus) and if the user followed the advice (i.e. administered bolus)  

5) Scenario Details/Statistics: Analyses the logbook data and indicates if a meal or correction 
bolus has occurred within a per-defined time window (i.e. 4 and 6 hours). Comments entered 
by patients are displayed here. Post-prandial statistics can be seen on the right.  

6) Adaptation of Case Solution: Here the revision algorithm calculates the new solution 
based on the post-prandial outcome (Algorithm ICR).  

7) Automated Revision Advisor: Automatically analyses the glycemic outcome and provides 
a suggestion to the clinical expert on whether to approve or ignore this scenario for revision.   

8) Navigation Control/Save Revision: Enables the expert to switch between ABC4D 
scenarios. The number below shows how many scenarios are left to be approved/ignored. 
After all scenarios have been revised, the ‘Save Approved Cases’ button is enabled.   

1 

2 3 

4 5 

6 7 

8 

Figure 9 – Main Screen after Data Import  
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2.8 Finishing Revision  

After reviewing (accepting/ignoring) all ABC4D scenarios, the button “Save Approved Cases” is 
being enabled (Figure 10).  

 
Figure 10 – Finished Revision 

2.9 Including Pending Case-Base 

An adapted case is only then updated into the case-base of the patient platform if the case has been 
revised and approved at least twice in order to avoid initial outliers. If a case has been used only 
once for this patient, then it is not used to update the case-base but will be remembered for the next 
revision phase. Cases that have been revised and approved only once will be saved in a pending 
case-base. After pressing the ‘Save Approved Cases’ button, a dialog box appears confirming 
pending cases for this patient from previous revisions that will be included in the case-base update.  
 
 
 
 
 
 

    Figure 11 – Completed Revision   

2.10 Merging Multiple Adapted Cases 

After including pending cases, all multiple adapted cases will appear. An average value of all 
adaptations is shown at the bottom which needs to be approved for each adaptation (Figure 12). 
 
 
 
 
 
 
 
 
 
 
. 
 

Figure 12 – Multiple Case Adaptation   
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2.11 Revision Summary and Case-base Update  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The summary window appears in this window which displays all adapted cases as well as pending 
cases for the revision. The clinical expert can also add comments about the revision. The new case-
base can either be updated manually on the or by pressing the button “Send case base to Phone” 
(beta). A message-box will appear to confirm the correct phone and user account before the adapted 
case base will be sent to the specified phone.  

2.12 Generating Automated Report  

Pressing “Generate Report” will automatically open a new Microsoft Word document and write a 
summary report about the adaptations being made including a table with the current case-base.  
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Appendix A:  
 

Information about essential MATLAB Files 

SubjectID_Info.mat 

In order to be used by the revision software, for each subject, a .mat file (named 
patient_ID_info.mat) containing essential information about the revision is required. The .m file is 
automatically created using the ABC4D Revision software and located in the folder \ABC4D 
Revision Software 2.61\data. A list of all available patients can be found in the .mat file 
subjects.mat 

 
Figure 1: Structure for Subject file used for Revision 

 
 

• ICR_init1-3: These are the initial insulin-carb-ratios used by the subject at the start of the 
trial  

• Casebase_history: This cell structure contains all past adaptations performed by a revision 
expert 

• Email_phone_abc4d: String containing the email address of the phone which holds the case 
base to be updated 

• Index_cases_adapted_prev: Array showing Case_IDs which have been adapted previously 
• Phone_id: String containing a unique identifier for the phone used for the subject 
• Subject_id: String holding the id of the patient using ABC4D  
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2.13 General Adaptation Rules 

For phase 2 of the clinical trials case adaptations are accepted if: 
 

• No meal/insulin event occurs after the advice and 4hours 
• A snack occurs for correcting a hypoglycaemic event (<3.9mM/l) 

 
For phase 2 of the clinical trials case adaptations are ignored if: 
 

• CGM data is missing 
• A meal/insulin event occurs before 4 hours (and CGM_min > 3.9mM/l for meals) 
• Meal is smaller than 15g 

 

Automated Revision Advisor 

Note: For better readability some system functions are not displayed here.  
  % CASE: CGM DATA MISSING -> IGNORE 
   if(length(glucose_data.glucose_2_to_6h)<40) 
    string_reason = [string_reason,'CGM data is missing. No revision 
possible!']; 
    
  %CASE:Snack < 15g  -> IGNORE 
  elseif(CHO<15)      
  string_reason = [string_reason,'Meal is smaller than 15g so will be 
excluded!!!']; 
     
  %CASE: Event before 2h   -> IGNORE  
 elseif(first_cho_insulin_event<120) 
  string_reason = [string_reason,'There has been a meal/insulin between 0h-2h 
after advice. Even if there was a hypo, its not clear it was because of the 
ABC4D recommendation.No revision possible!']; 
   
 %CASE:Snack before 4hours without hypo -> IGNORE 
  elseif(meal_event_before_4h==1&&min_CGM_2_6h>=3.9)      
  string_reason = [string_reason,'There has been a meal/snack before 4hours 
after receiving the advice and CGM_min was above 3.9mM (no hypo)!']; 
      
%CASE:Snack before 4hours without hypo    -> IGNORE 
  elseif(insulin_event_before_4h==1&&min_CGM_2_6h>=3.9)     
  string_reason = [string_reason,'There has been insulin delivered before 4hours 
after receiving the advice and CGM_min was above 3.9mM (no hypo)!']; 
   
%CASE:Snack before 4hours with hypo -> ACCEPT 
  string_reason = [string_reason,'There has been a meal/snack before 4hours 
after receiving the advice but CGM_min was below 3.9mM (hypo)!']; 
        
 else  -> ACCEPT 
  string_reason = [string_reason,'CGM data is available. There has not been a 
meal/snack before 4hours after receiving the advice!']; 
   
 end 


