6 research outputs found

    Neonatal pain detection in videos using the iCOPEvid dataset and an ensemble of descriptors extracted from Gaussian of Local Descriptors

    Get PDF
    Diagnosing pain in neonates is difficult but critical. Although approximately thirty manual pain instruments have been developed for neonatal pain diagnosis, most are complex, multifactorial, and geared toward research. The goals of this work are twofold: 1) to develop a new video dataset for automatic neonatal pain detection called iCOPEvid (infant Classification Of Pain Expressions videos), and 2) to present a classification system that sets a challenging comparison performance on this dataset. The iCOPEvid dataset contains 234 videos of 49 neonates experiencing a set of noxious stimuli, a period of rest, and an acute pain stimulus. From these videos 20 s segments are extracted and grouped into two classes: pain (49) and nopain (185), with the nopain video segments handpicked to produce a highly challenging dataset. An ensemble of twelve global and local descriptors with a Bag-of-Features approach is utilized to improve the performance of some new descriptors based on Gaussian of Local Descriptors (GOLD). The basic classifier used in the ensembles is the Support Vector Machine, and decisions are combined by sum rule. These results are compared with standard methods, some deep learning approaches, and 185 human assessments. Our best machine learning methods are shown to outperform the human judges

    Adaptive feature selection for classification of microscope images

    Get PDF
    For high-throughput screening of genetically modified plant cells, a system for the automatic analysis of huge collections of microscope images is needed to decide whether the cells are infected with fungi or not. To study the potential of feature based classification for this application, we compare different classifiers (kNN, SVM, MLP, LVQ) combined with several feature reduction techniques (PCA, LDA, Mutual Information, Fisher Discriminant Ratio, Recursive Feature Elimination). We achieve a significantly higher classification accuracy using a reduced feature vector instead of the full length feature vector

    A high-throughput screening system for barley/powdery mildew interactions based on automated analysis of light micrographs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To find candidate genes that potentially influence the susceptibility or resistance of crop plants to powdery mildew fungi, an assay system based on transient-induced gene silencing (TIGS) as well as transient over-expression in single epidermal cells of barley has been developed. However, this system relies on quantitative microscopic analysis of the barley/powdery mildew interaction and will only become a high-throughput tool of phenomics upon automation of the most time-consuming steps.</p> <p>Results</p> <p>We have developed a high-throughput screening system based on a motorized microscope which evaluates the specimens fully automatically. A large-scale double-blind verification of the system showed an excellent agreement of manual and automated analysis and proved the system to work dependably. Furthermore, in a series of bombardment experiments an RNAi construct targeting the <it>Mlo </it>gene was included, which is expected to phenocopy resistance mediated by recessive loss-of-function alleles such as <it>mlo5</it>. In most cases, the automated analysis system recorded a shift towards resistance upon RNAi of <it>Mlo</it>, thus providing proof of concept for its usefulness in detecting gene-target effects.</p> <p>Conclusion</p> <p>Besides saving labor and enabling a screening of thousands of candidate genes, this system offers continuous operation of expensive laboratory equipment and provides a less subjective analysis as well as a complete and enduring documentation of the experimental raw data in terms of digital images. In general, it proves the concept of enabling available microscope hardware to handle challenging screening tasks fully automatically.</p

    A high-throughput screening system for barley/powdery mildew interactions based on automated analysis of light micrographs

    Get PDF
    Background To find candidate genes that potentially influence the susceptibility or resistance of crop plants to powdery mildew fungi, an assay system based on transient-induced gene silencing (TIGS) as well as transient over-expression in single epidermal cells of barley has been developed. However, this system relies on quantitative microscopic analysis of the barley/powdery mildew interaction and will only become a high-throughput tool of phenomics upon automation of the most time-consuming steps. Results We have developed a high-throughput screening system based on a motorized microscope which evaluates the specimens fully automatically. A large-scale double-blind verification of the system showed an excellent agreement of manual and automated analysis and proved the system to work dependably. Furthermore, in a series of bombardment experiments an RNAi construct targeting the Mlo gene was included, which is expected to phenocopy resistance mediated by recessive loss-of-function alleles such as mlo5. In most cases, the automated analysis system recorded a shift towards resistance upon RNAi of Mlo, thus providing proof of concept for its usefulness in detecting gene-target effects. Conclusion Besides saving labor and enabling a screening of thousands of candidate genes, this system offers continuous operation of expensive laboratory equipment and provides a less subjective analysis as well as a complete and enduring documentation of the experimental raw data in terms of digital images. In general, it proves the concept of enabling available microscope hardware to handle challenging screening tasks fully automatically

    Relación entre los métodos de inferencia difusa y la programación lógica multiadjunta

    Get PDF
    A lo largo de este trabajo se realiza un estudio tanto teórico como práctico de los sistemas de inferencia difusos, así como de la programación lógica multiadjunta, para terminar haciendo una comparativa de ambas teorías. A lo largo del primer capítulo, encontramos una introducción sobre el contexto histórico junto con una pequeña descripción de los campos a tratar. Tras ello, estamos en disposición de estudiar en profundidad ambas teorías para terminar con una comparación de ambas junto con las conclusiones obtenidas

    The synthesis of multisensor non-destructive testing of civil engineering structural elements with the use of clustering methods

    Get PDF
    In the thesis, clustering-based image fusion of multi-sensor non-destructive (NDT) data is studied. Several hard and fuzzy clustering algorithms are analysed and implemented both at the pixel and feature level fusion. Image fusion of ground penetrating radar (GPR) and infrared\ud thermography (IRT) data is applied on concrete specimens with inbuilt artificial defects, as well as on masonry specimens where defects such as plaster delamination and structural cracking were generated through a shear test. We show that on concrete, the GK clustering algorithm exhibits the best performance since it is not limited to the detection of spherical clusters as are the FCM and PFCM algorithms. We also prove that clustering-based fusion outperforms supervised fusion, especially in situations with very limited knowledge about the material properties\ud and depths of the defects. Complementary use of GPR and IRT on multi-leaf masonry walls enabled the detection of the walls’ morphology, texture, as well as plaster delamination\ud and structural cracking. For improved detection of the latter two, we propose using data fusion at the pixel level for data segmentation. In addition to defect detection, the effect of moisture is analysed on masonry using GPR, ultrasonic and complex resistivity tomographies. Within the\ud thesis, clustering is also successfully applied in a case study where a multi-sensor NDT data set was automatically collected by a self-navigating mobile robot system. Besides, the classification of spectroscopic spatial data from concrete is taken under consideration. In both applications, clustering is used for unsupervised segmentation of data
    corecore