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Abstract. For high-throughput screening of genetically modified plant
cells, a system for the automatic analysis of huge collections of micro-
scope images is needed to decide whether the cells are infected with fungi
or not. To study the potential of feature based classification for this
application, we compare different classifiers (kNN, SVM, MLP, LVQ)
combined with several feature reduction techniques (PCA, LDA, Mutual
Information, Fisher Discriminant Ratio, Recursive Feature Elimination).
We achieve a significantly higher classification accuracy using a reduced
feature vector instead of the full length feature vector.

1 Introduction

Recent biomolecular methods produce large amounts of raw data exceeding all
limitations of currently used manual or semiautomatic analysis. To study resis-
tance mechanisms of crop plants against fungi a high-throughput screening of
genetically modified cells is performed and the desired automated process should
be able to analyse an immense number of microscope images without human in-
teraction. An overview of computerized cell image analysis can be found in [1].
Automated classification of cell images – from a medical point of view – has
been documented in e.g. [20,15,18] and the recognition of plankton images from
an underwater video microscope system has been described in [16].

This paper focuses on a feature based classification of biological objects which
have been previously segmented in high-resolution microscope images. The bio-
logical relevant object [14] to be automatically detected is a so called hausto-
rium – a complex object consisting of a “waist” with “fingers” (see Fig. 1 for
some typical samples). In the underlying processing pipeline, regions of interest
containing relevant biological cells (more precisely, genetically transformed cells
characterized by a greenish blue dye) are extracted from the acquired images [9].
Next, these individual transformed cells are checked for potential haustoria, us-
ing advanced image segmentation methods [11,10]. This step leads to a rather
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Fig. 1. Three different regions of interest containing biologically relevant cells extracted
from original microscope images. The segmented objects inside those cells have to be
classified into haustoria (marked by “HAU” in the sketches) and other objects. As can
clearly be seen, the contrast may be rather poor and the objects differ very much in
colour, shape, size and orientation.

large number of objects which might be either haustoria or similar image struc-
tures being any other objects. Because this segmentation does not provide a
sufficiently correct recognition of haustoria, classification has to be done to dis-
tinguish between real haustoria and similar objects.

Since the objects stand out only slightly against the background, the ob-
ject recognition has to be rather sophisticated. Furthermore, the objects differ
in colour, shape, size, and orientation (see Fig. 1). Thus, for example, template
based approaches or any solution requiring model assumptions or a-priori knowl-
edge will not be suitable. A common and very flexible approach is to extract a
number of features from labeled examples for all different object classes (here:
haustorium or not) from the image and to perform training and classification
subsequently. Since the impact of particular features often depends strongly on
the subsequent classification method – a fact that is often highly underestimated,
both the feature selection and the classification have to be considered together.
By means of the above mentioned quite challenging real-world application of
haustoria recognition, this paper investigates a number of common statistical
and neural network based classification methods in conjunction with several
common feature selection algorithms and comes up with some expected results
but also some maybe unanticipated ones.

2 Feature Generation

A total number of 38 features is generated, characterizing shape as well as colour
and texture. An overview of the features is given in table 1. During the segmen-
tation procedure described in [11], a contrast enhancement is done using the
morphological top-hat operations. Features can be extracted from the original
or the enhanced images: the average colour values of every object were mea-
sured in RGB and HSV from both image versions and texture features were also
calculated for original and enhanced image.

From the objects curvature [12] the normalized multiscale bending energy
NMBE can be calculated. This measure is 1 for a circle and larger for every other,



Table 1. Overview of features from different categories which were generated for
classification purposes. The texture and colour features were calculated from both
the original and the morphological contrast enhanced image.

Category Feature Number Comment

Simple
geometric

Area 1

Roundness metric 1 R = 4πF
U2

Shape Hu-Moments 7 [8]
Granlund-Descriptors 7 [6]
NMBE 1 [3]

Texture Contrast 2 [5]
Correlation 2
Energy 2
Homogeneity 2

Colour RGB 3
RGB (enhanced) 3
HSV 3
HSV (enhanced) 3

Other CSAT 1 see text

Total 38

more ’twisted’ object, independent of its size. Before calculating the curvature,
the contour is smoothed using a Gaussian function with σ = 1.5. We constructed
another feature, CSAT, which is calculated from the enhanced image by counting
each object’s pixels with saturation value = 1.

3 Feature Selection

Dimensionality Reduction with PCA and LDA
Principal component analysis (PCA) and linear discriminant analysis (LDA)
are two common techniques for feature reduction. While the PCA provides axes
with maximal variance, the aim of the LDA is to find vectors which maximize the
separability of predefined classes. More precisely, a vector d is obtained such that
the ratio of the between-class variance to the within-class variance is maximized.
This criterion C can be expressed as

C =
dT B d

dT W d
,

with B being the between-class covariance matrix and W the within-class co-
variance matrix. The best discriminant vector d1 is provided by

W−1 B d1 = λd1 ,

where d1 is the eigenvector of W−1B associated with the largest eigenvalue. It is
well known as the Fisher linear discriminant. However, if K classes were defined,
at most K−1 eigenvectors exist. To obtain an orthogonal set of more than K−1
vectors, a method proposed in [4] was applied.



Three different techniques for feature selection were used: the recursive feature
elimination as a method of measuring the influence of features on the weight
vector of the classifier, the mutual information to quantify correlation between
several features and classes as well as the Fisher’s discriminant ratio to rate
individual features.

Recursive Feature Elimination
The RFE [7] is a different version of the Sequential Backward Selection [17]. It
can be performed with classifiers which rely on minimizing a cost function of a
weight vector w, e.g. γ(w) = 1

2w
T w for a support vector machine. The idea is

to quantify the influence of the feature i by measuring the absolute value of the
weight wi. The process consists of the following steps:

– Train the classifier (optimize the weight vector w with respect to γ(w)).
– Compute the ranking criteria ci = (wi)2 for all i.
– Remove the feature j with smallest ranking criterion cj.

The result of this algorithm is a feature ranking, but the top ranked (most
recently eliminated) features are not necessarily the ones that are individually
most relevant, only their combination in terms of a feature vector allows an
assessment of their relevance [7].

Mutual Information
Mutual information MI(X, Y ) is a measure of relative entropy between the
joint probability p(x, y) of two random variables X, Y and the product of their
marginal probabilities p(x)p(y) [2]:

MI(X, Y ) =
∑

x,y

p(x, y) log
p(x, y)

p(x)p(y)
.

In the context of classification the mutual information for features υi and classes
ωj is given as:

MI(υi, ωj) = p(υi, ωj) log
p(υi, ωj)

p(υi)p(ωj)

To evaluate the feature υi, the MI-values for all classes ωj weighted with their
priors p(ωj) are summarized:

MI(υi) =
∑

ωj ∈Ω

p(ωj) MI(υi, ωj) .

Fisher Discriminant Ratio
The FDR can be used to quantify the separability capabilities of individual
features [17]. For the two class case, the FDR of feature υ is given as

FDR(υ) =
(μυ1 − μυ2)

2

σ2
υ1 + σ2

υ2

,

where μυ1 is the mean and συ1 the variance of class 1 and μυ2 the mean and
συ2 the variance of class 2 corresponding to the feature υ.



4 Results

After applying the mentioned selection techniques, feature rankings can be cal-
culated. The rankings reflect the diversity of the selection methods. In our ex-
periments the RFE rates the colour features very high, whereas the Mutual
Information tends to place form attributes on top of the list.

Table 2. Classification accuracies (with standard deviations) measured using the full
sized feature vector. Most classifiers show similar, moderate performance. LVQ fails
classification if the feature vector is used with full length.

Classifier KNN3 kNN5 kNN7 SVM
RBF2

SVM
POLY3

MLP LVQ

Classification
accuracy

0.90
± 0.05

0.90
± 0.05

0.90
± 0.05

0.89
± 0.05

0.86
± 0.06

0.88
± 0.05

0.56
± 0.08

Table 3. Classification accuracies achieved with reduced dimensionality. The combi-
nations of feature reduction techniques and classifiers with best results are shown. All
classifiers show an improved accuracy compared to classification using feature vectors
with full length. The values of SVM-RBF2, SVM-POLY3 and LVQ are significantly
increased.

Classifier kNN3 kNN5 kNN7 SVM
RBF2

SVM
POLY3

MLP LVQ

Reduction
method

FDR RFE RFE RFE LDA LDA LDA

Dimensionality 18 22 21 19 5 36 7

Classification
accuracy

0.92
± 0.05

0.93
± 0.04

0.93
± 0.04

0.95
± 0.03

0.92
± 0.04

0.90
± 0.05

0.91
± 0.05
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Fig. 2. Comparison of classification accuracies achieved with reduced feature vectors
and feature vectors with full size. All classifiers benefit from feature reduction.
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Fig. 3. Comparison of different feature reduction techniques combined with several
classifiers. SVM-POLY3 and LVQ achieve their greatest values with a low dimensional
feature vector, calculated with LDA, while the kNN5 classifier and the SVM-RBF
reach their maxima with a medium sized feature vector, containing features obtained
by recursive feature elimination. Some combinations could not be calculated due to
bad convergence. The kNN3 and kNN7 classifier behave similar like kNN5 and are not
drawn for clearness reasons.

To get an impression of the performance on our dataset we use different
classifiers: a k-nearest-neighbor classifier (k = {3, 5, 7}), a multilayer perceptron
with two hidden layers (12 neurons in the first and 3 in the second hidden
layer), learning vector quantization (16 neurons in the hidden layer) and support
vector machines with polynomial (n = 3) kernel and also with a radial base
function (σ = 2) [19]. The specified parameters are the result of preselection and
optimization.

Our sample set consists of 364 annotated micrographs of single plant cells. It
was split into training- and test sets using 10-fold cross validation. To compare
the results of several classification results on one sample set, the corrected re-
sampled t-test [13], which takes into account the variability due to the choice of
the training sets, is used.



Table 2 shows the results using the feature vector of full length (38 features).
The classification accuracies of kNN, SVM-RBF2 and the MLP are similar in
the range between 0.88 and 0.90. LVQ shows very poor performance.

The situation changes considerably when the feature reduction algorithms are
applied. The achieved classification accuracies are shown in figure 3 as a function
of the feature vector size. The classifiers respond differently to the reduction
techniques: LVQ and the SVM with POLY3 kernel show great improvements
with LDA-transformed input data. The accuracy of the kNN classifier and the
SVM with RBF kernel can be enhanced using the RFE-selected features1.

5 Conclusion

For the automatic classification of microscope images of plant cells we studied
the influence of feature selection and -reduction techniques on several classifiers.
Using reduced feature vectors the classification accuracy of learning vector quan-
tization, a support vector machine with a radial base function and also with a
polynomial kernel could be significantly improved compared to the classification
accuracy achieved with a feature vector of full length. In our tests, the highest
accuracy (95%) was obtained by a support vector machine with RBF-kernel in
conjunction with recursive feature elimination.
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