524 research outputs found

    SPEECH CONTROLLED ROBOCAR

    Get PDF
    The main goal of this paper is to introduce “hearing” sensor and also the speech synthesis to the robotic car such that it is capable to interact with human through Spoken Natural Language (NL). Speech recognition (SR) is a prominent technology, which helps us to introduce “hearing” as well as Natural Language (NL) interface through Speech for the interaction. The most challenging part of the entire system is designing and interfacing various stages together. Our approach was to get the analog voice signal being digitized. The frequency and pitch of words be stored in a memory. These stored words will be used for matching with the words spoken. When the match is found, the system outputs the address of stored words. Hence we have to decode the address and according to the address sensed, the car will perform the required task. Since we wanted the car to be wireless, we used RF module. The address was decoded using microcontroller (DSPIC30F) and then applied to RF module. This together with driver circuit at receivers end made complete intelligent systems

    Temporal - spatial recognizer for multi-label data

    Get PDF
    Pattern recognition is an important artificial intelligence task with practical applications in many fields such as medical and species distribution. Such application involves overlapping data points which are demonstrated in the multi- label dataset. Hence, there is a need for a recognition algorithm that can separate the overlapping data points in order to recognize the correct pattern. Existing recognition methods suffer from sensitivity to noise and overlapping points as they could not recognize a pattern when there is a shift in the position of the data points. Furthermore, the methods do not implicate temporal information in the process of recognition, which leads to low quality of data clustering. In this study, an improved pattern recognition method based on Hierarchical Temporal Memory (HTM) is proposed to solve the overlapping in data points of multi- label dataset. The imHTM (Improved HTM) method includes improvement in two of its components; feature extraction and data clustering. The first improvement is realized as TS-Layer Neocognitron algorithm which solves the shift in position problem in feature extraction phase. On the other hand, the data clustering step, has two improvements, TFCM and cFCM (TFCM with limit- Chebyshev distance metric) that allows the overlapped data points which occur in patterns to be separated correctly into the relevant clusters by temporal clustering. Experiments on five datasets were conducted to compare the proposed method (imHTM) against statistical, template and structural pattern recognition methods. The results showed that the percentage of success in recognition accuracy is 99% as compared with the template matching method (Featured-Based Approach, Area-Based Approach), statistical method (Principal Component Analysis, Linear Discriminant Analysis, Support Vector Machines and Neural Network) and structural method (original HTM). The findings indicate that the improved HTM can give an optimum pattern recognition accuracy, especially the ones in multi- label dataset

    Recognition Techniques and System Classification

    Get PDF
    The voice is most primary mode of Communication among of human being. The communication among human computer interaction is called human computer interface. Voice potential of being important of interaction with computer .This paper gives an overview of major technological perspective and appreciation of the fundamental progress of recognition and also gives overview technique developed in each stage of recognition. This paper helps in choosing the technique along with their relative merits & demerits. A comparative study of different technique is done as per stages. This paper is concludes with the decision on feature direction for developing technique in human computer interface system using Hindi Language

    Numerical Non-Linear Modelling Algorithm Using Radial Kernels on Local Mesh Support

    Get PDF
    Estimation problems are frequent in several fields such as engineering, economics, and physics, etc. Linear and non-linear regression are powerful techniques based on optimizing an error defined over a dataset. Although they have a strong theoretical background, the need of supposing an analytical expression sometimes makes them impractical. Consequently, a group of other approaches and methodologies are available, from neural networks to random forest, etc. This work presents a new methodology to increase the number of available numerical techniques and corresponds to a natural evolution of the previous algorithms for regression based on finite elements developed by the authors improving the computational behavior and allowing the study of problems with a greater number of points. It possesses an interesting characteristic: Its direct and clear geometrical meaning. The modelling problem is presented from the point of view of the statistical analysis of the data noise considered as a random field. The goodness of fit of the generated models has been tested and compared with some other methodologies validating the results with some experimental campaigns obtained from bibliography in the engineering field, showing good approximation. In addition, a small variation on the data estimation algorithm allows studying overfitting in a model, that it is a problematic fact when numerical methods are used to model experimental values.This research has been partially funded by the Spanish Ministry of Science, Innovation and Universities, grant number RTI2018-101148-B-I00

    Graphics processor unit hardware acceleration of Levenberg-Marquardt artificial neural network training

    Get PDF
    This paper makes two principal contributions. The first is that there appears to be no previous a description in the research literature of an artificial neural network implementation on a graphics processor unit (GPU) that uses the Levenberg-Marquardt (LM) training method. The second is an initial attempt at determining when it is computationally beneficial to exploit a GPU’s parallel nature in preference to the traditional implementation on a central processing unit (CPU). The paper describes the approach taken to successfully implement the LM method, discusses the advantages of this approach for GPU implementation and presents results that compare GPU and CPU performance on two test data sets
    • …
    corecore