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Abstract - This paper makes two principal contributions. The first is that there appears to be no previous a 
description in the research literature of an artificial neural network implementation on a graphics processor unit 

(GPU) that uses the Levenberg-Marquardt (LM) training method. The second is an initial attempt at determining 

when it is computationally beneficial to exploit a GPU’s parallel nature in preference to the traditional 

implementation on a central processing unit (CPU). The paper describes the approach taken to successfully 

implement the LM method, discusses the advantages of this approach for GPU implementation and presents 

results that compare GPU and CPU performance on two test data sets 
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I. INTRODUCTION 
All desktop computers contain some form of graphics processing unit (GPU) and it is becoming 

increasingly common for manufacturers to provide the user with access to its programmable operations. The 

inherent parallelism, high data bandwidth and favourable cost to performance ratio that are features of modern 

GPUs, have made them an attractive choice for the computational acceleration of many applications, including 

fluid flow simulation [1], finite-element simulation [2] and ice crystal growth [3]. 

 

Neural networks’ ease of use and semi-automatic adaption has made them a very desirable option for many 

applications, such as handwriting identification [4] and speech recognition [5]. A significant drawback is long 

calculation time, as, not only does the realisation of artificial neural networks (ANNs) often require the 

application of training data over many epochs, but also the repeated application of that data with different 

training parameters is needed to generate a solution with good classification performance. A number of 
alternative solutions have been developed to reduce this computational overhead, such as automatically tuning 

parameters to reduce the number of alternative ANN solutions that need be generated [6], novel training 

approaches that require fewer epochs [7] or accelerating the computations by using bespoke electronic hardware 

[8]. As this third approach is taken in this paper, it is important to mention that previous researchers looking to 

hardware acceleration have investigated a number of novel approaches. These include central processing units 

(CPUs) tailored to perform the calculations needed during training [9], mesh connected machines of architecture 

similar to that of interconnected neurons [10], or GPUs adapted to mirror the parallel nature of neural 

calculations [11].  

 

GPUs have been previously used by a number of researchers to accelerate ANN classification, for example [12], 

[13] and [14]. In the literature, no previous GPU solution using the Levenberg-Marquardt (LM) training method 
has been described. This is probably due the fact that its calculation involves a matrix inversion operation that is 

appears to be computationally expensive even for parallel solution. This paper has adopted a solution for the 

matrix inversion operation that allows the LM algorithm to be implemented efficiently on a GPU. Note that a 

commercial LM solution exists for which the operational details have not been published, but for which it is 

claimed that a calculation speed improvement of up to 65 times can be obtained by choosing the GPU rather 

than the CPU implementation [15]. For the examples in this paper, the time taken to train the network using the 

GPU is shown to be up to ten times faster than a similar implementation run solely on the machine’s CPU. In 

practice, the measured difference in performance will depend significantly on the specific GPU and CPU used in 

the comparison and these should always be specified alongside the quoted figures. 

 

This paper briefly describes the LM algorithm, the general architecture of modern GPUs and the implementation 

of the ANN on the selected GPU. Finally, results are presented to compare the training times of the GPU and 
CPU on two test data sets. 
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II. LEVENBERG-MARQUARDT ARTIFICIAL NEURAL NETWORKS 

In an ANN, each neuron will typically apply an activation function to a weighted sum of inputs and 

provide a single output. During supervised learning, a set of training vectors with known outputs is repeatedly 

applied over a number of epochs and the weight values are altered in such a way as to improve the overall 

classification performance of the ANN. Such a training process can be performed by one of a number of 

algorithms, the most popular being backpropagation [16], but LM [17] and Conjugate Gradient Descent [18] are 

also in common use. Unsupervised learning methods are also available, but these are beyond the scope of this 

paper. When the weights are updated after presenting each input vector to the network this is known as online 

training; the alternative being batch training where all the training vectors are applied before the weights are 

updated. There is also a hybrid of the two which uses mini-batches of the total data set before applying the 

weight update 

 
The neurons themselves can be interconnected in a number of ways, but, due to its simplicity and regular 

structure, the most commonly used architecture is the multi-layer perceptron (MLP) feed-forward network. An 

example MLP network with 11 input neurons, four hidden neurons and two output neurons is shown in Fig. 1. 

In the general case, for M input neurons im, P hidden neurons hp and one output neuron o, the weights on the 

edges between the input and hidden layers can be represented by Wpm and those between the hidden and output 

layer (assuming a single output neuron) by wp. Given k input vectors, input value m is given the value 


mi  when 

presented with vector γ where γ={1,2,…,k}. 
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Fig. 1. Example of an MLP ANN with a single output 

 

The LM algorithm has recently become increasingly popular as its second-order optimisation techniques allow a 

very efficient batch update method. A drawback of the LM approach is that the ANN must have only a single 

output, but this can be overcome by implementing multiple networks [19]. For the detailed mathematics 
underlying the LM algorithm, the reader is referred to Marquardt [20], but general LM algorithm is shown in 

Fig. 2 and is briefly explained below.  

 
Compute network outputs 
and LMS error for a batch

Formulate the Jacobian 
J(w), where w represents 

the network weights

Use the Jacobian to 
update the Levenberg-

Marquardt weights 

Re-calculate the error 
using the new weights and 

adjust µ accordingly

stopping 
condition met?

network trained

yes

no

 
 

Fig. 2. Flow diagram outlining the procedure for using the Levenberg- Marquardt training algorithm 

 

Each batch of data is fed forward through the network, as described previously, to obtain a vector of output 

values each calculated using equation (1) below, where z is the activation function. 
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The least mean-square (LMS) error can then be obtained using 
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where R
γ

 is the desired output from the ANN for a specific input vector γ. The Jacobian matrix used in LM 
requires a vector of all the weights contained within the network to calculate a matrix of partial derivatives (with 

respect to each weight individually) for each input pattern in the batch. The Jacobian is given by 
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where v = MP + 2P and w is a vector of weights w = [W11,..,WPM, B1,..,BP, w1,..,wP]T, where the Bp values are the 

bias values of the hidden neurons. To update the weights during training the LM algorithm determines a weight 

update vector Δw, calculated by 

 

  (w)eJI(w)J(w)Jw
T1T 

 μ ,      (4) 

 

where e is the vector containing errors for each input vector in the batch and I is the identity matrix of 

dimension v. The new weights can now be calculated by  

 

www oldnew   .      (5) 

 

The ANN’s LMS error with new weights is now computed. If the new error is smaller than the previous error 

then μ is reduced by a factor μ-, but if the error is larger than the previous error u is increased by a factor of μ+. 

The values of μ, μ- and μ+ are all training parameters that must be selected before training the network. 

 

III. GRAPHICS PROCESSOR UNIT IMPLEMENTATION 
A CPU’s pipeline is instruction flow-driven, whereas a GPU uses a data-dependent control flow that is 

better suited to construct and output graphics to a monitor. In GPUs, all data are represented as a stream of a 

common data type that passes through the pipeline as a single entity with each element in the stream being 

operated upon in an identical manner. The main components that a stream will pass through in the GPU are the 

vertex processor, the fragment processor and the memory system.The vertex processor receives vertices from an 

application and operates on these primitives to generate a screen position, a colour and a texture coordinate. 

Fixed function hardware operations are then applied such as clip and cull. In the fragment processor, each 

texture element or texel (similar to a single pixel displayed on the screen) is processed on by a shader program. 

A texel is made up of four floating point components, namely red, green, blue and alpha (opacity).  After 

leaving the fragment processor, a texel passes through some tests, such as a depth test (or z-cull), as well as 
other fixed procedures, such as alpha blending. Both the vertex processor and the fragment processor are 

programmable in most modern GPUs, giving the programmer considerable flexibility when deploying a 

graphics application.The type of memory, bus width and memory clock frequency used in a GPU, as well as the 

interface the GPU has with the system memory, determine the speed at which data can be transferred between 

the two. Most graphics cards ultilize a form of double-data rate (DDR) memory such as Graphics DDR (GDDR) 



Graphics Processor Unit Hardware Acceleration Of Levenberg… 

4 

providing data bandwidths above 3 Gbit/s. The transfers between GPU and CPU are determined by the graphics 

card interface bus employed, with the current standard, PCI Express 2.0, having a maximum bandwidth of 8 

GB/s 
 

The majority of graphics programs are developed to communicate with either SGI’s OpenGL [21] or 

Microsoft’s Direct3D [22] drivers. Alternatively, at a lower level somewhat akin to assembler languages, 

programs known as ‘shaders’ can be loaded and run on each of the vertex and fragment programmable 

processors.In the current work, the Brook GPU program language was used [23]. Brook extends the 

functionality of the C or C++ language, allowing extra data types that define structures of floating point 

numbers to match the native architecture of GPUs. For example, the float4 data type is simply a structure of four 

floating values that matches the texel representation. By creating a standard texture on the GPU it is possible to 

create a 2D array of float4 structures. The major advantage of such an implementation is that the vector pipeline 

will be able to operate on each component independently. In contrast, if an array of single floats was required, 

then, when mapped to a single stream, only 25% of the fragment processor pipeline would be utilised. Hence, 
mapping data to make best use of a GPUs parallel processing capabilities is important in achieving the best 

acceleration of a given application.  

 

A further consideration in making best use of a GPUs capabilities is the quantity of data that needs to be 

transferred between the computer’s main memory and the GPU’s local memory. In general, applications that 

adapt well to GPU implementation are those that are computationally intensive yet can principally operate on 

data that resides in local memory. Sharing data with the rest of the computer system requires their transfer 

between the GPU’s streams incurring time penalties which, if they accumulate, would be detrimental to 

performance. In any given application, data will need to be shared with the CPU and, to achieve acceleration, 

the improvement in performance that results from moving stream operations to the GPU should outweigh the 

overheads associated with the transfers involved.  

 

IV. NEURAL NETWORK IMPLEMENTATION 
The GPU used to generate the results in this paper is an NVIDIA GeForce 6800 GS with GDDR3 

memory, operating on the PCI-Express X16 bus, includes 512MB of memory and provides a memory bus width 

of 256 bits. The CPU used for comparison purposes is an AMD Athlon64 3.5GHz with 1GB of DDR system 

memory. 

 

4.1 Design Overview 

The implementation described in this paper concentrates on multiple-input single-output networks with 

a single hidden layer as this architecture meets the requirements of the LM algorithm. Although the ANN is 
limited to one hidden layer, the number of neurons in this layer can be chosen by the user. In order to make 

good use of the GPU’s parallel pipelines, up four networks are created at a time and trained concurrently. For 

networks with more than four outputs, the process is repeated once the first four have been calculated. Fig. 4 

shows how a network with multiple outputs is treated as multiple networks with single outputs to utilise the 

GPU’s vector pipeline to best effect.  

 
 

Fig. 3. Multiple single-output neural networks running in parallel on the GPU, using all four components of the 

float4 data type. 

The inputs are replicated into each of the streams’ four components and the outputs split into groups of four and 

assigned one channel each. The weights are randomly assigned values in the range 







NN
1,1 , where N is the 

total number of inputs of the neuron that is connected to the weight’s output. This method of weight 

initialisation has been shown in [24] to lead to better convergence than initialising the weights randomly in the 

range [-0.5,0.5].  
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Batch training methods are better suited to GPU implementation than single pattern online methods as they 

operate on a single large data set for each calculation. This means that the data set can be loaded into the GPU 

memory for training rather than loading each training vector individually on each cycle through the loop. The 
LM algorithm is a batch training method known to outperform most other training methods in terms of 

calculation time for medium-sized ANN with a few hundred weights or more, but has been little used in GPU 

implementations as it requires a matrix inversion operation that appears to be not well supported by the GPU 

architecture. However, it has been shown by Galoppo et al. [25], that algorithms such as Gaussian Elimination 

and LU decomposition (where L and U refer to the lower and upper triangular matrices) that are able to 

calculate a matrix inverse can be adapted to run efficiently on a parallel GPU implementation. 

 

4.2 Software 

To compare the time taken to train the neural network on the GPU, two versions of the program were 

required. One used solely CPU code and the second principally using the streams on the GPU.  For the GPU 

version, initial data such as the input patterns, weights and known outputs are first loaded into CPU memory and 
then transferred into streams. It should be noted that this costly data transfer is only performed once per training 

of a set of four networks. The program utilises the float4 data type throughout and is able to train four single 

output networks simultaneously, keeping all required data in streams in the fast on-chip memory. Only once the 

set of networks has been trained are the final results and weights read back from the GPU to the system memory 

to be saved.  Once a network has been trained for each output, a set of test data may be used to verify the 

success of the training. The test data is provided in a similar method to the training data and a log file produced 

detailing the results. Using the saved weights for all the networks allows them to be used collectively for 

predicting the output of any input test vector. 

 

4.3 Limitations 

The size of datasets used in any part of the calculation or training of the neural network is strictly 

limited to the texture size available from the GPU. In the case of the 6800GS this is l024xl024. In most cases 
this is quite adequate but if a larger batch size was required, a hybrid semi-batch method could be used and 

implemented in the software. The LM algorithm requires an approximation to the 2D Hessian matrix of 

dimension v x v. As there is only a single output per network this effectively means that ANNs with large 

numbers of hidden and inputs neurons cannot be supported. The need to train four single-output networks in 

parallel does restrict the stopping criterion options that can be made available. If the user requires a stopping 

condition that relates to the output error of the network, the training of all the streams of ANNs would need to 

continue until all four networks had reached the desired error, effectively wasting computational effort. 

 

V. RESULTS 
The timing results were obtained using relevant routines available in the Brook compiler and the 

OpenGL libraries to provide performance counters with millisecond accuracy.Two data sets obtained from 

ultrasonic reflections from obstacles were used to generate the results; further information on the training data 

can be found in [26].  Both data sets had 26 continuous inputs and 11 discrete outputs, with the first data set 

contained 107 training vectors and the second 2562 vectors. Stop sets and test sets were also available. To 

demonstrate the importance of the numbers of neurons in the networks in this study, a single ANN with four 

inputs and a single output was trained on the first data set to classify a single output class only and the timing 

results are shown in Fig. 4. The CPU outperforms the GPU not only because together the network and training 

data are small enough to fit in the CPU’s cache and can therefore be accessed quickly, but also the single output 

means the GPU is essentially working at only a quarter of its potential throughput capacity.  
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Fig. 4. Relative times taken to train a single ANN using the ultrasonic data with different numbers of hidden 

neurons. 
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For the second data set, 11 separate neural networks were trained, one for each output class. The GPU now 

outperforms the CPU, as shown in Fig. 5. This is in spite of the fact that, due to the texture size limitation, only 

a subset of these vectors could be applied in a single batch and consequently copying of data from the main 
computer memory to the GPU’s on-chip memory was needed during training. 
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(a) batch size of 512 data vectors 
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(b) batch size of 1024 data vectors 

Fig. 5. Times taken to train a set of 11 ANNs using the ultrasonic data with different numbers of hidden 

neurons. 
 

The results show that there is an increase in time required to train larger networks and, in general, this may 

either result from including more hidden neurons (as here) or be due to the fact that a larger batch size is 

available. For other larger ANNs tested, the GPU training was found to outperform the CPU by a factor of 

between three and ten. 
 

VI. CONCLUSION 
The consumer demand for increasingly powerful graphic performance in applications such as high-

definition television and gaming has led to substantial improvements in the computational power of GPUs, 

leading to a continual fall in the cost-performance ratio. Many scientific applications have already begun to use 

the GPU as a coprocessor for computationally intensive work. However, GPUs are by no means a suitable 

platform for all applications, as the reconfiguration of an application requires that careful thought be given to 

many aspects of the design, including data-driven control flow, identification of appropriate parallelisms in the 

code and efficient memory usage in data storage. The accessibility of GPU hardware is continually improving 
and both NVIDIA [27] and ATI [28] have not only made development tools available at a reasonable cost, but 

have also produced excellent supporting documents to ease the learning process.  

 

The work described in this paper has shown the methods and concepts that are required to map ANN using the 

LM training algorithm to a GPU. A number of modifications could be made to the network architecture, such as 

the implementation of multiple layers of ANNs [19]. Although the LM training method is notorious for its long 

computation time, its overall training time and classification performance are generally favourable in 

comparison with other approaches. As the size of a batch is restricted by the texture size offered by the GPU, a 

modification that allows the software to operate in a semi-batch mode could allow larger training datasets to be 

used. Very large ANNs, trained using large data sets that need to be streamed to the GPU would yield the 

greatest benefits in terms of reduced calculation time. The further goal could be the development of a distributed 

system, essentially creating a GPU cluster.  
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