102 research outputs found

    Effects of Various Thicknesses on Load to Fracture of Posterior CAD/CAM Lithium Disilicate Glass Ceramic Crowns Subjected to Cyclic Fatigue

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)Background: New glass ceramics and Computer-Aided Design/Computer Assisted Manufacture (CAD/CAM) have become common aspects of modern dentistry. The use of posterior ceramic crowns with a high level of esthetics, fabricated using the CAD/CAM technology is a current treatment modality. Several materials have been used to fabricate these crowns, including lithium disilicate glass-ceramics, which have not been fully investigated in the literature. Objective: to investigate the load to fracture of lithium disilicate glass ceramic posterior crowns fabricated by CAD/CAM technology with different material thicknesses adhesively cemented on epoxy resin. Methods: Four groups of different ceramic thicknesses (0.5 mm, 1 mm, 1.5 mm, and 2 mm) were fabricated by milling CAD/CAM lithium disilicate IPS emax CAD blocks. A total of 68 posterior crowns were surface treated and luted with a resin adhesive cement on an epoxy resin model. Samples were fatigued then loaded to fracture using a universal testing machine to test the fracture strength. Statistical comparisons between various crown thicknesses were performed using one-way ANOVA followed by Fisher's Protected Least Significant Differences. Results: There was a significant difference in the load-to-fracture (N) value for all comparisons of the four thickness groups (p < 0.0001), except 2 mm vs. 1.5 mm (p = 0.325). The mean load-to-fracture (N) was significantly higher for 2 mm than for 1 mm or 0.5 mm. Additionally, the mean load-to-fracture was significantly higher for 1.5 mm than for 1 mm or 0.5 mm. Furthermore, the mean load-to-fracture was significantly higher for 1 mm than for 0.5 mm. Conclusion: Within the limitation of this study, it is advisable for clinical applications to consider a crown thickness of 1.5 mm or greater of milled lithium disilicate for posterior single teeth

    Studies of methods to restrict the grain growth of nanocrystalline metal oxides

    Get PDF
    There is considerable interest in nanocrystalline materials. This thesis is concerned with nanocrystalline oxides and the development of methods to prevent their grain growth on heating. This growth, which is evident at temperatures as low as 400°C, presents a serious problem in the study and applications of nanocrystalline oxides. The systems that were studied were nanocrystalline magnesium oxide, zirconium oxide, cerium oxide and tin oxide. The methods of preventing grain growth included the encapsulation of the oxide in the pores of porous silica, mixing with nanocrystals of alumina and treating the surface with a silanising agent, hexamethyldisilazane. All the methods employed showed some effect on reducing the grain growth. Encapsulation in the pores of silica was effective, however it proved difficult to get large amounts of the oxides into the pores. A more efficient method of preparing large samples was the incorporation of alumina, which was achieved by a sol-gel process. An alkoxide of the target oxide and an aluminium alkoxide were mixed and then hydrolsed and calcined. This proved very effective for magnesium oxide, zirconium oxide and tin oxide. For example, heating zirconium oxide at 1000°C for 60 minutes causes the nanocrystals to grow to about 50nm. Treatment with alumina restricts the growth to 12nm. Similar effects were found for the other oxides, although magnesium oxide showed a reaction with alumina at the highest temperatures. Silanising the surface was only studied for tin oxide and it restricted growth at 1000°C to 27nm, compared to 88nm for an untreated sample. A full description is given of the preparative methods and structural studies of the systems using X-ray diffraction and X-ray absorption spectroscopy

    Mechanical properties of a new zinc-reinforced glass ionomer restorative material

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)Objective: Zinc-reinforced glass ionomer restorative material (ZRGIC) has been proposed as an improved restorative material. The study compared the mechanical properties of a ZRGIC restorative material (ChemFil Rock, (Dentsply)), with three commercially available glass ionomers (GICs); Fuji IX GP Extra (GC America), Ketac Molar (3M ESPE) and EQUIA Fil (GC America). A resin composite, Premise (Kerr), was included as a control group except for fracture toughness. Methods: Fracture toughness (KIC) testing was done according to ISO 13586, using single edge notched-beam specimens (n=10), loaded until failure in a three-point bending test device. Specimens (n=9) for the hardness, roughness and abrasive wear testing were made by mixing and inserting the restorative materials into individual stainless steel molds followed by flattening and polishing. Knoop microhardness (KHN) was performed (25 g, 30 s),on pre-determined areas of the polished surfaces. For toothbrushing wear resistance and roughness, specimens were brushed in an automated brushing machine (200 g) with a suspension of dentifrice and water (1:1, w/v) for 20,000 strokes. Specimen surfaces were scanned in an optical profilometer before and after brushing to obtain surface roughness (Ra) and mean height (surface) loss using image subtraction and dedicated software. Data were analyzed using Wilcoxon Rank Sum tests (α=0.05). Results: ChemFil Rock had the highest change in surface roughness (Ra)(0.79±0.14; p0.05). ChemFil Rock had lower fracture toughness (0.99±0.07, KIC) compared to Equia Fil (p<0.01) and higher compared to the other GICs (p<0.01). Conclusion: The new ZRGIC restorative material showed intermediate fracture toughness, high change in surface roughness, and low microhardness compared to three other commercial GICs. All materials were supplied by respective manufacturers

    The use of traditional and novel techniques to determine the hardness and indentation properties of immature radicular dentin treated with antibiotic medicaments followed by ethylenediaminetetraacetic acid

    Get PDF
    OBJECTIVE: The objective was to investigate the effect of intracanal antibiotic medicaments followed by ethylenediaminetetraacetic acid (EDTA) on the indentation properties and hardness of radicular dentin using a BioDent reference point indenter and a traditional microhardness technique, respectively. MATERIALS AND METHODS: Specimens with intact root canal dentin surfaces and polished radicular dentin specimens were obtained from immature human premolars. Each type of specimen was randomly assigned (n = 10 per group) and treated with either double antibiotic paste (DAP) for 4-week followed by EDTA for 5 min, triple antibiotic paste (TAP) for 4-week followed by EDTA for 5 min, EDTA for 5 min or Hank's balanced salt solution (control). The BioDent reference point indentor and Vickers microhardness tester were used to measure the indentation properties of root canal surfaces and the hardness of polished dentin specimens, respectively. One-way ANOVA followed by Fisher's protected least significant differences were used for statistical analyses. RESULTS: Both types of radicular dentin treated with antibiotic pastes and/or EDTA had a significant increase in the majority of indentation properties and a significant reduction in hardness compared to the untreated dentin. Furthermore, treatment of dentin with antibiotic pastes and EDTA caused significant increases in indentation properties and a significant reduction in hardness compared to EDTA-treated dentin. However, the RPI technique was not able to significantly differentiate between DAP + EDTA and TAP + EDTA-treated dentin. CONCLUSION: Dentin treated with antibiotic medicaments followed by EDTA had a significant increase the indentation properties and significantly reduction in hardness of radicular dentin

    Near Real-Time Data Labeling Using a Depth Sensor for EMG Based Prosthetic Arms

    Full text link
    Recognizing sEMG (Surface Electromyography) signals belonging to a particular action (e.g., lateral arm raise) automatically is a challenging task as EMG signals themselves have a lot of variation even for the same action due to several factors. To overcome this issue, there should be a proper separation which indicates similar patterns repetitively for a particular action in raw signals. A repetitive pattern is not always matched because the same action can be carried out with different time duration. Thus, a depth sensor (Kinect) was used for pattern identification where three joint angles were recording continuously which is clearly separable for a particular action while recording sEMG signals. To Segment out a repetitive pattern in angle data, MDTW (Moving Dynamic Time Warping) approach is introduced. This technique is allowed to retrieve suspected motion of interest from raw signals. MDTW based on DTW algorithm, but it will be moving through the whole dataset in a pre-defined manner which is capable of picking up almost all the suspected segments inside a given dataset an optimal way. Elevated bicep curl and lateral arm raise movements are taken as motions of interest to show how the proposed technique can be employed to achieve auto identification and labelling. The full implementation is available at https://github.com/GPrathap/OpenBCIPytho

    Color stability, Roughness, and Microhardness of Enamel and Composites Submitted to Staining/Bleaching Cycles

    Get PDF
    Objective: To compare the effect of two bleaching systems (bleaching gel and whitening strips) on the color change, roughness, and microhardness of enamel and two resin composites. Material and methods: Two cavities were prepared on bovine enamel specimens (n = 16) and restored with two composites: a nano-hybrid [Herculite Ultra (HU)] and a micro-hybrid composite [TPH Spectra (TS)]. Baseline color (CIE L*a*b*), roughness (μm), and microhardness (kgf/mm2) were measured using a spectrophotometer, optical profilometer, and Vickers microhardness (VHN) tester, respectively. The specimens were stained with coffee for 14 days, and randomized into two bleaching groups: gel and strips (n = 8), then submitted to a 10-day bleaching/staining test. Color, roughness, and microhardness were re-measured. The outcomes were analyzed using two-way ANOVA and Fisher's-PLSD test (α = 0.05). Results: Gel significantly improved the color (ΔE 4.9-8.3) and increased the roughness (Ra 0.04-0.08 μm) of all substrates (p < 0.0001) compared to strips. Enamel color was significantly improved (ΔE 5.4-8.3) compared to that of HU (ΔE 2.6-4.9) and TS (ΔE 2.0-4.9) with either gels or strips. TS roughness (0.03-0.08 μm) was significantly higher than that of enamel (0.01-0.05 μm) and HU (0.02-0.04 μm). Enamel had significantly reduced microhardness compared to HU (p = 0.0144). Conclusion: Gels produced the greatest color improvement and roughness compared to strips. Enamel had significant color improvement but had the greatest decrease in microhardness. Clinical significance: There was unacceptable color change between enamel and the composites after the combined cyclic effects of staining and bleaching

    Physicomechanical properties of a zinc-reinforced glass ionomer restorative material

    Get PDF
    We compared a zinc-reinforced glass ionomer restorative material (ChemFil Rock) with three commercially available glass ionomer cements (GICs), namely, Fuji IX GP Extra, Ketac Molar Quick Aplicap, and EQUIA Fil, with respect to fracture toughness, microhardness, roughness, and abrasive wear. Fracture toughness (KIC) was tested according to ISO 13586 (n = 10). Hardness, roughness, and abrasive wear were also tested (n = 9). Data were analyzed using the Wilcoxon rank-sum test with adjustment for multiple comparisons (α = 0.05). As compared with the other GICs ChemFil Rock exhibited a greater increase in surface roughness (P 0.05). ChemFil Rock had significantly lower fracture toughness as compared with EQUIA Fil (P = 0.01) and significantly higher fracture toughness as compared with the other GICs (P < 0.02). In conclusion, as compared with the three other commercially available GICs, ChemFil Rock had intermediate fracture toughness, the lowest microhardness, and the greatest change in surface roughness

    Effects of air-abrasion pressure on the resin bond strength to zirconia: a combined cyclic loading and thermocycling aging study

    Get PDF
    Objectives To determine the combined effect of fatigue cyclic loading and thermocycling (CLTC) on the shear bond strength (SBS) of a resin cement to zirconia surfaces that were previously air-abraded with aluminum oxide (Al2O3) particles at different pressures. Materials and Methods Seventy-two cuboid zirconia specimens were prepared and randomly assigned to 3 groups according to the air-abrasion pressures (1, 2, and 2.8 bar), and each group was further divided into 2 groups depending on aging parameters (n = 12). Panavia F 2.0 was placed on pre-conditioned zirconia surfaces, and SBS testing was performed either after 24 hours or 10,000 fatigue cycles (cyclic loading) and 5,000 thermocycles. Non-contact profilometry was used to measure surface roughness. Failure modes were evaluated under optical and scanning electron microscopy. The data were analyzed using 2-way analysis of variance and χ2 tests (α = 0.05). Results The 2.8 bar group showed significantly higher surface roughness compared to the 1 bar group (p < 0.05). The interaction between pressure and time/cycling was not significant on SBS, and pressure did not have a significant effect either. SBS was significantly higher (p = 0.006) for 24 hours storage compared to CLTC. The 2 bar-CLTC group presented significantly higher percentage of pre-test failure during fatigue compared to the other groups. Mixed-failure mode was more frequent than adhesive failure. Conclusions CLTC significantly decreased the SBS values regardless of the air-abrasion pressure used

    The Status of Digital Dental Technology Implementation in the Saudi Dental Schools' Curriculum: A National Cross-Sectional Survey for Healthcare Digitization.

    Get PDF
    Objective: The primary objective of this cross-sectional national study was to investigate the status of digital dental technology (DDT) adoption in Saudi Arabian undergraduate dental education. A secondary objective was to explore the impact of dental schools' funding sources to incorporate digital technologies. Methods: A self-administered questionnaire was distributed to the chairpersons of prosthetic sciences departments of the 27 dental schools in Saudi Arabia. If any department chairman failed to respond to the survey, a designated full-time faculty member was contacted to fill out the form. The participants were asked about the school's sector, DDT implementation in the curriculum, implemented level, their perceptions of the facilitators and challenges for incorporating DDT. Results: Of the 27 dental schools (18 public and 8 private), 26 responded to the questionnaire (response rate: 96.3%). The geographic distribution of the respondent schools was as follows: 12 schools in the central region, 6 in the western region, and 8 in other regions. Seventeen schools secure and preserve patients' records using electronic software, whereas nine schools use paper charts. Seventeen schools (64,4%) implemented DDT in their curricula. The schools that did not incorporate DDT into their undergraduate curricula were due to not being included in the curriculum (78%), lack of expertise (66%), untrained faculty and staff (44%), and cost (33%). Conclusions: This national study showed that digital components still need to be integrated into Saudi Arabian dental schools' curricula and patient care treatment. Additionally, there was no association between funding sources and the DDT implementation into the current curricula. Consequently, Saudi dental schools must emphasize the implementation and utilization of DDT to align with Saudi Vision 2030 for healthcare digitization and to graduate competent dentists in digital dental care

    Alterations in Maternal–Fetal Heart Rate Coupling Strength and Directions in Abnormal Fetuses

    Get PDF
    Because fetal gas exchange takes place via the maternal placenta, there has been growing interests in investigating the patterns and directions of maternal-fetal cardiac coupling to better understand the mechanisms of placental gas transfer. We recently reported the evidence of short-term maternal–fetal cardiac couplings in normal fetuses by using Normalized Short Time Partial Directed Coherence (NSTPDC) technique. Our results have shown weakening of coupling from fetal heart rate to maternal heart rate as the fetal development progresses while the influence from maternal to fetal heart rate coupling behaves oppositely as it shows increasing coupling strength that reaches its maximum at mid gestation. The aim of this study is to test if maternal-fetal coupling patterns change in various types of abnormal cases of pregnancies. We applied NSTPDC on simultaneously recorded fetal and maternal beat-by-beat heart rates collected from fetal and maternal ECG signals of 66 normal and 19 abnormal pregnancies. NSTPDC fetal-to-maternal coupling analyses revealed significant differences between the normal and abnormal cases (normal: normalized factor (NF) = −0.21 ± 0.85, fetus-to-mother coupling area (A_fBBI→ mBBI) = 0.44 ± 0.13, mother-to-fetus coupling area (A_mBBI→ fBBI) = 0.46 ± 0.12; abnormal: NF = −1.66 ± 0.77, A_fBBI→ mBBI = 0.08 ± 0.12, A_mBBI→ fBBI = 0.66 ± 0.24; p &lt; 0.01). In conclusion, maternal-fetal cardiac coupling strength and direction and their associations with regulatory mechanisms (patterns) of developing autonomic nervous system function could be novel clinical markers of healthy prenatal development and its deviation. However, further research is required on larger samples of abnormal cases
    • …
    corecore