77 research outputs found

    Distributed Random Set Theoretic Soft/Hard Data Fusion

    Get PDF
    Research on multisensor data fusion aims at providing the enabling technology to combine information from several sources in order to form a unifi ed picture. The literature work on fusion of conventional data provided by non-human (hard) sensors is vast and well-established. In comparison to conventional fusion systems where input data are generated by calibrated electronic sensor systems with well-defi ned characteristics, research on soft data fusion considers combining human-based data expressed preferably in unconstrained natural language form. Fusion of soft and hard data is even more challenging, yet necessary in some applications, and has received little attention in the past. Due to being a rather new area of research, soft/hard data fusion is still in a edging stage with even its challenging problems yet to be adequately de fined and explored. This dissertation develops a framework to enable fusion of both soft and hard data with the Random Set (RS) theory as the underlying mathematical foundation. Random set theory is an emerging theory within the data fusion community that, due to its powerful representational and computational capabilities, is gaining more and more attention among the data fusion researchers. Motivated by the unique characteristics of the random set theory and the main challenge of soft/hard data fusion systems, i.e. the need for a unifying framework capable of processing both unconventional soft data and conventional hard data, this dissertation argues in favor of a random set theoretic approach as the first step towards realizing a soft/hard data fusion framework. Several challenging problems related to soft/hard fusion systems are addressed in the proposed framework. First, an extension of the well-known Kalman lter within random set theory, called Kalman evidential filter (KEF), is adopted as a common data processing framework for both soft and hard data. Second, a novel ontology (syntax+semantics) is developed to allow for modeling soft (human-generated) data assuming target tracking as the application. Third, as soft/hard data fusion is mostly aimed at large networks of information processing, a new approach is proposed to enable distributed estimation of soft, as well as hard data, addressing the scalability requirement of such fusion systems. Fourth, a method for modeling trust in the human agents is developed, which enables the fusion system to protect itself from erroneous/misleading soft data through discounting such data on-the-fly. Fifth, leveraging the recent developments in the RS theoretic data fusion literature a novel soft data association algorithm is developed and deployed to extend the proposed target tracking framework into multi-target tracking case. Finally, the multi-target tracking framework is complemented by introducing a distributed classi fication approach applicable to target classes described with soft human-generated data. In addition, this dissertation presents a novel data-centric taxonomy of data fusion methodologies. In particular, several categories of fusion algorithms have been identifi ed and discussed based on the data-related challenging aspect(s) addressed. It is intended to provide the reader with a generic and comprehensive view of the contemporary data fusion literature, which could also serve as a reference for data fusion practitioners by providing them with conducive design guidelines, in terms of algorithm choice, regarding the specifi c data-related challenges expected in a given application

    Robust Multi-sensor Data Fusion for Practical Unmanned Surface Vehicles (USVs) Navigation

    Get PDF
    The development of practical Unmanned Surface Vehicles (USVs) are attracting increasing attention driven by their assorted military and commercial application potential. However, addressing the uncertainties presented in practical navigational sensor measurements of an USV in maritime environment remain the main challenge of the development. This research aims to develop a multi-sensor data fusion system to autonomously provide an USV reliable navigational information on its own positions and headings as well as to detect dynamic target ships in the surrounding environment in a holistic fashion. A multi-sensor data fusion algorithm based on Unscented Kalman Filter (UKF) has been developed to generate more accurate estimations of USV’s navigational data considering practical environmental disturbances. A novel covariance matching adaptive estimation algorithm has been proposed to deal with the issues caused by unknown and varying sensor noise in practice to improve system robustness. Certain measures have been designed to determine the system reliability numerically, to recover USV trajectory during short term sensor signal loss, and to autonomously detect and discard permanently malfunctioned sensors, and thereby enabling potential sensor faults tolerance. The performance of the algorithms have been assessed by carrying out theoretical simulations as well as using experimental data collected from a real-world USV projected collaborated with Plymouth University. To increase the degree of autonomy of USVs in perceiving surrounding environments, target detection and prediction algorithms using an Automatic Identification System (AIS) in conjunction with a marine radar have been proposed to provide full detections of multiple dynamic targets in a wider coverage range, remedying the narrow detection range and sensor uncertainties of the AIS. The detection algorithms have been validated in simulations using practical environments with water current effects. The performance of developed multi-senor data fusion system in providing reliable navigational data and perceiving surrounding environment for USV navigation have been comprehensively demonstrated

    Visual / acoustic detection and localisation in embedded systems

    Get PDF
    ©Cranfield UniversityThe continuous miniaturisation of sensing and processing technologies is increasingly offering a variety of embedded platforms, enabling the accomplishment of a broad range of tasks using such systems. Motivated by these advances, this thesis investigates embedded detection and localisation solutions using vision and acoustic sensors. Focus is particularly placed on surveillance applications using sensor networks. Existing vision-based detection solutions for embedded systems suffer from the sensitivity to environmental conditions. In the literature, there seems to be no algorithm able to simultaneously tackle all the challenges inherent to real-world videos. Regarding the acoustic modality, many research works have investigated acoustic source localisation solutions in distributed sensor networks. Nevertheless, it is still a challenging task to develop an ecient algorithm that deals with the experimental issues, to approach the performance required by these systems and to perform the data processing in a distributed and robust manner. The movement of scene objects is generally accompanied with sound emissions with features that vary from an environment to another. Therefore, considering the combination of the visual and acoustic modalities would offer a significant opportunity for improving the detection and/or localisation using the described platforms. In the light of the described framework, we investigate in the first part of the thesis the use of a cost-effective visual based method that can deal robustly with the issue of motion detection in static, dynamic and moving background conditions. For motion detection in static and dynamic backgrounds, we present the development and the performance analysis of a spatio- temporal form of the Gaussian mixture model. On the other hand, the problem of motion detection in moving backgrounds is addressed by accounting for registration errors in the captured images. By adopting a robust optimisation technique that takes into account the uncertainty about the visual measurements, we show that high detection accuracy can be achieved. In the second part of this thesis, we investigate solutions to the problem of acoustic source localisation using a trust region based optimisation technique. The proposed method shows an overall higher accuracy and convergence improvement compared to a linear-search based method. More importantly, we show that through characterising the errors in measurements, which is a common problem for such platforms, higher accuracy in the localisation can be attained. The last part of this work studies the different possibilities of combining visual and acoustic information in a distributed sensors network. In this context, we first propose to include the acoustic information in the visual model. The obtained new augmented model provides promising improvements in the detection and localisation processes. The second investigated solution consists in the fusion of the measurements coming from the different sensors. An evaluation of the accuracy of localisation and tracking using a centralised/decentralised architecture is conducted in various scenarios and experimental conditions. Results have shown the capability of this fusion approach to yield higher accuracy in the localisation and tracking of an active acoustic source than by using a single type of data

    Interval Algebra - an effective means of scheduling surveillance radar networks

    Get PDF
    Interval Algebra provides an effective means to schedule surveillance radar networks, as it is a temporal ordering constraint language. Thus it provides a solution to a part of resource management, which is included in the revised Data Fusion Information Group model of information fusion. In this paper, the use of Interval Algebra to schedule mechanically steered radars to make multistatic measurements for selected targets of importance is shown. Interval Algebra provides a framework for incorporating a richer set of requirements, without requiring modi cations to the underlying algorithms. The performance of Interval Algebra was compared to that of the Greedy Randomised Adaptive Search Procedure and the applicability of Interval Algebra to nimble scheduling was investigated using Monte-Carlo simulations of a binary radar system. The comparison was done in terms of actual performance as well as in terms of computation time required. The performance of the algorithms was quanti ed by keeping track of the number of targets that could be measured simultaneously. It was found that nimble scheduling is important where the targets are moving fast enough to rapidly change the recognised surveillance picture during a scan. Two novel approaches for implementing Interval Algebra for scheduling surveillance radars are presented. It was found that adding targets on the y and improving performance by incrementally growing the network is more e cient than pre-creating the full network. The second approach stemmed from constraint ordering. It was found that for simple constraint sets, the Interval Algebra relationship matrix reduces to a single vector of interval sets. The simulations revealed that an Interval Algebra algorithm that utilises both approaches can perform as well as the Greedy Randomised Adaptive Search Procedure with similar processing time requirements. Finally, it was found that nimble scheduling is not required for surveillance radar networks where ballistic and supersonic targets can be ignored. Nevertheless, Interval Algebra can easily be used to perform nimble scheduling with little modi - cation and may be useful in scheduling the scans of multifunction radars.Council for Scientific and Industrial Research, the University of Cape Town and the University of Pretoria.http://www.elsevier.com/locate/inffushb201

    Advances and Applications of Dezert-Smarandache Theory (DSmT) for Information Fusion (Collected Works), Vol. 4

    Get PDF
    The fourth volume on Advances and Applications of Dezert-Smarandache Theory (DSmT) for information fusion collects theoretical and applied contributions of researchers working in different fields of applications and in mathematics. The contributions (see List of Articles published in this book, at the end of the volume) have been published or presented after disseminating the third volume (2009, http://fs.unm.edu/DSmT-book3.pdf) in international conferences, seminars, workshops and journals. First Part of this book presents the theoretical advancement of DSmT, dealing with Belief functions, conditioning and deconditioning, Analytic Hierarchy Process, Decision Making, Multi-Criteria, evidence theory, combination rule, evidence distance, conflicting belief, sources of evidences with different importance and reliabilities, importance of sources, pignistic probability transformation, Qualitative reasoning under uncertainty, Imprecise belief structures, 2-Tuple linguistic label, Electre Tri Method, hierarchical proportional redistribution, basic belief assignment, subjective probability measure, Smarandache codification, neutrosophic logic, Evidence theory, outranking methods, Dempster-Shafer Theory, Bayes fusion rule, frequentist probability, mean square error, controlling factor, optimal assignment solution, data association, Transferable Belief Model, and others. More applications of DSmT have emerged in the past years since the apparition of the third book of DSmT 2009. Subsequently, the second part of this volume is about applications of DSmT in correlation with Electronic Support Measures, belief function, sensor networks, Ground Moving Target and Multiple target tracking, Vehicle-Born Improvised Explosive Device, Belief Interacting Multiple Model filter, seismic and acoustic sensor, Support Vector Machines, Alarm classification, ability of human visual system, Uncertainty Representation and Reasoning Evaluation Framework, Threat Assessment, Handwritten Signature Verification, Automatic Aircraft Recognition, Dynamic Data-Driven Application System, adjustment of secure communication trust analysis, and so on. Finally, the third part presents a List of References related with DSmT published or presented along the years since its inception in 2004, chronologically ordered

    Novel methods for multi-target tracking with applications in sensor registration and fusion

    Get PDF
    Maintaining surveillance over vast volumes of space is an increasingly important capability for the defence industry. A clearer and more accurate picture of a surveillance region could be obtained through sensor fusion between a network of sensors. However, this accurate picture is dependent on the sensor registration being resolved. Any inaccuracies in sensor location or orientation can manifest themselves into the sensor measurements that are used in the fusion process, and lead to poor target tracking performance. Solutions previously proposed in the literature for the sensor registration problem have been based on a number of assumptions that do not always hold in practice, such as having a synchronous network and having small, static registration errors. This thesis will propose a number of solutions to resolving the sensor registration and sensor fusion problems jointly in an efficient manner. The assumptions made in previous works will be loosened or removed, making the solutions more applicable to problems that we are likely to see in practice. The proposed methods will be applied to both simulated data, and a segment of data taken from a live trial in the field

    Advances and Applications of Dezert-Smarandache Theory (DSmT), Vol. 1

    Get PDF
    The Dezert-Smarandache Theory (DSmT) of plausible and paradoxical reasoning is a natural extension of the classical Dempster-Shafer Theory (DST) but includes fundamental differences with the DST. DSmT allows to formally combine any types of independent sources of information represented in term of belief functions, but is mainly focused on the fusion of uncertain, highly conflicting and imprecise quantitative or qualitative sources of evidence. DSmT is able to solve complex, static or dynamic fusion problems beyond the limits of the DST framework, especially when conflicts between sources become large and when the refinement of the frame of the problem under consideration becomes inaccessible because of vague, relative and imprecise nature of elements of it. DSmT is used in cybernetics, robotics, medicine, military, and other engineering applications where the fusion of sensors\u27 information is required

    Risk Assessment and Collaborative Information Awareness for Plan Execution

    Get PDF
    Joint organizational planning and plan execution in risk-prone environment, has seen renewed research interest given its potential for agility and cost reduction. The participants are often asked to quickly plan and execute tasks in partially known or hostile environments. This requires advanced decision support systems for situational response whereby state-of-the-art technologies can be used to handle issues such as plan risk assessment, appropriate information exchange, asset localization and adaptive planning with risk mitigation. Toward this end, this thesis contributes innovative approaches to address these issues, focusing on logistic support over risk-prone transport network as many organizational plans have key logistic components. Plan risk assessment involves property evaluation for vehicle risk exposure, cost bounds and contingency options assessment. Appropriate information exchange involves participant specific shared information awareness under unreliable communication. Asset localization mandates efficient sensor network management. Adaptive planning with risk mitigation entails limited risk exposure replanning, factoring potential vehicle and cargo loss. In this pursuit, this thesis first investigates risk assessment for asset movement and contingency valuation using probabilistic model-checking and decision trees, followed by elaborating a gossip based protocol for hierarchy-aware shared information awareness, also assessed via probabilistic model-checking. Then, the thesis proposes an evolutionary learning heuristic for efficiently managing sensor networks constrained in terms of sensor range, capacity and energy use. Finally, the thesis presents a learning based heuristic for cost effective adaptive logistic planning with risk mitigation. Instructive case studies are also provided for each contribution along with benchmark results evaluating the performance of the proposed heuristic techniques
    • …
    corecore