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Abstract

The continuous miniaturisation of sensing and processing technologies is increas-

ingly offering a variety of embedded platforms, enabling the accomplishment of a

broad range of tasks using such systems. Motivated by these advances, this the-

sis investigates embedded detection and localisation solutions using vision and

acoustic sensors. Focus is particularly placed on surveillance applications using

sensor networks. Existing vision-based detection solutions for embedded systems

suffer from the sensitivity to environmental conditions. In the literature, there

seems to be no algorithm able to simultaneously tackle all the challenges inherent

to real-world videos.

Regarding the acoustic modality, many research works have investigated acoustic

source localisation solutions in distributed sensor networks. Nevertheless, it is still

a challenging task to develop an efficient algorithm that deals with the experimen-

tal issues, to approach the performance required by these systems and to perform

the data processing in a distributed and robust manner. The movement of scene

objects is generally accompanied with sound emissions with features that vary

from an environment to another. Therefore, considering the combination of the

visual and acoustic modalities would offer a significant opportunity for improving

the detection and/or localisation using the described platforms.

In the light of the described framework, we investigate in the first part of the the-

sis the use of a cost-effective visual based method that can deal robustly with the

issue of motion detection in static, dynamic and moving background conditions.

For motion detection in static and dynamic backgrounds, we present the devel-

opment and the performance analysis of a spatio-temporal form of the Gaussian

mixture model. On the other hand, the problem of motion detection in moving
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backgrounds is addressed by accounting for registration errors in the captured

images. By adopting a robust optimisation technique that takes into account the

uncertainty about the visual measurements, we show that high detection accuracy

can be achieved.

In the second part of this thesis, we investigate solutions to the problem of acoustic

source localisation using a trust region based optimisation technique. The pro-

posed method shows an overall higher accuracy and convergence improvement

compared to a linear-search based method. More importantly, we show that

through characterising the errors in measurements, which is a common problem

for such platforms, higher accuracy in the localisation can be attained.

The last part of this work studies the different possibilities of combining visual

and acoustic information in a distributed sensors network. In this context, we first

propose to include the acoustic information in the visual model. The obtained

new augmented model provides promising improvements in the detection and lo-

calisation processes. The second investigated solution consists in the fusion of

the measurements coming from the different sensors. An evaluation of the accu-

racy of localisation and tracking using a centralised/decentralised architecture is

conducted in various scenarios and experimental conditions. Results have shown

the capability of this fusion approach to yield higher accuracy in the localisation

and tracking of an active acoustic source than by using a single type of data.
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Chapter 1

Introduction

Surveillance and monitoring of public and private spaces is progressively becom-

ing a very important and critical issue, particularly after the recent burst of

terrorist attacks. It is therefore imperative that effective surveillance systems are

developed to ensure high security levels. Ideally, different sensors are employed

to accomplish this mission. In this context, micro-devises technology witnessed

a significant development which yielded the appearance of the micro-sensing and

actuation devices. Such advances have revolutionised the way engineers under-

stand and manage complex physical systems. Notably, the capabilities of detailed

physical monitoring and manipulation offered enormous opportunities, not only

for surveillance systems, but for most scientific disciplines by providing embedded

processing platforms with exciting capabilities.

Using such technology allows us to carry out surveillance missions in unfriendly

environments such as remote geographic regions or toxic locations. Furthermore,

it enables sensing and maintenance in large industrial plants, military surveillance

and combat operations. In practically most of these applications, key require-

ments include robustness with regard to different disturbances and uncertainties,

adaptation to different environments, as well as optimal consumption of resources

to ensure permanent operability. In general, the proposed surveillance systems

1



Chapter 1. Introduction 2

integrate different modalities of sensors to ensure higher accuracy and/or per-

manent operability. These systems can be organised in varieties of architectures

with the sensors placed at the first level. Detection is the primary operation of

every surveillance activity.

Detected changes by each physical sensor which processed to extract meaningful

features, and then may be integrated to recover missing data. This integration

enables increased improvement at higher levels of processing. It involves either

increasing the accuracy of object localisation, which is based on the ground plane

hypothesis or object recognition. Such processing may include the tracking of

each detected feature in the scene on the image plane and transform the 2D

blob positions (in the sensor coordinates frame) into 3D object positions (in the

coordinates of the monitored environment’s map) using the visual sensor. It may

also include the inverse operation when using the acoustic sensors.

Reliance on wireless connectivity is crucial for surveillance activity since for most

envisaged applications, the observed environment does not have adequate infras-

tructure for either communication or energy supply. Hence, untethered nodes

must rely on small local power sources and wireless communication channels.

The design of new generations of smart video camera for motion detection enabled

in-network processing of images to reduce the communicational load which has

traditionally been high in existing camera networks with centralised processing.

These camera motes enable a broad range of distributed applications compared

to traditional platforms. Indeed they provide more computing capabilities and

tighter integration of physical components while still consuming relatively low

power. In the same context of video surveillance, improvement in efficiency has

greatly improved by the introduction of the unmanned aerial platforms to com-

plete a monitoring mission within a designated territory or early threat detection

for local security.

The use of distributed sensor networks (DSN) for the location of acoustic sources
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has been of a great benefit to different areas such as intruder detection, sniper lo-

calisation, automatic tracking of acoustic source or speakers in an e-conferencing

environment and to voice enhancement. The idea behind acoustic source localisa-

tion systems is the use of multiple sensors (microphone arrays) placed at different

known location. Since sound travels with a constant speed from the sound source

to the sensors, the recorded signals can be used to estimate the possible location

of the source.

The integration of various modalities in surveillance systems is carried out using

data fusion techniques. The aim is to increase both the range of detection and

then capability to detect interesting events. Multisensory surveillance systems

can take advantage of either same type of information acquired from different

spatial locations or information acquired by sensors of different types. Appropri-

ate processing techniques and new sensors providing real-time information related

to different scene characteristics can to enlarge the size of monitored environments

and to improve performances in terms of activity detection over the monitored

areas.

Another objective of data fusion is to ensure accurate target tracking, an activity

which has increased in popularity in distributed sensor networks (DSN). This is

mainly due the reduced cost of sensors, which led to: the possibility of deploying

large number to achieve wide area coverage, and to increase the density allowing

sensors to reside far closer to the objects being sensed. Additionally, improvement

in sensing quality with overlapping coverage resulted in increased robustness and

improved accuracy. Furthermore, the diversity of sensing modalities offers new

solutions based on complementary configurations; for instance, certain types of

sensors (e.g., microphone arrays, radars) provide good ranging data, while others

(e.g., cameras, Infrared(IR)) are ideal for object orientation and classification.

This diversity in sensing modalities is exploited to provide accurate and rich

information about the target. It is also important to note that the spatial sensing

diversity greatly mitigates the effects of obstructions on line-of-sight sensors.
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1.1 Research motivation

The main motivation behind this work is the development and implementation of

detection and localisation algorithms. The targets of interest can be either moving

objects, stationary or moving sound sources. More specifically, we investigate the

problem of accurate detection and localisation in embedded systems by studying

the visual and acoustic modalities.

In computer vision, solutions based on change detection represent a fundamental

pre-processing step for embedded vision detection. However, most of the existing

solutions are sensitive to environmental conditions such as illumination variations.

The algorithms available in the literature seem to be unable to simultaneously

address all the key challenges that undermine real-world videos. Moreover, there

is a lack of realistic large-scale datasets, which cover real-world challenges and

include accurate ground truths.

One of the most challenging tasks in acoustics lies in the determination of the

sound source especially when a significant portion of the measurements is cor-

rupted with noise from unknown sources. Since the early nineties, a number of

standard and highly functional methods based on microphone arrays have ma-

tured. Today, with the newly introduced distributed sensor networks, which

feature services that are executed within tightly constrained conditions, new so-

lutions need to be investigated. The work we propose in part of this thesis aims to

achieve this goal while taking into account the embedded constraints in acoustic

sensor motes.

Multi-sensory systems have shown their ability in improving the overall perfor-

mance compared to mono-sensory configurations. In particular, the possibility

of registering acoustic and vision measurements in a common coordinate system

enables achieving an important improvement. Therefore, data fusion strategies
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targeted by this research would offer a promising opportunity to ameliorate the

detection and localisation accuracy in distributed platforms.

The described situations motivated the investigation of solutions based on both

data modalities (visual and acoustic) where hardware implementation was a pri-

mary concern. The accuracy in the detection and localisation constitutes an

important objective of this thesis.

1.2 Thesis organisation and contribution

This thesis is concerned with the investigation and development of efficient and ac-

curate detection and localisation solutions for embedded systems in both outdoor

and indoors environments. The principal contribution are made towards reliable

data exploration, data filtering and fusion methodologies across platforms. A

brief summary of the contributions presented in this thesis is as follows:

Theoretical background: On Chapter 2, we present the background required to

carry out this research. We introduce the fundamental concepts in vision, vision

detection process, fundamental concepts in acoustics. In addition, we discuss the

corresponding approach for acoustic localisation in the DSNs.

Visual detection in static camera: On chapter 3, we investigate the problem

of visual detection of moving objects using a model based on the Gaussian mix-

ture models (GMM). The presented method, the Spatio-temporal Global Gaus-

sian Mixture Model (SGGMM) uses RGB and Pixel Uncertainty for background

modelling. The SGGMM (with colours only) is used for scene with moderate

illumination changes. By including the pixel uncertainty statistics in the back-

ground model, the method can deal efficiently with dynamic backgrounds and

backgrounds with fast luminosity variations.
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We also handle experimental evaluation in indoor and outdoor environments

which show the performance of foreground segmentation (object detection) with

the proposed SGGMM model. These experimental scenarios take into account

changes in the background within the scene. They are also used to compare

the proposed technique with other state-of-the-art segmentation approaches in

terms of accuracy and executions performance. To further confirm the latter, our

solution is implemented and tested on an embedded camera.

Visual detection from moving camera: On Chapter 4, we investigate the

problem of motion detection from a moving camera system. This is motivated

by of the wide range of applications for moving object detection using moving

platforms. These vary from security enhancement for borders and public spaces

(using aerial platforms and PTZ cameras), to applications for industrial and daily

activities, such as used for mobile robots and vehicles and driver assistance. Un-

like motion detection using static cameras, and despite the considerable efforts

made to investigate this problem, only few proposals are reported in the litera-

ture to efficiently address the challenging task of detecting in such scenarios. In

this work we present an approach based on affine image warping using a robust

method of homography for motion compensation and optical flow.

Robust acoustic source localisation in WSN: On Chapter 5, we aim to

develop an efficient and robust algorithm for acoustic source localisation based

on the Time Delay Of Arrival (TDOA) measurements. This algorithm is to be

used in a context of low-cost sensor networks. Part of the available solutions

in the literature formulate this problem as a minimisation of a non-linear least

square function, which is solved using Gauss-Newton method. The latter shows

a degraded performance especially when it is initialised far away from the desired

solution. To make up for this inefficiency, we propose to adapt a trust region

based optimiser named Double Dogleg.
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Furthermore, we characterise, the uncertainties available in the TDOA measure-

ments and propose a new way of evaluating them experimentally. These un-

certainties are taken formally into account in the proposed optimiser through

the adoption of weighted norms in its optimisation process. Evaluation results

based on a source localisation setup demonstrate the suitability of the proposed

algorithm in terms of the overall accuracy and the global convergence rate.

Detection, localisation and tracking in heterogeneous distributed net-

works: Chapter 6 is devoted to the problem of improved detection and locali-

sation in heterogeneous distributed sensor networks. Relying on the correlation

between the two data modalities (acoustic and video), we firstly propose an in-

novative solution for active acoustic source detection and localisation for a dis-

tributed sensor networks. This solution aims to augment the RGB vector used in

the Spatio-temporal GGMM background subtraction method proposed in Chap-

ter 3. This augmentation is done with the use of acoustic information to detect

possible moving sound sources. A second contribution in this chapter concerns

investigating the design and performance of the fusion based on the centralised/-

centralised architectures. The aim for such fusion approach is to evaluate the

quality of tracking of active sound sources with regards to the communicational

cost and the fusion algorithm used in the distributed sensor networks.

1.3 Contribution

• R.Azzam and N.Aouf ”Acoustic detection and localisation enhanced by

video analysis”. Published by IEEE SMC (System, Man, Cybernitics).

Manchester, October 2012.

• R.Azzam and N.Aouf ”The Gaussian Processes for Acoustic Localisation

and Tracking in Wireless Sensor Network”, published at IET ICDP, imaging

for crime detection and prevention , London, December 2013.
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• R.Azzam and N.Aouf, ”Acoustics And Video Fusion In Wireless sensors

networks” in Cranfield Symposia-Shrivenham-Campus, June 2014.

• R.Azzam and N.Aouf ”a Non-Parametric Tool for Vision Detection Analy-

sis”, published at IEEE Electronic Martime conference, September 2014.

• R.Azzam and N.Aouf ”Embeded Fusion of Visual and Acoustic for Active

Acoustic Source Detection With SGGMM” published at IEEE Electronic

Martime conference, September 2014.

• R. Azzam, N.Aouf, M.Kemmouche, and M.Richardson ”Efficient Visual

Object Detection with Spatially Global Gaussian Mixture Models and Un-

certainties” Under review after second round of revision, Journal of visual

communication and image representation.

• R.Azzam and N.Aouf ”Robust Non-linear Squares Optimiser for acoustic

source localisation in WSN”, Under review in Journal of Applied Acoustics.

• R.Azzam and N.Aouf ”Optical Flow Based GMM and Robust Homogra-

phy for Moving Object Detection in Moving Background”, under review in

journal of signal image and video processing.

1.4 Software Tools

Listed are the tools used during the study:

• Matlab: A technical computing environment developed by the MathWorks

company;

• C/C++: General-purpose programming language, comprises both high-

level and low-level language features.



Chapter 1. Introduction 9

• Nesc (Network Embedded systems C): Is a component-based, event-driven

programming language used to build wireless sensor networks applications.

• TinyOs: Is an open source, BSD (Berkeley Software Distribution) licensed

operating system designed for low-power wireless devices, such as those used

in sensor networks.

• OpenCV: An open source library of programming functions aimed at real-

time computer vision applications developed by Intel and supported by

Willow Garage.
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Chapter 2

Image representation, visual

detection and acoustic source

localisation

2.1 Introduction

This Chapter is devoted to introducing basic concepts of visual and acoustic de-

tection that serve as a foundation for the main contributions of this thesis. It

involves the basic methods used for detection using static cameras, blob anal-

ysis methods, in addition to the so-called pinhole camera model [1, 2]. Using

this model, the positions of the detected moving objects can be estimated for

further processing. In this Chapter, we also include the basic concepts used in

acoustics signal processing and the different approaches for acoustic localisation

in distributed sensors networks.

11
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2.2 Video detection

In automatic video surveillance systems, visual detection and localisation is the

process of using visible information to detect and localise moving targets. Target

classification is also among the most debated applications in this field. Performing

target detection and tracking using a video stream leads to taking advantage of

the pixel value or features, therefore a description of the image representation

will be given first in the following section.

2.2.1 Image representation

An image is a multidimensional signal acquired from light captured by using dig-

ital camera. It is defined as a matrix where each entry (named pixel) is defined

by a 2D index (i,j); i for the columns and j for the rows (see Figure 2.1). A pixel

stores a value representing the corresponding intensity of the acquired light. The

intensity of a pixel takes a value from 0 to 255. Image capability is characterised

by its resolution, which latter has the following two aspects:

Spatial resolution representing the number of pixels (or matrix elements) of

the image covering the visual space of the capture images. It corresponds to the

product of the image columns and rows. The size of the spatial resolution has a

quality effect on the projection of the captured scene into an image. The larger

the resolution, the better is the image quality. However, a higher resolution im-

plies bigger size which may lead to demand in storage capacity. A colour image

corresponds to a 24 bits (3×8bits) where each channel represents a primary colour

namely red, green, and blue (RGB). Figure 2.2 gives a presentation of these two

colour representations.

Temporal resolution: corresponding the number of images continuously ac-

quired in a given time for a video device for instance. It is expressed as frames
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Figure 2.1: Illustration of an image matrix representation

per second (fps). The experiments and tests carried out in this thesis are using

mainly RGB images.

Figure 2.2: Illustration of image colour representations
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2.2.2 Embedded systems and Data compression techniques

Unlike the general-purpose computer, which is devoted to manage a wide range

of processing tasks, embedded system is dedicated computer system designed for

specific and limited (generally one or two) functions. Their system is embedded

as a part of a complete device system which includes hardware, such as electrical

and mechanical components [3]. Embedded systems are resource constrained i.e.,

they generally have limited memory and computational capabilities and there is a

driving need to extract as much space efficiency and performance from the avail-

able resources as possible. Code compression addresses both of these requirements

[4]. Compressing the application binary and decompressing it at runtime enables

better utilisation of the limited memory space in embedded systems. To reduce

the costs associated with the large data size, three commonly used methods of

compression are well known and reported in literature, these are [4]: Compiler-

based [5], Instruction set compaction [6] and (lossless or lossy) data compression

techniques [7].

Table 2.1: Image and Video Compression Standards
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The importance of such techniques in distributed video (surveillance) system, is

trivial, since it enables reducing the data rates for storing and transmitting video

sequences. Different standard has been used in video compression techniques.

The most known until nowadays are given Table 2.1 [8]. Each of them is suited

for specific applications.

2.2.3 Pixel based motion detection

In surveillance applications, video detection and localisation is the process of

using visible data for the detection and localisation of moving targets. Performing

target detection and tracking using a video stream requires taking advantage of

pixels values. The basic principle is based on detecting the foreground objects as

the difference between the a pixel value in the current frame (Framei) and its

corresponding in an image of the scene’s static background (Backgroundi):

|Framei −Backgroundi| > Th (2.1)

This principle is used to obtain the image of the scene’s static Background auto-

matically, while taking into account other parameters such as the change of the

illumination and, natural motion of objects belonging to the background (motion

of tree branches and leaves in the background). Many techniques have been pro-

posed in the literature to tackle this problem, from which the mixture of Gaussians

(or the Gaussian mixture models). The latter has gained much attention due to

its low computation resources requirement, with reasonable results in real-time

applications [9]. A detailed literature review on background foreground methods

will be provided in the next Chapter.
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2.2.4 Feature based motion detection

This encloses the class of methods based on the optical flow [10–13]. The latter

is the distribution of apparent velocities of movement of brightness patterns in

an image. Optical flow can arise from relative motion of objects with respect to

the viewer. Consequently, optical flow can give important information about the

spatial arrangement of the imaged objects and the rate of change of this arrange-

ment [10]. Different techniques are used for optical flow computation. These can

be grouped as the following categories[11] : differential methods; frequency based

methods; correlation based methods; multiple motion methods and temporal re-

finement methods. The boundaries between each class of methods are not always

clear. For instance, both phase based and feature based matching are incorpo-

rated in a unique approach in [12], while in [13], a differential scheme is used on

time varying edge maps. The former is classified as a phase based method while

the latter as a differential method. Noise in the data (the captured images or the

modelling technique used )[14] causes the different optical flow computational

techniques to give biased flow estimates [15]. The problem of robustness of the

different optical flow methods has been particularly investigated in [16, 17], in

which different techniques have been examined. The evaluation results showed

that the phase-based technique presented in [18] and the differential technique

of Lucas and Kanade (KL) [19] produced the more accurate results in overall.

Robustness of the differential KL has been also highlighted in [20, 21], in which

more complex synthetic image sequences with different techniques investigated in

[16, 17] have been re-examined (with exclusion of the phase-based methods).

2.2.5 Background segmentation post-processing

To fit with real-time processing requirements, and due to its reduced computa-

tional cost, background subtraction based methods are commonly used in em-

bedded systems. Therefore, after the video source is processed by one of the
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background separating methods, the foreground objects (Regions of Interest) are

subtracted from the background model. The results of this operation are for-

warded to the filtering and thresholding unit where video acquisition noise is

removed. By applying a thresholding filter to the processed data, the image is

binarised and the amount of information is significantly reduced. These groups

of pixels refer to the detected objects. However, to allow for tracking or classifi-

cation, this data needs further processing.

2.2.6 Connected-component labelling

The connected-component labelling (CCL) algorithms analyse binary images in

order to distinguish disjoint groups of pixels (objects) and assign individual la-

bels to them. Labelled objects are further processed to calculate their features

which are used by tracking algorithms, such as position, width, height or centre

of gravity (centroid)[22]. The CCL is an operation where groups of connected

pixels (connected components) are classified as disjoint objects with unique iden-

tifiers (labels). There exist different algorithms that deals with the problem of

connected component labelling, this include the multiple scan algorithm [22], the

parallel processing algorithm [23], the contour tracing algorithm [24], the single

pass algorithm [25] and the two pass algorithm [26].

The multiple scan algorithm [22] is an iterative algorithm that does not require

any additional storage for label equivalences. It works by multiple forward, and

backward raster scan passes through the image until no label change occurs. Al-

though this algorithm was designed for systems with limited memory resources

(low resolution images), its performance is related to the size and the complex-

ity of the binary image which is hard to predict. Therefore, such algorithms are

not suitable for real-time video processing. The Parallel processing algorithm pro-

posed in [23], requires higher computational cost as these are principally designed
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for parallel processing platforms. Thus, are neither suitable for ordinary computer

architectures nor for embeded systems of reduced computational capabilities.

The contour tracing algorithm [24] which is designed to detect contours of the

object and also to fill-in interior areas, works through random access to all the

image pixels. Therefore, longer execution times are required. The single pass

algorithm [25], which is relatively new, was developed specifically for labelling

connected components in streaming data systems. The labelling step is performed

in a single scan while data is streamed to the system.

In our work we used the two pass algorithm [26] because of its low computational

cost, although it requires relatively higher memory usage. It is often referred

to in the literature as the classical algorithm. Its key feature is the constant

number of passes (two) through the binary image. The general concept is to

assign preliminary labels while new foreground pixels are appointed during the

initial scan. Once label ambiguity is encountered, the lower label is assigned

and the equivalence table (ET) is updated. At the end of the scan. the ET is

stored. During the second scan all the preliminary labels are overwritten with

their equivalences.

2.2.7 Fundamental concepts for image projection

A portion of this thesis is related to video surveillance systems in which it is very

important to accurately estimate the position of detected targets from visual

data, it is important to define the transformation linking an image to real world

metrics and vice versa. The simplest model which describes this transformation

is referenced as pinhole perspective projection model[1, 27]. This model assumes

that light rays reflected from the scene pass through a small hole punched on a

screen.
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The transformation between a position (X, Y, Z) into a pixel location (u, v) where

the focal length f characterise the distance between the screen and the image is

given by this model (Figure 2.3). In absence of blur and distortions the rela-

tionship between the 3D and the 2D coordinates gives the perspective transform

defined as follows: 
u = f X

Z

and

v = f Y
Z

(2.2)

Figure 2.3: Camera world reference transformation

where f is the focal length and characterises the distance between the image plane

and the projection centre (Oc).
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In practice, this model is more complicated as it implies lens distortion, which

affects f resulting in an image with distorted corners. In order to have undistorted

images, the camera needs to be calibrated, which means estimating the extrinsic

and intrinsic parameters.

The intrinsic transformation handles lens distortion and achieves the projection

following the pinhole camera model. Optical distortion can be modelled following

the radial lens model characterised with two coefficients k1 and k2. Thus, distorted

pixel coordinates can be undistorted as follows:

u = ud(1 + k1(u2
d + v2

d)
2 + k2(u2

d + v2
d)

2)

v = vd(1 + k1(u2
d + v2

d)
2 + k2(u2

d + v2
d)

2)

(2.3)

where [ud, vd]
T are the distorted pixel coordinates in the image.

The projection transform is characterised by a matrix K, wich links homogenous

coordinates of p̃ to its related 3D position P as follows:

p̃ = KP (2.4)


u

v

1

 =


fu γ u0

0 fv u0

0 0 1



X

Y

Z

 (2.5)

The matrix K is composed of 5 parameters: fu and fv the focal length respectively

in the horizontal and vertical directions, the skewing factor γ and the coordinates

of the central pixel [uo, vo]
T . The central pixel is the position in the image where

the optical axis crosses orthogonally the image plane. Generally, the central pixel

does not coincide with the image centre.
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The relationship between fu and fv, is the following:

fu = sfv (2.6)

where s is a scale factor, which is equal to 1 if the image pixels are square.

Finally, the skew factor, which represents the angle between the directions, usually

fixed to zero because in reality its value is negligible as these two directions are

perpendicular.

A rotation matrix r and a translation vector t define the extrinsic transformation.

The latter defines the relationship between the camera reference frame and the

world reference frame as illustrated in Figure 2.3. Thus, the operation, which

moves a point Pw from the world reference frame to its related position P in the

camera reference frame is described as:

P = rPw + t (2.7)

2.3 Acoustic source localisation

This Section will be devoted to presenting fundamental definitions of acoustics

as these are the basis for various applications in acoustic. That are basically

detection, localisation recognition, and classification. Most definitions have been

internationally standardised and are listed in standards publications [28].

2.3.1 Physics of sound

Sound or noise is the result of pressure oscillations (or variations) in an elastic

medium (air, water, solids) and generated by a vibrating surface, or turbulent
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fluid flow. Sound propagates in the form of longitudinal (as opposed to trans-

verse) waves, involving a succession of compressions and refractions in the elastic

medium, as illustrated by Figure 2.4(a).

When a sound-wave propagates in air (the medium considered in this work), the

oscillations in pressure are above and below the ambient atmospheric pressure.

Noise can be described as ”undesired or disagreeable sound”. From an acoustics

point of view, noise and sound present an identical phenomenon of atmospheric

pressure variations around the mean atmospheric pressure. The difference is

greatly related to the context, as what is sound to one person can be considered

as noise to another person.

2.3.2 Amplitude, frequency, wavelength and velocity

A pure tone means that sound consists of a single frequency [29]. It is charac-

terised by the following aspects:

The amplitude of a pressure changes: This feature can be described either

by the maximum pressure amplitude (Pm), or the root-mean-square (RMS) of the

amplitude (p) . It is expressed in Pascal (Pa).

The wavelength (λ): It represents the distance travelled by the pressure wave

during one cycle.

The frequency (f): It is expressed in Hertz (Hz) and represents the number of

pressure cycles in the medium per unit time, or simply, the number of cycles per

second. Noise is usually composed of many frequencies combined together. The

relation between wavelength and frequency can be seen in Figure 2.4(b).

Obviously , the period (T ), is the time taken for one cycle of a wave to pass a

fixed point. It is related to frequency by: T = 1/f .

The speed of sound wave propagation (c): is the velocity at which sound

travels through a particular medium. It can be written as function of f , the
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frequency, and, λ, the wavelength as the following: λ = c/f . The propagation

speed of sound in air is c = m/s, at 20oC and 1 atmosphere pressure. At different

temperatures (t) which present low variations from 20oC is calculated as:

c = 332 + 0.6Tc. (2.8)

where Tc is the temperature in Co. For estimating the sound speed for any gas,

the following expression is used [28]:

c =
√
γRTk/M(m/s) (2.9)

where Tk represents the temperature in K, R is the universal gas constant that

has the value of 8.314J per mole K and M is the molecular weight equal to 0.029

kg/mole for air. γ is the ratio of specific heats equal to is 1.402.

Figure 2.4: Representation of a sound wave1

12Image taken from [30]
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Highlight
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Figure 2.5: Wavelength versus frequency under normal conditions(air)2

2.3.3 Sound field

It describes a part of the environmental factors affecting the sound wave prop-

agation. More specifically, a sound field is defined by the allowable variation of

sound pressure level produced by a loudspeaker in a small space surrounding a

reference point [30]. In what follow, we briefly mention the sound field types cited

in [28].

• The Free field: defined as the region in space where sound waves propagates

free from any form of obstruction.

• The Near field: defined by the region close to an acoustic source where

the sound pressure and acoustic particle velocity are not in phase. In this

region, the near field is limited to a distance from the source which is equal

to about a wavelength of the sound or approximately three times the largest

dimension of the sound source [28].

• The Far field: begins at the end of the near field and extends to infinity.

Here, the rate of most machinery noise sources attenuation is about 6 dB

each time the distance from the source is doubled.
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• The Direct field: is described as the part of the sound field where the

propagated sound wave does not suffer from any form of reflection caused

by room surfaces or obstacles.

• The Reverberant field: is described by the part of the sound field in which

the sound wave may experience at least one form of reflection from a bound-

ary of the room or from the enclosure containing the sound source.

2.3.4 Basic Acoustics Features

Since the signal is more stable within a short-time period,a short-term analysis

method generally adopted for acoustic signal processing.Usually a step of frame

blocking is performed during the processing. At this stage, there may be some

overlaps between neighbouring frames to capture subtle change in the acoustic

signals. Each frame is the basic unit for audio signal analysis. Within each frame,

three most distinct acoustic features can be observed. These are [31]:

2.3.5 Features in the time domain

• Average energy: this feature represents the loudness of the audio signal.

It is correlated to the amplitude of the signals. The average energy by

mean-square values is given by:

E =
1

N
ΣN−1
n=0 |x(n)|2 (2.10)

where E is the average energy of an audio signal x(n), while N describes

the total number of samples in this signal.
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• Zero-crossing rate: It indicates the frequency of signal amplitude sign

change. Estimation of the average zero-crossing is done as follows:

ZCR =
1

2N
ΣN
n=1|sgn(x(n))− sgn(x(n− 1))| (2.11)

where sgn(x(n)) is the sign of (x(n))

• Silence ratio: It gives an indication about the proportion of the silence

within an audio signal. Silence is described as the interval where the ab-

solute amplitude values are below a given threshold. However, the silence

ratio is defined by the ratio between the sum of silent intervals and the total

length of the audio signal. Generally, two thresholds are defined: one is used

to check if an audio sample is silence and the other is used to determine if

those silence samples belongs to a silence interval.

2.3.6 Features in the frequency domain

• Spectrum: sound spectrum represents the variation of the signal amplitude

with respect to the corresponding frequencies. The spectrum shows the

energy distribution across the frequency range.

• Bandwidth: it shows the bounds within which sound frequency varies.

A simple definition of this feature is the frequency difference between the

lowest and highest frequency of the non-zero spectrum components.

• Harmonic: in harmonic sound, the spectral components are the multiples

of the lowest frequency. This frequency is called fundamental frequency.

a well known method used to check if a sound is harmonic compares the

frequency corresponding to the dominant components and see if it is a

multiple of the fundamental frequency [31].
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• Pitch: this is a subjective feature which is not only connected to the fun-

damental frequency. Though in practice, the fundamental frequency is used

as approximation of this feature. The most obvious sample point within a

fundamental period is often referred to as the pitch mark. The latter is

selected as the local maxima or minima of the audio waveform. Reliable

identification of pitch is an essential task for some audio applications such

the case of text to-speech synthesis.

• Timbre: it is an acoustic feature that refers to the ’content’ of an audio sig-

nals frame. One of the most representative instances is the Mel-frequency

cepstral coefficients (MFCCs)[32]. In this representation, the frequency

bands are ranked logarithmically in analogy to the response of the human

auditory system. The MFCCs performs better than the linear-spaced fre-

quency bands, such as the discrete Fourier transform (DFT) and the discrete

cosine transform (DCT) [31] for speech recognition applications.

2.3.7 Methods to analyse audio signals

Different methods are used for acoustic signal analysis, these vary in capabilities

and conditions of application.

2.3.7.1 Fourier Transform

The Fourier transform represents a given function in terms of a weighted sum of

sine and cosine functions. It is given by:

FT (x(t)) = X(Ω) =

∫ ∞
−∞

x(t)e−jΩt,Ω = 2πF (2.12)

This function is characterised by being impractical to use if we are interested in

a specific part of the signal delimited by the interval t0 ≤ t ≤ t1.
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This method defines the global representation of the frequency content of the

signal x(t) over a total period of time in which the signal exists. Also it does not

give access to the signal’s spectral variations during this interval of time [28]

2.3.7.2 Time-frequency analysis

To address the issue of the Fourier transform, the Short-time Fourier Transform

(STFT) has been introduced. It operates by applying the Fourier transform to

successive portion of the signal by means of a sliding window of finite size. it is

given by:

STFT (g(Ω, b)x(t)) = Xg(Ω, b) =

∫ ∞
−∞

x(t)g(t− b)e−jΩtdt (2.13)

where g() is the sliding window. This method was shown in [33] to be efficient for

adaptive signal processing. However, once a particular analysing window has been

chosen, it cannot be changed again until the end of the entire analysis procedure.

2.3.7.3 The continuous wavelet transform

In order to yield high resolution, specially to analyse low-frequency signals, which

is a compatible with the situation in acoustic sensor motes in Wireless Sensors

Networks [34, 35]. The Wavelet transform was shown to provide a better trade-off

between time and frequency resolutions than the fixed length windows used in

the STFT. It is defined as:

Xψ(a, b) = (x(t), ψab(t)) =

∫ ∞
−∞

x(t)ψab(t)dt (2.14)

where ψab is a continuous affine transformation of the mother wavelet ψ(t):

ψa,b =
1√
a
ψ

(t− b)
a

(2.15)
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a ∈ R+ and b ∈ R represent the scaling and the translation parameters respec-

tively. The signal x(t) can be retrieved from its CWT if the constraint:

ψ(0) =

∫ ∞
−∞

ψ(t)dt = 0 (2.16)

One drawback that affects the continuous wavelet transform is its computational

cost due to high level of redundancy.

2.3.8 The generalised cross correlation

There exists different techniques for signal processing that can be used to estimate

the time delays between two copies of a signal recorded by a pair of microphone.

The most popular is the generalised cross correlation (GCC) with Phase Trans-

form (PHAT) weighting [36]. This technique measures the similarity between one

signal and a time delayed version indicates how much time delay between the two

versions. The GCC between two signals S1(t) and S2(t) is defined as:

Rn(t) =
1

2π

∫ 2π

0

S1(ω)S∗2(ω)

|S1(ω)S∗2(ω)|
ejωtdω (2.17)

Where S1(ω) and S2(ω) represent the Fourier transforms of S1(t) and S2(t), re-

spectively. Rn is their weighted cross correlation. Subsequently, the most likely

time difference of arrival (TDOA) is equivalent to:

TDOA = ArgMax
τ

(Rn(τ)) (2.18)

2.3.9 Acoustic source localisation in wireless sensor neworks

The wireless sensor networks (WSN), is the most known form of Distributed

sensor networks. It consists of spatially distributed autonomous nodes, to which

sensors are connected. These nodes are used for a wide range of applications
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where, often, the main goal is to monitor a specific phenomenon [37]. WSN

technology is witnessing a rapid development. A significant amount of research in

this area focuses on solutions related to its design, communication issues, energy

architecture and extended sensing consumption. However, a neglected part of the

efforts focuses on customising feasible applications that can be used in real life

applications.

The WSN is built of ’nodes’ from a few to several hundreds, where each node is

connected to one or several sensors. Each sensor node has typically several parts

including [37]: a radio transceiver with an internal antenna or connection to an

external antenna, a micro controller, an electronic circuit for interfacing with the

sensors; in addition to an energy source, usually a battery or an embedded form

of energy harvesting.

Figure 2.6: Sensor node architecture

The acoustic source localisation, as a subject of this study, is one of the most

important monitoring tasks which has recently caught the attention of WSN re-

searchers. Its aim is the localisation of an acoustic source from received signals.

The usefulness of such application is obvious, especially for security and surveil-

lance purposes
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2.3.10 Architectures of distributed systems for acoustic

localisation

Although a distributed sensors system is composed of a collection of sensors it

appears as a single coherent system to its users.

These distributed systems can further be divided into either centralised or de-

centralised categories. The centralised systems is a set of remote subsystems are

led by a master controller. However, in the decentralised systems, the truly dis-

tributed system, has no master controller, and each subsystem manages a portion

of the entire system [38].

2.3.10.1 Decentralised systems

This architecture is used in large-scale sensor networks where centralised data

processing is not desirable because of the excessive communication and compu-

tational complexity it requires [38]. The adopted solution in this situation is to

cluster the sensors into groups that collaborate to locate sources. A large number

of sensors are required for acoustic source localisation to not only enhance the

accuracy but also to increase the robustness of the overall system. Moreover, this

class of algorithms has shown its efficiency in terms of both energy and bandwidth

usage.

2.3.10.2 Centralised systems

An architecture corresponding to a centralised system is of a common use in this

technology. For this architecture, the computations are done by a single controller,

which yields a relatively simpler overall design. The sensing nodes are also fairly

basic and are often composed of only one sensor or an actuator with minimal

to no computing power at all. Thus, these are easier to develop with reduced
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cost and development time. However, a major drawback for this architecture

lies in the fact that they are not scalable (outputs cannot not be adapted to

change in the inputs). Therefore, a controller on a distributed centralised system

with hundred nodes, for example, might perform with much less efficiently than

a controller supervising only ten. Another drawback to the centralised design is

that if the central controller drops off the network for some reason, the system

will be useless as this will affect the ability of the nodes to sense or detect their

surrounding environment. Their controller will also be unable to collect and

archive events that may occur during the downtime.[38]. To detect and localise

acoustic sources, this class uses a two-stage approach:

• The first stage is performed at the sensors level where acoustic signals are

measured and recorded.

• The second stage, is completed at the central level, in which the collected

data are used to calculate the position of the acoustic source.

A great part of the valid data is always available during data collection from a

different sensor nodes in this architecture, which will result in a better system

performance. However, the overall accuracy is expected to degrade regardless

of the optimisation method used for the localisation as part of the data are ei-

ther missed or corrupted due to the limited network resources. Moreover, this

architecture will also increase the communication demands on the system which

reduces the lifetime of wireless sensor networks with finite energy resources [38]

2.3.11 Middle-Ware services

The acoustic sources localisation in WSN uses several middle-ware services. If

these services are classed in term of importance, the time synchronisation mech-

anism comes first since precise time synchronisation is crucial in the localisation
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application, as sensor nodes need to coordinate their operations and collaborate

to complete a complex sensing task [39]. The communication protocol and mes-

sage delivery are also of great important for the localisation as the sensors have

to send their measurements at approximately the same time and to the same

destination. Thus, small latency in sending the obtained measurements renders

it useless [40, 41]. Further, sensor node localisation is the base of acoustic source

localisation, as the location of the sensor node should be accurate enough for the

processing to be meaningful [42].

2.3.12 The Signal Model

Techniques of acoustic source localisation vary according to the sensing and pro-

cessing capabilities of the systems to be used. In a Distributed Sensors Networks,

two main approaches are commonly used. These are either energy based source

localisation [43, 44] or time delay of arrival (TDOA) based approach [45].

2.3.12.1 The energy based approach

This technique is motivated by the observation that the sound level decreases

as the distance between the sound source and the listener becomes larger. The

relation between the sound level and the distance from the sound source enables

the estimation of the source position using multiple energy reading at different

known source location [44] according to the following formula:

yi = gi
s

‖r − ri‖α
+ ei, i = 1, · · · , n (2.19)

With yi represents the signal energy measured on the ith sensor ; gi is the gain

factor of the ith acoustic sensor; ; ‖r − ri‖ represents the euclidean distance

between the ith sensor given by its Cartesian coordinate ri and the sound source

given by its Cartesian coordinates r; α = 2 is an energy attenuation factor;
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n is the number of deplyed sensors, ei represent the background noise, it can

be approximated using a normal distribution with a positive mean value µ and

variance σ.

2.3.12.2 Time delay of arrival (TDOA)

To this approach, we can also assign the DOA based method. The TDOA based

method comes from the observation that the sound wave propagates at constant

speed (sound speed) from the acoustic source to listeners. A number of micro-

phones at known positions receive the propagated acoustic source at different

times. The modelling of TDOA enables the estimation of sound source position

using different techniques. An extensive investigation of this method is given

in Chapter 5. The DOA based method rely on the array geometrie. From this

known geometry, the signal Direction Of Arrival (DOA) can be obtained by mea-

surement of the time-delays which are estimated for each pair of microphones in

the array. A best estimate of the DOA is obtained from time-delays and the array

geometry [46].
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Chapter 3

Visual Object Detection with

Spatially Global Gaussian

Mixture

3.1 Introduction

One of the main objectives of an Automated Visual Surveillance System (AVSS)

is intrusion detection. It aims to automatically determine the presence of new ob-

jects in the scene. Development of AVSS applications, in recent years, has been

a primary area of research interest. However, the proposed solutions are still

constrained by the variability of object appearance, poor quality of images, fast

lighting variations and object occlusions. Common visual detection approaches

for surveillance systems are based on background subtraction. The latter consists

of detecting changes in the scene across the frames by comparing the current

image with a reference image of the background. Pixels with significant vari-

ations are classified as foreground. The popularity of background subtraction

36
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approaches is due to their reduced computational cost in comparison to feature-

based approaches.

However, a known problems with background/foreground subtraction is in main-

taining the background model when parts of the background are occluded for

long periods of time; illumination changes, which can severely affect the accu-

racy of detection; foreground objects casting shadows where the shadow might be

interpreted as foreground; objects believed to be background could move whilst

moving foreground objects could stop for a long time.

In this chapter, we investigate the problem of robust background modelling which

is able to handle both static and dynamic backgrounds with reduced computa-

tional cost. The contributions of this chapter are as follows:

• (i) We present the GMM based foreground/background subtraction ap-

proach for object detection. In addition to its performance, it presents an

attractive complexity and computation reduction in comparison to classical

GMM based visual detection techniques. The background is modelled by

a Spatial Global Gaussian Mixture Model (SGGMM) using image colours

(RGB) firstly initiated by [47], as an alternative to pixel-based [48] and

region-based [49, 50] GMM models. A support map, which stores SGGMM

components to pixels assignments, is generated and used in the segmenta-

tion process. The background model is updated by processing new image

frames online to capture scene changes;

• (ii) To deal with background motion which makes most foreground/back-

ground subtraction techniques deficient. A patch-based pixel uncertainty

model is used to augment the background colour SGGMM model in a coarse-

to-fine detection strategy;
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• (iii) Finally, the presented detection algorithm is evaluated quantitatively

and qualitatively using a benchmarked dataset in addition to an implemen-

tation and a test in a smart camera sensor network node.

3.2 Related Works

To obtain a robust model of the background, several statistical methods have

been proposed in the literature. The first category of these methods models

the background pixel by pixel using primitive approaches. Some of them use a

single Gaussian distribution such as the running average [51, 52] multiple Gaus-

sian distributions or a nonparametric clustering technique [53, 54]to model the

pixel colour/intensity. These methods work efficiently in less dynamic scenes but

they suffer from vacillating backgrounds (e.g. swaying trees), moving background

elements and illumination changes. To alleviate these issues, more advanced

techniques have been introduced. These comprise: the Gaussian Mixture Mod-

els, adaptive background learning models, models with advanced statistical ap-

proaches, in addition to models that are based on outlier detection using low-rank

minimisation models. These techniques are detailed in the following:

3.2.1 Gaussian mixture models

Approaches in this category are based on multi-modal Gaussian distributions as

the Gaussian Mixture Models. These models are updated over the acquired im-

ages, using the Expectation-Maximisation (EM) algorithm [55] or more accurate

Bayesian update procedures [56]. GMMs can cope with sudden light changes and

work better than other classical algorithms [57]. Stauffer and Grimson presented

an example of GMM based methods in [48]. It uses a similar approach as Fried-

man and Russel’s [58] but it was extended to allow several backgrounds to be

modelled simultaneously. This is done to account for critical situations such as
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waving trees in windy environments. Stauffer’s model[48] has gained popularity

because of its ability to deal with slow illumination changes and slow moving

objects such as those appearing and disappearing from the scene. However, it

struggled against fast lighting changes, camera-shaking effects and cases where

parts of the background are occluded for a relatively long time. Hayman and

Eklundh [59] extended Stauffer-Grimson’s algorithm by using colour variance to

deal with the problem of partial occlusion of the background (with foreground

objects). Although this method showed some performance improvements, the

results were not entirely satisfactory. Alternative improvements to GMM-based

approaches aimed to increase their computational speed and their adaptation

to background variability. This was achieved either by re-investigating the up-

date equations [60, 61], or by adapting both the number and the parameters of

the mixture components for each pixel [62, 63]. While vacillating backgrounds

and background elements that are moving are better interpreted, fast illumina-

tion changes that received considerable attention remain challenging. Adaptive

schemes based on colour-invariant principle under varying illuminations for mo-

tion detection were proposed in the literature [64–67]. In [64], the background

colour was modelled by a single adaptive Gaussian distribution, while a Gaussian

mixture is used to model multi-coloured foreground objects (one Gaussian for

each colour of the object). Multiple background colours modelling by a mixture

of adaptive Gaussians for each pixel was presented in [65]. In that work, an image

was represented by the colour chromaticity, which is robust to fast illumination

changes in outdoor environments. The mentioned models use only colour or in-

tensity information for background segmentation. Approaches that are based on

correlation measurement of pixels over a fixed-size neighbourhood (i.e. patches)

are promising. Integrating the pixel spatial location with the colour to model

homogenous regions of the background using a Spatial-Colour Gaussians Mixture

Model (SCGMM) [49, 50] falls into this category. Each image pixel is classified

as foreground or background depending on the classification of the region distri-

bution. The SCGMM model can lead to a better segmentation if the foreground
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objects locations are known a priori. However, as the objects may appear any-

where in the scene, using spatial-colour distribution to model the background

and/or foreground is often not enough. Moreover, using high-dimensional feature

vectors to describe each pixel drastically increases the computational require-

ments. As the gradient value is less sensitive to lighting changes and is able to

derive an accurate local texture difference measure, the authors in [68, 69] have

generalised the spatial GMM model to include both colour and gradient features.

3.2.2 Adaptive background learning models

Neural networks and fuzzy logic systems are parameterised computational nonlin-

ear algorithms for numerical processing of data. In these systems, the knowledge

is acquired through a learning process and is stored in the internal parameters

(weights). Based on these systems, different background models that deal ro-

bustly with fast illumination changes have been proposed. Image patches with

artificial neural networks have been investigated in [70, 71] and[72]. Maddalena

and Petrosino [70] introduced a 2-D flat grid of neurons that yields to a represen-

tation of training samples for a reduced image dimensionality. This representation

enables the preservation of the topological neighbourhood relations of the input

patterns. The nodes are represented as a combination of a weighted linear values

of pixels at the input. Therefore, each node is represented by a weight vector.

The identification of moving pixels is performed based on the closeness to the

weight vector using a distance measure. This method presents some limitations

regarding its fixed network structure in terms of the number of neurons which

have to be defined in advance. In addition, they lack of hierarchical relationships

representation among the inputs. To resolve these issues, Palomo et al. [72] pro-

posed the use of a growing hierarchical neural network. This hierarchical network

is divided into layers. Each layer is composed of a number of single self-organising
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neural networks with adaptive structures that are determined during the learn-

ing process according to input data. Experimental results using this structure

showed a good performance in the case of illumination changes. In the same con-

text, Huang and Do proposed a solution based on multi-background generation

[71]. It generates a flexible probabilistic model through an unsupervised learning

process to determine the property of a background. Moving object detection is

performed by estimating the output of an energy function for each block of pix-

els. Other recent developments such the one proposed in [73], adopted a fuzzy

C-means clustering model which uses fuzzy colour histograms as feature. This

model enabled the attenuation of the colour variations generated by background

motions while still highlighting moving objects. Though this approach delivers

satisfactory results with dynamic backgrounds, its main drawback lies in its high

sensitivity to the range of proximal pixels. Finally, we have to note that the main

difficulty in implementing methods based on neural networks and fuzzy logic is in

their higher computational load and the number of clean frames for the training

phases.

3.2.3 Advanced statistical models

This category comprises robust models based on advanced statistical analysis,

which is applied to pixel patches within the acquired images. In [74], Cheng and

Huang proposed a temporal difference based method, which adopts a Laplacian

distribution model to check for the presence of moving objects in different image

blocks. It also uses an adaptive background model and illumination variation

mechanism with a training procedure. Computing the binary object detection

mask using a suitable threshold value performs a motion extraction task. Al-

though this approach shows some level of robustness to environmental changes,

its application often results in incomplete detection of the moving objects shape.

This is especially true when objects, which are motionless or with feature limited
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mobility, are present. In [75], Huang proposed a background subtraction method

using a model based on the selection of suitable background candidates. The

method uses an Alarm Trigger (AT) module, which relies on a block-based entropy

evaluation (using morphological operations) to detect the pixels of moving objects

within the regions designated as belonging to feature objects. Similarly, Guo et

Al [76] proposed a multilayer codebook-based technique. It works through the

combination of a multilayer block-based strategy and the adaptive feature extrac-

tion from blocks of various sizes to remove most of the non-stationary (dynamic)

background. Thus, the processing efficiency increased. Though it is efficient in

some scenarios, a refining step of the result is still required. The latter uses a

pixel-based classification scheme to identify pixels as either foreground, shadows

or highlights.

3.2.4 Low-rank minimisation models

Low-Rank minimisation (LRM) based methods show their usefulness in many

data mining applications. However, their performance can seriously degrade due

to outliers. To resolve this issue, extensive investigations have been conducted

to develop robust matrix factorisation methods. This is done by formulating the

problem of robust LRM as a constrained matrix approximation problem with con-

straints on the rank of the matrix, the cardinality of the outlier set, in addition

to incorporating outlier structural knowledge. Using this approach, Zhou and

al. proposed a method based on the assumption that the underlying background

images are linearly correlated [77]. Therefore, by finding a Low-rank matrix that

approximates the vectored video frames, moving objects can be detected from

the outliers. This presented method works in batch mode only. Thus, a further

investigation is required to adapt it for real-time scenarios. In [78], Xiong et al

proposed a (Direct) Robust Matrix Factorisation (DRMF) approach. It presumes

the existence of some arbitrary outliers in a small portion of the matrix. Then, to
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get a reliable estimation of the true Low-rank structure of this matrix and to iden-

tify the outliers, the latter should be removed from the model estimation. This

can be done as long as these outliers are present in a reduced number. In addition,

and for computational acceleration, the authors proposed to use a partial SVD

algorithm. Similarly, Wang et al [79] proposed a Probabilistic Robust Matrix

Factorisation (PRMF) method. This was formulated with a Gaussian prior and

Laplace error, which correspond to an l1 loss and an l2 regularised respectively.

For the model learning process, a parallelizable ExpectationMaximisation (EM)

algorithm was introduced. Additionally, an online extension of the algorithm for

sequential data was provided to offer further scalability. The performance of the

PRMF is comparable to classical robust matrix factorisation methods. However,

in terms of accuracy it performs better for large data matrices. The methods

that fall into this category are promising and can perform well in some particular

scenarios. However, intensive investigations are still required to resolve issues

regarding their reduced overall accuracy and increased computational costs.

3.3 Description of the spatially global gaussian

mixture model

A basic assumption for moving objects detection using a static camera, is that the

background slowly changes in relation to the moving objects in the scene. Each

image pixel value is represented in feature space by a vector x = [R,G,B]T . The

scene background is represented by a spatially global Gaussian mixture model of

n Gaussians in 3-dimensional colour space as follows

p(x) = Σn
i=1wig(x, µi,Σi) (3.1)
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where µi and Σi are respectively the spatial mean vector and covariance matrix of

the ith distribution. wi is an estimate of the weight which reflects the likelihood

that the corresponding distribution accounts for the image colour and satisfies the

criteria Σi=1,··· ,nwi = 1. Each Gaussian distribution g(x, µi,Σi) of the mixture is

defined as:

g(x, µi,Σi) =
1

2π
d
2 |Σi|

1
2

e
−1
2

(x−µi)(Σ−1
i )(x−µi)T (3.2)

Where d = 3. The RGB colours are assumed to be independent random variables

and the covariance Σi is diagonal matrix for computation simplicity.

3.3.1 Background model estimation

The mixture components are built at the initialisation phase based on a mean

image (Imean), which is computed over a number of frames N taken without any

moving objects. We associate a Gaussian probability density function to each

pixel of Imean as follows:

mi =
1

N
ΣN
t=1(xi(t)) (3.3)

σi =
1

(N − 1)
ΣN
t=1[(xi(t)]−mi)][(xi(t)−mi)]

T (3.4)

where xi(t) is the pixel value in frame t,mi and σi are respectively the mean

and covariance of pixel i. For simplicity reasons, the pixel position in the image

is represented by one dimension. As each pixel in the image is modelled by a

Gaussian distribution, we associate to the mean image Imean a mixture density f

of dimension w × h Gaussian components defined as follows:

p(x) = Σ(i=1,··· ,w×h)αif(x,mi, σi) (3.5)

where w and h are the width and height of the image.f(x,mi, σi) is a Gaussian

component with a mean and covariance given in equations (3.3) and (3.4), and αi



Chapter 3. Visual Object Detection with Spatially Global Gaussian Mixture 45

is the mixing weight equal to α = 1
w×h . The objective is to fit all the components

of the mixture f into a reduced mixture g of n components and representative of

the background colour. Therefore, the SGGMM estimation can be formulated as

a clustering problem so that the set of pixels of a region with similar colour are

fitted to the same cluster and represented by the same Gaussian component.

To this end, we adopt an adaptive hierarchical clustering algorithm introduced

in [80], where clusters can be created and updated adaptively. If new pixels are

fitted to existing clusters, the corresponding Gaussian component parameters are

updated accordingly. To determine the elements of the reduced mixture g closest

to elements of the original mixture f , a distance minimisation criterion between

f and g is used and defined as follows:

d(f, g) = Σi=1,··· ,w×h min
k=1,··· ,n

KL(fi‖gk) (3.6)

where KL(fi‖gk) is the Kullback-Leibler distance between components fi =

N(mi, σi) and gk = N(µk,Σk) given by:

KL(fi‖gk) =
1

2
[log
|Σk|
σi

+ Tr(Σ−1
k σi) + (mi − µk)Σ−1

k (mi − µk)− c] (3.7)

with c = 3 is the dimensionality of the image features space. Since there is no

closed-form solution to this minimisation problem, an iterative approach to obtain

a locally optimal solution is proposed which operates through the following steps:

• Step 0: Initialise the mixture with a single component of an arbitrary chosen

mean vector µ0 and a diagonal covariance matrix Σ0 (i.e. µ0 = m1 and

Σ0 = σ1)

• Step 1: For each pixel of the mean image Imean, compute the KL-distance of

the corresponding component ft regardless of all components gk,k = 1, ..., n
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of the mixture g using equation (3.7 ).

Lk = {KL(fi‖gk), k = 1, ..., n} (3.8)

• Step 2: Determine the minimum of the KL-distance vector, Lmin = argmink Lk.

For this step, two cases arise:

– If Lmin ≤ r, where r is a predefined threshold, the component is fit-

ted to the cluster represented by the component corresponding to the

minimum KL-distance;

– If Lmin > r, a new cluster is initialised with the component ft, while

n is set to n = n+ 1;

• Step 3: Update all the clusters by determining the new parameters associ-

ated with the representative components gk of the mixture, as follows:

µk =
Σi∈π(k)αimi

Σi∈π(k)αi
(3.9)

Σk =
1

Σi∈π(k)αi
Σi∈π(k)αi

(
σi + (mi − µk)(mi − µk)T

)
(3.10)

βk = Σi∈π(k)αi (3.11)

Where βk is the weight, µk is the mean, Σk is the covariance matrix and

πk is the set of pixels assigned to the cluster represented by the SGGMM

component gk.

• Step 4: Compute the new minimisation distance d(f, g) using equation (3.6)

and compare it to that of the previous iteration. Repeat steps 1, 2 and 3

until the minimisation distance difference is kept less than a user-defined

TCmapthreshold.
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Given the set of the mixture components gk, an observed pixel value is

assigned to the component with the maximum posterior probability. Thus,

a support map Cmap is built to store the current component assignment for

each pixel,

c = Arg max
j=1,··· ,n

log(p(x|gj)) (3.12)

where x is the pixel value. This support map, which is obtained offline from

the SGGMM model, will be used during the online image frame processing

to perform segmentation. It is updated according to the SGGMM update

step.

3.3.2 Background model update

The SGGMM model is updated using pixels segmented to the background. By

having a background model from the previous frame It−1 (at instant t− 1), and

since the background is continuously changing, we seek to update it over the next

image frame It. The proposed update algorithm operates through the following

steps:

• Step 1: Firstly, with the use of the support map, the joint likelihood of the

whole image is determined as the following:

p(It | g) = ΠItΣ
N
i=1ωig(xt, µi,Σi) (3.13)

The defined joint likelihood of the image will be used to adaptively define

the pixel maximum likelihood.

• Step 2: Pixel likelihood is determined regardless the SGGMM component

obtained from the support map, this is done according to the following:

Lk = ωkg(xi, µk,Σk) (3.14)
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This likelihood value is constrained to exceed an adaptive user defined

threshold TCmap, chosen depending on the joint image likelihood, that is,

TCmap = γp(It | g) where γ ∈ [0, 1] is a defined constant. In this case, two

cases arise:

– if Lk < TCmap, the pixel is maintained in the same cluster represented

by the component gk;

– if Lk > TCmap, we determine the pixel likelihood vector regardless of

all the SGGMM components as following:

Lk = {p(xi‖gk), k = 1, n} (3.15)

Then, we determine the maximum value of the likelihood vector,Lmax =

Argmaxk=1,··· ,n Lk. If the maximum likelihood exceeds the thresh-

old TCmap , the pixel is fitted to the Gaussian component with the

maximum likelihood. However, if the maximum likelihood falls be-

low the threshold TCmap , then a new Gaussian component is initiated

with its mean equal to the pixel value and covariance matrix set to

diag(
[
0.0001 0.0001 0.0001

]
). After processing the entire image, if

an existing component does not match any pixel it will be eliminated.

• Step 3: The Gaussian component parameters (mean, variance and weight)

of the new SGGMM background model are updated as follows:

µk =
Σi∈πkp(xi | gk)xi

Σi∈πk(xi | gk)
(3.16)

Σk =
Σi∈πkp(xi | gk)(xi − µk)(xi − µk)T

Σi∈πkp(xi | gk)
(3.17)

wk =
Σi∈πkp(xi | gk)

ΣN
k=1Σi∈πkp(xi | gk)

(3.18)



Chapter 3. Visual Object Detection with Spatially Global Gaussian Mixture 49

where πk is the set of pixels assigned to the cluster represented by the

SGGMM component gk, while pi(xi, gk) is the pixel likelihood.

Once the adaptation is performed, a new support map is generated. This

background SGGMM update approach resolves the issues of adaptation to

low illumination changes and background motion. Additionally, objects

being stationary for a little moment (e.g. left baggage, parked car), can

easily be incorporated in the background. Furthermore, if an object is

stationary enough to be modelled as a background region (e.g. a moved car

in a parking, or a baggage left for a long enough time) and then it moves, the

background model is updated rapidly to include the moving object. Figure

3.1 illustrates the different components of an SGGMM model (Gaussian

mixtures models ((wi, µi,Σi)i=1,··· ,k) with their indices i stored in a support

map Cmap. Each cell in Cmap contains the Gaussian index to which the

corresponding pixel in the mean image Imean belongs to. Imean is the mean

of the first captured images.

3.4 SGGMM Based Pixel Location Uncertain-

ties Approach

Although the SGGMM can handle, reasonably accurately, problems of moving

objects segmentation with static backgrounds, issues are still present in the case

of dynamic backgrounds and camera jitter (Figure 3.2). This is because pixels

positions are generally affected by some uncertainties. To account for them, the

pixel location in the image space is considered as a random variable within a

patch. The patch is a region centered at the pixel location (i, j) and composed

of (P 2) pixels, where P is chosen according to the maximum displacement of

pixels. The proposed SGGMM background model based on RGB colour as pre-

sented in Section 3.3, is modified by augmenting the feature vector to include
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Figure 3.1: Different components of the SGGMM based model

pixel displacement uncertainties with RGB colour. This leads to what we coin

a SGGMM based pixel uncertainty approach (Figure 3.3). In this section, we

compute the pixel location uncertainties within a neighbouring region using grey

level derivatives. A similar approach is used in optical flow methods [81, 82].

3.4.1 Computation of pixel displacement uncertainties

The true location of a pixel in the background image B is assumed to be (i, j), its

corresponding position is (̄i, j̄) in the current image (given within a patch).The

pixel location uncertainty components x = ī − i and y = j̄ − j are evaluated

in the corresponding patch by minimising the sum function of squared gradients
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Figure 3.2: Effect of the dynamic background on accurate detection

Figure 3.3: Background subtraction approach based on pixel uncertainties
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between the background image B and the current image It as follows:

J(x, y) = Σi,j∈pwij(It(i+ x, j + y)−B(i, j))2 (3.19)

where P is the square patch size and wij is a weighting function describing the

pixel proportion in the patch area such that 0 ≤ wij ≤ 1 . More importance are

given to the central pixels that is why an exponential function wij of the following

form is chosen to assign the higher weight:

wij = e−
(i2+j2)

σ2 (3.20)

where −P/2 ≤ (i, j) ≤ P/2 are pixel coordinates in the patch, and σ is a constant,

which determines the proportionality rate of pixel gradient over the patch. The-

oretically, the measurement process of pixel grey scale generates a measurement

error that is used to evaluate the pixel location uncertainties. If we approximate

the shifted signal It(i+ x, j + y) by a first order Taylor series, and assuming that

the total derivative of the image intensity function is zero at each position in the

image, the error function J(x, y) can be written as follows:

J(x, y) = Σi,j∈pwij

([
Ix(i, j) Iy(i, j)

]x
y

−B(i, j)

)2

(3.21)

and

∇J(x, y) = Σi,j∈pwij

(
It(i, j)−B(i, j) +

[
Ix(i, j) Iy(i, j)

]x
y

)Ix(i, j)
Iy(i, j)


(3.22)

where Ix and Iy are the partial derivatives of the pixel value with respect to the

position . By setting the derivative of the error function in Equation (3.22) to
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zero, we obtain:

Σi,j∈pwij(It(i, j)−B(i, j))

Ix(i, j)
Iy(i, j)

 = −

(
Σi,j∈pwij

[
Ix(i, j) Iy(i, j)

]Ix(i, j)
Iy(i, j)

)x
y


(3.23)

Thus, the pixel uncertainties can be expressed as follows

d = −M−1b (3.24)

From Equation 3.23 and 3.24, the displacement vector d, the vector b and the

matrix M correspond to:

d =
[
x y

]T
(3.25)

b = Σi,j∈pwij(It(i, j)−B(i, j))

Ix(i, j)
Iy(i, j)

 (3.26)

M = Σi,j∈pwij

 I2
x(i, j) Ix(i, j)Iy(i, j)

Ix(i, j)Iy(i, j) I2
y (i, j)

 (3.27)

3.4.2 Statistics computation of pixel displacement uncer-

tainty

The spatial derivatives are considered uncertain due to image imperfections caused

by lighting changes and low contrast regions. Consequently, the pixel position dis-

placement computation is considered as a probabilistic problem that takes these

uncertainties into account. Therefore their statistics should be estimated. The

aim at this stage is to capture the nature of this uncertainty distribution. The

latter is modelled as normally distributed random variables with a mean mxy and
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a covariance Σxy estimated as follows [83, 84]:

mxy = [E(x), E(y)]T (3.28)

Σxy =

E(x2) E(xy)

E(xy) E(y2)

 (3.29)

where E(.) is the expectation operation. If the pixel position uncertainties (x, y)

are affected with random perturbations (∆x,∆y), Equation (3.22) can be rewrit-

ten as follows:

Σi,j∈pwij

(
It(i, j)−B(i, j)+

[
Ix(i, j) Iy(i, j)

]x
y

) = −Σi,j∈pwij

[
Ix(i, j) Iy(i, j)

]∆x

∆y


(3.30)

We write the right hand side of equation (3.30) as the multiplication of a vector

L and a noise vector ε with mean mε and covariance matrix Σε .

Σi,j∈pwij

(
It(i, j)−B(i, j) +

[
Ix(i, j) Iy(i, j)

]x
y

) = Lε (3.31)

By performing a variable change ε
′

= ε −mε , the least squares estimate of the

pixel displacement uncertainties is equivalent to the minimisation of the following

cost function:

e =

(x
y

+M−1

(
b−LTmε

Ix
Iy

))T

L−TΣ−1
ε L−1M

(x
y

+M−1

(
b−LTmε

Ix
Iy

))
(3.32)

Where L−1 is the pseudo inverse of matrix L so that L = LT (LLT )−1. By taking

into account the distribution of the cost function e that may be assimilated to x2
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distribution, the pixel position uncertainties (x, y) are considered as a Gaussian

distributed random variable with mean vector and covariance matrix derived as

follows:

Σ2
xy = LTΣεLM

−1,mxy = −M−1
(
b− LTmε

Ix
Iy

) (3.33)

The distribution parameters of the pixel uncertainties given in Equation (3.33)

are fully derived from the spatial derivatives and the background SGGMM model

by considering the pixel colour distribution we are looking at from the support

map (3.12 ). There is no need to explicitly update the parameters of the pixel

uncertainty distribution since the background SGGMM model, from which they

are computed from, is updated at each frame.

3.4.3 Using pixel uncertainty in background subtraction

After modelling the background using the SGGMM model in RGB colour space,

with the probability of observing a value Ic,i = [Ir, Ig, Ib] at a given pixel i is

given by a mixture of Gaussians (Equation 3.1). The next step was to estimate

the pixel uncertainties d = [x, y]T (Equation 3.24 ), and to compute their statistics

(equation 3.33 ). The resulting feature vector, which include the RGB colour and

pixel uncertainties, is considered as a 5-dimentional Gaussian distributed random

variable with the following mean vector and covariance matrix.

µi =
[
µc,i mxy

]
,Σi =

Σc,i 0

0 Σxy

 (3.34)
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3.5 Foreground segmentation

The segmentation task is performed in each image frame to classify image regions

as either background or foreground, based on the background SGGMM model us-

ing spatial and temporal features. Two approaches can be used based on whether

the feature vector is containing the RGB colour on its own as presented in section

3.3, or combined with pixel uncertainties. The foreground removal is processed

using the obtained supprt map. Each pixel likelihood, log(px‖gcmap), is evaluated

in the new frame. If the likelihood is less than a user defined threshold Tseg,

log(px‖gcmap)ij < Tseg (3.35)

the pixel is set to the foreground. Otherwise, it is set to the background.

3.6 Performance Tests

3.6.1 Performance evaluation of the SGGMM model

The accuracy of the proposed method is evaluated both quantitatively and qual-

itatively. Further, we compare results obtained by our technique to the ones

obtained using the GMM-Stauffer [48], the Decolor method based on the low-

rank minimisation approach [77] and the KDE method [54]. These methods have

been tested using optimal parameters designed by their authors for the same

datasets. The GMM-Stauffer method is initialised with k = 3 number of Gaus-

sians while the learning rate is fixed to α = 0.001. The Decolor method is used

with the following parameters: the convergence precision is set to tol = 1e − 4,

the desired rank of the estimated low-rank component is k1 = 4 (equivalent to 20

frames) and the constant for controlling the strength of smoothness is λ = 5. The

KDE method uses a sample size equal to n = 100 frames. Firstly, the SGGMM
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background models for all considered scenarios (datasets) are estimated. These

datasets [85], which are representative of static and dynamic scenes, provide test-

ing image sequences and their corresponding ground truths. Image samples of

these data are shown in Figure 3.4. Sequences OFFICE, and PETS2006 are used

to evaluate the methods accuracy in static backgrounds. The OFFICE sequence

consists of a person moving in an office, whereas, the PETS2006 sequence rep-

resents people walking at a train station. The sequences utilised to evaluate the

method in dynamic backgrounds cases are CANOE and OVERPASS. The first

sequence is of a boat crossing a river while the second one is of a person crossing

a bridge.

An analysis of the derived pixels uncertainties statistics has also been conducted

to ensure that these are adequately describing the pixel location uncertainties.

Indeed, we analysed the mean value and covariance information of the different

points (pixels) corresponding to the test sequence (Figure 3.5). This is achieved

by computing pixel displacement from subsequent background images in the se-

quence. Their normalised histograms are then derived. Parts of the images where

the points are covered with moving objects are ignored. Figure 3.5 shows the back-

ground points histograms shape. It clearly shows the suitability of approximating

the pixel displacement uncertainties using a Gaussian distribution as proposed in

Section 3.4.2 related to the statistical nature of pixel uncertainties.

3.6.2 Quantitative evaluation

The quantitative evaluation involves the use of different criteria. These are the

Recall, the Precision and the similarity metrics, along with the F-measure [85, 86]

The Recall (Re) provides the percentage of detected true positives in a comparison

to the total number of items in the ground truth.

Re =
tp

tp+ fn
(3.36)
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Figure 3.4: Number of test frames for the evaluation of the SGGMM

Where tp is the total number of true positive pixels, fn is the total number of false

negative pixels and (tp+ fn) represents the total count of pixels representing the

detected objects in the ground truth. The Precision (Pr) provides the percentage

of detected true positives by comparison with the total count of items in the binary

objects mask detected by the algorithm.

Pr =
tp

tp+ fp
(3.37)

Where fp is the total count of false positive pixels.The total count (tp + fp)
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Figure 3.5: Pixel location uncertainties normalised histogram of the back-
ground points: (a) pixel (100,100) of the first scene, (b) pixel (100,100) of the
secone scene, (c) pixel (100,100) of the third scene, (d) pixel (100,100) of the

fourth scene

represents the detected items in the binary objects mask. The Recall metric

evaluates the incorrect association of internal lost pixels to moving objects, while

the Precision criterion measures only the incorrect association of false detected

pixels. The use of the mentioned metrics alone cannot offer a satisfactory com-

parison between the different methods. Thus, and in order to deliver a more
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Table 3.1: Comparison between the Average Similarity, F-measure, Precision,
and Recall values for each method

in-depth evaluation, the accuracy of the proposed algorithm was estimated using

two additional metrics. These are the Similarity (S) given by:

S =
tp

tp+ fp+ fn
(3.38)

The second is the F-measure(F ), which represents the harmonic means of Recall

and Precision. It is given by:

F = 2 ∗ Re ∗ Pr
Re+ Pr

(3.39)

The values of the estimated metrics range from 0 to 1, where higher values indicate

better accuracy. The quantitative evaluation results for the considered five video

sequences and using the above criteria are displayed in Table 3.1. From the latter

we can see and conclude that our SGGMM With Pixel Uncertainties (W.P.U)



Chapter 3. Visual Object Detection with Spatially Global Gaussian Mixture 61

technique globally outperforms GMM-Stauffer, KDE and Decolor algorithm. The

strength of our technique is clear when dealing with dynamic backgrounds. We

can also notice that SGGMM based on colour only is providing similar results

to SGGMM W.P.U when dealing with static background. On the other hand,

when dealing with dynamic backgrounds we can appreciate the contribution of

incorporating the uncertainties into the SGGMM.

3.6.3 Qualitative evaluation

Here, we are comparing our technique with the other techniques and also visually

showing the effect of including the uncertainty into the SGGMM model.

3.6.3.1 Segmentation using colour based SGGMM

Figure 3.6 and 3.7 show segmentation results of the proposed SGGMM based

colour only compared to the results of GMM-Stauffer, KDE and Decolor tech-

niques. These results illustrate clearly that SGGMM modelling (with colour only)

achieves higher accuracy in favourable change in illumination scenario. Indeed,

most parts of the moving objects are successfully segmented to the foreground

mask when using the SGGMM model (colour only). In some cases, small parts

of the objects are not detected because of their close colour similarity with the

background. Some noise is present but can be removed using median filtering.

We notice that some blobs with small areas linked with false foregrounds are still

detected. These are easily removed using simple size filtering.
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Figure 3.6: Comparison between binary objects mask of each method for
Office sequence
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Figure 3.7: Comparison between binary masks of each method for the
PETS2006 sequence
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3.6.4 Segmentation using SGGMM with colour and pixel

uncertainties

Figures 3.8 and 3.9 show test samples of the segmentation results when the colour

based SGGMM is augmented by pixel uncertainties and used in the segmentation

module for dynamic (shaking) background datasets. Using the SGGMM with

colour only leads to classifying some of the shaking background objects as fore-

ground. These figures show that objects within the scenes are well segmented to

the foreground when applying pixel uncertainty estimation. Indeed, robustness

against background variation is much better compared to GMM-Stauffer, KDE

and Decolor.
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Figure 3.8: Comparison between binary masks of each method for Canoe
sequence
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Figure 3.9: Comparison between binary mask of each method for the Over-
pass sequence
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3.6.5 Computation performance and real time sensor node

implementation

To evaluate the computational efficiency of the proposed approach, a compari-

son was conducted regarding the execution times between our technique and the

other approaches (listed in 3.1). Tests were carried out using the following hard-

ware: CPU: Intel Core i5-2430M -2.4 GHz, RAM: 8.00GB, Operating System:

Windows 7. Figure 3.10 shows the execution time per frame for all approaches.

It is clear that the execution time per frame for the SGGMM based on colour

only is ranked amongst the lowest. This is in addition to its performance when

dealing with static camera scenarios. Augmenting the SGGMM with the uncer-

tainties obviously increases the execution time. However, as shown in the previous

sub-sections it leads to results with a higher accuracy especially in challenging

conditions as shaking background scenarios. Decolor showed the highest com-

putational costs in this study. Driven by its reduced computational cost, our

Figure 3.10: Execution times of the studied algorithms

method was successfully implemented on the CITRIC camera mote[87], (Figures

3.11 and 3.12). The latter consists of a camera board attached to the Telosb
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Figure 3.11: The embedded camera used in the experiments with its major
components

wireless mote. The camera board is composed of a CMOS image sensor, an Intel

Xscale PXA270 connected to 64MB of SDRAM, 32MB of NOR FLASH and a

power management IC MAX1587. The camera on this platform is the OmniVi-

sion OV9655, which is a low voltage SXGA (1.3megapixel) CMOS image sensor.

It supports image sizes corresponding to SXGA (1280 × 1024), VGA, CIF, and

any size scaling down from CIF to 4030. The image array is capable of operating
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Figure 3.12: Software architecture handling the CITRIC camera board

at up to 30 frames per second (fps) in VGA, CIF, lower resolutions, and 15fps in

SXGA. The OV9655 is designed to perform well especially in low-light conditions

[88].

The camera processor is the PXA270 [89], which is a xedpoint processor with a

maximum speed of 624MHz, 256KB of internal SRAM, and a MMX coprocessor to

accelerate multimedia operations. The processor is voltage and frequency scalable

for low power operation. It can work with a minimum voltage and frequency of

0.85V and 13MHz, respectively. Furthermore, the PXA270 features of the Intel

Quick Capture Interface, which eliminates the need for external pre-processors

in order to connect the processor to the camera sensor. The CITRIC platform

supports variable CPU speeds (208, 312, 416, and 520MHz). The camera has

been deployed in several indoor and outdoor environment scenarios, (Figure 3.13).

The first scenario was indoors in our Unmanned Autonomous Systems Laboratory
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(UASL), Cranfield University, UK. The second and third scenarios were captured

outdoor: a public garden and in the street.

Figure 3.13: Number of test frames for the evaluation of the SGGMM using
the CITRIC camera

A ground truth at a pixel resolution was required to evaluate the performance

of our proposed techniques. Different persons labelled the captured images a

number of times and the results were averaged out as described in [85]. Using this

ground truth, Similarity (S) and F-measure (F) metrics were estimated and used

to appreciate the accuracy in some representative frames. Indeed, Figure 3.14

shows that using the two metrics, for both variants of the proposed approach,

provide the expected accuracy. This is said, SGGMM W.P.U obtained better

results. Figures 3.15,3.16 and 3.17 illustrate the performance of the SGGMM

colour based model and the superiority of the SGGMM with pixel uncertainties.

The F-measure was chosen for the qualitative evaluation as it is the most used to

provide a global evaluation of the accuracy of a detection approach.
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Figure 3.14: Comparison between binary masks of the SGGMM based colour
only and SGGMM (W.P.U)
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Figure 3.15: Evaluation results of the SGGMM based model using for UASL
sequence

Figure 3.16: Evaluation results of the SGGMM based model using for Garden
sequence
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Figure 3.17: Evaluation results of the SGGMM based model using for Street
sequence
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3.7 Conclusion

The problem of visual detection is investigated in this chapter by introducing

a new spatially global Gaussian mixture model to approximate the background

based on RGB colour. The proposed method adopts a background/foreground

subtraction scheme to detect moving objects in image sequences. The SGGMM

model is updated by each image of the sequence to take into account scene

changes. For improved segmentation performance, pixel location uncertainties

have been used to deal with background motion within the scenes. The combina-

tion of pixel uncertainties with colours in the SGGMM model resulted in a better

overall performance for object detection.

The evaluation of this approach demonstrated the accuracy in detection and

the suitability of its implementation in embedded camera sensor network nodes,

which includes reduced computation capabilities. The embedded SGGMM colour

only model presented comparable performance to the SGGMM W.P.U for static

backgrounds. A significant improvement was obtained when combining pixel

uncertainties with RGB colour in the SGGMM model for dynamic backgrounds.

The latter technique was favourably compared to other segmentation techniques

found in the literature.
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Chapter 4

Moving Object Detection from a

Moving plateform

4.1 Introduction

In this Chapter, we investigate the problem of motion detection by a moving

camera system. Unlike detection using static cameras, and despite the consid-

erable efforts made to investigate this problem, only few proposals are reported

in the literature to efficiently address the challenging detection task of detecting

in such scenarios. Thus, in this work, we present an approach based on affine

image warping using a robust homography method. We further estimate the op-

tical flow after which a Spatial Gaussian Mixture model is used to detect moving

objects. The proposed technique combines the efficiency of optical flow for mo-

tion detection and the rapidity of execution using the estimated optical flow in

a motion compensation-based scheme. This Chapter is organised as follows: A

literature review is given in section 4.2. In section 4.3, we present the structure

of the proposed solution. In section 4.4, we present the method used to estimate

the homography matrix. The technique of optical flow to estimate the velocity

76
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variation in pixel intensities and the adopted approach to cluster these velocities

is presented in section 4.5. The final section (4.6) is reserved for the evaluation

of our approach using different scenarios for detection from aerial platforms. A

summary of the work is given at the end of the chapter.

4.2 Related work

The general approach to the problem of moving object detection in Automatic

Video Surveillance Systems (AVSS ) is based on the assumption that the camera

is stationary (as shown in Chapter 4), so that all frames are registered in the

same coordinate system. Consequently, the detection of foreground objects in

this situation is performed by background modelling at the first stage, before

performing an image subtraction for the second stage [9, 48, 53, 54, 90]. Most of

the techniques based on this approach work well with for reasonable change of

illumination conditions. Nevertheless, when the camera is moving, the problem

becomes more complicated as it is impractical to have a unique background model.

Therefore, in such scenarios, most of the proposed solutions are based on a clas-

sical motion compensation technique combined with a background/foreground

segmentation technique. The latter, works by comparing the actual captured

image with the transformed one and infers differences between the two images

for background removal. In the same context, as a second class of solution, the

optical flow [91–93] based method are reported to show some efficiency with the

complexity of this problem. However, these feature-based methods are used in a

way that is computationally costly.

For the class of solution based on a background/foreground segmentation, an

approach is presented in [94], in which the author used a background registration

technique to construct a background image from the accumulated frame difference

information. This step is issued by a separation of the moving object region from



Chapter 4. Moving Object Detection in Moving Backgrounds 78

the background by comparing the current frame with the constructed background

image. The method is ended by a post-processing step that is applied to the

obtained object mask in order to remove noise regions and smooth the object

boundary. This method showed usefulness when used for indoor applications.

However, no figures are provided to test the method outdoor.

Another approach was reported in [95] where the author proposed a solution

based on KLT method for feature detection to estimate the Homography matrix.

This was complemented by a single spatio-temporal distribution Gaussian model

for motion detection. His solution for background removal was shown to work

well in cases of small errors of registration only. In [96], the author suggests the

construction of foreground and background appearance models in each frame.

Then the posterior of appearance is estimated by computing the product of the

image likelihood in the current frame and the prior appearance propagated from

the previous frame. Although this technique performed well enough, a primary

limitation of the solution was its high computational budget due to the calculation

cost of the non-parametric Belief Propagation (BP) used.

Limited research solution using the optical flow for a similar problem are reported

in the literature. In these works, the problem of motion detection is approached

by assuming that the motion of backgrounds and foreground objects are divided

by different optical flows. This approach is adopted in [91], where the Focus of

Expansion (FOE) and its residual map for the object of interest detection in the

scene is investigated. In [92], the author suggested the use of dense optical flow

for detecting moving objects by comparing them to the estimated camera motion.

This is achieved by computing the differences between camera motion compen-

sated by backward and foreward frames. The frames of interest are then tested

against the estimated background models to detect change in pixel intensities.

Although this solution showed acceptable performance, the need for processing

three (3) successive frames using the dense optical flow required significant com-

putation. Furthermore, as the camera motion should be kept at a low scale, it
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makes it difficult for detecting moving objects in real time applications. The

problem of motion detection using moving camera was also approached using so-

lutions based on a stereo system, as in [97]. In the latter, the author predicted

the depth image for the current time by using ego-motion information and the

depth image was obtained from the previous time. Moving objects were detected

by comparing the predicted depth image with the one obtained at the current

time.

4.3 Structure of the proposed solution

The framework of the proposed solution is illustrated in Figure 4.1. It includes

the following three main steps:

• The first stage concerns an affine image warping. This is achieved through:

– Feature detection and matching operation between two successive im-

ages. In this problem, the Speeded Up Robust Features (SURF) de-

tector [98] is used for feature detection.

– Uncertainties estimation of the detected features using grey pixel in-

tensities. For increased accuracy in the homography, we consider the

RGB colours by combining their related uncertainties using the covari-

ance intersection (CI) scheme as proposed in [99] [100];

– The last task of this stage involves computation of homography matrix

using the H∞ filter [101], as this tool is shown to be efficient in handling

problems of estimation with uncertainties in the measurements. [102].

• The second stage considers using a differential local based method for op-

tical flow estimation. This method is the Lukas-Kanade [19]. This choice
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is justified by the overall merit of this approach with regard to the glob-

ally based approaches in matters of susceptibility to noise, reliability and

robustness, in addition to computational efficiency [103].

• In the third step, we compute the optical flow, these are modelled using the

spatial Gaussian Mixture Model (SGMM) [104]. The introduction of the

SGMM in this context is to determine regions of moving objects. This para-

metric probability density function represents the estimated optical flow

as a weighted sum of Gaussian densities, where the component of greater

weight is the one that represents the moving background. Areas that are

represented by components of reduced weights represent either the newly

introduced pixels or belong to regions of moving objects.

Figure 4.1: The overall architecture of the proposed solution
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4.4 Robust homography matrix estimation

Computation of the optical flow using the Lukas Kanade method requires a small

displacement between pixels of every two successive frames [19] for higher detec-

tion accuracy. However, for imaging systems of a moving platform, it is generally

impractical to ensure capture sequence of images in the scene with frame rates

where displacement between pixels is negligible. To cover this problem, the use

of an efficient tool that guarantees higher accuracy in image warping is necessary.

One of the proposed solution to estimate the matrix of homography with high

accuracy is to consider the uncertainties in the detected features. This is can

achieved by using filtering techniques.

A robust estimator such as the H∞ filter has demonstrated its ability to deliver

better outputs under uncertainties, as opposed to other estimators. To achieve

higher accuracy, this filter can use the uncertainties obtained using the RGB

colours to detect the features that are initially combined using a fusion method

such as the covariance intersection [100].

4.4.1 Feature detection with uncertainty

Feature points are specific and stable points in an image and are extracted using

a mathematical operator. Once extracted, these are described in a distinctive

way. One of the most prominent detector is the SURF feature detector [98]. It

is inspired by the scale-invariant feature transform (SIFT) descriptor [105] while

its standard version is several times faster than SIFT and claimed to be more

robust against different image transformations than the SIFT [105]. Given a

point X = (x, y) in an image I, SURF operates by calculating for each pixel the

Hessian matrix H(X, σ) [98], that is given by:
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H(X, σ) = Det

Lxx(X, σ) Lxy(X, σ)

Lxy(X, σ) Lyy(X, σ)

 (4.1)

Where Lxx(X, σ) is the convolution of the Gaussian second order derivative

δ2

δx2
g(σ) with the image I at point X, and similarly for Lxy and Lyy, σ is taken

to be equal to 1.2. Because the Hessian of each pixel is calculated considering

the neighbouring pixels, a loss of information about the accurate position of the

feature is inevitable. Therefore, a feature location is given with an associated

uncertainty. To calculate the related uncertainty, two approaches are commonly

used: a residual-based approach or a derivative-based approach [84, 106]. The

derivative-based approach is commonly used due to its ease of implementation.

Figure 4.2: Matched features and their corresponding Uncertainties from
RGB channels1

The location uncertainty of SURF features using this approach is calculated as

the inverse of the Hessian and given by the following:

Σ =

(
w(i, j)i,j∈Np

Lxx(X, σ) Lxy(X, σ)

Lxy(X, σ) Lyy(X, σ)


−1)

(4.2)

1Images source: [107]
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with w(i, j) a Gaussian weighting function. To get a more robust estimate it is

useful to use an influence region from 3× 3 to a 5× 5 neighbourhood. Figure 4.2

shows the detected feature with their corresponding error ellipses).

4.4.2 The covariance intersection (CI)

The uncertainty in feature location using SURF detector is estimated from grey

images. For more robust uncertainty estimation, feature location errors can be

performed over the RGB channels of the captured images. The uncertainties are

combined together using the CI, which is a fusion rule for combining two or more

estimates when the cross correlation between them is unknown. The CI works as

follows Xr, Xg, Xb represent the locations of the feature using the RGB channels,

with Pr, Pg and Pb as their related covariances. The CI fuses these measurements

to produce a mean and a covariance pair from the equations:

X−1 = wrX
−1
r + wgX

−1
g + wbX

−1
b (4.3)

P = X(wrX
−1
r Pr + wgX

−1
g Pg + wbX

−1
b Pb) (4.4)

The resulting estimate is guaranteed to be relevant with wi, i = 1, ..., 3 ∈ [0, 1]

with Σ3
i=1wi = 1. Moreover, it is shown to be optimal for the case where the cross

covariance is optimal. The determination of the weighting coefficients is based on

an analytical procedure [99].

4.4.3 Modelling the problem of the hHomography matrix

estimation

When the sequence of images is captured by an aerial platform that flies at a high

altitude, the assumption that these images are of the same plane is reasonable.

Therefore, the relationship between two frames can be described by a homography
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matrix H according to the following equation:

z′ = Hz =


h11 h12 h13

h21 h22 h23

h31 h32 h33



x

y

z

 (4.5)

where P = [x, y, z] and P ′ = [x′, y′, z′] are the coordinates of the matching fea-

tures, hi,j with i = 1, 2, j = 1, 2 are the parameters of H that describe the

rotation, h13 and h23 describe the translational parameter, and h31 and h32 are

related to projectivity. By introducing x′2 = x′/z′ and y′2 = y′/z′, we obtain the

following:

x′2 =
h11x+ h12y + h13z

h31x+ h32y + h33z
(4.6)

y′2 =
h21x+ h22y + h23z

h31x+ h32y + h33z
(4.7)

By setting z′ = 1 and rearranging we get:

x′2(h31x+ h32y + h33z) = h11x+ h12y + h13 (4.8)

y′2(h31x+ h32y + h33z) = h21x+ h22y + h23 (4.9)
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By putting h33 = 1 (the scale parameter) and reformulating equations (4.8) and

(4.9), we obtain [108]:

x y 1 O −xx′ −yx′

O x y 1 −xy′ −yy′





h11

h12

h13

h21

h22

h23

h31

h32



=

x′
y′

 (4.10)

where O is [0 0 0]. By changing the notation and making the necessary rear-

rangement, equation (4.10) can be rewritten as:

Y = CX (4.11)

where X is the vector of the parameters of the homography matrix H that we

aim to estimate. In order to determine an optimal (H), we use a technique of

state estimation that takes into account the presence of model uncertainties, as

encountered here. This technique is the robust H∞ filter.

4.4.4 The H∞ filter

After many years of experience using the kalman for highly reliable systems such

as used for spatial navigation, there was a need for a new filtering scheme that can

be used for system with measurements of high uncertainties. The new adopted

scheme handles modelling errors and noise of non Gaussian type while it minimises
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the worst-case estimation errors rather than the covariance of the estimation error.

State estimators that can tolerate such uncertainties are called robust.

Although robust estimators based on kalman filter theory can be designed, these

approaches are somewhat ”Ad-hoc” in that they attempt to modify an already

existing technique. In contrast, the H∞ filter was specifically designed for op-

timality and robustness. The H∞ filter as a recursive estimator have received

considerable attention in literature due to its wide range of applications.

Unlinke the classical estimator such as Kalman filter which requires an accurate

system model and noise statistics, the H∞ filter does not requires prior knowledge

of the noise statistics but finite bounded energies. Additionally, the H∞ filter tries

to minimise the effect of the worst possible disturbances on the estimation errors

and therefore it is more robust against model uncertainty. Its relevant equations

adapted to our problem are the following [109]:

Xk+1 = Xk + wk (4.12)

Yk = HXk + vk (4.13)

where wk and vk are noise terms with an unknown distribution law with covari-

ances Qk and Rk, respectively. We attempt, as designed by the filter, to design a

state estimator of the form:

Zk = LXk (4.14)

where L is a user defined matrix (assumed to be full rank), as want to directly

estimate Xk then we set L = I. The estimate Ẑk is found after minimising the

cost function J as J < 1/θ where θ is performance bound defined as

J =
ΣN−1
k=0 ‖Zk − Ẑk‖2Sk

‖X0 − X̂0‖2
P−1
0

+ ΣN−1
k=0 (‖wk‖2

Q−1
k

− ‖vk‖2
R−1
k

)
(4.15)
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where P0, Qk, Rk and Sk are chosen matrices with the condition of being sym-

metric, positive definite. Hence, the min-max problem is finally defined as:

j? = minẐkmaxwk,vk,XoJ (4.16)

The worst-case is obtained when wk, vk and x0 are chosen to maximise J . The

solution then is to find an estimate Ẑk which minimises this maximum. This leads

to the filter description below:

S̄k = LTk SkLk (4.17)

Kk = Pk[I − θSkPk +HT
k R
−1
k HkPk]

−1HT
k R
−1
k (4.18)

X̂k+1 = X̂k +Kk(yk −HkX̂k−1) (4.19)

Pk+1 = P [I − θSkPk +HT
k R
−1
k HkPk]

−1 +Qk (4.20)

Note that the output and the input are Y and C in Equation 4.11.

To evaluate the accuracy of the proposed solution, comparison between the stan-

dard RANSAC and least square (LS) method, the H∞ filter with uncertainties

from grey intensities, and the H∞ filter with uncertainties using RGB colours

combined with CI is given in Table (4.1). In the latter, the Average Back Pro-

jection Errors (ABPE) measure is the criterion of comparison given in (4.21).

ABPE =
Σn
i=1‖Pi −H−1P ′i‖

n
(4.21)

with P represents the coordinate of features in the previous image, while P ′ is the

coordinate of features in the current image; H is the transformation matrix, while

n is the total of number of features. The images used for the tests were obtained

from the data set in [85]. Table (4.1) highlights the efficiency of the proposed

solution in estimating the Homography matrix. It can be clearly seen that the
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H∞ with uncertainties using RGB colours delivers higher accuracy compared

to the H∞ with uncertainties from grey intensities. We can also notice that

both solutions based on the H∞ gives better results compared to the standard

Ransac with least square method. Figure 4.3 refers to the two cases in which the

uncertainty in the feature location could be used.

Table 4.1: Average back projection error estimation obtained from using
different methods
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Figure 4.3: Estimating the Homography matrix using the robust H∞

4.5 Motion detection using Optical Flow

The optical flow is defined by the pattern of apparent motion of objects, surfaces,

and edges in a visual scene caused by the relative motion between an observer and

the scene [19]. Two main approaches are commonly used for optical flow compu-

tation, these are either global or local methods. The former ensures the constancy

constraint with a regularising term imposing global smoothness assumptions on

the image and/or the flow. The latter uses a differential approach, which consists

of finding an optimal solution that minimises an objective function [103].

4.5.1 Estimation of the optical flow using local methods

To minimise an objective function which represents assumptions regarding con-

stancy of selected features in the two images, a local based method works by
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considering the image intensity as features. Additionally, the brightness inten-

sity of each pixel is assumed to remains constant even if its position is changing.

Therefore, by considering a scalar-valued image sequence I(x, y, t), where (x, y)

is the location within a rectangular image domain Ω ∈ R and t ∈ [0, T ] denotes

time, the reformulation of the brightness constancy assumption can be given as:

I(x, y, t) = I(x+ δx, y + δy, t+ δt) (4.22)

By using the Taylor series, the expansion of the right-hand side of (4.22) yields:

I(x+ δx, y + δy, t+ δt) = I(x, y, t) +
∂I

∂x
δx+

∂I

∂y
δy +

∂I

∂t
δt+ h.o.t (4.23)

where h.o.t stands for higher order terms, which are typically neglected because

of their insignificant values due to small motion.

From Equation (4.22) and (4.23), we can write:

∂I

∂x
δx+

∂I

∂y
δy +

∂I

∂t
δt = 0 (4.24)

by dividing both terms of (4.24) over δt, the optical flow constraint equation can

be written as:

Ixu+ Iyv + It = 0 (4.25)

and it can be reformulated as:

∇ITu + It = 0 (4.26)

where the vectors ∇I = [Ix, Iy]
T , and u = [u v] denote the partial derivatives

and the displacement field ( also known as the optical flow) respectively.

To estimate the optical flow at local windows R of size n×n, the Equation (4.26)

has two unknowns for any given pixel, which means that measurements at the
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single-pixel level are under-constrained and cannot be used to deliver a unique

solution for the two-dimensional motion at that point. Therefore, a solution is

obtained by solving an over-determined set of equations. Assuming that the flow

is constant within the neighbourhood of R, the system of equations can be written

as:

Elocal(u) = ΣRw(p)(EData) (4.27)

where p is the centre of the region and w(p) is a weighting function that gives

more influence to the constraints at the centre of the local neighbourhood than

those at the border, EData is the left term of Equation (4.26) and is known as the

data term. Taking EData solely as the regular brightness constraint and assigning

equal weights for all pixels in the region, Equation (4.27) can be reformulated so

that:

ΣR[∇ITu + It]
2 = 0 (4.28)

For a neighbourhood of size n × n, the solution of Equation (4.28) is given as

[103]:

u = [ATA]−1ATB (4.29)

where A = [∇I1, · · · ,∇I(n×n)]T is of size (n× n)× 2;

while B = −[I
(1)
t , · · · , I(n×n)

t ]−1 is of size (n× n)× 1.

One of the well know algorithms that is used to compute the optical flow using

this approach, is the Lucas-Kanade algorithm [19]. This method relies only on

local information that is derived from a small window surrounding each point of

interest. However, one of its disadvantages is that large motions can move points

outside of the local window. Therefore, it becomes impossible for the algorithm to

make accurate computation. Thanks to the pyramidal LK algorithm [110] which

is used to resolve this issue. The Algorithm organises the image as a pyramid of

four levels of resolutions and starts processing from the highest level of an image

pyramid that contains the lowest resolution and works down to lower levels with

the finer details. As a result, scanning over image pyramids allows large motions
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to be caught by local windows, and therefore commutation of the pixels velocities

[111]. Figure 4.4 shows the obtained results using the optical flow method with

the proposed registration technique (H∞ with Feature uncertainties using RGB

colours), with figure (a) and (b) present a sequence of two images with a car

moving in the scene. Figure (c) and (d) show the variations of the optical flow

components in the scene. It can be seen that variation of the estimated optical

flow in the detected regions of motion are not similar. Hence, further processing

is needed to detected moving targets with higher accuracy. For this reason, we

propose modelling the optical flow components using a clustering scheme adopted

in the spatial Gaussian gaussian mixture model (SGGMM) presented in Chapter

3.

Figure 4.4: Optical flow estimation for dynamic background: a) first image,
b) second image, c) the u element of the velocity vector, d) the v element of

the velocity vector
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4.5.2 Modelling optical flow using the SGGMM

In this section we introduce the SGGMM model to determine regions of moving

objects from the ’noisy’ estimated optical flow. In an optical flow representation,

each image pixel value is represented in a feature space by a 2D vector u =

[u v]T , the values of each component of these vectors are represented by a spatial

Global Gaussian mixture model of N Gaussians in 1-dimensional space as follows:

p(x) = ΣN
i=1[wigi(x, µi, σi)] (4.30)

where µi and σi are, respectively the spatial mean vector and variance the ith dis-

tribution, and wi is an estimate of the weight that reflects the likelihood that the

corresponding distribution accounts for pixel velocity and satisfies the criterion:

Σi=1,nwi = 1 (4.31)

Each Gaussian distribution gi(x, µi, σi) of the mixture is defined as:

gi(x, µi, σi) =
1

σi
√

2π
e
−(x−µi)

2

2σ2
i (4.32)

where x is represent the component velocity.

The determination of the components of the Gaussian mixture in Equation (4.30)

is achieved through the hierarchic clustering scheme presented in Section 3. After

modelling the optical flow by the SGGMM, the next step considers definition the

pixels belonging to the moving objects in the background. To this end, the cluster

of the highest weight is considered as the one presenting the background. The

remaining clusters that are not in the contour area are considered as belonging to

the moving object. A Final step is to combine the output of the spatial Gaussian

segmentation of the two optical flow components (u and v) to eliminated unwanted

noise and to improve the the accuracy of detection. Figure 4.5.2 depicts the
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different steps processed to detect moving object using the velocity components

of the optical flow.

Figure 4.5: Proposed scheme for moving object detection
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4.6 Experimental results

To show the effectiveness of the proposed algorithm, several tests were performed

on sequences obtained from well-known data sets acquired using Unmanned Aerial

Vehicle (UAV) cameras. An i5 2.3 GHz laptop computer is used to implement

the proposed method by processing 320 × 240 resolution images. The perfor-

mance of our method (homography with RGB colours uncertainty and optical

flow-HRGBO) is compared to the single Gaussian method (SG) [112]. The dataset

used to test the performance of the UAV scenario is obtained from [113]. A quan-

titative evaluation of the proposed method is given in Table 4.6. Having evaluated

both methods for 20 frames, the obtained results clearly shows an overall improve-

ment in the accuracy of detection of the proposed method, especially for the test

in the second dataset. Qualitative evaluation of the proposed method compared

Table 4.2: Qualitative evaluation of the proposed scheme

to the Single Gaussian ia shown in figures 4.6, 4.6, 4.8, 4.9. we can clearly note

the improvement in the detection accuracy of the HRGBO compared to the single

Gaussian method. The metrics used for the evaluation here are the similarity (S)

and the F-measure (F) described in Section 3.
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Figure 4.6: Qualitative evaluation of the proposed method-first scenario, first
test2

2S/F: Similarity/F-measure
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Figure 4.7: Qualitative evaluation of the proposed method-first scenario,
second test
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Figure 4.8: Qualitative evaluation of the proposed method-second scenario,
first test
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Figure 4.9: Qualitative evaluation of the proposed method-second scenario,
second test
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4.7 Conclusion

In this Chapter, we presented a novel approach to detect moving objects from

moving cameras. We have shown that the optical flow method can be used to solve

the problem of motion detection from moving platforms, when used in motion

compensation-based scheme.

To ensure taht the underlying intensity constancy assuption of the optical flow,

we proposed the use of the robust H∞ filter with feature uncertainties for image

registration.

Despite the efficient tools used to counter miss-registration issues, the overall

estimated optical flow is shown to be corrupted with noise that vary from frame to

frame. To address this problem, we proposed the use of the SGGMM to improve

the accuracy of detected regions corresponding to moving targets between two

successive frames.

The effectiveness of the proposed solution has been demonstrated using sequences

that represent two different scenarios. These consider detection of moving cars

using an aerial surveillance system.
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Chapter 5

Robust Acoustic Source

Localisation in Low Cost Sensor

Networks

5.1 Introduction

The two previous chapters were dedicated to visual change detection with consid-

eration of some particular issues in embedded vision systems. As a main focus, in

this thesis, is to investigate the development of novel techniques of fusion between

the visual and the acoustic data, we will investigate, in this chapter, the problem

of the acoustic event localisation in a different type of embedded systems, which

is the wireless sensors networks. More specifically, we will investigate the problem

of development of an efficient and robust algorithm for acoustic source localisa-

tion based on the Time Delay Of Arrival (TDOA) estimation in the context of

low-cost Wireless Sensor Networks (WSN). Part of the available solutions in the

literature, for such a challenge formulate this problem as a minimisation of a non-

linear least square function, which is solved using the Gauss-Newton method. The

102
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latter shows a degraded performance especially when it is initialised far away from

the desired solution. To make up for this inefficiency, we propose to adapt for this

minimisation a trust region based optimiser named Powell’s Double Dogleg under

a Total Least Squares (TLS) framework. Furthermore, we characterize, for the

first time in the literature, the uncertainties available in the TDOA measurements

and propose a new way of evaluating them experimentally. These uncertainties

are taken formally into account in the proposed optimizer through the adoption of

weighted norms in its optimisation process. Evaluation results based on a source

localisation setup demonstrate the suitability of the proposed algorithm in terms

of the overall accuracy and the global convergence rate.

5.2 Related works

Acoustic sources localisation in Wireless Sensor Networks has been well a inves-

tigated subject in recent years. This is due to its potential applications ranging

from the military domain to those that target the civilian sectors. Indeed, re-

search in this developing technology has resulted in very interesting solutions,

such as a vehicles localisation system proposed in [114]. The latter exploits the

acoustic signature made up by the vehicle’s engine noise. Another important

application is the gun firing and sniper localisation system investigated in [115],

which aims to localise firing sources using the acoustic information. As an exam-

ple of this technology utilisation in the civilian domain, an efficient system that

uses the acoustic information for tracking wild animals in their natural habitat

can be found in [116].

The challenge in the task of acoustic localisation comes from the fact that an

accurate localisation using TDOA measurements can be achieved only if the

acoustic sensors positions are known with high accuracy, with perfect time syn-

chronisation between sensors, while the circular propagation of acoustic waves
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should be known and be of constant speed. In a distributed sensors network,

however, these assumptions are barely satisfied. Different techniques have been

proposed to deal with the proposed problem that is challenged by measurements

uncertainties[45, 117–119].

A class of the proposed solutions to this problem formulated it as a minimisation

of the sum squares of errors of a linear problem [120]. This linear approximation

is very conservative and is based on non-realistic assumptions that would lead to

inaccurate results. Another class of solutions was formulated as a minimisation of

the sum squares of errors of a non-linear problem. The solution to this problem

is generally approached using linear search method, which is the Gauss-Newton

method [121]. While this technique is featured by an ease of implementation

with fast computation, one of its major drawbacks is that it does not converge

to a global minimum unless it is initialised sufficiently close enough to the solu-

tion. It is also not considering the effect of the measurement uncertainties in the

optimisation process.

In this chapter, we develop a theoretical model that is validated experimentally

to approximate the available uncertainties in the source localisation process. To

our knowledge this is the first time that such uncertainties have been estimated.

Adopting the Total Least Squares (TLS) optimisation framework, as proposed

in this paper, provides robustness towards dealing with noisy data. While the

name total least squares has appeared only recently in the literature [122–124],

this framework of optimisation was known in the past by different names such

as orthogonal regression, errors-in-variables, and measurement errors. The uni-

variate problem for this type of optimisation was presented in 1877, [125]. Only

thirty years ago, this technique was extended in [126] and in [127] to multivariate

cases. Under this framework, we innovate by proposing an alternative optimizer

algorithm based on the trust region technique which is the Powell’s Dogleg [128].
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While the original version of this iterative method (Powell’s Dogleg) combines be-

tween steps estimated using the Steepest Decent and the Gauss-Newton method,

we improve this technique by investigating the use of weighted norms in calculat-

ing these steps. These weights are obtained through evaluating the uncertainties

in the TDOA measurements. We compare the performance of the different version

of the proposed method to the Gauss-newton method. This comparison involves

the level of accuracy, the speed of convergence in addition to its computational

cost with increased number of sensor nodes.

Section 5.1 presents the signal propagation model in WSN using a TDOA based

approach, while Section 5.4 presents the proposed uncertainty model due to er-

rors of synchronisation in WSN. We present the Powell’s Dogleg/Double Dogleg

algorithm with the proposed improvement in Section 5.5 with evaluation results

in Section 5.6. The overall summary of the work is given in the conclusion.

5.3 TDOA based localisation signal model In

WSN

TDOA based acoustic source localisation approach is shown to be more practical

than the energy based method [43]. This is mainly because it does not require

a prior knowledge of the signal generated by the sound source. The motivation

for this approach comes from the observation that the sound wave propagates

at constant speed (sound speed) from the acoustic source to the listeners (the

acoustic sensors). The mathematical modelling of the TDOA measurements at

the different sensor pairs in WSN enables the estimation of the source position.

Let us consider a WSN composed of n acoustic sensors that form a number of (n-

1) sensor pairs with ri = [xi, yi, zi]
T ∈ R3 representing the position of the acoustic

sensor i. The aim of the source localisation approach using TDOA measurements

is to precisely determine the sound source location s = [x, y, z]T (where T denotes
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the matrix transpose) by utilising (n − 1) TDOA measurements obtained using

a minimum of n = 4 sensor nodes for 3D localisation (while a minimum of

3 sensors are required for 2D localisation). Additionally, the position of the

acoustic sensors ri = [xi, yi, zi]
Twith i = 1, , n should be initially known. The

TDOA measurements tij between signals received by a pair of sensors nodes is

given by:

tij = tj − ti; i, j ∈ 1, , n (5.1)

where ti, tj are the times it takes for the signal transmitted by the source s to

arrive at the sensors ri and rj respectively:

ti =
‖di‖
c

; tj =
‖dj‖
c

(5.2)

with i, j ∈ [1, · · · , n],c is the propagation speed of the transmitted signal, while

di,dj are the range vectors for the sensors ri, rj respectively. These can be written

as the following:

di = s− ri; dj = s− rj; i, j ∈ [1, , n] (5.3)

From Equation (5.1) and (5.2), the TDOA tij, can be written as:

tij =
1

c
(‖dj‖ − ‖di‖); i, j ∈ 1, · · · , n (5.4)

Writing the TDOA measurement as a function of possible source locations as given

in Equation (5.4) defines elliptic paraboloid (or a hyperbola in 2D localisation

(5.1)). The sound source location is obtained from the intersection of three or

more elliptic paraboloid defined in the following set of nonlinear equations:

f(s) =



t12 = 1
c
· (‖s− r2‖ − ‖s− r1‖),

t13 = 1
c
· (‖s− r3‖ − ‖s− r1‖),

...

t1n = 1
c
· (‖s− rn‖ − ‖s− r1‖),

(5.5)
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In practice, we deal with noisy measurements t̃1i. These are defined by:

Figure 5.1: Two-dimensional TDOA source localisation geometry with two
receivers

t̃1i = t1i + δt1i; i ∈ 2, · · · , n (5.6)

With δt1i is the TDOA uncertainties in the measured time t̃1i which are generally

assumed to be Gaussians with zero mean.The TDOA noise covariance matrix can

be written then as:

Σ =


δt212 · · · 0

...
. . .

...

0 · · · δt21n

 (5.7)

where δt1n is the TDOA uncertainty in the measurement provided by the sensors

pair (r1, rn). Though this assumption might be reasonable in wired systems where

the origin of errors is unknown and of a random nature, in a low-cost WSN,

the situation is however different. The uncertainty can be shown that it is due

to synchronisation issues and the low sampling rate of the sensor nodes that

contributes directly to determine the interval in measurements errors of these

sensors.
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5.4 Uncertainty in TDOA measurements in Low

cost WSN

In our WSN based source localisation application a single-hope synchronised WSN

using a protocol based on Reference Broadcast Synchronisation (RBS) strategy

is applied [39]. The uncertainty in the measured time instant t of the acoustic

events by a sensor node i can be given as a form of two independent physical

measurements,[129], as following:

δti =
√
δtsy

2 + δtsr
2 (5.8)

With δsy is the uncertainty in the time reference of the node due to synchronisation

issue, while δsr is the uncertainty due to the limited sampling rate. For TDOA

measurements, two basic approaches can be applied: either by relying on the on

the detection of the peak energy of the acoustic signal, [115], as we do in this

work or using the wavelet transform with envelope signal processing, as proposed

in [35].

5.4.1 The Uncertainties due to synchronisation issue

A first factor which contributes to the measurements uncertainties is the timer

drift rate (drift),[130]. Contrary to the classical notion of clock that offers the

opportunity to give a time measurement in relation to a standard reference, the

sensors nodes are only fitted with a timer that is able to measure time intervals.

These, however, are designed to be crystal based, basically because of their re-

duced cost. Such crystals are susceptible to large drifts in comparison to the ideal

clock. Figure 5.2 shows the increase in the time drift for each of the sensor nodes.

As this drift rate varies from one sensor to another, the difference in drift rate

between two sensor nodes also increases with time [130]. We are interested in the
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Figure 5.2: Drift among the node timers

time difference of measurements between two sensors nodes. Using the reference

broadcast synchronisation (RBS) protocol for single-hope network, the scale of

errors can be shown to be proportional to the duration between the time of the

measurement and the time of the last reference broadcast. By considering the two

parameters of synchronisation and variation in the drift rate, the propagation of

errors (uncertainty) due to the difference in timers drift rate between two sensors

nodes can be formulated as:

δt∆drift = T ∗ δdrift (5.9)

With T is the time interval between references broadcast messages. Evaluation

results using simulation shown in Figure 5.3 highlights the proportional relation-

ship between the difference in the drift rate and the length of periods between

re-synchronisation events. It can be clearly seen that the average of errors in-

creases relatively due to the progression of time between synchronisation events.

In practice, the difference in drift rate δdrift between the sensors nodes is not the

only reason for the errors due to the synchronisation as a time delay in receiving

and processing the reference broadcasts messages also may occur. This delay does
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Figure 5.3: : Impact of the time interval between synchronisation messages
on the uncertainty in TDOA measurements

not occur at the sender level since we are using the RBS synchronisation protocol

with the reference broadcasts messages being transmitted to the different sensors

nodes at the same time. However, this time delay is available in the reception

of the reference broadcasts messages at the sensors nodes level. There are many

reasons behind this delay problem such as time of stacking and un-stacking of

TinyOS messages. This is in addition to the internal communication issue be-

tween the hardware and the application layer. The error due to this time delay

is of a random nature and cannot be modelled theoretically by a specific model.

Having said that, the error of this delay is taken into account in our study and

bounded by a bound δub. The propagation of errors due to the synchronisation

issue can be then modelled as the following:

δtsy = δt∆drfit + δub (5.10)
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5.4.2 The uncertainty due the low sampling frequency

Since the low cost sensors nodes are designed for computational setups of a re-

duced budget, the maximum sampling rate we can achieve using sensor nodes of

the Mica family such as the MICAZ with the mts310 is 4.8 KHz, [35]. This limi-

tation can be partially made up by using innovative signal processing techniques

that work below the Nyquist criterion as proposed in [35] to implement in an

advanced acoustic application. However, the uncertainty in time measurement is

still significant. Indeed, the error margin, due to this limitation can be written

as following:

δtf = α
1

f
(5.11)

with f represents the sampling frequency used while α ∈ [0, 1[ determines the un-

certainty bounds which are assumed to be uniformly distributed. Results obtained

from simulation shown in Figure 5.4 illustrates the disproportional relationship

between the average accuracy (errors) in TDOA measurements and the scale of

the acoustic signal sampling rate. It clearly shows that accurate TDOA mea-

surements are obtained with higher sampling rate. From the details previously

given in sub-sections 5.4.1 and 5.4.2, the uncertainties in TDOA measurements

t between two sensors i and j are function of errors due to synchronisation and

limited signal processing capabilities (sampling frequency) and can be written as:

δtij = δti − δtj =
√

2(δtsy
2 + δtsr

2) (5.12)

Thus:

δtij = δti − δtj =

√
2((1/f 2) + (T ∗ δdrift+ δub)2) (5.13)

An analysis of Equation (5.13) is done using a Monte Carlo simulation, in which

a set of 200 measurements have been taken for a pair of sensors nodes at differ-

ent time instants and with different drift rates δdrft and time delay δub . This

analysis reveals the possibility of modelling these errors using either a form like
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Figure 5.4: The impact of the sampling frequency on the uncertainty in
TDOA measurements

a Gaussian model of a non-zero mean for relatively higher sampling rate, or a

uniformly distribution model for small sampling frequency and short intervals

between re-synchronisation events. Figure 5.5 and Figure 5.6 presents the varia-

tion in the form of the errors distributions in two principal cases respectively: a

normal curve fit in the case of high sampling frequency and the form of uniform

curve fit in the case of low sampling rate.

5.4.3 Estimation of the drift rate between motes

Equation 5.13 shows that for higher values of the term T , the right term can be

written as:

√
2((1/f 2) + (T ∗ δdrift+ δub)2) ≈

√
2 ∗ (T ∗ δdrft)2 (5.14)

Thus, equation (5.13) becomes:

δtij =
√

2δdrftT (5.15)
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Figure 5.5: fig:Absolute errors distribution at re-synchronisation time of T =
30 sec, δdrift = 1.3 × 10−6, δub taken to be equal to 1.3 × 10−6sec and the

sampling frequency f = 4.5khz

Figure 5.6: fig:Absolute errors distribution at resynchronisation time of T =
20 sec, δdrift = 1.3 × 10−6, ub taken to be equal to 1.3 × 10−6sec and the

sampling frequency f = 1khz

The estimation of the drift rate between the two sensors motes is possible from the

obtained linear equation in (5.15). This can be achieved by a set of experiments

in which an acoustic event is emitted from a sound source to two equally distant

sensors motes from the source. These acoustic events have to be emitted at
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gradually increased intervals of times. While the latter (the intervals of time)

should be recorded with the corresponding time drift between these two sensors

and therefore a graph that represents this linear relationship can therefore be

drawn. Figure 5.7 presents the linear development of time difference between two

sensors motes over time. It clearly shows how errors in measurement can take

large magnitude without re-synchronisation.

Figure 5.7: Development of the drift between two acoustic sensor motes

Estimation of the drift rate between two sensor motes is obtained from the slope

of the linear Equation (5.15).

By using this experimental tool to estimate the drift rate (δdriftij) between each

pair of sensors i and j, by considering that the set of the sensors used has identical

known values of acoustic sampling frequency, and by neglecting the effect of (ub),

more accurate estimation of the matrix of uncertainties Σ (given in equation (5.7))

is obtained.
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5.5 Powells Dogleg/Double Dogleg optimisers

As the problem in (5.5) does not have a close-form solution, a numerical solu-

tion has to be recursively obtained. Using the Gauss-Newton method to find a

maximum likelihood estimate of the solution ŝML is given by:

ŝML = ArgMin
s

(fT (s)Wf(s)) (5.16)

with W = 1
Σ

A major disadvantage of the Gauss-Newton algorithm is its vulnerability to di-

vergence unless it is initialised sufficiently close to the solution. To make up for

this issue, a trust region based method called Powell’s Dogleg is investigated in

this work. This optimisation method was previously investigated in computer

vision related problems [131]. The method works by combining both the Gauss

Newton and the Steepest Descent directions steps. These are controlled explicitly

via a radius ∆, called the trust region radius. The principle of this method is to

find an approximation to step Sdl = [∆x,∆y,∆z]T , (called the Dog Leg step),

that guarantees the product STdl ∗ Sdl to be inferior to ∆2. For f , given in (5.5),

the Gauss-Newton step Sgn is estimated at every iteration using the least squares

solution to the linearised system given by:

JTJSgn = JTf (5.17)

With J represents the Jacobian of f and given by:

J =


δf1
δx

(s) δf1
δy

(s) δf1
δz

(s)
...

...
...

δfn
δx

(s) δfn
δy

(s) δfn
δz

(s),

 (5.18)
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The steepest descent step is given by a direction and a step size. The direction

is defined as the function of the gradient that is given in the following form:

Ssd = −g (5.19)

With:

g = J(s)Tf(s) (5.20)

While the step size given by α is equal to:

α = −(STsdJ(s)Tf(s))

‖J(s)Ssd‖2
=

‖g‖2

‖J(s)g‖2
(5.21)

The selection of this value is justified by the need to reach a minimal value for

the function f written in the form of:

f(s+ αSsd) = f(s) + αJ(s)Ssd (5.22)

The Powell’s Dog Leg method combine the two candidate steps αSsd and Sgn at

every iteration to perform an estimation of the step size Sdl using the strategy
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described in the following algorithm:

if ‖Sgn‖ ≤ ∆ then

Sdl = Sgn;

else

if ‖αSsd‖≥∆ then

Sdl = ∆
‖Ssd‖

Ssd;

else

Sdl = Ssd + β(Sgn − Ssd);

end

end

Algorithm 1: Step size estimation in the DL Algorithm

An appropriate value of β ∈ [0, 1] is chosen to insure Sdl ≤ ∆. However, by

putting a = αSsd , b = Sgn and c = aT (a− b) and after introducing a function ψ

with:

ψ(β) = ‖a+ β(b− a)‖2 −∆2 (5.23)

An optimal value for β can be obtained which ensure ψ(β) = 0. The development

of ψ is given by the following:

ψ(β) = ‖b− a‖2β2 + 2cβ + ‖a‖2 −∆2 (5.24)

From this equation, it is clear that ψ is a form of a second degree polynomial

which is infinitely positive for β infinitely negative. Additionally, for β = 0, we

have:

ψ(0) = ‖αSsd‖2 −∆2 < 0 (5.25)

which leads to the conclusion that ψ has one negative root. Additionally for

β = 1, we have:

ψ(1) = ‖Sgn‖2 −∆2 > 0 (5.26)
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Thus, ψ has a second root in ]0, 1[. A most accurate computation of the positive

root is given by the following pseudo code which ensure that ‖Sdl‖ = ∆:

if c ≤ ∆ then

β =
(−c+

√
(c2 + ‖b− a‖2(∆2 − ‖a‖2)

‖b− a‖2 ;

else

β =
(∆2 − ‖a‖2)

(c+
√
c2 + ‖b− a‖2(∆2 − ‖a‖2)

;

end

Algorithm 2: Parameter estimation of the DL region

To control the size of the radius ∆ of the trust region, this method adopts the

gain ratio ρ. This is calculated as the following:

ρ =
f(x)− f(x+ Slm)

L(0)− L(Slm)
(5.27)

With L is a linear model introduced to insure iteration monitoring. It is defined

by:

L(S) =
1

2
‖f(S)− J(S)∆S‖2 (5.28)

A large value of ρ indicates that the linear model is good. Hence, the radius ∆ is

increased leading to taking longer steps that will be closer to the Gauss-Newton

direction. However, if ρ is small (or even negative), then the value of ∆ will

be reduced, implying taking smaller steps that are closer to the steepest descent

direction. Considering ub, lb, and ε as user defined parameters, the update of

the radius ∆ is completed according to the following strategy (Algorithm 3):
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if ρ > ub then

∆ := max(∆, 3 ∗ ‖Sdl‖);

if ρ < lb then

∆ :=
∆

2
;

found := (∆ ≤ ε(‖s‖+ ε));

end

end

Algorithm 3: Trust region Radius Estimation
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In the following is the overall steps of the DogLeg algorithm applied on a least

square scheme.

k := 0; s := s0; ∆ := ∆0,W = W0;

ub = 0.8; lb = 0.25; g := J(s)TWf(s);

found := ((‖f(s)‖inf ≤ ε3)or(‖g‖inf));

while (not found) and (k ≤ kmax) do

K := k + 1;;

α = ‖g‖2
‖J(s)Wg‖2 ;

hsd = −αg; compute Sgn ; call Algorithm 01 to compute Sdl;

if (‖Sdl‖ sec ε2(‖s‖+ ε1)) then

found :=true;

else

Snew = s+ Sdl;

Compute ρ according to (14);

if (ρ > 0) then

s = snew;

g := J(s)TWf(s);

found := ((‖f(s)‖inf ≤ ε3)or(‖g‖inf));

call Algorithm 2 to update ∆;

end

end

end

Algorithm 4: The Double Dog Leg Algorithm

5.5.1 Powell’s method with Double Dogleg step

Aiming to improve both the speed and the overall accuracy of the Powell’s Dog

Leg method, we adopted its Double Dog Leg version. In the original method,

the optimal trajectory follows the steepest descent direction to the Cauchy point
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before it converges to the Newton point forming a Dog Leg step (Figure 5.8). This

step should be intersecting with the trust region boundary defined by the radius

∆. By introducing an intermediate Gauss Newton step between the Cauchy Point

and the actual Newton point, a change in the behaviour of the Powell’s Dogleg

algorithm is expected. This change offers a further improvement so that the

new optimal curve trajectory crosses the trust region earlier than the original

method giving a faster optimisation. Hence, this method is called the double

Dogleg algorithm,[128, 132]. The new trajectories are ruled out by adjusting the

following equation given in Algorithm (1).

Sdl = Ssd + β(Sgn − Ssd) (5.29)

To be written as:

Sdl = Ssd + β(Sgn − λSsd) (5.30)

With λ = 0.8 is the optimal value that ensures higher convergence rate.

Figure 5.8: The Powells Dogleg and Double DogLeg step
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5.5.2 Weighting norms adoption

The original Powell’s Double Dogleg method adopts the linear least squares op-

timisation framework and the standard steepest descent steps to estimate the

Double Dogleg step. Considering the uncertainties in the measurements and tak-

ing them into account in the optimisation process is aimed to increase the overall

accuracy of this method. This can eventually be achieved using the weight least

squares framework and the weighted steepest descent in Equation (5.17) and

(5.19) respectively.

The acoustic measurements that are more informative are given lower weights

compared to the less informative ones. By adopting a weighed least square form

(WLS) for estimating the Gauss-Newton Step in Equation (5.17), the new step

will be estimated from the following:

JT ∗W ∗ J ∗ Sgn = −JT .W.f (5.31)

In analogy to (5.31), the weighted steepest descent step is given by the following:

αSsd = αJ(s)T .W.f(s) (5.32)

With W are the weights obtained from the uncertainties in the measurements as

explained in Equation 5.4.

With the changes made to the Gauss-Newton step and the steepest descent step

including the uncertainty norms, the Double Dogleg algorithm is made robust.



Chapter 5. Robust Acoustic Source Localisation in WSN 123

5.5.3 The total least squares (TLS)

While the name total least squares has appeared only recently in the literature

[123–125], this method is not new and has a very long history in statistical lit-

erature. It was known by different names such as orthogonal regression, errors-

in-variables, and measurement errors. The univariate problem (n = 1, d = 1) has

been discussed already in 1877 in [126]. While about thirty years ago, the tech-

nique was extended in [127] and in [128] to multivariate (n > 1, d > 1) problems.

We introduce this method to the problem for estimating the Gauss-Newton step.

By having A = JTWJ and B = −JTWf , with J and f are the Jacobian and the

function given in (5.5) and (5.18) respectively. The problem of Gauss-Newton

step estimation can be written then as :

A.S = B (5.33)

The least squares method reaches the solution after making correction to term

B while term A remains unchanged. The total least squares suggests that since

both B and A are input data they can be treated symmetrically. That is why it

seeks minimise (in the Frobenius norm sense) corrections ∆A and ∆B of the given

terms that make the corrected system in Equation (5.33) of equations solvable:
ÂS = B̂,

Â = A+ ∆A,

B̂ = B + ∆B,

(5.34)

The total least squares solution is estimated using the singular value decomposi-

tion of C with C = [AB]. Having C = UΣV T , where Σ = diag(σ1, , σn+d) is a

singular value decomposition of C, σ1 ≥ · · · ≥ σn+d is the singular values of C,
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and defining the partitioning:

V =


n d

n v11 v12

d v21 v22

 (5.35)

and

Σ =

Σ1 0

0 Σ2

 (5.36)

A total least squares solution exists if and only if V22 is non-singular. In addition,

it is unique if and only if σn 6= σn+1. In the case when the total least squares

solution exists and is unique, it is given by:

Ŝtls = −v12

v22

(5.37)

with these changes , the algorithm is brought into being a robust tool of estimation

as described in section 5.5.1, 5.5.2 and 5.5.3.

5.6 Experimental setup and experiments

To evaluate the performance of the presented acoustic source localisation ap-

proach in comparison with previously investigated methods in this area; we used

a WSN composed of a set of 04 MICAZ motes, Figure 5.9, with the MTS310

sensors boards, Figure 5.10. This was the minimum necessary setup to ensure a

3D localisation. The sensors nodes were deployed in a space of dimensions 2.5 m

(W) x 4.5 m (L) x 2.5 m (H), Figure 5.11. Each sensor was positioned at each

corner of the area with the up side pointing to the centre of the space.

An acoustic pulse test of a frequency 4 kHz is used. It is played through a

sound buzzer at different points in the designed space of the experiments. The
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Figure 5.9: Micaz sensor mote

Figure 5.10: The Mts310 sensor board

pulse was experimentally selected in order to generate a reasonable pulse shape

for the conducted experiments. The sensors were periodically receiving reference

broadcast synchronisation (RBS) messages from a fifth sensor before realising the

sound. As soon as the burst of sound is detected by the microphone using a

thresholding mechanism, the related detecting times are recorded before being

sent to a base station in a TinyOs message. The base station is another MICAz

mote plugged to the gateway board MIB520 where the received measurements in

the hexadecimal form are processed with the proposed acoustic source localisation

algorithms. For an accurate evaluation of the proposed algorithm, a high number

of test points is required.
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Figure 5.11: Sensors and source location used to evaluate the performance
of the proposed method

5.6.1 Performance evaluation of the the proposed method

By comparing the Euclidean distance between the ground truth and the esti-

mated sound location with a given threshold that represents the tolerated errors

in localisation, we can evaluate a given algorithm and decide whether it can reach

a targeted level of accuracy. Comparative results of the overall accuracy between

the Double Dogleg and Gauss-Newton is depicted in Figure 5.12 (with threshold

of th = 50cm).

It presents clearly the overall merit of the techniques based on the Powell’s meth-

ods (Dogleg/Double Dogleg based) in converging to the global minimum for the

acoustic source localisation problem. Comparing this convergence rate with the

one achieved by the classical Gauss-Newton method, demonstrates very well our

motivation behind adopting such an optimisation technique. It worth noting that
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this high convergence success rate is due to the Dogleg/Double Dogleg optimisa-

tion technique and not to the scheme of optimisation (least squares, total least

squares,...etc). The latter is based on least squares scheme for both dogleg/double

dogleg and Gauss-Newton techniques.

Figure 5.12: Evaluation of the overall accuracy of the family of the trust
region method and the linear search by Gauss-Newton method

The performance of the different algorithms has been compared using the Root

Mean Square Errors (RMSE) between the ground truth and the estimated posi-

tion for 200 test experiments. This measure was calculated at increased level of

errors in the measurements that were controlled by varying the sampling rate of

the sensor nodes. The different versions of the Powells method (Dogleg, Double

Dogleg) show their superiority in comparison with the Gauss-Newton methods

(with least squares (GNLS) and weighted least square (GNWLS) schemes). In-

deed, Figure 5.13 shows how the localisation errors are minimised in the different

versions of Powell’s methods while varying the sampling frequency. As shown in

Figure 5.4 , by varying the sampling frequency, the level of uncertainty acting on

the TDOA measurements varies as well.
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Figure 5.13, nicely explains how it is important taking into account the uncer-

tainty in a weighted Total Teast Squares scheme with the Double Dogleg op-

timisation technique to achieve best localisation results. Furthermore, Figure

5.14 shows that Double Dogleg Total Least Squares (DDLWTLS) algorithm pro-

vides the best error minimisation result when a sample frequency of 4.5KHZ

is considered. This sample frequency induces a small amount of uncertainty.

However, varying the time intervals between re-synchronisation events will in-

cur additional uncertainties as presented in Figure 5.3. Double Dogleg Weighted

Least Squares (DDLWLS) introduced more robustness than Double Dogleg using

only Least Squares scheme. In Figure 5.15, the sampling frequency considered

is 1.5KHZ. This frequency in addition to varying the time intervals between re-

synchronisation events will induce more uncertainty than the case considered in

the experiment of Figure 5.14. This augmented uncertainty increases the mag-

nitude of errors for all the studied localisation algorithms as shown in Figure

5.15. However, DDLWTLS is showing coping very well comparing with all other

algorithms.

5.6.1.1 Convergence rate and execution time

A numerical evaluation of the convergence rates of the presented methods is

achieved by running the implemented algorithms for some observations in a situ-

ation of a zero residual. Considering the norms of the residuals on each iteration

plots those convergence rates. The latter are presented by the function CR as

following:

CR(k) = ‖Sk − S∗‖2 (5.38)

With S∗ is the optimal localisation solution, while Sk is the estimated position at

iteration k. The plot of CR in Figure 5.16 shows the variation in the convergence

speed of the different methods. The convergence rate for each method varies

from iteration to another. Although the Gauss-Newton based methods converges



Chapter 5. Robust Acoustic Source Localisation in WSN 129

Figure 5.13: Evaluation of the overall accuracy of the double dogleg method
at varying frequencies

initially into a better solution than Dogleg and Double Dogleg initial solutions, the

later optimisation technique presents similar convergence behaviour than Gauss-

Newton technique with even better slope of convergence taking into account their

respective initial iteration solutions.

Having said that, the last finding resulted in a longer execution time for DDL-

WLTS compared with to GNLS and GNWLS as shown in Figure 5.17. This

execution time increases proportionally as the number of the deployed number of

sensors is increased though this is a common trend in all the existing methods.

It is also important to note that the overall execution time using the same num-

ber of sensors is shorter in the case of using the Double Dogleg technique with

Least Squares scheme than Double Dogleg technique with Weighted Total Least

Squares scheme. By increasing the number of the acoustic sensors in the arena



Chapter 5. Robust Acoustic Source Localisation in WSN 130

Figure 5.14: Evaluation of the overall accuracy of the double dogleg method
at high frequencies

we achieve improved localisation accuracy for all the proposed methods in this

study (Figure 5.18). A better accuracy is recorded for the DDLWTLS method

though. We also noticed that going beyond the deployment of 16 sensor motes is

not impacting on the acoustic source localisation accuracy anymore.
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Figure 5.15: Evaluation of the overall accuracy of the Double Dogleg method
at low frequencies

Figure 5.16: Convergence rate of the Powells double dog leg method over the
gauss newton method
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Figure 5.17: Execution time for the different methods

Figure 5.18: impact of the WSN size on localisation accuracy
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5.7 Conclusion

We proposed in this chapter innovative Powell,s Dogleg and Double Dogleg op-

timisation techniques in dealing with the problem of acoustic source location in

WSN. We showed the efficiency and accuracy of those techniques in compari-

son with a classical linear search based technique such the Gauss-Newton. The

Double Dogleg technique combines the advantages of the Gauss-Newton tech-

nique, which offers rapid convergence near the solution and the steepest-descent

method, which is robust and numerically stable far from the solution. Hence,

with the adoption of this technique, a higher probability of convergence can be

obtained by adjusting the trust region radius.

A proper experimental based formulation of the origin of uncertainties and their

magnitudes biasing the accuracy of the TDOA measurements has been newly

introduced in this Chapter. Dealing efficiently with those uncertainties in the

acoustic source localisation based optimisation framework requires not only an

efficient optimiser but also adopting the optimisation scheme, which provides the

tools to do so. Indeed, accuracy improvements of the Powell’s Double Dogleg

method is obtained using a weighted norms representing uncertainties in a total

least squares scheme to estimate the steepest decent and the Gauss-Newton steps.

This strategy might end by increasing a little the computational time of the

estimation to a still reasonable level, but it is guaranteeing the convergence to a

global minimum solution while dealing efficiently with the system uncertainty.

.
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Chapter 6

Active Acoustic Sources

Localisation in Distributed

Sensor Networks

6.1 Introduction

In this chapter we investigate the problem of improved detection and localisation

in distributed sensor networks. In the field of motion detection and-or locali-

sation, it is a common situation that movements of objects is accompanied by

special emitted sound that varies in energy pressure, loudness or related features.

Therefore, a basic approach is to imitate the cooperative functioning of human

senses combining both vision and hearing capabilities for better detection and

position estimation of moving objects. Within this context, we firstly propose an

innovative solution for active acoustic sources detection and localisation in a dis-

tributed sensor network. This solution is based on augmenting the RGB vector,

in the SGGMM background subtraction method proposed in Chapter 4, with the

135
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acoustic information to detect possible moving sound sources. Secondly, we in-

vestigate the design of a centralised/decentralised architecture of fusion acoustic

and visual data. The aim of this architecture is to improve the quality of tracking

of active sound sources in a distributed sensor network.

6.2 Related works

Research in the domain of data fusion has gained a lot of interest in recent decades

due to the diversity of its application and the ability of sensing technology to

deliver outstanding results. This is regardless of its functioning whether it is in a

cooperative, competitive or complementary manner. The problem of acoustic and

video data fusion has been widely investigated, especially to deal with problems

of speaker detection and localisation. In this context, references [133–135] have

demonstrated the correlation between audio and video modalities in the speech

case. They show that the correspondence between the speaker lips movements

and the produced sounds can be exploited by the receiver to understand better the

speech, especially in the presence of noise. Another example that demonstrated

the relationship between hearing and vision in speech perception is the McGurk

effect, described in [136]. This effect is generally experienced by a combination

of a video of a person uttering one phoneme with a soundtrack corresponding to

a different phoneme. Additionally, a new form of combination of the two data

modalities is investigated in [137]. This form is based on the assumption that both

the acoustic and the visual models can be estimated as part of a joint unsupervised

optimisation for target localisation. In [138], a system was designed for detection

and localisation of active speakers by combining the visual reconstruction using

a stereoscopic camera pair and sound-source location using several microphones.

For surveillance systems and tracking, this type of fusion was of high importance

as shown in [139, 140]. In [139], a sensor fusion framework based on particle
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filters was proposed. It aimed at combining both results of the detection and the

tracking from a co-located acoustic array and video camera for vehicles tracking.

The particle filter based trackers were used to recursively estimate the state prob-

ability density functions for the combined tracker. The overall performance of the

target tracking was shown to be improved as the video controls the particles diver-

sity at low signal-to-noise (SNR) levels of the acoustics. Results obtained in this

work as well as in [140], were promising, showing the ability of the particle filter

of tracking the change in target motion model without prior modelling. However,

higher performance of this type of filter can be achieved only with a high num-

ber of particles, which results in overloading the system. Additionally, in [141]

a solution based on a centralised/decentralised architecture using the extended

Kalman filter (EKF) for the target dynamic model was proposed. It adopted a

foreground-background modelling technique with a skin colour tracker for visual

appearance tracking. For the acoustics, a microphone array with a beam former

was used to locate the acoustic source.

In a similar context, a system was proposed in [142] which aimed for ships iden-

tification and localisation based on the fusion of acoustic and the video data. In

this approach, the fusion enabled the estimation of sound attenuation in a wide

frequency band and the collection of a noise library of various ships. The latter

was used for ship classification by passive acoustic methods. Similarly, in [143] a

description of a knowledge-based system designed to detect evidence of aggression

by means of audio analysis and camera sensors network was presented. When the

aggression event was detected, the images captured by the networked cameras

were sent to a central system for further analysis and decision making.

In this chapter, we contribute in its first part to the problem of improved detec-

tion of active acoustic sources using a cost effective fusion scheme that works in

distributed sensor networks. The proposed solution suggests including the infor-

mation corresponding to the location of the acoustic source in the image frame.
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This is processed using a background/foreground segmentation method such that

only moving objects with sound activity are included in the foreground.

In the second part of this chapter, we evaluate the performance of active acoustic

sources localisation and tracking using a centralised/decentralised architecture, in

which we compare the performance of two classical fusion algorithms. The first is

based on the Covariance Intersection (CI) [144, 145] while the second is based on

the Information Fusion (IF). We also compare the accuracy of tracking using the

centralised/decentralised architecture to the accuracy obtained using one single

type of data (acoustic or visual).

6.3 First part: Augmented SGGMM with the

acoustic information

In this section, the problem of detection and localisation of active sound source is

investigated using a new fusion approach. The proposed solution aims to combine

two data modalities by augmenting the 3-D vector of RGB colours utilised by the

Spatially Global Gaussians Mixture Model (SGGMM) proposed in chapter 4 with

the acoustic information. By using this fusion method, we look at improving

the detection accuracy of moving acoustic sources. Indeed, evaluation results

using an implementation of this fusion scheme on a distributed sensor network

showed detection improvement compared to using the SGGMM based on vision

only. Moreover, the technique permitted reaching higher localisation accuracy of

moving sound sources in comparison to using acoustic measurements only.

6.3.1 Proposed Fusion architecture

For this fusion approach, we deal with heterogeneous distributed sensors network

composed of a smart camera (the CITRICc) and seven (07) Micaz sensor motes.
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The Micaz motes (described in Chapter 3) can communicate with the camera

board through the Telosb mote. The latter is used for energy supply while playing

the role of a mediator with the external world for the camera using the active

messaging [146]. Note that a second communication technique using the serial

packets, is used for ensuring communication between the camera board and the

Telosb. The sensors network were set up in an indoor environment (Heaviside

Laboratory at Cranfield University) where the tests have been conducted. The

testing was limited to image sequences of resolution (320 × 240) to ensure the

shortest processing time.

Figure 6.1: Different components of the fusion architecture proposed

For software implementation at the CITRIC camera node, the SGGMM method

(described in Chapter 4) was used. When the camera receives time measurements

of the acoustic events in the scene, this information is included in the augmented



Chapter 6. Distributed Sensor Networks for Localisation 140

SGGMM model. The acoustic information follows different stages before it be-

comes ready to be utilised in the image information:

• Firstly, synchronisation between acoustic sensors should be ensured. This

task is completed using the broadcast reference synchronisation technique

[147], in which reference beacons are sent periodically from a coordinator

(Synchroniser) mote (a Micaz mote). This is done because the programming

tool (NesC under TinyOs), used to build the codes for the sensor motes, is

deprived of any local time synchronisation capability.

• When the acoustic sensors (situated at different locations) receive the syn-

chronisation message, their local timers are triggered and they start listen-

ing for any sound of loudness that exceeds a pre-defined threshold. In case

of positive detection, the corresponding times of detection are sent to the

CITRIC camera for further processing.

• The received times at the camera node are used to compute the TDOA

measurements. These are employed later to estimate the position of the de-

tected moving object using the Double Dogleg method, developed in chapter

5. Through projection of the statistics of the sound position to a duplicate

of the image frame, using a projection function that uses the camera cali-

bration parameters, we obtain finally what we call an acoustic channel. The

latter is concatenated with the RGB images captured by the camera. From

these built 4D images, a foreground removal step is computed to extract

pixels belonging to the active acoustic sources.

Figure 6.2 gives a general description of the main modules used in this programme

as implemented in the CITRIC camera. Details of the implemented application

for the acoustic localisation using the sensors mote is given in section 6.3.2. Sec-

tion 6.3.3 presents solutions to some issues related to the acoustic localisation

in addition to details of augmenting the SGGMM model to include the acoustic

source location.
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Figure 6.2: Software architecture of the proposed solution implemented at
the CITRIC camera
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6.3.2 Time of acoustic events measurements using the Mi-

caz sensor motes

Due to the limited signal processing capabilities of Micaz motes, we focussed in

this study on measuring some special values related to the variation of the signal

energy. In the proposed method, similar to the one presented in [146], the signal

energy is compared to a given pre-defined threshold. In case of an event of a loud

sound, the time when the energy values exceed this threshold is recorded and

send to the CITRIC camera. To this end, a programme [148] that ran in Micaz

mote for loud sound event detection was designed using NesC under the TinyOS.

Programming in NesC involves the creation and the wiring between different

modules and interfaces [146]. Major components of the programme implemented

at the acoustic sensor level are shown in Figure 6.3-(a). It is composed of a

main module named Coordinator. The latter is connected to a module named

Detector which is responsible of triggering an alarm when the microphone output

value exceeds a given threshold. The module called Microphone is used to

ensure control over the microphone input and output (warming, setting up the

gain, reading).

The Coordinator component is also connected to the following standard interfaces:

the Radio, which handles communication with other motes; the Timer (the

local clock) and the microphone interface that is responsible for controlling the

power of the microphone. A second algorithm is implemented on the Synchroniser

mote to ensure the synchronisation between the different acoustic sensors. The

Synchroniser broadcasts a reference beacon to the neighbouring acoustic sensors.

This algorithm is centred on a main module Synchroniser that is wired to two

system interfaces(Radio and timer) as shown in Figure 6.3-(b). Provided that

all the sensors are within radio range, when acoustic sensor motes receive the

synchronisation message, their timers are initialised, following by warming up

the microphone controller.
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Figure 6.3: Architecture of the Nesc programme in charge of acoustic event
detection

For the conduct of the experiments, the acoustic sensors had to be distributed in

such a way to permit a reliable detection of the energy bursts. This is ensured by

placing the sensors at distant position from the wall to ensure free field conditions.

Additionally, the face of the microphones were installed facing the top to increase

the sensitivity.

6.3.3 Acoustic source localisation with outliers and erro-

neous measurements elimination

In order to build an acoustic channel that can be combined with the RGB images

using the SGGMM model, the received times at the CITRIC camera are firstly

converted to TDOA measurements. We have shown in Chapter 5 the performance

of the trust region method (the Double Dogleg weighted least square DDLWLS)

in estimating the position of the acoustic source based on the optimisation of a

non-linear least square problem. This method is adopted in this chapter.
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In a TDOA based acoustic localisation, an accurate estimation of the acoustic

source using a non-linear least square approach depends heavily on the accuracy

of the related TDOAs measurements. However, the presence of outliers and

errors in such measurements is inevitable. This is mainly due to the nature of

the acoustic signal propagation and components reliability of the acoustic sensor

nodes. Figure 6.4 shows how an erroneous measurement of one sensor in a sensor

network composed of seven (7) nodes can lead to a large error in the localisation.

Indeed, for such a number of nodes, an error of 8 ms in one sensor can lead to a

solution of about 6 m far from the real position.

Figure 6.4: Propagation of localisation errors in a distributed acoustic sensors
network composed of 7 nodes with erroneous measurements.

To deal efficiently with this problem, we adopted a solution based on the Random

Sample Consensus (RANSAC) algorithm, firstly proposed by [149], and adopted

for acoustic problems in [150]. For robust acoustic localisation in our distributed

sensors network, the solution works through the following steps:

1 Initialisation: k = 1; nO : maximum number of TDOA measurements.
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2 Randomly select a set of three TDOA measurements, check for i = 2, 3 that

|TDOA1− TDOAi| < ε (with ε chosen to be relative to the maximal space

between two sensor nodes), otherwise go to step (5).

3 Estimate the source position r̂s using the Double Dogleg method.

4 Among the remaining TDOAs measurements, compute the theoretical TDOA

τ̂li, i = 4, · · · , 6 with respect to the estimated position r̂s. A record of the

persistent set Sk of τ̂li, i = 4, · · · , nO should be made for each time difference

of arrival satisfying |TDOAi − τ̂li| < ε

5 Increment: k = k + 1, if k ≤ nO, then goto step (2).

6 Among the persistent sets Sk, k = 1, · · · , nO, select S∗ that has the maximal

number of TDOA measurements. The estimated source position with the

TDOAs in the set S∗ is selected to be corresponding to the target of interest.

6.3.4 Dealing with time delay of measurements arrival

Due to hardware and physical issues (packet loss, sound events emitted at separate

frame times), the acoustic information arrives at a slower rate compared to the

images. Therefore, predicting the position of the acoustic source location when

the related information is absent remains a necessary task. However, since the

change in position of the active acoustic source is not noticeable during the camera

frame processing (∆t = 0.33 sec), this position is assumed to be fixed. Hence, for

ease of implementation and computational cost reduction, the previous acoustic

channel is used for the current image processing until new acoustic information

is received.
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6.3.5 Including the acoustic information in the SGGMM

model

Having obtained the 3D location of the acoustic source, we further look at creat-

ing an acoustic channel to be used in the augmented SGGMM model. Thus, the

estimated coordinates are transformed from world to image frame using the per-

spective projection described in Chapter 2. Adiitionally, we used the Tsai metod

for the caibration parameters of the camera as described in [151]. The obtained

coordinates are used as the mean (µ) of a Gaussian model used to estimate the

pixels intensities in the created acoustic channel. It has the following form:

f(x, µ) = ae(x−µ
b

)2 (6.1)

where x represents the pixel coordinates in the image. a and b are user defined

parameters that represent the scale and shape of the model.

Using this function, we attribute to each pixel x a value Ixs = f(x, µ) and variance

σxs = σ0 (set initially). Note that the latter can be used in a similar way to the

parameters a and b in Equation 6.1 to determine detected region of active acoustic

objects in the scene. In a such case, pixels that have been assigned higher value

of σxs will have reduced chances to be accounted as foreground and vice versa).

The statistic (Isx, σsx) is used for each pixel x in the image to augment the RGB

vector of the SGGMM model. The latter is therefore augmented and becomes a

4D vector with the following vector and covariance matrix.

µx =
[
µc,x Ixs

]
,Σx =

Σc,x 0

0 σsx

 (6.2)

where µc,x and Σc,x represent the statistic of each pixel in the SGGMM model
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Using the augmented vector, the new SGGMM based colour and acoustic infor-

mation is used to detect the active acoustic sources in the scene.

6.3.6 Experimental tests

6.3.6.1 Evaluation of the improvement in the detection accuracy

Different tests have been done in the Unmanned Autonomous System Laboratory

(UASL) to evaluate the performance of the proposed solution. Figures 6.5, 6.6

and 6.7 show selected scenes for these tests that contain moving targets. In each

of these tests, one of the moving targets emits a sound pulse.

In the first scenario, presented by Figure 6.5, the energy pulse was sent from the

robot in the left side in a scene containing two moving robots. In the second

scenario, the sound was caused by the man as shown in Figure 6.6. In the third

scenario (Figure 6.7) the sound pulse was sent from a robot in a scene containing

two robots and a moving person.

The ground truth, which represents pixels belonging to the moving objects, is

build according the scheme described in section 3.6.5 of chapter 3. Two types

of ground truths have been built: One represents all moving target, while the

second represents the acoustic moving target only.

Figure 6.5: First test scenario with the corresponding ground truth.
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Figure 6.6: Second test scenario with the corresponding ground truth.

Figure 6.7: Third test scenario with the corresponding ground truth.

Results obtained using the augmented SGGMM fusion approach and the SGGMM

based segmentation only are displayed in Figures 6.8-a and 6.8-b respectively. The

ability of the fusion technique to distinguish between the active acoustic source

and the mobile source is shown in the first scene, as only the moving robot that

emits the sound pulse was segmented to the foreground.

In the second scene (second column in Figure 6.8), the active moving sources were

hardly distinguishable from the background using the SGGMM only as the lower

part of the moving target was similar to the background colour. However, by the

utilisation of the proposed fusion approach, improvement in detection accuracy

was achieved. This resulted in the segmentation of about the full regions of

the target of interest to the foreground leading to an increase in values of the

qualitative metrics of detection. These are the similarity (S) and the F-measure

(F) calculated according section 3.6.2 of chapter 3.
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Figure 6.8: Results of SGGMM colour background model and augmented
SGGMM with the acoustic signal for active acoustic object detection.
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A similar result was obtained in the third scene (third column in Figure 6.8), in

which the robot was the active acoustic source. It can be seen that SGGMM

only approach failed drastically in its detection. However, with the support of

the acoustic information, the full shape of the robot was captured.

Motivated by the qualitative result of detection obtained in the second scenario

which include a single acoustic moving target, we evaluate the quality of detection

of the two method quantitatively. Evaluation results on a sequence of 10 frames

are shown in Figure 6.9. The recorded values of the similarity and the F-measure

metrics clearly highlight the improvement of the detection made by including the

acoustic information in the SGGMM model.

Figure 6.9: Quantitative evaluation of the improvement in detection

6.3.6.2 Evaluation of the improvement in localisation accuracy

Driven by the quality of results obtained from the first tests, we set a second ex-

periment in which we track the trajectory of a mobile robot. The latter was fitted

with an electronic device that emits short energy pulse at regular time intervals

(0.5 sec). Figure 6.10 shows part of the setup used in the experiments. Figure
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6.11 shows the path followed by the robot with the corresponding measurements

obtained from the camera, the acoustic sensors and the proposed fusion approach.

Figure 6.10: Setup used for the robot localisation using the proposed fusion
approach

To compare the performances of the proposed fusion approach with results ob-

tained using the acoustic measurements only. We use the average distance of

error (DE) in localisation per estimate, given by

DE =
Σ
√

(XGT −XEst)2 + (YGT − YEst)2

n
(6.3)

where (XGt, YGt) represents the ground truth coordinate obtained using the mo-

tion tracking system installed in the UASL laboratory. (XEst, YEst) represents

the estimated coordinates, while n = 200 is the number of measurements.

Figure 6.12 shows the results obtained using the fusion approach compared to

using separate types of Data. It clearly shows the accuracy improvement of

the active acoustic sources localisation using the proposed fusion method over
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Figure 6.11: Moving platform trajectory with the collected measurements

measurements obtained using the acoustic and the visual data when these mea-

surements are used in a separate manner.
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Figure 6.12: Accuracy Comparison between localisation based on acoustic
measurements only and SGGMM based acoustics
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6.4 Second part: Cooperative localisation and

tracking

One of the main activities of a surveillance system is to ensure the tracking of

specific targets of interest with high accuracy. Designing an architecture that

combines measurements of the different sensors available is a well investigated

subject. The centralised/decentralised architecture fusion based on Kalman fil-

tering [144, 152–157] was one of the most investigated solutions to this problem.

Such a solution shows a high ability in dealing robustly with problems of estima-

tion under noisy measurements. In this section, we investigate the usage of this

approach for the problem of tracking using a distributed heterogeneous sensors

network featured by a limited communication bandwidth. Through experimental

tests, we evaluate the accuracy of tracking obtained by the combination of two

different modalities of measurements. These modalities are the acoustic and the

video. The evaluation involves performance comparison between the information

fusion (IF) [158] and covariance intersection scheme (CI)[144, 145] and to the

accuracy achieved using single sensor modality.

In what follows, we firstly present the centralised/decentralised architecture of

fusion in section 6.4.1. Having presented the CI algorithm in Section 4.4.2 4, a

presentation of the IF will be given in section 6.4.2. The motion models studied

are given in section 6.4.3, while in section 6.4.4 we describe the tracking scheme

at each of the local tracking level. Description of the experiments completed and

the experiment results are given in section 6.4.6 and 6.4.7 respectively. Finally

we summarise the overall finding at the end of the chapter.
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6.4.1 Fusion based on centralised/decentralised architec-

ture

A fusion system based on the centralised/decentralised architecture starts by es-

timating different state vectors and their associated covariance matrices for each

local level. These are passed to the central fusion level for high level tracking. In

case of multiple targets tracking, the track fusion centre performs a track associa-

tion process to determine the sensor level track that correspond to the true target

[153, 159]. Having determined the likely association, the fusion centre collects the

state vectors and predicts each one in a synchronous fashion. Adopting this tech-

nique to combine the two data modalities requires using a recursive estimator

for each measurements type. For simplicity, the same filtering strategy is used

for both modalities (acoustic and video). This is achieved using the unscented

Kalman filter (UKF). Figure 6.13 depicts the main components of this architec-

ture. It shows briefly the various hardware and software tools used to fuse these

two different types of data. In this architecture the same state vector is adopted

at the two tracking levels, it is given by the following:

Xi,k+1 =



xi,k+1

ẋi,k+1

yi,k+1

ẏi,k+1

ϕi,k+1


(6.4)

where xi,k+1, yi,k+1 represents the Cartesian coordinates of the tracked target;

ẋi,k+1, ẏi,k+1 represent the projection of the speed on the X and Y axis. The

variable ϕi,k+1 is the target heading. The variable i (i = a for acoustic and v

for the video) represents the type of the measurements source. The state and

measurement vectors at local tracking levels (i)i=a,v are both transformed to a
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Figure 6.13: Main component of the centralised/decentralised architecture
of fusion.

unique Cartesian reference. The object state follows a discrete time dynamic

model as given in Equation (6.5):

Xi,k|k−1 = F (Xi,k|k, wi) (6.5)

where wi is the process noise, assumed to follow a Gaussian distribution of zero

mean and covariance matrix Qi. The observation follows the measurement equa-

tion given by:

Zi,k = H(i)(Xi,k, vi); (6.6)
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Zi,k is the measurement vector at a local tracking level i at time k, vi,k represents

the measurement noise vector characterised by the noise covariance matrix Ri.

The predicted state vectors and covariance matrices at local fusion levels are

combined to produce a composite state and covariance matrix for each track

using the fused state.

6.4.2 Fusion at the central level

In the presented centralised/decentralised fusion we evaluated the performance

of two classical algorithms (Figure 6.13), the fist is the CI algorithm presented in

chapter 4, while the second is the IF which is given by the following equations:

The inverse of the combined covariance Pf,k|k at instant k, it is given by:

P−1
f,k|k = P−1

f,k−1|k−1 + (P−1
a,k|k − P

−1
a,k|k−1) + (P−1

v,k|k − P
−1
v,k|k−1) (6.7)

The state estimate vector which is given by:

P−1
f,k|kX̂k|k = P−1

f,k|k−1X̂k|k−1 + P−1
a,k|kX̂a,k|k − P−1

a,k|k−1X̂a,k|k−1

+P−1
v,k|kX̂v,k|k − P−1

v,k|k−1X̂v,k|k−1

(6.8)

which can be reformulated to:

X̂k|k = Pf,k|k[P
−1
f,k|k−1X̂k|k−1 + P−1

a,k|kX̂a,k|k − P−1
a,k|k−1X̂a,k|k−1

+P−1
v,k|kX̂v,k|k − P−1

v,k|k−1X̂v,k|k−1]
(6.9)

An alternative approach to the IF is to use the covariance matrix obtained at

the central level to update the local level known as fusion with feedback [152].

However, this approach is avoided because of the high communication cost it

induces.
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6.4.3 The motion model

Modelling the dynamic motion of a target is a necessary step to perform a tracking

using any type of Kalman based filtering method. Most ground targets (pedes-

trian, animals, cars,... etc) take one or a mixture of motion models. These models

can either be stationary, moving with constant speed, turning with rate, moving

with acceleration or turning with accelerating turn rate. The performance of the

centralised/decentralised fusion approach is assessed using the first three motion

models. For the static case, the transition matrix F introduced in Equation (6.5)

is given as:

F =



1 0 0 0 0

0 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0


(6.10)

For a linear motion model with a constant velocity, F is written as:

F =



1 ∆t 0 0 0

0 1 1 0 0

0 0 1 ∆t 0

0 0 0 1 0

0 0 0 0 0


(6.11)

with ∆t is the sampling time.

In the case of a transition model with a known turning rate the motion function

is given by the following:
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F =



1 0
sin(w∆t)

w
0 −1− cos(w∆t)

w
0

0 cos(w∆t) 0 −sin(w∆t) 0 1

0 −1− cos(w∆t)

w
1

sin(w∆t)

w
0 0

0 sin(w∆t) 0 0 cos(w∆t) 0

0 0 0 0 0 1


(6.12)

with w is the turn rate.

6.4.4 Local level of tracking

In this section, we show how each local level of tracking, presented in Figure

6.13, works to deliver the estimate of the state vector with the corresponding

covariance to the higher level of tracking.

6.4.4.1 Local level tracking using the acoustic data

Robust sound source localisation with uncertainty estimation is needed as this

will be employed in the proposed fusion scheme with visual data. In this context,

only few solutions are reported in the literature to adopt a recursive approach for

the acoustic source localisation. A solution based on the extended Kalman filter

(EKF) proposed in [117] has been shown to deal reasonably well with this problem

[117]. However, due to the non-linear nature of the measurement function in an

acoustic localisation problem based on TDOA, we propose the use of the UKF

instead of the EKF. This filter has been shown to be more practical for systems

with highly non-linear dynamic or measurement functions. One of the advantages

of this technique over the EKF is that it does not require a direct calculation of

the Jacobians, nor the Hessians for the algorithm implementation. Moreover,
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the overall number of computations has nearly the same order as the EKF [160].

An in-depth comparison between the two algorithms showing better estimation

accuracy of the UKF when it is used for simultaneous localisation and mapping

(SLAM) problem can be found in [161].

6.4.4.2 Problem modelling

To model the problem of acoustic localisation using a recursive filtering technique,

the state space utilised to model the acoustic object motion is the same given in

Equation 6.5. The state update model is given by Equation 6.4.

From the acoustic signal model equation using TDOA localisation based ap-

proach, the observation matrix can be written as:

H =


TDOA1

...

TDOAn−1

 (6.13)

with n represents the number of TDOA measurements. By substitution of the

matrix terms with the corresponding Euclidean distance we get:

H =
1

s


√

(xk − x1)2 + (yk − y1)2 −
√

(xk − x2)2 + (yk − y2)2

...√
(xk − x1)2 + (yk − y1)2 −

√
(xk − x4)2 + (yk − y4)2]

 (6.14)

with (xk, yk) the coordinates of the target to be estimated, and are given in state

vector (Equation 6.4) and s = 343m/s represents the sound speed, [(x1, y1); (x2, y2)]

the position of the first pair of microphones while [(x1, y1); (x4, y4)] the position

of the third pair of microphones. The development of the state estimate in the

UKF is specified using a minimal set of selected sample points obtained from



Chapter 6. Distributed Sensor Networks for Localisation 161

the unscented transformation (UT). The selected points capture the true mean

and covariance of the process, and when propagated through the true non-linear

system, it captures the posterior mean and covariance up to the 3rd order (Taylor

series expansion) for any non-linearity [160].

6.4.4.3 The Unscented transformation (UT)

The unscented transformation (UT) [160] is adopted by the UKF to calculate

the statistics of a random variable that undergoes a non-linear transfer function.

For a random variable x (with dimension n,a mean x̄ and covariance Px) that

is propagating through a non-linear function f (with y = f(x)), the statistics

computation of y requires forming a matrix X of 2× n+ 1 Sigma vector χi with

the corresponding weights Wi. This is completed through the following set of

equations: 

χ0 = x̄

χi = x̄+ (
√

(n+ λ)Px)i, i = 1, · · · , n

χi = x̄− (
√

(n+ λ)Px)i−n, i = n+ 1, . . . , 2n

Wm
0 =

λ

n+ λ

Wc
0 =

λ

n+ λ
+ (1− α2 + β)

Wm
i =Wc

i =
1

2(n+ λ)

(6.15)

with λ = α2(n + k) − n is a scaling parameter, α determines the spread of the

Sigma points around x and it is usually set to a small positive value. k is a

secondary scaling parameter, while β is used to incorporate prior knowledge of

the distribution (for Gaussian distributions β = 2 is optimal). (
√

(n+ λ)Px)i is

the ith row of the matrix square root.

Figure 6.14 shows the propagation of these Sigma vectors through the function f

as follows:

Yi = f(Xi), i = 0, · · · , 2n. (6.16)
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while the mean and covariance for y are approximated using a weighted sample

mean and covariance of the posterior sigma points,

ȳ = Σ2n
i=0Wm

i Yi (6.17)

Py = Σ2n
i=0Wc

i {Yi − ȳ}{Yi − ȳ}T (6.18)

The approach of the UT results in approximations that are claimed to be accurate

to the third order for inputs of non-linear systems [160].

Figure 6.14: Illustration of the unscented transform(UT)

6.4.4.4 The UKF Algorithm

The UKF is a direct extension of the UT to the recursive estimation in Equation

(6.15). The UT sigma point selection scheme is applied to the new augmented

state Xa
k = [XT

k v
T
k n

T
k ]T obtained by the concatenation of the original state and

noise variables. Typically in this filter, the two phases (prediction and update)

alternate, with the prediction advancing the state until observation is provided.

The basic equations of the UKF are given in Figure 6.15.



Chapter 6. Distributed Sensor Networks for Localisation 163

Figure 6.15: The alternation between the UKF steps
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6.4.4.5 Results and discussions

Representative results of using the UKF to estimate the location of an acoustic

source are shown in Figure 6.16. The true location of the source is the coordinate

(4 m, 12 m) in a Cartesian reference system. Figure 6.16-a represents the estima-

tion of the x-coordinate with regards to the true values, while the development of

its corresponding covariance parameter is shown in figure 6.16-b. Figures 6.16-c

and 6.16-d show the development of the y-coordinate estimation in comparison

to the true value of the position and the variation of its corresponding covari-

ance parameter. The new obtained results show how well the UKF performs to

Figure 6.16: Behaviour of the UKF in reaching the optimum solution for the
sound source localisation

estimate the source location. It converges right quickly to the position of the

acoustic source. The UKF started to perform well after just a reduced number

of iterations (10). The error margin in errors between the estimation and the

measurement is very small (21 cm for the x-axis and 23 cm and for the y-axis,

respectively).
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6.4.4.6 Local level of tracking using the visual Data

In this section, we briefly discuss the main steps to transform a location of de-

tected moving object to a visual measurement. Figure 6.17 depicts the steps of

this operation. Once a moving object is detected using a foreground/background

Figure 6.17: UKF feeding with visual measurements.

method (we used the SGGMM for this step), the coordinates of the centroid of

the detected moving blob is obtained through a transformation from image frame

to world frame. The same world reference and the same state model are used
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for the acoustic measurement is adopted to register the estimated position of the

moving objects based on the visual data.

The measurement matrix H(v) we use here is the following:

H(v) =

 1 0 0 0 0

0 0 1 0 0

 (6.19)

This function ensures a direct reading of the projected centroid corresponding to

visual appearance of the detected moving object.

6.4.5 Experimental setup

Feasibility and performance of the proposed fusion approach in distributed sensor

networks frame-work was tested experimentally. In the following experiments, a

distributed hierarchical tracking system is built as shown in Figure 6.18 where

the lowest level is constituted by heterogeneous sensors (a CITRIC camera and

four Micaz motes with the MTS310 sensors board). The highest level is the

fusion centre composed of a desktop used to collect and process the provided

measurements. Both types of sensors are set to detect and send measurements

corresponding to a mobile platform. The latter was fitted with an electronic

device to emit a burst of sound (a sinusoidal burst of 4 kHz which lasts for 0.2

sec). The projection from 2D to 3D was done using the method proposed in

[162], while the acoustic sensors was placed at known position. The performance

evaluation has been done at different acquisition rates: the first was 0.5 sec for

the acoustic and 0.3 sec for the video. For the second, the video measurements

acquisition rate 0.5 sec, while it was equal to 0.5 sec for the acoustic.
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Figure 6.18: Setup used for the centralised/decentralised architecture of fu-
sion implemented
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6.4.6 Experiments

The fusion scheme using the method proposed previously was tested in three dif-

ferent scenarios. Each scenario present one form of the motion models presented

in section 6.4.3. The first scenario is for object of fixed position with simple

movements. These movements are centred around a given coordinate in relation

to the reference system. The coordinates (4 m, 4 m) have been chosen as centre

of motion. Result of the first scenario are shown in Figure 6.19-a. In the second

experiment, we evaluate the performance of the tracking when the target follows

a linear motion model. This is shown in Figure 6.19-b. In the third experiment,

the performance of the fusion approach is tested when the target moves in a cir-

cular trajectory with a fixed turn rate. The corresponding trajectory with the

different estimation results are given in Figure 6.19-c.
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Figure 6.19: Results obtained from the tracking scheme applied to the dif-
ferent motion models: a:Stationary, b:Linear motion, c:Circular trajectory
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6.4.7 Evaluation result

In the following, the accuracy evaluation of the proposed tracking scheme applied

to the different motion models is discussed. The metric used for the evaluation

is the mean square of errors (MSE) estimated for a number of 30 measurements

for each experiment, while the ground truth is measured using a motion tracking

system.

6.4.7.1 For a stationary acoustic source

To test the performance of the centralised/decentralised architecture with the

information fusion(IF) and the covariance intersection (CI), and to compare their

performance to a single type of data (either the visual or the acoustics) for the

stationary case, two experiments have been conducted using the two different

acquisition rates as explained in section 6.4.5.

Figure 6.20 shows the obtained results. It can be seen that the IF which includes

the information corresponding to the previous state estimate, outperforms the

CI method. This result can be noticed specially in the situation where the ac-

quisition rate for both types of measurements is not the same (Figure 6.20-a).

Similar performance of the evaluated fusion methods can be observed when both

measurements (video and acoustic) are acquired at similar rate (0.5 sec) as shown

in Figure 6.20-b. However, an improvement in the accuracy of the CI in moments

of measurements acquisition is noticed making this fusion method most suitable

for such cases. Hence, higher accuracy in the tracking using the CI is expected

for scenarios where the measurements are provided with higher acquisition rates.
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Figure 6.20: MSE obtained using different algorithm for static object position
estimation

6.4.7.2 Moving in a linear path

For a linear path scenario, a high level of accuracy can be noticed in the per-

formance of CI over the IF. It also gives better results using than the obtained

using a single sensor(Figure 6.21). This observation is valid for the two different

case of measurements acquisition rates. An improvement to the accuracy of the

centralised/decentralised architecture based on the IF is noticed at moments of

acoustic measurements acquisition. However, in such case, the accuracy of this

fusion method can only reach the one of the CI.
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Figure 6.21: MSE obtained using different algorithm for tracking the active
acoustic object following linear trajectory

6.4.7.3 Motion with constant turn rate

Similarly to the first two scenarios, experiments using two different acquisition

rates have been conducted for the constant turn rate scenario. The results of

the first experiment (Figure 6.22 a) corresponding to a variable acquisition rate

highlights the performance of CI over the IF. Consequently, the CI also delivers

better performance than using one single type of data.

When the two different measurements (video and the acoustics) are received at

similar and relatively lower acquisition rate (0.5 sec) (Figure 6.22-b), we can

notice the degradation in the performance of the tracking at the local tracking

level corresponding to the video modality compared to the first experiment. The
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Accuracy of the latter, become similar to that one of the acoustics which is caused

mainly by the errors in the state estimation process that is expected to be higher

in a such dynamic model. We can notice also that although there is degradation

in the results obtained the CI, these results remains the most accurate.

Figure 6.22: MSE recorded using the different algorithms for tracking the
active acoustic object following circular trajectory
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6.5 Conclusion

This chapter covered two fusion methods of acoustic and visual data in a dis-

tributed sensor networks. The first concerns augmenting the 3D RGB vector of

the SGGMM model with the acoustic signal. The method has shown its ability

to highlight the presence of the active acoustic source in the scene using a vi-

sual tool. This led to reaching higher accuracy in the localisation provided that

camera is properly calibrated.

Results from the experiments carried out have demonstrated that the proposed

technique allows a significant improvement in detecting the active acoustic sources.

Additionally, the method showed an overall accuracy improvement in estimating

the position of the acoustic sources when the visual information is included.

For the second method of fusion, we investigated the use of the centralised/decen-

tralised architecture of fusion of the acoustic and the visual data in distributed

sensors networks. Evaluation results show higher accuracy of this fusion archi-

tecture compared to using one single type of data. Additionally, higher accuracy

can be achieved using the CI than by using the IF though the little information

it uses for the estimation.
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Chapter 7

Conclusion and Future Work

This thesis has studied various techniques targeting the robustness and applica-

bility of detection and localisation in distributed sensor networks. After thorough

analysis and investigations, solutions have been provided where it was thought

necessary and challenging.

In chapter 3, the problem of visual detection was investigated by introducing a

cost efficient visual change detection method. This method adopted a spatial

global Gaussian mixture models (SGGMM) to model the background based on

RGB colour. The proposed method showed high accuracy in detection of moving

objects in image sequences in favourable conditions. For challenging conditions

caused by sudden changes in luminosity, a combination of pixel uncertainties with

colour in the SGGMM model was approached to deal efficiently with problem

related to background motion within the scenes. The evaluation of the proposed

method has demonstrated the accuracy in detection and the suitability of its

implementation in embedded camera sensor network nodes, which present reduced

computation capabilities.

In future work, further accuracy evaluation in handling problems relating to

shadow and camera jitter (due to severe background variation) is needed. Also,

176
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due to the low computational cost in embedded systems, further investigation is

required for using the proposed background subtraction method in a collaborative

scheme of detection and tracking.

In chapter 4, the problem of detection of moving objects from a moving camera

has been investigated. We have shown that by using optical flow based tracking

better results can be achieved for motion detection in such challenging conditions.

To guarantee respect of constancy on the intensity constraint under which the

optical flow should work, we proposed the use of a robust image registration

method. The latter, adopted the H∞ filter which takes into account feature

uncertainties in image registration.

Despite the efficient tools used to counter the miss registration problem, the

overall estimated optical flow is shown to be corrupted with noise. Hence, we

proposed a solution based on the spatial Gaussian Mixture Models. The latter has

shown its ability to deal more efficiently with the investigated problem. For future

work, further investigation is needed for adopting this approach in surveillance

systems based on PTZ cameras;

In chapter 5, we proposed adapting a trust region based method to deal effi-

ciently with the optimisation problem of the acoustic source localisation in WSN.

Through experimental evaluations, we showed the efficiency and the accuracy of

the proposed approach in comparison to a linear search based technique. The

Double Dogleg method investigated in this chapter combines the advantages of

the steepest-descent method, which is robust and numerically stable for initiali-

sation far from the solution and the Gauss-Newton technique, which is featured

by a rapid convergence toward the aimed solution.

An experimental formulation of the acoustics-induced uncertainties and their

magnitude was also covered in this chapter, to reach a solution with the highest

accuracy using the provided measurements.
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In Chapter 6, solution of an architecture of fusion for active acoustic source locali-

sation in a heterogeneous sensors network was the main focus. The first proposed

solution relied on the trust region double dog leg for the acoustic source local-

isation, while the Spatial Global Gaussian Mixture Model (SGGMM) was used

for combining the estimated acoustic source location with the vision detection

model. The experimental results demonstrated the solution feasibility. Moreover,

this fusion approach allowed important improvement in detection and localisation

accuracy of targets of interest.

For future works, we suggest the use of advanced acoustic sensing devices with

high signal processing capabilities. This will enable the technique to deal effi-

ciently with complex scenarios. These can involve scenarios related to security

enhancement in public spaces such as in the case of aggression detection or track-

ing targets of special acoustic features. The second proposed solution in this

chapter, was to cover the basic technical issues related to fusion between the

obtained measurements of two heterogeneous data modalities. To this aim, the

performance of a centralised-decentralised fusion was evaluated using both the

covariance intersection and the information fusion scheme.

Experimental results has shown that overall, this approach of fusion, for dis-

tributed networks, is able to provide higher accuracy in the localisation and track-

ing than by using one single type of measurement only. We have also shown the

cost efficiency of a fusion scheme based on the covariance intersection compared

to the information fusion. For the tracking, we covered principal dynamic models

of active acoustic targets (stationary, linear motion, turning). In case of targets

manoeuvring, the interacting multiple model (IMM) can be used.
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