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Abstract

Maintaining surveillance over vast volumes of space is an increasingly important

capability for the defence industry. A clearer and more accurate picture of a surveil-

lance region could be obtained through sensor fusion between a network of sensors.

However, this accurate picture is dependent on the sensor registration being re-

solved. Any inaccuracies in sensor location or orientation can manifest themselves

into the sensor measurements that are used in the fusion process, and lead to poor

target tracking performance. Solutions previously proposed in the literature for the

sensor registration problem have been based on a number of assumptions that do

not always hold in practice, such as having a synchronous network and having small,

static registration errors. This thesis will propose a number of solutions to resolving

the sensor registration and sensor fusion problems jointly in an efficient manner.

The assumptions made in previous works will be loosened or removed, making the

solutions more applicable to problems that we are likely to see in practice. The

proposed methods will be applied to both simulated data, and a segment of data

taken from a live trial in the field.
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Chapter 1

Introduction

1.1 Motivations

The work that is presented in this thesis lends itself to the target tracking and sensor

fusion areas. These areas have received a lot of attention in the signal processing

literature, however there is one problem which is often overlooked, or dismissed, but

is critical from a practical perspective: the sensor registration problem [1]. The use of

large and sophisticated sensor networks to maintain coverage over wide geographical

areas is becoming more common. The demand being placed on these networks is

ever growing, as we could be interested in tracking many tens, or even hundreds of

targets simultaneously [2], and these targets may be difficult to detect.

Consider a use case of drone detection and tracking [3], an application that

is becoming more important after gaining a lot of negative press [4–10]. Imagine

that we wish to protect an important asset or location such as an airport. Drones

can often be flown in large swarms, and in tight formations, making the detection

and tracking problems more difficult. Small Unmanned Aerial Vehicles (UAVs)

tend to be made of lightweight and low-reflectivity materials such as plastic and

carbon fibre, further increasing the difficulty of the detection problem, and hence

the need for deploying heterogeneous sensors. The use of sensor fusion allows for

the exploitation of more sensor information and would result in a clearer, more

accurate tracking picture [11] assuming that the sensors are registered correctly and

biases are accounted for or removed. Having incorrect registration will lead to the

formation of inaccurate tracks through biased measurements; a major issue for real-

world systems [1]. The simple scenario presented in Figure 1.1 highlights the effect

that these errors can have, just from a small angular bias between the sensors.

Suppose that we have a static platform with two sensors attached, and we wish to

detect and track a target that is at a range of 5 km. By simple trigonometry, if

there was an angular registration error of 2◦ between the two sensors, one of the two

sensors would measure the target approximately 175 m away from it’s true location;

a value that would only get larger if we were interested in detecting targets further
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ρ = 5000m

Measurement

Ownship

Target

ϕb

175m

Figure 1.1: An example of the registration problem. If φb = 2◦, the measurement
would place the target approximately 175 m away from its true location.

away from the platform.

Previous solutions that have been proposed for correcting the sensor registration

have been developed on a range of assumptions, that often do not hold true in a

range of real scenarios of interest in this application area. Some examples of these

problems include:

Sensors operating synchronously and all providing measurements at a given

instance in time [12–14]. Given the commercial-off-the-shelf (COTS) nature

of many sensors, which may then be used in an ad-hoc sensor network or fusion

system, it is highly unlikely that the synchronous assumption holds.

Offline registration would give sensors an initial set of registration parameters

to work with. Systems are often calibrated when they are installed to a new

platform, and when first powered on, however, it is likely that these initial

conditions will change over time through factors such as sensor drift or platform

vibrations. It cannot be assumed that the calibration parameters will remain

the same over the course of a scenario [12–16].

Registration to a global frame of reference (FoR) such as the World Geode-

tic System, may not always be possible, especially in Global Positioning Sys-

tem (GPS)-denied environments. It should be noted that finding this global

calibration, or registration, is typically a very difficult problem in practice.
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Homogeneous sensors are a feature of more traditional sensor networks [12–17],

however this is becoming less common in modern systems as more data can

often be gleaned from heterogeneous sources.

Very small relative biases have been assumed and presented in the previous sen-

sor registration literature which seem unrealistic compared to those seen in

practice. For example in [13, 17], the assumed angular biases are in the order

of tenths of degrees. Angle biases an order of magnitude larger than this are

addressed in this thesis.

The sensor registration and fusion schemes developed in this thesis will provide

solutions that resolve the issues listed above. These schemes must allow for the

online estimation of registration parameters, and perform in an efficient manner,

such that they could be deployed to real systems.

1.1.1 Multi-Target Tracking and Fusion

When considering highly dynamic scenarios, the number of targets, and the states

of those targets, will vary over time due to targets entering and leaving the surveil-

lance region. After many advances in the aerospace area during the 1960s, Multi-

Target Tracking (MTT) became a much more prominent and important problem

that needed to be resolved in practice. Advances in the MTT algorithms, alongside

refinement in the sensors supplying measurements to them, have allowed for more

application areas to embrace the MTT paradigm [18–21].

MTT algorithms need to be able to contend with many other aspects that are

not typically found when considering the Single-Target Tracking (STT) problem,

such as false alarms, the data association (DA) problem, and missed detections.

Each algorithm has its own approximation or formulation to handle these issues.

The algorithms are broadly split into two categories; point process methods and

vector-type methods, which will be discussed in more depth in Section 2.3. Both

the point process methods and vector-type methods will be exploited later in this

thesis. The aspects of the algorithms that are of most interest to this thesis will be

the trade-offs between performance and computational efficiency. With surveillance

scenarios potentially changing quickly over time, it is important that the algorithms

can process measurements quickly and provide suitably accurate outputs. Other

important factors that need to be considered are the scalability of the algorithm

in the number of targets (this has been addressed and discussed in the previous

literature e.g. [19,22]), and the scalability in the number of sensors [22,23]. The latter

has been partially addressed in previous works, but not in situations or scenarios

where the sensors are not accurately calibrated.

With the large advancements in multi-sensor suites in recent years, being able

to track multiple targets using a range of different sensing modalities is now feasible
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[24–28]. Sensor fusion is now a well-developed methodology that aims to automate

the process of combining multiple different sources of information [11, 29, 30]. By

combining these multiple sources of information, the output should in some sense,

be better than if the multiple sources of information were each used individually. In

this case, “better” could mean:

• the improvement of the target tracking update rate;

• reducing the spatial uncertainty in a target’s estimated position;

• reducing the spawning of false or “ghost” tracks; and

• maintaining a higher level of all-round situational awareness.

Because practical implementations of tracking and fusion algorithms are typically

built on a number of approximations, it may be the case that these benefits are not

fully achieved, or will be difficult to observe.

1.1.2 Sensor Registration

As will be highlighted throughout this thesis, the sensor registration problem is

fundamental to any type of sensor fusion system. Sensor registration, also referred

to as sensor calibration in the literature, involves estimating sensor parameters such

as location and orientation alongside the multiple target states. Calibrating MTT

systems [31] through the estimation of appropriate model and system parameters is

an important validation and verification step before a system is deployed out in the

field. When attempting to fuse measurements from multiple different sensors, the

registration on to a common frame of reference (FoR) must be considered, or we risk

reducing the overall performance of the sensor fusion and the underlying tracking

algorithm. Sensor registration errors, or biases in sensors, can appear in the system

from many different sources:

Human errors could account for problems such as the the incorrect installation

of sensors on to a platform. Some lower-cost COTS sensors may not per-

form their own automated calibration routine during the power-on step, and

parameters such as the limits of the Field-of-View (FoV), and the sensor’s

orientation angles, may need to be preset by an engineer or operator. If these

values are not computed correctly, or not input correctly, the sensor may think

it is looking in one direction, whereas in reality it is pointing in a different di-

rection. Another issue that could arise is the intrinsic design, and calibration,

of smaller subsystems inside the larger sensor. Once these smaller components

are manufactured and installed into the system, they are unlikely to be re-

calibrated or adapted unless absolutely necessary. These intrinsic issues could

then propagate through the sensor and create larger system errors.
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Sensor errors could appear due to measurements captured in an external system.

Many platforms are fitted with GPS and Inertial Measurement Units (IMUs)

to gain an accurate location and orientation at any given time. However, these

systems are likely to drift over time and accumulate a larger error [32]. If this

type of error is not continually accounted for, the sensor fusion performance

is likely to slowly decrease over time. The GPS performance and accuracy is

likely to vary over time, depending on how many satellites the receiver can see

at a given time. This error is more commonly referred to in the navigation

literature as the dilution of precision [33]. A similar problem to this, often

found in the robotics and navigation literature, is the problem of Simultaneous

Localisation and Mapping (SLAM). The SLAM problem is quite similar to the

sensor registration problem being resolved in this thesis; however their focuses

are a little different. In sensor registration, our main focus is to estimate the

states of targets, or landmarks, with less of a concern about the navigation

aspect. Conversely, in the SLAM problem, the main focus is on estimating

appropriate navigation states and parameters such as a local map. There

is much less emphasis on the particular landmarks being used in the SLAM

problem.

Network errors could have a major effect on the ability to perform data fusion in

a practical sense, especially in situations where the sensors are located a long

distance away from one another. Any latency or timing issues would need to

be known and accounted for in the system, so that sets of measurement data

do not appear at the Fusion Centre (FC) in the wrong order. Attempting to

use data that is not properly time-aligned could lead to poor tracking perfor-

mance [21]. This timing registration issue highlights the need for a common

clock that sensors should take their timing information from. The amount of

communication bandwidth available on either a physical, or a wireless link,

could affect the number of measurements or tracks that can be transmitted

to the FC at any one time. This again may cause issues with certain, or all,

tracks being updated in a timely manner. Furthermore, there may be cases in

wireless systems where the connection to the FC is not available for any num-

ber of reasons. These issues and errors can make the real-world application of

fusion much more difficult.

Weather and external forces are a more difficult factor to predict and account

for in practice. They are inherently random and could occur at any point in

time. Consider a first example of a large warship in rough seas. One set of

sensors could be located at the bow of the ship and another set of sensors at

the stern. Large waves could cause flex in the ship’s structure, causing the

registration between the two sets of sensors to change considerably over time.

If one of the sets of sensors was on top of a large mast, this problem could be
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exacerbated by strong winds and further increase the registration error. One

further application in the maritime surveillance area could be for sonobuoys

which are dropped onto the sea surface. In rough seas, they are likely to

move around continuously and their state will change, making a continuous

registration scheme necessary. Now, consider an example for the airborne

application, where we could have a single set of sensors on a fast jet. With the

platform potentially flying at supersonic velocities, there are extreme forces

being applied to the platform. If sensors and their mounts to the aircraft are

not strongly attached, it is possible that the sensors will physically shift during

flight, and hence the need for a continual calibration strategy.

With the potential for these errors to be time-varying, online sensor registration

schemes [34] are a necessity in practical applications. There may also be extreme

cases where it may be impossible to calibrate the system to any sort of global

reference frame e.g. in a GPS-denied environment [35].

With the high importance of the registration problem in practice it is concerning

to see that, in a lot of the sensor fusion literature, the problem is either resolved

separately to the tracking problem or is avoided altogether; a worrying trend for

those interested in practical application and deployment to a system. If the prob-

lem is treated separately, there is still a chance of residual, or systematic, biases not

being overcome. Another issue that is not covered by many articles in the literature

is that of asynchronous sensors. Many works assume that the sensors operate syn-

chronously and measurements are available for all sensors at a given iteration; this

is very unlikely to happen in practice. Real-world radar systems may be designed

to perform a number of different tasks depending on user selection, or through a

form of automated sensor management, at any given point in time. These tasks may

include:

• performing a full sweep/search of the surveillance region;

• interrogating a specific area inside the region to gain more measurement data,

potentially to gain more information about a specific target for example; or

• creating a Synthetic Aperture Radar (SAR) image [36] of a specific area.

Each of these tasks will take a varying amount of time to complete, and not all tasks

will provide a set of measurements that we can exploit to update the target tracks

that we have. This forms a part of the larger asynchronous sensing problem; in

practice we do not know exactly when the next set of measurements will be available

to the tracker. This also holds true in the multi-sensor tracking case; we need accu-

rate timing information so that the target dynamic model (see Chapter 2) is applied

correctly. One further issue that arises in real-world systems is the need for efficient

algorithms, which can be run in real-time on a platform with a limited amount of
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processing power. Many pieces of literature propose solutions that may be effective

for ground-based systems which may hold a lot of computing power in reserve should

it be required; however with airborne applications, any high complexities will either

need to be approximated, or completely avoided.

There have been a number of attempts to resolve the registration problem using

machine learning and neural network solutions [37, 38], however this also comes

with a number of disadvantages. These methods can require a very large amount

of realistic training data to give sensible results, which can be difficult to generate,

or record from a real scenario. There are also issues with “explainability” when

considering machine learning techniques; very limited output information is given

to explain how a machine learning algorithm reached a particular decision [39, 40].

Alternatively, another popular technique for sensor registration is to use pseudo-

measurement approaches [13, 15, 16], where all of the biases to be estimated are

placed in to a stacked vector with the target states. This technique often reduces the

problem down to only pairs of sensors. These will be expanded upon in Section 2.5.

1.2 Scope of Thesis

While the MTT and data fusion problems have had widespread literature coverage,

the sensor registration problem has had much less research focus. As emphasised

in Section 1.1.1, efficient MTT algorithms are required to process data quickly for

time-sensitive application areas such as defence and surveillance. This efficiency

will provide the key starting point to develop the registration and fusion methods

discussed in Section 1.1.2.

1.2.1 Research Questions

With this overall scope in mind, this thesis will attempt to address the following

research questions:

1. When resolving the registration and fusion problems, what are the main con-

siderations that should be taken into account when choosing an appropriate

framework or algorithm?

2. How can a method be made scalable to a larger number of sensors? This

could be a key requirement for a real-world system. Having a larger number of

sensors available on a single platform, or across multiple platforms in practice

could be important to improve the probability of detecting a target and to

build sensor redundancy into the fusion system. There is also the argument

that you could use a large number of low Size Weight and Power (SWaP) and

low-cost sensors, rather than using one high-performance sensor to perform the
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same tasks. This would of course however bring in a much larger registration

problem to be resolved; there is always a trade-off.

1.2.2 Use Cases

The high-level objective of this thesis is to investigate sensor registration and fusion

frameworks that could be applied to problems in the defence industry. Two main

use cases will be used throughout this work; firstly multistatic radar (Figure 1.2),

and secondly heterogeneous sensing (Figure 1.3).

Multistatic Radar

By exploiting multistatic radar networks, a number of distinct advantages are avail-

able over the traditional single-radar operation. The first of these is the improved

ability to discriminate targets that may be close to one another. Depending on

the geometry of the scenario and the locations of the radars, having a different

look aspect to the targets may show a larger Radar Cross Section (RCS) [36, 41]

and therefore improve the radar detection. A varying RCS example is shown in

publication C1 for a typical drone that can be bought off-the-shelf.

As shown in Figure 1.2, by carefully choosing the geometry of the radars, it

may be possible to vastly reduce the uncertainty in a target’s location. Modern

radar systems typically have a very high accuracy when creating a down-range mea-

surement by rapidly sampling the received signal. Because of the high sampling

rate, the down-range measurement error is likely to be in the order of a few me-

tres. However, the cross-range uncertainty in the measurement is likely to be much

larger than this. Without a range of advanced signal processing techniques such as

monopulse [36, 42], we can only say that the detected target is inside the beam or

not. If we consider larger radar beam-widths of 6◦ or more, this could translate to

distances of tens or hundreds of metres of uncertainty on the ground. Effectively,

we could use the down-range measurement in one of the radars to correct for the

cross-range measurement in the other radar, and vice-versa [43,44].

There are other potential advantages of using multistatic radar in practice:

Micro-Doppler effects can aid the identification and classification of targets.

Each target will produce a Doppler shift depending on its velocity with re-

spect to the radar. If the target were to contain moving or rotating parts (e.g.

wheels, blades, rotors etc.), it may be possible to detect the micro-Doppler

effect [45,46]. Having more aspects of the target visible to the multiple radars

at a given time may allow for more certainty when classifying a target.

Clutter reduction may be possible, but again is dependent on the sensor geom-

etry. Consider a sea clutter example where rough sea swells directed towards

the radar may create a number of false alarms [47, 48]. By having another
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Figure 1.2: Multistatic radar use case.

radar at a different location, and therefore having a different look angle, the

number of clutter points seen could be vastly reduced.

Survivability could also be seen as an advantage in this case (although it could po-

tentially apply to other multi-sensor systems). If a sensor fault occurred in the

single-radar case, the whole system would be offline. However for multi-sensor

cases, only the one node would be offline and information from other sensors

could still be exploited. If we were to consider the possibility of interference

from external sources, having multistatic radar would be a key advantage; it

would be very difficult to focus the interference in such a way that all radars

would be affected simultaneously [44].

Heterogeneous Sensing

The inclusion of heterogeneous sensors, rather than using just one sensor modality

across the sensor network (as with multistatic radar), could make it easier to detect

certain types of target. Relating back to the UAV example, using only radar could

make detection of small targets or targets with small RCS [36, 41] very difficult,

especially at longer distances; however the use of optical or infrared sensors could

aid detection as bright spots such as the battery pack will be easier to see. This

will aid the detection task, but could also lead to improvements when looking at

the higher-level identification and classification tasks. Features found in the differing

types of sensor could again be combined to gain more certainty on the type of target.

Having different types of sensor may also bring different levels of accuracy and

resolution to the larger sensor fusion picture. Consider a situation with a colocated
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Figure 1.3: Heterogeneous sensing use case.

radar and an imaging system attached to a common platform, and recall the un-

certainty reduction explanation above. For that to apply in multistatic radar, it is

necessary to have sensors that are physically separated and exploit the overlap in

uncertainty. For the colocated system, this is not required. The angular resolution

of the imaging system is likely to be much higher than the angular resolution of the

radar; hence the uncertainty reduction is directly possible.

One further prominent advantage of using an imaging system in the sensor net-

work is the large increase in the measurement rate. A radar may take a number

of seconds to perform a sweep of the surveillance region, or to decide to return

and look along a particular sightline, and create the next set of measurements to

be used in the tracker. An imaging system could take a fraction of that time to

form an image of the region and pass measurements to the tracker. With all of this

data available, target tracks can be maintained at a much higher rate, giving better

all-round situational awareness.

1.2.3 Organisation

This thesis is organised into the following chapters:

Chapter 2 introduces typical Bayesian filtering for estimation and tracking prob-

lems. A number of common STT algorithms and MTT algorithms will be

introduced as a precursor to their exploitation in later chapters; in order to
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put the proposed methods in to context, a number of state-of-the-art methods

in sensor registration are presented.

Chapter 3 provides an overview of the modelling assumptions that the algorithms

presented in later chapters are based on. This chapter will also present the

chosen fusion architecture that will be exploited throughout.

Chapter 4 presents the initial concept and design of a robust joint registration and

fusion framework, based on single-cluster methods, taken from the Random Fi-

nite Set (RFS) literature. The framework contains an Extended Kalman Fil-

ter (EKF)-Probability Hypothesis Density (PHD) filter to perform the MTT,

and a grid-based method [49] to estimate the registration parameter. Results

are provided on the heterogeneous sensing scenario on both simulated data and

a portion of real data. There are some issues with this implementation, such

as the inability to maintain a unique track history for each individual target

and the restrictiveness of the grid-based method, which leads on to Chapter 5

where a number of these are resolved.

Chapter 5 makes advancements to the method proposed in Chapter 4 by replacing

the EKF-PHD filter with a Message Passing (MP) method for MTT, which

leads to a number of advantages, such as the ability to maintain track iden-

tity for example. In order to implement this, a suitable Multi-Object Like-

lihood (MOL) (Section 2.3.3) has been derived to link the algorithm to the

particle filter used in the registration estimation. The use of the particle

filter overcomes the dimensionality issues when attempting to scale the grid-

based method to multi-parameter estimation. Results using simulated data

are shown for both the multistatic radar and heterogeneous sensing scenarios.

Chapter 6 looks at the problem of registration and fusion in networks containing

larger numbers of sensors. Now that we have the desired robust implementa-

tion from Chapter 5 that is suitable for the 2-sensor case, further simulations

have been carried out to test the scalability of the algorithm with respect to

the number of sensors, and the number of particles used to estimate the regis-

tration parameter(s). A very recent addition to the literature [50] provides a

suitable comparison for the results generated in this chapter. The simulated

results presented are based on a multistatic radar scenario, and show that the

proposed method from Chapter 5 achieves very similar accuracy to that of the

method in [50]; but requires a longer execution time to reach this result.

Chapter 7 provides a summary of the work carried out in this thesis, and provides

suggestions of where this research could be continued in future.
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1.2.4 Contributions

This thesis proposes new solutions to resolving the registration and fusion problems,

which are of significant practical importance. The key contributions and highlights

of this thesis are:

1. the development of scalable sensor registration algorithms such that they could

handle real-world issues such as resource-constrained platforms, dynamic time-

varying sensor biases, and asynchronous sensors (Chapter 4, Chapter 5 and

Chapter 6).

2. the further development of the single-cluster method, such that it can incorpo-

rate MTT and sensor calibration in a joint manner for sensor fusion systems

- a new application area for this method (Chapter 4).

3. a novel extension to MP for MTT algorithms, such that they can be incorpo-

rated in to the hierarchical framework; this includes the derivation of a suitable

new MOL function (Chapter 5).

4. a comprehensive range of simulations, based on varying types and sizes of

sensor setup, and with challenging target scenarios including crossing targets;

moreover, the simulations consider much larger biases (by at least one order

of magnitude) compared to those presented in previous literature (Chapter 4,

Chapter 5 and Chapter 6).

1.2.5 Publications

The following articles have been published as a result of the work presented in this

thesis. Article J1 is based on the work shown in Chapter 4, and articles J2, C2 and

C3 are based on the work in Chapter 5.

J1: D. Cormack, I. Schlangen, J. R. Hopgood and D. E. Clark, “Joint Registra-

tion and Fusion of an Infra-Red Camera and Scanning Radar in a Maritime

Context,” in IEEE Transactions on Aerospace and Electronic Systems. 2019.

J2: D. Cormack and J. R. Hopgood, “Message Passing and Hierarchical Models

for Simultaneous Tracking and Registration,” accepted in: IEEE Transactions

on Aerospace and Electronic Systems. 2021, to appear.

C1: D. Cormack and D. Clark, “Tracking Small UAVs Using a Bernoulli Filter,”

in Sensor Signal Processing for Defence (SSPD) 2016. Edinburgh, UK: IEEE,

2016.

C2: D. Cormack and J. R. Hopgood, “Message Passing for Joint Registration

and Tracking in Multistatic Radar,” in Sensor Signal Processing for Defence

(SSPD) 2019. Brighton, UK: IEEE, 2019.
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C3: D. Cormack and J. R. Hopgood, “Sensor Registration and Tracking from Het-

erogeneous Sensors with Belief Propagation,” in 22nd International Conference

on Information Fusion (FUSION) 2019. Ottawa, CA: IEEE, 2019.
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Background Theory and

State-of-the-Art

The application of Bayesian methods for target tracking are fundamental to the

outcomes in this thesis. Many methods presented in the academic literature are

based on strict or unrealistic assumptions that often do not translate well when

we wish to implement them in practice. This chapter will introduce a number

of fundamental concepts in target tracking that are important for the work and

solutions presented in later chapters, and also reviews recent literature in which

they appear.

Firstly, Section 2.1 will introduce the two general underlying models that track-

ing algorithms are based on. Section 2.2 will introduce the Bayesian estimation

problem, and explore some important Single-Target Tracking (STT) algorithms.

The move from STT to the Multi-Target Tracking (MTT) problem is far from triv-

ial; Section 2.3 will outline the key differences, and show the two main types of

MTT algorithm that appear in the literature. In order to understand the Message

Passing (MP) algorithms that are applied during Chapter 5 and Chapter 6, an in-

troduction to factor graphs is provided in Section 2.4. The registration problem

is a key aspect of the larger problem being resolved in this thesis and Section 2.5

will look at a range of recent solutions to sensor registration estimation and outline

the current state-of-the-art in this area. Finally, Section 2.6 will define the metrics

and mathematical tools that are used throughout this thesis to compare estimation

performance between the different methods. Other pieces of more focused theory

will be presented in each of the individual chapters when required.

2.1 Tracking Models

Bayesian target tracking algorithms are heavily based upon two underlying models;

a dynamic model that represents the target(s) motion from one point in time to the

next, and an observation model that represents the relationship between the sensor
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measurements and the state-space coordinate system.

2.1.1 Dynamic Models

Dynamic models underpin the prediction step found in Bayesian tracking algorithms.

The most popular form of dynamic models are kinematic state models, which are

found by setting a certain derivative of the position to zero mean white noise. These

models also include process noise, which models the uncertainty in the chosen dy-

namic model. Dynamic models could also describe other phenomena than target

motion, such as temperature or financial stocks.

In practice, a model must be chosen based on a best guess of how we think a

target will evolve over time. All of the models are based on the laws of physics.

It is indeed possible that over time, a target may move according to one motion

model, and then perform a manoeuvre that is a closer fit to an alternative model.

Multiple model tracking is possible through the use of the Generalised Pseudo-

Bayesian (GPB) approach, or potentially through an Interacting Multiple Model

(IMM) structure [51].

Three of the most commonly used models for target motion are the near-constant

velocity (NCV) model, near-constant acceleration (NCA) model and the Coordi-

nated Turn (CT) model; these will be briefly introduced next. A much wider range

of motion models are introduced and explained in [52].

Near-Constant Velocity model

The NCV model, which closely relates to the Discrete White Noise Acceleration

Model, is a very popular model choice in practice. It is robust to small manoeuvres

that last for short periods of time. The model itself can be obtained by discretising

the continuous-time system, containing a state vector x (assumed to contain position

and velocity components), and driven by a zero-mean white acceleration process

noise. After discretisation, the discrete-time state equation at time k is

xk|k−1 = Fkxk−1 + wk. (2.1)

For a 1-dimensional problem, the transition matrix Fk is comprised of

Fk =

[
1 ∆k

0 1

]
, (2.2)

where ∆k is the transition time, and the process noise term wk is assumed to be a

zero-mean white sequence with variance σ2
w. This term has covariance defined by

Qk = σ2
w

[
1
4
∆4
k

1
2
∆3
k

1
2
∆3
k ∆2

k

]
. (2.3)
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Near-Constant Acceleration model

From a practical perspective, a more applicable and easier to define model for ac-

celerating targets is the piecewise constant Wiener process acceleration model. In

practice, we may have a good idea of the expected target acceleration values, but

we are much less likely to know reasonable values for the jerk parameter (the fourth

order term). Because of this, the continuous time Wiener process acceleration model

is more difficult to tune in the real world.

The discrete model has a third order state equation (now including position,

velocity and acceleration values)

xk|k−1 = Fkxk−1 + Γkwk (2.4)

with

Fk =

1 ∆k
1
2
∆2
k

0 1 ∆k

0 0 1

 , (2.5)

Γk =


1
2
∆2
k

∆k

1

 , (2.6)

and the process noise term wk is the acceleration increment over a sampling period,

assumed to be a zero-mean white sequence with variance σ2
w. The process noise

covariance term can be shown to be

Q = Γkσ
2
wΓ′k = σ2

w


1
4
∆4
k

1
2
∆3
k

1
2
∆2
k

1
2
∆3
k ∆2

k ∆k

1
2
∆2
k ∆k 1

 . (2.7)

This NCA model is appropriate for situations where the acceleration is almost con-

stant for a sustained period of time (say at least 10 tracker iterations) [21].

Coordinated Turn model

Most vehicular turning manoeuvres follow a Coordinated Turn (CT) model. This

can be characterised with a nearly constant turn rate, and a nearly constant velocity.

Although turns in the real world are not coordinated in the strictest sense (for an

aircraft the ground speed is the air speed plus any wind speed), it can still be

modelled by a CT model with an amount of noise representing the error.

The state vector contains positions, velocities and accelerations. The three-

dimensional turn rate model is a non-linear model, as the velocity and acceleration

estimates present in the state vector are used to compute the turning rate that is
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used inside the state transition matrix. The transition matrix for the CT model is

Fk =

1 ω−1
k sin(ωk∆k) ω−2

k (1− cos(ωk∆k))

0 cos(ωk∆k) ω−1
k sin(ωk∆k)

0 −ωk sin(ωk∆k) cos(ωk∆k)

 , (2.8)

where ωk is the turn rate computed from the target state vector, and the process

noise covariance Q is the same as that of the NCA (see (2.7) above) [53].

2.1.2 Observation Models

The observation model helps form the update step of Bayesian tracking algorithms

by defining the relationship between the target state vector and the measurements

that are generated by the sensor. There are two main types of sensor that are found

in practice, active sensors and passive sensors.

Active sensors such as radar and sonar send out energy (be that acoustic or elec-

tromagnetic) to try and detect targets. Reflections of the transmitted signal will be

received by the sensor, allowing for position, and potentially velocity, measurements

to be generated.

Passive sensors which could also be acoustic and electromagnetic, or potentially

optical-based, do not emit any energy of their own. This means that they do not

provide a full position measurement; only angular directions of arrival are available,

without any range information. Consider the optical sensor case; each pixel in

the created image could relate to an azimuth and elevation value in the real world

through a three-dimensional projection [21]. Passive sensing is a very important

capability for modern platforms as it can make the platform less likely to be detected

by other sensors. By not emitting any energy, sensors, and the platform they are

on, can stay hidden until absolutely necessary.

There are two main relationships found in observations models, depending on

how the sensor measurements can be related to the state vectors. This may either

be a linear, or a non-linear, relationship.

Linear Relationship

Having a linear relationship between the observation space and the state space, and

linear dynamics, allows for an optimal solution to the tracking problem. An example

of a linear relationship in practice could be the tracking of an object in an image.

The state vector for the target(s) in the image may be in pixel coordinates (with

position and velocity components), and the output of a detector that attempts to

generate measurements from the image may provide pixel positions. From this, we

can see that the position components of the state and measurement vectors are

described in the same state space. In such a case, the observation matrix H is
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constructed such that the appropriate variables from the state vector are selected

for use in the residual calculations in the Kalman filter update step [54].

Non-linear Relationship

Many problems in practice cannot be constructed using a linear relationship, and

non-linear alternatives are required. This is often the case in radar target tracking,

where the state vector may be in Cartesian coordinates, and measurements are often

generated in polar or spherical coordinates. This is a problem for the Kalman filter

formulation, as this non-linear function does not preserve the Gaussianity of the

target distribution. In this case, an approximation is required to ensure that the

posterior distribution becomes Gaussian.

Some suitable approximations that can be made include a linearisation around

the current state estimate (found in the Extended Kalman Filter (EKF)) or the

use of a set of deterministic sigma points to perform the transformation between

spaces (found in the Unscented Kalman Filter (UKF)). The EKF will be exploited

to overcome the non-linear problem found in this work, and will be introduced in

more detail in Section 2.2.1.

2.2 Single-Target Tracking

Target tracking can be seen as a state estimation problem, where the state(s) of the

target(s) will vary over time. The models used to approximate the target dynamics

are often described in discrete time; however there are a number of non-linear and

continuous-time models available [52]. Often, the state transition is described using

a first-order Markov model denoted fk|k−1(xk|xk−1).

For the Single-Target Tracking (STT) formulation, at each time-step k, the target

state xk will generate a measurement zk according to some measurement equation

zk = hk(xk,vk), (2.9)

where hk(xk,vk) is a (non)linear transformation of the state vector and vk represents

some additive measurement noise dependent on the chosen model. The measurement

equation is often described using a likelihood function

lk(xk|zk). (2.10)

which describes the association of a measurement zk to a state xk at time k. As the

target moves over time, all of the state history from the initial time-step through to

time-step k is captured inside the posterior density p0:k(x0:k|z1:k) where z1:k is the

measurement history. The filtering density pk(xk|z1:k) is a marginal of this posterior
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density, which can be defined as the probability density of the state at time k, given

the measurement history z1:k.

The initial density p0 is often carefully chosen in practice (explored in Section 2.3)

so that a target track can be initialised. From this initial density, a Bayes recur-

sion containing the Chapman-Kolmogorov equation [55,56] and the Bayes update is

performed to reach the filtering density at time k using the equations

pk|k−1(xk|z1:k−1) =

∫
fk|k−1(xk|xk−1)pk−1(xk−1|z1:k−1)dxk−1, (2.11)

pk(xk|zk) =
lk(xk|zk)pk|k−1(xk|z1:k−1)∫
lk(x′|zk)pk|k−1(x′|z1:k−1)dx′

. (2.12)

These equations form the underlying recursion found in many tracking algorithms

such as the Kalman filter.

2.2.1 Kalman Filter/Extended Kalman Filter

The Kalman filter [54] is a well-known method for performing state estimation in a

linear system. It provides an optimal closed-form solution to the Bayes recursion if

we consider the underlying models to be linear and Gaussian. Both the dynamical

model and the measurement model are linear transformations with additive Gaussian

noise such that

xk = Fkxk−1 + wk, (2.13)

zk = Hkxk + vk, (2.14)

where Fk is the state transition matrix, wk is the process noise term, Hk is the

observation matrix, and vk is the measurement noise (both dependent on the mea-

surement model for the sensors being used). The process and measurement noises

are generated through zero-mean Gaussian variables with covariance matrices Qk

and Rk respectively. These lead to a transition density of

fk|k−1(xk|xk−1) = N (xk; Fkxk−1,Qk), (2.15)

and the likelihood function

lk(xk|zk) = N (zk; Hkxk,Rk), (2.16)

where N (z; m,P) denotes the distribution for a Gaussian random variable with

mean m and covariance P. The Kalman filter recursion equations are published in

many other pieces of literature [19,54,57] and will not be presented here.

The Kalman filter is the optimal solution for state estimation when the modelling

assumptions are all linear. However in practice, there are many applications which
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do not follow these linear assumptions. For example in the scenarios considered in

this thesis, the state-space is in Cartesian coordinates, and the sensor measurement

space(s) is/are in Polar coordinates. In order to overcome this non-linearity between

spaces, we need an alternative to the basic Kalman filter. Two suitable methods

are presented here and exploited later, the first of which is the Extended Kalman

Filter (EKF).

The EKF is a sub-optimal estimation algorithm which can handle non-linear

models [58]. It uses a Taylor series expansion of the dynamic and measurement

model up to the first-order term, and hence disregards all of the non-linear compo-

nents. Rather than having the observation matrix Hk and being able to directly

observe state variables in the received measurements, Hk is now a Jacobian matrix,

made up of partial derivatives, such that

Hk(x) =
∂h

∂xk
, (2.17)

where h is a non-linear function. The use of a series expansion in either the prediction

or update steps introduces extra unmodeled error in to the estimation process, which

violates basic assumptions about the prediction error:

• they are unbiased;

• the covariances are equal to the ones computed by the algorithm.

Alternative non-linear filtering algorithms include the UKF [59,60] which uses a

set of deterministic sigma points from the Gaussian bell, and sends them through

the non-linear model. By doing this, these points will lose their Gaussian distribu-

tion, however they will still be approximated by a Gaussian posterior. A further

alternative is the Cubature Kalman Filter (CKF) [61], which efficiently computes

multivariate moment integrals using the spherical-radial cubature rule.

2.2.2 Sample-Based Approaches

If the true underlying distribution is distinctly non-Gaussian e.g. if the distribution

is heavily skewed and/or multimodal, then a sampling-based approach may provide

a more accurate solution. Rather than having the assumption that the posterior

density can be exactly represented by a Gaussian distribution, it may be more

appropriate to represent this posterior with a set of weighted discrete samples [62,63].

There are a number of sampling-based approaches and algorithms that fall in to

this category, a subset of which will be introduced in the following subsections. The

notation used here will closely follow that given in [49].
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Grid-Based Methods

The first sample-based approach of interest to this work is the grid-based method. A

grid-based method can provide an optimal recursion for the filtering process if the

state space is discrete and the state space contains a finite number of states [49]. In

situations where we have continuous spaces, we can segment this space into N cells.

With this segmenting process, we arrive at an approximate grid-based method [63].

Suppose that the prior probability density function (pdf) from k−1 is approximated

by

pk(xk−1|z1:k−1) ≈
N∑
i=1

wik−1δ
(
xk−1 − xik−1

)
. (2.18)

In order to perform the prediction and update recursion for this method, we use

[49,63]

pk(xk|z1:k−1) ≈
N∑
i=1

wik|k−1δ
(
xk − xik

)
, (2.19)

pk(xk|z1:k) ≈
N∑
i=1

wikδ
(
xk − xik

)
. (2.20)

Normally the weights used here would involve solving some integrals, as each cell

covers a region of a continuous space. However to simplify the computation further,

it can be assumed that the weights are computed at the centre point x̄ik of each cell

xik. This reduces the weights calculations to

wik|k−1 ,
N∑
j=1

wjk−1p(x̄
i
k|x̄

j
k−1), (2.21)

wik ≈
wik|k−1p (zk|x̄ik)∑N
j=1w

j
k|k−1p

(
zk|x̄jk

) . (2.22)

The grid-based method comes with a number of caveats however. The chosen grid

must be of a high resolution, or sufficiently dense, so that we can get a good approx-

imation to the continuous state-space. One other disadvantage, which will become

apparent in Chapter 5, is that when the dimensionality of this state-space increases,

the computational cost of estimating in this space grows exponentially (assuming

square cells with equal side-lengths).

Importance Sampling

While the grid-based method provides an optimal solution when the state space is

discrete and has a finite number of states, this will not always be the case in practice

and alternative sample-based approaches are required. In order to reach the particle

filter formulation in the next section, the concepts of Monte Carlo (MC) integration
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and importance sampling will be introduced first.

Monte Carlo integration provides the basis for Sequential Monte-Carlo (SMC)

methods. Suppose that we wish to evaluate a multidimensional integral:

Y =

∫
f(x)π(x)dx. (2.23)

This could potentially be a very difficult integral to solve analytically in practice

and hence we may wish to find an MC estimate of this integral. The estimate of the

above integral is the sample mean:

YN =
1

N

N∑
i=1

f(xi). (2.24)

If the samples xi are drawn independently, then YN will be an unbiased estimate

and will converge to Y according to the law of large numbers.

When considering the Bayesian estimation framework, the density π(x) is the

posterior density. In practice, it is not often possible to accurately sample from the

posterior density itself as it is likely to be non-standard and only known up to a

proportionality constant. We can however apply the importance sampling method to

sample from a similar distribution [49]. This similar distribution is often called the

proposal distribution, denoted as q(x) for the remainder of this section. By correctly

weighting the samples drawn from this proposal distribution, the MC estimation

process is still viable. As long as q(x) and π(x) have the same support, the integral

in (2.23) can be rewritten as

Y =

∫
f(x)

π(x)

q(x)
q(x)dx. (2.25)

From this, we can then form an MC estimate of Y by taking samples from q(x) and

computing the weighted sum

YN =
1

N

N∑
i=1

f(xi)w̃(xi) (2.26)

with the importance weights

w̃(xi) =
π(xi)

q(xi)
. (2.27)

This formulation then leads to the particle filter algorithm.

Particle Filtering

By applying the importance sampling method to the non-linear filtering problem,

we arrive at the particle filter algorithm [63,64]. The main concept of this filter is to

represent the posterior density with a set of weighted random samples, and compute
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state estimates based on these samples. As the number of samples increases, this

sample-based approximation of the true posterior becomes a more accurate represen-

tation of the true posterior, and the particle filter approaches the optimal Bayesian

estimator.

Many of the following equations for the particle filter algorithm are closely re-

lated to those in the grid-based method and importance sampling above; the full

algorithm is presented in [49, pg.38-39]. The samples can follow some chosen dynam-

ical model, and their states can change over time through resampling [65]. Although

this technique now lets the particles flow, and almost “search” for the best estimate,

there are some new problems that need to be overcome. The first problem is particle

degeneracy. After a small number of iterations, all of the particles except for one

will have very small weights. Because of this problem, a lot of the computational

effort is being focused on updating particles that will have little to no effect on the

overall estimation of the updated state. It is possible to gain a measure of how

much degeneracy is present in the samples by computing an estimate of the effective

sample size [63, Eq. (51)],

N̂eff =
1∑N

i=1 (wik)
2 . (2.28)

If the effective sample size falls below a chosen threshold, then a resampling step

should be performed to refresh the particles states and weights; however the use of

resampling can lead to the further problem of impoverishment. Depending on which

resampling algorithm is chosen in the design, one could end up replicating the same

particle state many times due to its high weighting, and having many particles with

low weights. These low-weighted particles will be replaced with the state of the

highly-weighted particle, such that all particles could potentially lie on top of one

another in one place, leaving little to no variance in the distribution.

2.2.3 Probabilistic Data Association

So far, the STT algorithms presented have assumed an ideal case where the only

measurement generated by the sensor corresponds to the single point target in the

region. This assumption is now relaxed; the sensor can now generate more than a

single measurement at a given iteration. One measurement will belong to the tar-

get, with other measurements being considered as false alarms. In order to handle

the clutter points, we need a different algorithm; the Probabilistic Data Associa-

tion (PDA) filter. It incorporates correlation and data association (DA) steps (see

Section 2.3.1) to calculate association probabilities between each correlated mea-

surement and the target of interest. In order to keep the algorithm as simple and

efficient as possible, after each iteration, a mixture of Gaussians is reduced down to

a single Gaussian using moment matching (similar to the GPB approach [57]).

The implementation of PDA is very similar to that of the Kalman filter with
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a few extra steps including: a correlation step which will form a list of feasible

measurement-to-target associations; the computation of association probabilities for

each of these feasible associations; and an inflation of the covariance of the posterior

distribution, so that any association uncertainty is accounted for. Depending on the

number of feasible associations that are defined, the computational effort required

for the PDA method is approximately double that of the Kalman filter approach.

This doubling of computational effort holds if only one measurement is inside the

gate at each time-step.

The filter first performs the typical prediction step using the chosen dynamical

model, followed by the new correlation step. Correlation gates are computed for

each measurement-target pair. If the computed gate

ν = (zk − hk(xk|k−1))′S−1
k (zk − hk(xk|k−1)), (2.29)

where Sk is the innovation covariance, zk is the current measurement and hk(xk|k−1)

is the target state using the appropriate parameterisation, is smaller than some

chosen gating threshold, the measurement-target pair becomes a feasible association

that we can attempt to resolve next.

The PDA filter uses a probabilistic association scheme to perform its association

step; global association/assignment algorithms will be covered in more detail in the

next section. For each of the feasible associations, a weight is computed based on a

Gaussian likelihood, that the chosen measurement-to-target association is true. We

must also take in to account that the measurement is not the correct choice i.e. the

measurement is actually a false alarm or clutter point, and does not belong to the

target. The association probabilities can be computed by

βi =


Li

1−pdpg+
∑m
j=1 Lj

i = 1, . . . ,m

1−pdpg
1−pdpg+

∑m
j=1 Lj

i = 0
(2.30)

where

Li ,
1

pg

N (zi;hk(xk|k−1),Sk)pd

λ
, (2.31)

i = 1, . . . ,m contain the feasible associations, i = 0 represents the no association

term, pd is the probability of target detection, pg is the gate probability, and λ is

the mean number of false alarms per scan. Approximations of these probabilities

are important for the MP implementations exploited later in Chapter 5, and in

Chapter 6.

Once we have a probability for all of the combinations, a weighted update and

state estimation is performed to gain the posterior pdf of the target. These steps

are very similar to those found in the Kalman filter update but with a few small

changes. Rather than just having the single innovation, or residual term, a combined
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innovation yk that covers all of the measurements must be computed -

y =
m∑
i=1

βiyi (2.32)

where

yi = zi −Hxk|k−1 (2.33)

The covariance calculation must take account of the multiple measurements that

could be associated to the target. The updated covariance is given by

Pk = β0Pk|k−1 + (1− β0)PC
k + P̃k, (2.34)

where the covariance of the update with the correct measurement is

PC
k = Pk|k−1 −KSK′ (2.35)

and K is the Kalman gain. The covariance of the posterior pdf is also increased by

the spread of the innovations term (due to association uncertainty) [21]

P̃k , K

[
m∑
i=1

βiyiy
′
i − yy′

]
K′. (2.36)

This filter provides a platform for moving on to MTT scenarios next, as it contains

the key elements of an MTT algorithm. The PDA filter can be extended to the

Joint Probabilistic Data Association (JPDA) filter; a common vector-type method

found in practice.

2.3 Multi-Target Tracking and Fusion

The MTT problem is a very important problem in practice, and is now prominent

in many applications. Much of the early development work in the area was heavily

driven by aerospace applications, where the aim was to track hundreds of targets

from radar measurements. At each time step k, a set of noisy measurements is

generated by the sensor and passed in to the tracking algorithm. It is up to the

tracking algorithm to make sense of these measurements as there are likely to be

false alarms and missed detections.

In the general case, the MTT problem now includes a model for target birth and

target death. The process of initiating and terminating tracks is orthogonal to the

multi-target tracking problem. In single target tracking, we know that there will

either be zero, or at most one, target. In MTT, we know that there are, with high

probability, N > 1 targets. The birth model is required so that new targets entering

from the edges of the state space, or targets that have not previously been detected
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Figure 2.1: An example of an MTT scenario.

in the state space (e.g. hidden/stealthy/obscured targets) can be tracked. We also

require a death model so that targets leaving the state space can be appropriately

modelled. These form a part of the multi-target dynamical model. Each target

xk−1 that exists from the previous time-step k − 1 will either continue to exist at

time-step k, with probability ps, and move to a new state according to the chosen

transition model fk|k−1 (xk|xk−1), or the alternative is that the target will no longer

exist at time k with probability 1 − ps. Each target is assumed to evolve and

appear/disappear independently of the other targets. Other variables could also be

included in the multi-target model and propagated over time, such as the probability

of target existence [66]; a variable commonly found in Bernoulli-type processes and

filters. This probability could act as a basis for the birth/death model in practice;

if this probability is higher/lower than a given threshold, we could say that a target

either does, or does not, exist.

The last element is the modelling of new targets. There are a number of different

methods for initialising new target states, such as measurement-driven birth [67],

where we could place new states on all measurements; we could exploit correlation

and association information. If a measurement does not correlate or associate with

any current targets, this may be the first time we have observed it so we will place

a new state on that location. Further alternatives could take spatial or contextual

information into account such as randomly placing new states across the space to

cover the full region; locate them close to a region where we would expect more

targets to be present, e.g. ships entering/exiting a harbour, on roads etc; or by

initialising a large distribution across the whole space with a given birth weight.

For the standard multi-target observation model, each target xk surviving to
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time k will either be detected with probability pd and generate a sensor measurement

zk,m ∈ Zk with a likelihood lk(xk|zk,m), or not detected with probability 1 − pd. It

should be acknowledged that the probability of detection pd is potentially time-

varying and state-dependent; however for simplicity and brevity, we will assume

that it is constant throughout. As well as the target measurements, Zk will likely

contain a number of false alarm measurements. False alarm rates tend to follow the

Poisson distribution, with a uniform spatial distribution across the measurement

space [19, 21]. Some alternative clutter models will be explored in Section 2.3.3

where the Panjer filter is introduced. The standard observation model assumes that

each measurement can only be generated from one target, i.e. a measurement cannot

be associated to more than one target, and each target will generate a measurement

independently from other targets [19]. Although this is the standard model, other

models do exist in practice which can take other situations in to account such as

extended targets [68] and unresolved targets [69].

2.3.1 Association Algorithms

Before some common MTT algorithms are introduced, there is one further aspect

that needs to be examined in more detail; the association problem. This was briefly

introduced in Section 2.2.3 for the single-target probabilistic case, however this needs

to be extended for the multi-target case, where we need to resolve the global assign-

ment problem.

Again, a correlation step is used to remove all of the measurement-to-target pairs

whose gate is larger than the chosen gating threshold (see Section 2.2.3), which will

save on computation time during the association step. The correlation window

size and shape can be designed depending on the application. For example, this

window could be a circular or elliptical shape, based on a volume defined by the

chi-square distribution with nz degrees of freedom for a general surveillance scenario.

Another example could be to use a rectangular correlation window, which is often

used in situations where the state space and the measurements are both in Cartesian

coordinates.

In an ideal situation, only one measurement would lie inside the correlation region

for each individual target (Figure 2.2); this would make the association problem

very straightforward as there is only one feasible measurement-to-track pair in the

immediate region. Of course it should be noted that this feasible measurement, as

defined through the correlation process, could be an incorrect one and not match the

true measurement in practice. However, this rarely happens in practice and we often

see multiple measurements inside the region for each target (Figure 2.3). This could

be due to false alarms, or a target that has generated multiple measurements (the

target may be significantly larger than the range and azimuth resolution of the radar

[36]). The case of multiple measurements per target would break the underlying
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Figure 2.2: Simple correlation-association example, only one feasible candidate for
association to the target. The ellipse represents the correlation gate.

assumption of point targets, i.e. at most one measurement being generated by a

single target. In practice, a clustering, collapsing, or centroiding method could

be used to reduce these down to a single measurement, or develop an appropriate

observation model such that extended targets can be tracked [68]. It should be noted

that these clustering routines are not MTT-specific and could also be applied in the

STT environment if the problem space required them. For the work presented in

this thesis, it will be assumed that all targets are point targets, and each of these

will only generate a single measurement. We need to make a decision on which of

these feasible associations should be assigned for the update step.

There are a number of algorithms available for resolving this DA (or assignment)

problem when we have a number of feasible measurement-target associations. The

simplest approach is to use the nearest neighbour approach, which will assign the

measurement that is closest to a predicted state. Any appropriate distance metric

could be used here depending on the state and measurement representation, e.g.

Euclidean, Mahalanobis, etc.). Although this is simple and easy to implement, it

is trivial to see the issues that arise in practice with this approach. The optimal

solution may often not be found, and this method is very poor when we consider

dense tracking scenarios with many closely-spaced targets. This nearest neighbour

approach can be extended to the Global Nearest Neighbour approach, which is

discussed in more detail in the next section.

A very popular association algorithm is the Hungarian algorithm [70], often more

commonly known as the Munkres algorithm [71]. It was developed in the mid-1950s

and remains a common and popular choice when developing target tracking meth-

ods. By performing a number of repeated row and column operations to the cost

matrix (a matrix populated with (weighted) distances between measurement-target
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Figure 2.3: Difficult correlation-association example, one target has three candi-
dates, and the other targets has two candidates. One measurement is in the over-
lapping region, but can only be associated to one of the targets.

pairs), the optimal assignment of measurements to targets can be found. There are

a number of limitations with this method however; it assumes that the matrix di-

mensions are equal (a balanced, or square, matrix) i.e. the number of measurements

to be associated is equal to the number of targets, giving a 1-1 mapping. Without

some intensive pre-processing of measurements and strict correlation thresholds, this

situation can be difficult to reach, especially when considering the dense scenarios.

One alternative for resolving this issue in practice may be to populate the smaller

dimension with a set of dummy points that are sufficiently far away from the true

points. This should not affect the association result, and will balance the dimensions

of the matrix. A later extension to the Munkres algorithm in the early-1970s [72]

adapted the algorithm to allow for assignment in rectangular matrices.

An alternative to Munkres is the Auction algorithm [73], which builds on a

number of the features of Munkres, but is much more efficient, and converges to

the optimal assignment at a much faster rate. Auction is aptly named, as the

steps leading to the optimal assignment resemble a typical bidding process. Each

of the measurements effectively “bids” repeatedly for targets to be associated to.

After the “price” for a track reaches a level where no further bidding by any of

the measurements would be profitable, the algorithm will stop, and the “winners”

receive their tracks. The original Auction algorithm was also only designed for

assignment in square matrices much like the original Munkres implementation. An

alternative called the Forward/Reverse Auction algorithm [74] was developed to

extend Auction to deal with rectangular matrices. A comparison of these techniques,

along with some brute force methods (where every possible measurement-to-track

pair is assessed for suitability before a decision is made) is given in [75]. Their full
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Figure 2.4: A complete bipartite graph, all associations are feasible.
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Figure 2.5: Bipartite graph, post-correlation process. Some associations are no
longer feasible.

mathematical framework and derivations are provided in [76].

A fourth method, which will be exploited as a part of this work later in Chapter 5

and Chapter 6, is the Sum-Product Algorithm for Data Association (SPADA) [77].

It exploits the power and efficiency of Bayesian graphical models to resolve the

DA problem very quickly. The association problem is created on a bipartite graph

structure (see Figure 2.4 and Figure 2.5).

A bipartite graph is a graph with vertices that can be split into two disjoint and

independent sets, so that every edge of the graph connects one vertex in set A to one

vertex in set B. This fits the association problem perfectly, with one set containing

measurements and the other set containing tracks. It should be noted that both the

Munkres and Auction algorithms could also be formulated using bipartite graphs.

Belief Propagation (BP) is used to approximate the association probabilities between

measurements and targets, and the Sum-Product Algorithm (SPA) passes messages

around a bipartite graph structure that represents the problem. After a set number

of Message Passing (MP) iterations have been completed, or a convergence criterion

has been reached, the algorithm stops and beliefs are computed for each associated

pair. This method has been shown to be very efficient in comparison to Markov

Chain Monte-Carlo (MCMC) methods for data association [23]. An alternative to

the SPA is the Max-Product Algorithm. Rather than attempting to find and solve

the marginals, the Max-Product algorithm attempts to maximise a global function,

and works with Maximum A Posteriori (MAP) estimates. Working with MAP

estimates can be more erratic, as the sample with the highest weighting will likely

change quite rapidly over time. When using the weighted mean, the state estimate

will likely be much smoother over time and be much more consistent. Because of

30



Chapter 2: Background Theory and State-of-the-Art

this, the SPA is often preferred. The algorithms themselves are almost identical [78].

One further interesting idea may be to try and associate over windows of time,

rather than at individual time-steps using efficient schemes such as the one presented

in [79].

2.3.2 Vector-Type Methods

Now that all of the appropriate models and functions have been introduced, some

popular and state-of-the-art methods for performing MTT will be briefly sum-

marised. MTT algorithms are broadly split in to two categories; vector-type methods

and point process methods. Vector-type methods will be addressed first.

Vector-type methods allow for each individual target state to be distinguishable

from the overall population, i.e. it has a unique target identity, and can be treated as

an individual [80]. The simplest algorithm that falls into this category is the Global

Nearest Neighbour (GNN) filter, which is an extension of the nearest neighbour

algorithm discussed earlier [21]. This filter will search for the optimal solution when

assigning measurements to targets by attempting to either maximise or minimise

a total cost function, such as weighted distances or likelihoods. Once the filter

has performed this step, it then uses the standard Bayes update on the associated

measurement for each track. Again, this is a simple scheme that would only require

a simple filter with an association algorithm, however it has the same pitfalls as the

nearest neighbour algorithm [81]:

• poor performance when we have a dense scenario with many closely spaced

targets;

• computationally expensive to run;

• susceptible to track loss and track splits.

The next vector-type algorithm is an extension of the PDA filter presented in Sec-

tion 2.2.3, namely the Joint Probabilistic Data Association (JPDA) filter [21,82,83].

The filter is designed to deal with a fixed and known number of targets, which can

potentially limit its use in practice. When considering the multiple target case,

JPDA uses joint association events and joint association probabilities to avoid is-

sues with conflicting assignments during the track update step. Determining these

events and probabilities can become a very cumbersome task especially with a larger

number of targets. There have been a number of attempts to try and reduce this

computational expense by using approximations [2, 84–86] and alternative associ-

ation algorithms such as SPADA [77]. As the original JPDA algorithm was only

developed for a fixed and known number of targets, a further extension to the Joint

Integrated Probabilistic Data Association (JIPDA) filter [87] allows for an unknown

and time-varying number of targets, as well as models for target birth and target
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k-1 kk-2

Figure 2.6: Example of an Multiple Hypothesis Tracking (MHT) structure.

death. The JPDA and JIPDA filters are of interest, as the MP algorithm introduced

in Chapter 5 is a MP-based approximation of these filters [22, 23]. An introduction

to MP and factor graphs is provided in the next section.

The last vector-type algorithm is that of Multiple Hypothesis Tracking (MHT)

[88–90], a deferred decision approach to MTT, and one of the oldest and most

robust techniques that could be used. The MHT structure grows over time in to a

form of tree diagram as shown in Figure 2.6. At each time-step k, the algorithm

considers the association of sequences of measurements and evaluates the probability

of all of the potential association hypotheses. When the new set of measurements

is fed into the algorithm, a new set of hypotheses is generated from the hypotheses

at time k − 1, and the probability is then computed using Bayes rule. Once we

have selected our most probable tracks (this can be very computationally expensive

as it involves an exhaustive search), a Kalman filter update can be used on the

individual track to give the new trajectory. The use of hypothesis management is

critical when attempting to implement a form of MHT scheme in practice as in

general, MHT scales exponentially over time. This could involve the pruning or

removal of hypotheses that have a low probability, the merging of hypotheses that

have current states which are located very close to one another, or only considering

a small window of time, rather than maintaining hypotheses from time 1 to time k.

2.3.3 Point Process Methods

The alternative to vector-type methods are the more recently developed point pro-

cess methods, which have gained a lot of interest in the target tracking literature.

They have gained more interest as they have shown to be more efficient in a number

of applications [23], and the potentially costly association problem is avoided [91].In

this case, although the target states and measurements are still treated as random
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vectors, the point process methods do not distinguish or identify individual targets

in the larger population [80]. This is a useful tool when analysing observed pat-

terns of points, where the points could represent the locations of some objects, e.g.

measurements on a radar screen. Point processes can be described by some chosen

discrete distribution. For example let us consider a Poisson point process; the cardi-

nality is Poisson distributed with a given mean, and the points will be independent

and identically distributed (i.i.d.) according to some chosen distribution (uniform,

Gaussian, ...). This approach to MTT still retains the Bayesian methodology seen

with vector-type methods.

Point Processes and Probability Generating Functionals (PGFLs)

The Probability Hypothesis Density (PHD) filter, its generalisations, and the Multi-

Object Likelihood (MOL) functions introduced later in this section, can be derived

from point process theory. The Finite Set Statistics (FISST) theory proposed by

Mahler in his seminal works [92,93], along with an Random Finite Set (RFS) repre-

sentation, provides an alternative formulation to the point process approach applied

in this thesis. A point process denoted Φ on X is a random variable on the space

X =
⋃
n≥0X n of finite sequences in X . A single realisation of Φ is a sequence

ϕ = (x1, . . . , xn) ∈ X n, where the number n ∈ N and the states xi ∈ X of the

objects are random.

The main point process that is required, in order to reach the PGFLs that are

presented in Appendix A, is the i.i.d. cluster process:

Definition 2.3.1 (Independent and identically distributed cluster process). An in-

dependent and identically distributed (i.i.d.) cluster process with cardinality c and

spatial distribution s? describes a group of objects with size described by c and i.i.d.

states according to s?. Its PGFL is given by

Giid(h) =
∑
n≥0

c(n)

[∫
h(x)s?(x)dx

]n
, (2.37)

where h is a real-valued function.

The i.i.d. cluster process is general as it does not make an assumption about

the cardinality distribution c [94,95]. By substituting in the appropriate cardinality

distribution, it is possible to gain the PGFLs defined in Appendix A. The first

cardinality distribution of interest to this work is the Bernoulli distribution:

c(0) = 1− p, c(1) = p, c(n) = 0 for n > 1. (2.38)

A Bernoulli process can be used to describe binary events such as the detection

and survival of individual targets in the surveillance region, as they only have two
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possible outcomes; either, the object no longer exists (or is not detected by the

sensor) with probability (1 − p), or the object continues to exist (or is detected by

the sensor) with probability p. The second important distribution is the Poisson

distribution

c(n) =
λne−n

n!
, (2.39)

which has found popularity in the community, as it can describe common phenomena

in a range of applications, while only being dependent on one parameter. The

exponential form also makes it easy to work with. When constructing the PHD filter,

Poisson processes are used to represent the predicted target and clutter processes.

The final distribution of interest is the Panjer distribution [95,96]

c(n) =

(
−α
n

)(
1 +

1

β

)−α( −1

β + 1

)n
. (2.40)

The Panjer process has not often been used in the engineering community previously,

but has been widely used in the actuarial mathematics area [96]. The Panjer process

allows much more flexibility in the underlying model choices, particularly in the case

of false alarm distributions as explored later in this section. More information on

the Panjer distribution and how it can be implemented in the MTT environment

can be found in [95,97].

By using the PGFLs and mathematical tools given in Appendix A, it is possible

to derive the the PHD filter, and its generalisations such as the Panjer filter.

The PHD filter

The original filter developed in the RFS literature is the Probability Hypothesis

Density (PHD) filter [92], with the commonly-found Gaussian mixture implemen-

tation coming later in 2006 [91]. The PHD filter is a first-moment approximation

which alleviates the computational intractability of the multi-target Bayes filter.

By propagating just the first moment (mean number of targets), the PHD filter

operates on a single-object state space, and avoids dealing with the data associa-

tion problem. The full recursion is defined by two equations, which still follow the

Chapman-Kolmogorov equation and Bayes rule:

µk|k−1(xk) = µb,k(xk) +

∫
ps(xk)fk|k−1(xk|xk−1)µk−1(xk−1)dxk−1 (2.41)

µk(xk) = [1− pd(xk)]µk|k−1(xk) +
∑
z∈Zk

pd(xk)l(xk|z)µk|k−1(xk)

µc,k(z) +
∫
pd(xk)l(xk|z)µk|k−1(xk)

(2.42)

where µk|k−1(xk) is the predicted PHD intensity, µk(xk) is the updated PHD inten-

sity, µb,k(xk) is the intensity of the birth point process (a Poisson point process and

independent of the surviving objects point processes) and µc,k(z) is the intensity of
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the clutter point process (a Poisson point process and independent of the object

generated measurement point processes). The predicted and updated multi-object

point processes are also approximated by Poisson point processes. By avoiding re-

solving the data association problem, the PHD filter is a very fast algorithm, but

this comes at a cost of losing a history of states and the inability to draw target

tracks, unless extra elements such as labelled sets or a Gaussian tagging scheme are

introduced (see explanation of Generalised Labelled Multi-Bernoulli (GLMB) filter

below). This relates back to the idea of distinguishability of targets that was in-

troduced earlier. The PHD update step also includes mixture reduction techniques

similar to those found in the MHT algorithm described previously. These include a

pruning step where Gaussians that have low weights are deleted from the mixture,

and a merging step where Gaussians are merged together if they are located close to

one another, or significantly overlap, depending on which type of distance measure is

used e.g. Mahalanobis, Hellinger [98] etc. One further drawback is the assumption

that the pdf is formed from the cluster process approximation. Because of more

assumptions, performance and accuracy are likely to be reduced.

A Sequential Monte-Carlo (SMC) implementation of the PHD filter was first

developed in 2005 [99]. This particle-based implementation of the PHD filter can

work directly with non-linearities, such as the Cartesian to Polar transformation

between spaces. Directly applying typical SMC methods to propagate the PHD

intensity would fail as it is not strictly a pdf. Instead, the intensity function is

represented by a large set of weighted particles which are propagated over time using

a generalised importance sampling and resampling strategy. The number of particles

in this set can be continually adapted, depending on the estimated number of targets

in the surveillance region [99]. For example, we could inject more particles into the

space if we think more targets have appeared in the region, or if the uncertainty in

the existing target states have grown.

A further implementation that could be applicable to such problems was also first

presented in 2005 [100]. While mainly developed for tracking extended targets which

generate multiple measurements, the models that this implementation is based on

are very suitable for particle-based implementation. It can also be extended to the

multiple target tracking problems if required.

PHD Filter Generalisations/Extensions

A further generalisation of the PHD filter is the Cardinalized PHD (CPHD) fil-

ter [94,101]. Rather than propagating just the moments of the cardinality distribu-

tion, the CPHD filter propagates both the PHD and the full cardinality distribution,

which gives higher tracking accuracy but requires much higher computational ex-

pense. However, a more recent addition to the literature provides a form of “middle

ground” between the PHD filter and the CPHD filter. The Panjer filter was first
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introduced in [97] as a useful extension to the first-order PHD filter defined earlier.

Rather than only propagating the first-order moment, the Panjer filter can propa-

gate both the mean and variance of the point process, under the assumption that the

number of predicted targets and the false alarms are Panjer distributed. The Panjer

distribution is characterised by two parameters α and β which closely correspond to

its mean and variance. Depending on how these parameters are set, three different

distributions can be implied:

Case 1: {α, β} ∈ R+ × R+, represents a negative binomial distribution, whose vari-

ance is greater than the mean. With the variance much larger than the mean,

we are likely to see much more variation in the number of sensor measurements

being generated at a given iteration. Having this false alarm distribution avail-

able would be useful in situations where there may be sudden large influxes of

measurements such as strong returns on a rough sea [48, 102]; or in built-up

urban environments where there may be multiple measurements generated due

to multipath effects from buildings and objects [36].

Case 2: {α, β} ∈ Z− × R−, represents a binomial distribution where the variance

is less than the mean. With the smaller variance, we are likely to see a much

more consistent false alarm rate, and in practice, maintain a constant proba-

bility of false alarm pFA. This type of false alarm distribution could be used

in application areas that have near-static or slow-changing target dynamics.

Another potential use case for this distribution may be in ground-based radar

where the sky is being scanned for targets. Relating back to case 1 above, if an

airborne radar is attempting to detect targets on the ground, it is likely to get

returns from many bright objects such as buildings etc. This is not the case for

ground-based radar, as there are very limited objects to detect in the sky, and

therefore a much more consistent number of false alarms generated. It should

be noted that this is dependent on the frequency that the radar operates at.

Case 3: {α, β} → ∞, α
β

= λ = const., is the limit case where the ratio stays con-

stant, resulting in the Poisson distribution. This represents the standard false

alarm model used in many pieces of target tracking literature.

Having these three different cases available gives more flexibility in modelling the

number of targets and false alarms. A full mathematical derivation and pseudo-code

is available elsewhere [97,103].

There has been a lot of recent attention in labelled methods such as the GLMB

filter [104, 105]. By including labels with the target states, it is then possible to

maintain a unique identity for each target, and therefore gain distinct track histo-

ries. Each target is labelled with an ordered pair of integers; firstly by the time that

the target was born and secondly a unique index so that targets born at the same

time-step can be distinguished from one another. This removes any ambiguity over
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numbering conventions and this keeps a consistent label over time that does not re-

quire changing or updating. These labelled methods almost extend the functionality

that we see within the PHD filter, which in its standard implementation has no abil-

ity to keep a track of target identity. Filters such as the GLMB are however based

on a lot of the RFS and FISST foundations [92] that also form the PHD filter. By

including these labels, the high-level features offered by the labelled-RFS methods

are similar to those offered by vector-type methods such as MHT for example.

These labelled methods, however, come with a significantly higher computational

cost than the standard PHD filter, making them less suited for practical implemen-

tation on a mobile system where we need scalable and efficient algorithms.

Single-Cluster Methods

The solution that is proposed for resolving the sensor registration and tracking

problems is a single-cluster method. Cluster processes describe a hierarchical frame-

work of point processes where one realisation of an offspring process is conditioned

on the realisation of some parent process [106]. In other areas of the literature,

this may be referred to as a doubly-stochastic process [107], or a single-cluster

point process [106, 108]. An alternative to the single-cluster method is the Rao-

Blackwellised (RB)-PHD filter, which was introduced for the Simultaneous Locali-

sation and Mapping (SLAM) application in [109]. Rather than the assumption of

hierarchical point processes that is used in the single-cluster method, the RB-PHD

filter requires Poisson approximations on both the prior, the posterior, and for the

SLAM application, an approximation on the number of features. Because of the

extra approximations made in the RB-PHD filter, the single-cluster method should

give a more realistic representation of the true multi-object distribution [106].

Single-cluster methods are a very flexible framework, which could in theory, allow

for any form of MTT algorithm to be included in the offspring process, as along as

an appropriate MOL function was derived to link the processes together. The single-

cluster method is closely related to Bayesian hierarchical models, which are more

commonly found in the vector-type literature. This single-cluster method will be

compared to a Bayesian hierarchical model implementation later in Chapter 5.

A single-cluster process can be represented using a state variable given by X =

(q,X), where q is the state vector for the cluster centre in the parent process state-

space, and X contains the set of target state vectors that are being tracked in the

offspring process.

Let Z1:k be the sets of sensor measurements available at time-steps 1, . . . , k.

Each of the measurement sets contains a random number of measurement vectors

which will have been generated by some pre-processing inside each sensor. Let us

suppose that the prior density pk−1(Xk−1|Z1:k−1) is known, and a new set of sensor

measurements are received. A Bayes recursion can be used to propagate the posterior
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density, i.e.

pk|k−1(Xk|Z1:k−1) =

∫
fk|k−1(Xk|Xk−1)pk−1(Xk−1|Z1:k−1)dXk−1 (2.43)

pk(Xk|Z1:k) =
ˆ̀
k(Xk|Zk)pk|k−1(Xk|Z1:k−1)∫

ˆ̀
k(X′|Zk)pk|k−1(X′|Z1:k−1)dX′

(2.44)

where fk|k−1(Xk|Xk−1) is a Markov transition function for the states in both the

parent and offspring processes, and ˆ̀
k(Xk|Zk) is a MOL function [110, 111]. The

MOL functions that will be exploited in Chapter 4 are presented next. The above

equations follow the Chapman-Kolmogorov equation and Bayes’ rule and represent

the general single-cluster methodology. These equations can however be broken

down into two interleaved recursions for the parent and offspring processes as shown

in Chapter 3, and in [35].

Multi-Object Likelihoods (MOLs)

The MOL is an important likelihood function which will be applied in both Chapter 4

and Chapter 5. These likelihoods will provide the fundamental link between the

sensor registration problem and the sensor fusion problem. An appropriate MOL

has been derived previously in the literature for both the PHD filter and the Panjer

filter; both of which will be exploited in Chapter 4. Proofs of these MOL functions

can be found in the supplementary document of [35].

PHD Filter MOL

For the original PHD filter, the MOL function was first derived in [110, 111], and

for a given sensor registration q is

ˆ̀(qk|Zk) =

∏
z∈Z
[
µc(z) +

∫
X pd(x)l(x|z,q)µpr(x)dx

]
exp

[∫
Z µc(z)dz +

∫
X pd(x)l(x|z,q)µpr(x)dx

] , (2.45)

where l(x|z,q) is the single-object likelihood, µc(z) is the clutter intensity and µpr(x)

is the predicted intensity. The implementation of this MOL is taken from the work

presented in [95, 112]. The full derivation of this can be found in the appendix

of [111].

Panjer PHD Filter MOL

First, we should define the Pochhammer symbol or rising factorial xn↑ [97, 113] by

xn↑ :=
n−1∏
i=0

(x+ i), x0↑ := 1. (2.46)
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and define αc, βc as the Panjer clutter parameters and sc as the spatial distribution

for the clutter. We can then write α = αpr, β = βpr and spr as the Panjer parameters

and spatial distribution of the predicted process, and also let

Fd,q = 1− 1

β

∫
X
pd(x|q)spr(x|q)dx, (2.47)

and

Fc = 1 +
1

βc
(2.48)

be two auxiliary functions for a given registration configuration q. The MOL func-

tion for the Panjer filter [95, 112] can then be shown to be

ˆ̀(qk|Zk) =

|Z|∑
j=0

αj↑
βj

(αc)(|Z|−j)↑

(βc + 1)|Z|−j
F−α−jd,q F−αc−|Z|−jc

∑
Z′⊆Z
|Z′|=j

∏
z∈Z′

µz(X|q)
∏

z′∈Z\Z′
sc(z|q).

(2.49)

2.3.4 Radar and Image Fusion

There have been a number of articles in the literature that have investigated sensor

fusion for both radar and imaging sensors, across a range of different application ar-

eas. Firstly in 2009, Wu et al. [26] proposed an algorithm for performing distributed

fusion between a 24 GHz radar and a stereo camera system for an autonomous

driving and driver assistance application. The scenario presented contains a single

vehicle with the sensors attached and a single target vehicle. The algorithm pre-

sented in this article performs a crude nearest neighbour association step by finding

the smallest Mahalanobis distance between the closest point detected in the camera

system, and the radar measurements.

Moving ahead to 2011, the algorithm presented in [28] provides a means of per-

forming fusion between radar and infrared sensor measurements. It is based on

a sequential Gaussian Mixture (GM)-PHD filter, often referred to as the iterator-

correcter PHD filter in the wider MTT literature [114]. The scenario contains two

dynamic targets which follow a CT model, and exploits the more accurate angular

measurements coming from the infrared system to give a more accurate tracking

output.

In an alternative application area of avian monitoring, work has been carried

out to perform fusion between radar, infrared and acoustic based sensors [27]. The

fusion architecture presented in this article operates in two different stages; firstly

the radar and infrared data is fused at the feature level, which is then fused with

the acoustic data at the higher decision level. Correlation and association steps are

carried out during the feature level fusion to find the most probable pairs of features

in the radar and infrared data. In order to make the decisions at the second level of

39



Chapter 2: Background Theory and State-of-the-Art

fusion, a fuzzy Bayesian system and Bayesian inference are exploited. The acoustic

data is used to aid target identification and classification, and is then fused with the

appropriate target track gained in the feature level fusion.

The application of multistatic radar [43, 44] is of great interest for defence and

surveillance applications. The use of radar allows for large volumes of space to be

scanned in short periods of time. The work carried out by Yan et al. [25] proposes a

scheme for defining whether or not the use of distributed fusion in multistatic radar

is justified, or if the single sensor tracking estimates are satisfactory. This is carried

out using the Cramer-Rao lower bound, a fusion rule-set, and parameter choices set

by the user. The performance benefits of fusion may be limited in certain cases by

higher measurement uncertainty for example; so it may not always be beneficial to

fuse the current measurements. The set of rules presented in [25] could be a useful

addition to practical systems that exploit distributed fusion architectures.

A very recent addition to the radar and infrared fusion literature is the work by

Mallick et al. in [24]. A key part of track fusion is having the ability to compute

the cross covariance; this may not always be possible due to the local trackers not

operating with the same dynamic models, or having the same state vector represen-

tation. Because of the different state representations, or because a different dynamic

model is operating in each individual sensor, the fusion problem becomes much more

difficult. For example, the radar may be using a typical NCV model, and the in-

frared system could contain a constant turn model; these would predict the target in

a very different location. The units of the process noise in the active tracker found

in the radar, and the passive tracker found in the Infrared Search and Track (IRST)

sensor will also not be consistent and cannot directly be fused. The authors propose

a Cartesian state vector in the radar tracker containing three-dimensional position

and velocity components, and a modified-spherical coordinates state vector for the

IRST tracker. By performing local tracking in each of the sensors using a CKF, it is

then shown to be possible to perform track fusion using the information filter, which

can appropriately handle the issues arising from the process noise inconsistency. The

main features, and omissions, from each article are tabulated in Table 2.1. It can

be seen that although the radar and image fusion literature presents a range of

different real-world applications; none of these articles address or even mention the

sensor calibration or registration problem. As eluded to earlier, this almost paints

the picture that the sensor fusion process is trivial and bias-free in practice which

is definitely not the case.

2.4 Factor Graphs

As a precursor to the work presented in Chapter 5 and Chapter 6, this section

provides an overview of factor graphs, and Message Passing (MP) algorithms. The

40



Chapter 2: Background Theory and State-of-the-Art

T
ab

le
2.

1:
R

ad
ar

an
d

Im
ag

e
F

u
si

on
S
u
m

m
ar

y

A
rt

ic
le

M
e
a
su

re
m

e
n
t

F
u
si

o
n

M
u
lt

i-
T

a
rg

e
t

H
e
te

ro
g
e
n
e
o
u
s

S
e
n
so

rs
S

e
n
so

r
R

e
g
is

tr
a
ti

o
n

W
u

et
al

.
[2

6]
7

7
3

7

H
u
az

h
i

an
d

J
ia

n
[2

8]
3

3
3

7

M
ir

za
ei

et
al

.
[2

7]
3

7
3

7

Y
an

et
al

.
[2

5]
7

7
7

7

M
al

li
ck

et
al

.
[2

4]
7

7
3

7

41



Chapter 2: Background Theory and State-of-the-Art

ψ1 ψ3

ψ2 x2x1

Figure 2.7: A simple factor graph example.

statistical structure of a problem can be described using a factor graph. It is often

the case that algorithms will deal with a large and complex global function that

may be difficult to solve, and be dependent on many variables. It may, however,

be possible to exploit portions of the complicated algorithm and factor them down

in to a product of smaller and simpler local functions, which are only dependent

on a smaller subset of the variables. This factorisation process can be represented

visually using a factor graph that shows which variables are arguments of each

local function [78]. Each of the nodes, and messages passed between them, can be

represented with particle distributions and lead to the use of particle BP, so that

problems containing non-linear, non-Gaussian models can be addressed directly.

In order to arrive at an appropriate formulation for the MTT problem, first

consider the general case where we wish to estimate a number of parameter vec-

tors xn, n ∈ {1, . . . , N} from a set of measurements Z. The majority of traditional

Bayesian methods for estimating the parameter vectors rely on obtaining the pos-

terior pdfs f(xn|Z), which are marginals of the joint posterior pdf f(X|Z) and

where X =
[
xT1 , . . . ,x

T
N

]T
. It is often very difficult or intractable to perform direct

marginalisation of the joint posterior pdf, and it would be much more efficient if the

joint would factorise in to a product of M lower-dimensional factors such that

f(X) ∝
M∏
m=1

ψm
(
x(m)

)
, (2.50)

where ψm(·) is a factor, and each argument x(m) contains a set of parameter vectors

xn, i.e. the set depending on the probabilistic models. In factor graphs, each variable

xn is represented with a variable node (typically drawn as circles), and each factor

ψm(·) is represented with a factor node (typically drawn as squares). A variable

node and a factor node are adjacent, or connected by an edge, if the variable is an

argument of the corresponding factor.

As an example, consider the factor graph shown in Figure 2.7, which contains two

variables X =
[
xT1 ,x

T
2

]T
and three factors. This graph represents the factorisation

f(X|Z) ∝ ψ1(x1)ψ2(x1,x2)ψ3(x2). Each of the factors in the graph may be complex

in their own right; this may be because they are high-dimensional or that they
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are connected to a large number of variables. Techniques such as stretching or

opening [78] can be used to help reduce the dimensionality of each factor. In order

to stretch a graph, latent, or redundant, variables are added to the graph, which have

a dependence on a variable that is already present in the formulation. By having

these extra variables included, the factorisation becomes more detailed, as the high-

dimensional factors have been opened out, and replaced with many low-dimensional

factors. As well as the lower-dimensional factors, the messages being passed between

these factors should also now have a lower dimension, hence improving efficiency and

scalability, and reducing expressiveness. [22,77].

In practice, a factor graph will be tailored to each individual application or prob-

lem, and hence the resulting graph structures and frameworks are varied. Typical

structures include trees, bipartite graphs, and loopy graphs [78]. In an ideal world, it

would be preferable to have a tree-structured graph, or cycle-free graphs if possible,

as it brings a number of advantages. The first advantage is being able to determine

the exact number of steps required to pass all of the messages across the graph;

this also leads to the second main advantage of being able to guarantee convergence

to the true marginals of the joint pdf. Tree-structured graphs provide the exact

marginals, whereas for loopy graphs, this may not be true.

Performing inference-based tasks on loopy, or cyclic, graphs is far more challeng-

ing. When considering these iterative algorithms or processes, we lose the guarantee

of beliefs converging; these are now only approximations of the marginals of the

joint pdf. Because of the loops in the graph, the algorithm changes from having an

exact number of steps to pass all messages to an iterative algorithm with no natural

stopping point. Although a physical clock may not be required, it is assumed that

the passing of messages is synchronised, with one message being passed along an

edge in a given direction at a single time-step. This is the serial, or two-way, sched-

ule. It is down to a designer to arrange the message passing schedule appropriately;

it is clear to say that there could be many different forms of schedule available in

practice. Another popular example is the flooding schedule [115,116]. The flooding

schedule differs from the two-way schedule, as nodes will not necessarily wait for

all other messages to reach their destination before another message is sent along

an edge of the graph. Messages will continue to be passed between nodes until a

designed stopping criteria has been met. A number of applications have designed

appropriate stopping criteria based on convergence data, a chosen number of iter-

ations, or external flags [77, 117, 118]. The MP algorithms used in this work that

require stopping criteria will run for a chosen number of iterations.

It is possible to convert these cyclic graphs in to the preferred tree-structured

graphs, using algorithms such as the Hugin algorithm, or the Shafer-Shenoy [119]

algorithm which are variations of the junction-tree algorithm [118]. The main idea

behind these algorithms is to eliminate any loops in the graph and attempt to
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cluster them in to single nodes instead; almost the reverse of the “stretching” process

described previously. These algorithms are described and thoroughly compared

in [120].

2.4.1 Applying BP to Factor Graphs

Messages need to be calculated in each node of the graph and passed to those

adjacent nodes that are connected through the edges. All of this is achieved by

applying the SPA to the graph. Messages that are entering or leaving a variable

node are functions of the associated variable. First, let γm be the set of indices n

of all of the variable nodes “xn” that are adjacent to the factor node ψm. Secondly,

let τn be the set of indices m of all of the factor nodes ψm that are adjacent to the

variable node “xn”. These definitions lead to the two main equations required for

passing messages across the graph. The message passed from the factor node ψm to

an adjacent variable node xn, n ∈ γm is given by

ζψm→xn(xn) =

∫
ψm(x(m))

∏
n′∈γn\{n}

ξxn′→ψm (xn′)dx∼n, (2.51)

where
∫
. . . dx∼n is an integration with respect to all vectors xn′ , n

′ ∈ γm except for

xn. The message ξxn→ψm (xn) passed from the variable node xn to an adjacent factor

node ψm,m ∈ τn is given by

ξxn→ψm (xn) =
∏

m′∈τn\{m}

ζψm′→xn
(xn). (2.52)

Depending on the chosen message passing schedule, and the factor graph structure,

it may take a number of iterations for all appropriate messages to be calculated and

passed. After all messages are passed, a belief f̃(xn) is calculated for each of the

variable nodes with

f̃(xn) = Cn
∏
m∈τn

ζψm→xn(xn), (2.53)

where Cn is a normalisation constant so that
∫
f̃(xn)dxn = 1 [23].

2.5 Sensor Registration Methods

A large part of this thesis looks at the sensor registration problem. Depending

on how the sensor fusion architecture has been defined, be that centralised fusion

or distributed fusion, the approach to estimating the sensor registration parame-

ters may change. Sensor registration could incorporate many different parameters

such as location, orientation, timing, and intrinsic, sensor-specific factors. For this

application, the main focus will be on sensor orientation and physical parameters.
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With recent advances in processing power and the extensive capability of Graph-

ics Processing Units (GPUs), machine learning, and deep learning in particular have

had a major revival in the literature. Many problems now have neural network-based

solutions available; sensor registration included. Early works in machine learning for

registration [37] used relatively shallow networks with only a small number of layers.

The main idea was to teach the network to try and align the biased measurement

data from one sensor with the data from a reference sensor, using gradient descent

learning, while modifying the learning rate of the network. This work however, does

not address the underlying tracking and fusion problems post-registration. A more

recent solution that proposes a deep learning approach [38] has proven successful

in the autonomous vehicles application, where a scanning lidar sensor is calibrated

with a monocular camera. This more expansive network is trained to perform fea-

ture extraction, feature matching and a regression of the parameters. There are

however, major drawbacks for using machine learning methods, such as the amount

of realistic training data required in order for the network to start producing sensible

results; an issue especially found in defence and surveillance applications [39,40].

When considering sensor networks that operate over a larger geographical area,

it may be more appropriate to consider a distributed fusion architecture, rather than

a centralised system. A full discussion of centralised and distributed fusion archi-

tectures is presented in Chapter 3. The work presented in [121,122] uses distributed

fusion on the target tracks generated in each individual sensor. These tracks are

generated using RFS MTT methods (Section 2.3.3), and then used as a part of a

BP method for registration. Tracks are shared with other neighbouring sensors in

the network, along with either a dual-term or a quad-term pseudo-likelihood that

encapsulates information about each sensor’s location. By trading this information

across the sensors, it is shown to be possible to self-localise, or self-calibrate, the

network in a pair-wise fashion. A paper by the same authors [123] has shown that

this method was successfully applied to a real network containing radar and lidar

sensors based on the Sensing for Asset Protection with Integrated Electronic Net-

worked Technology (SAPIENT) architecture [124]. One assumption which could

potentially be a drawback to this method is that each sensor should, on its own, be

able to produce sensible and accurate tracks. This is a suitable assumption to make

when considering a sensor network that only contains sensors which can provide

measurements with full position information (eg. radar). This however may not be

possible if we were to consider bearings-only sensors such as the camera/infrared

systems presented in this thesis. Because these types of sensor operate passively

(see Section 2.1), full position information is not available, making the output less

accurate and more uncertain.

The method presented in [34] uses unscented filtering techniques, along with

a model of the uncertainty over the sensor parameters so that each sensor can
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self-localise. Although only a framework for resolving the problem is defined and

no results given, the authors conclude that the chosen data association algorithm

may have an effect on the overall results; an idea that is also postulated in [14].

This article presents a method for performing joint data association, fusion and

registration using the Expectation-Maximisation (EM) algorithm with a Kalman

filter-based approach. The results show that attempting to solve the problem jointly,

rather than attempting to solve each problem separately, improves the accuracy of

the sensor registration.

A lot of previous work has been carried out on solutions to the registration

problem which involve creating pseudomeasurements in decentralised or distributed

fusion systems. Early works in [16,17] proposed methods that manipulated the state

estimates of each of the local sensors such that they gave pseudo-measurements of

the sensor biases, with additive zero-mean white noise, and whose covariance was

easily calculated. Although these articles touch on the potential asynchronicity of

sensors in practice, the angle biases assumed in these works are in the order of tenths

of degrees; an order of magnitude smaller than those assumed in this thesis.

A similar pseudomeasurement approach is then extended by Huang et al. in

[15] which incorporates an EM algorithm into the estimation process. The result

showed improvement over an Extended Kalman filtering based approach, but at the

expense of extra computing resources. The batch EM method that is proposed in

the article gives highly accurate estimation of the sensor registration parameters,

but is restricted to offline implementation cases as it requires all of the data across

the scenario. The proposed solution is also based on a track-level fusion architecture,

rather than the centralised architecture used in this thesis. A joint EM-KF approach

is proposed by Li et al. in [14] which exploits the associations between measurements

and targets to estimate the sensor registration parameters. This implementation is

presented for a fixed and known number of targets, which is typically not the case

in real-world applications.

A more recent approach in [13] proposed to reconstruct the Kalman gains of each

of the local trackers at the fusion centre, rather than using extra bandwidth in the

system to send this information with the track estimates. A very similar method

was then applied to the well-known bearings-only tracking problem in [12]. The

method that is applied in both of these articles is presented for the synchronous

sensing case, and again, the assumed angle biases that used in the simulated results

appear very small compared to those often found in practice.

In summary, the articles listed in Table 2.2 each have gaps or drawbacks in their

proposed solutions. The main issues relate to the assumptions that their solutions

are built on. This could be the magnitude of the biases being assumed to be very

small, or that sensors always operate synchronously; this is definitely not the case in

practice. Although machine learning-based solutions are beginning to gain traction
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in the defence industry, we still lack the significant amount of realistic data that will

be required to train a robust and efficient network. This thesis will look to address

all of the features listed in this table and propose a robust solution to the sensor

registration and fusion problems.

2.6 Performance Evaluation

In order to assess the performance, and make suitable comparisons between different

algorithms, we require some robust metrics that can describe the error between the

true target/sensor state(s), and the estimated target/sensor state(s). The sensor

registration estimation problem could be considered as a “single-target” problem,

and the Root Mean Square Error (RMSE) (Section 2.6.1) would be a suitable met-

ric for comparing its performance. When considering the MTT estimation problem,

defining the error is less straight-forward. Because we are attempting to track mul-

tiple targets, differences in cardinality must also be taken account of; not just the

localisation error. The Optimal Subpattern Assignment (OSPA) and Generalised

Optimal Subpattern Assignment (GOSPA) metrics are suitable for this and are in-

troduced in Section 2.6.2 and Section 2.6.3, respectively. One other metric that will

be introduced here is Averaged Normalised Estimation Error Squared (ANEES),

which could be used in practice to determine the credibility of estimates being gen-

erated by a filter; this is introduced in Section 2.6.4.

2.6.1 Root Mean Square Error (RMSE)

The RMSE is a well-known and widely used metric for estimation problems [21,125].

Let us assume that a represents the true state vector, and b represents the estimated

state vector. With that, the RMSE can be defined as

RMSE(b) =
√

MSE(b) (2.54)

where MSE(b) = ||a− b||22 is the mean square error, so that

RMSE(b) = ||a− b||2. (2.55)

Because we are looking at time series data, and averaging over a number of MC

trials, the RMSE will be computed using

RMSE(b) =

√∑T
t=1(at − bt)2

T
. (2.56)

The RMSE will be used in Chapter 5 and in Chapter 6 when directly comparing

the performance of the two differing methods for joint registration and fusion.
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2.6.2 OSPA Metric

The Optimal Subpattern Assignment metric [126] is a widely used benchmarking

tool for comparing accuracies of MTT algorithms. The metric follows on from the

Optimal Mass Transfer (OMAT) metric [127] and overcomes a number of issues

that restrict its use in practice, such as consistency in results, geometry dependent

behaviour, and the zero-cardinality problem. The OSPA distance is made up of a

cardinality error and a localisation error between two sets X and Y with cardinalities

m and n (it is assumed that X has at most as many elements as Y). The distance

is defined by [126, Eq. (3)]

d(c)
p (X,Y) =

[
1

n
min
π∈

∏
n

m∑
i=1

d(c)(xi,yπ(i))
p + cp(n−m)

] 1
p

, (2.57)

which includes a chosen order parameter p and a cut-off distance c. The distance

function d(c)(x,y) = min(c, d(x,y)) is an appropriate distance measure such as the

Euclidean distance, cut-off at c.
∏

n denotes the set of all possible permutations of

the numbers 1, . . . , n. The OSPA metric can be broken down in to its two component

parts, the localisation error and the cardinality error such that

e
(c)
p,loc(X,Y) =

[
1

n
· min
π∈

∏
n

m∑
i=1

d(c)(xi,yπ(i))
p

] 1
p

, (2.58)

e
(c)
p,card(X,Y) =

[
cp(n−m)

n

] 1
p

(2.59)

The order parameter is used in a similar way as in other MTT metrics. As the

value of p increases, the metric becomes harsher on estimates that are not close to

any of the true objects. When p = 1, the sum of the localisation and cardinality

components of the metric equals the total metric. However in practice, p = 2 is a

more realistic and preferred choice, as it will result in smoother distance curves and

is consistent with other metrics that use a p-th order average construction. The cut-

off distance c defines a weighting between penalising cardinality errors as opposed to

localisation errors. The OSPA metric is exploited in Chapter 4 to compare tracking

accuracy in the range of scenarios presented.

The metric itself can be computed with the help of a data association algorithm

from Section 2.3.1, in order to find the optimal assignment of two sets of points.

Algorithms such as Munkres are more often found inside the tracking algorithm

itself, but these techniques are also applied to metrics such as OSPA to find the

minimum distance between the truth data and the generated estimates.
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2.6.3 GOSPA Metric

Although the OSPA metric was designed to overcome a number of issues with pre-

vious metrics for MTT, there are still a number of limitations that remain. One ex-

ample is that OSPA does not encourage the algorithms to have the smallest number

of missed or false targets as possible. A more desirable metric would include a local-

isation error for properly detected targets, and for false and missed targets, rather

than a localisation error for the targets in the smallest assigned set plus a cardinal-

ity mismatch penalty. The Generalised Optimal Subpattern Assignment (GOSPA)

metric [128] is an important advancement to the OSPA metric which is able to

penalise localisation errors for detected targets, false targets and missed targets.

The GOSPA metric is defined as

d(c,α)
p (X,Y) ,

[
min
π∈

∏
n

m∑
i=1

d(c)(xi,yπ(i))
p +

cp

α
(n−m)

] 1
p

(2.60)

with p and c having the same meaning as with the OSPA metric, and the inclusion

of an additional parameter α, which gives a choice of cardinality mismatch cost.

In practice, this should be set to α = 2, since intuitively, the cost for a single

unassigned (false or missed) target should be the same, whether or not the target

can be associated to another target in the permutation in (2.60). The GOSPA metric

is used in both Chapter 5 and Chapter 6 in order to compare the differing methods

in terms of their target tracking accuracy.

2.6.4 ANEES Metric

Although it is not discussed often in the MTT literature, the Averaged Normalised

Estimation Error Squared (ANEES) metric [129, 130] should be highlighted as an

important metric for determining the credibility of a state estimate produced by

a tracking algorithm. There are a plethora of different techniques available for

assessing estimation accuracy and performance (RMSE, OSPA and GOSPA being

a small subset of them). These metrics work by comparing the filter estimates to

some form of reference data, but how do we know that the estimates coming from

the filter are reliable or credible? The ANEES score will tell us if the filter is being

overly-confident in the estimate it is providing. The ANEES can be computed by

ANEES =
1

nN

N∑
i=1

(xk − x̂k)
TP−1

k (xk − x̂k) (2.61)

where (xk − x̂k) is the error in the state estimate, Pk is the covariance matrix

associated with the state, n is the dimension of the state, and N is the number of

runs in the Monte-Carlo test [130]. If the state estimation error and the covariance

are the same, the ANEES score should be 1, and we can say the filter is credible.
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2.7 Conclusions

There are two main conclusions that can be drawn from this chapter; firstly, there is

already a plethora of different techniques available for resolving sensor registration

issues. However, these methods are based on strong assumptions that do not hold

in practice:

The magnitude of the angle biases presented in previous works appear to be

very small, in the order of tenths, or even hundredths, of degrees.

Synchronous sensor operation is an important factor that has been shown in

simulated scenarios in previous works. This is almost never achievable in

practical systems, especially when commercial-off-the-shelf (COTS) sensors

are considered.

Offline estimation of parameters is critical for finding an initial set of sensor

registration parameters. However, online estimation schemes such as the pro-

posed methods used later in this thesis, are required for cases where the reg-

istration parameters are dynamic and time-varying.

Secondly, a number of the algorithms that have been presented can be adapted or

combined using appropriate frameworks to create new solutions for resolving the

sensor registration problem, which remove the aforementioned assumptions.

This chapter has provided an overview of a number of key concepts and tech-

niques from the previous literature in the areas of target tracking, sensor fusion and

sensor registration, which should put the contents of this thesis into context and

clearly outline the novelty of the work that follows. It should also provide enough

background material such that someone who is not familiar with tracking and fusion

methods can understand the content of the remaining chapters.
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Chapter 3

Modelling and Assumptions

With the background material presented previously in Chapter 2 in mind, the aim

of this chapter is to provide a summary of underlying assumptions that the work

presented in later chapters is based on, and to present a number of algorithm im-

plementation details. This chapter will include information on topics such as:

• the sensor fusion architecture that has been simulated;

• any underlying assumptions that have been made in terms of the tracking

scenarios, the sensor fusion architecture and the proposed solutions.

• the derivation of appropriate Jacobian matrices to overcome the non-linearity

between the state space and observation space;

• the underlying dynamic, and observation models that will form the MTT

algorithms.

3.1 Sensor Fusion Architecture

There are a range of sensor fusion architectures available for implementation, each

with their own advantages and disadvantages. From the literature, there appears

to be no consensus or agreement as to which type of architecture is best, and it

is dependent on the application area or scenario. As the number of sensors in a

network increases, issues surrounding scalability become more apparent, and these

issues could lead to a degradation in tracking and fusion performance.

3.1.1 Scalability Problems

There are quite a number of problems that arise in practical multi-sensor systems

which are often overlooked, or avoided in parts of the data fusion literature. They are

often treated as separate problems, but they must all be considered when attempting

to deploy real-world systems. This section will first introduce further issues that
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become more prominent when the number of sensors contributing to the data fusion

process increases.

Latency and Delays

As the size of the surveillance region, and the distances between sensor locations

increases, we begin to see long-haul links between the remote sensors, and the cen-

tralised Fusion Centre (FC) [131]. Sensors may either send out their time-stamped

measurement data, or their time-stamped state estimates to this fusion centre for fur-

ther processing. Consider two differing scenarios; firstly, a small remote region that

needs widespread surveillance coverage, using low Size Weight and Power (SWaP)

sensing equipment. Each individual sensor may not have the capability or power to

perform complex MTT and fusion routines, and therefore needs to transmit this in-

formation to the fusion centre. A second appropriate scenario may be in the airborne

surveillance case, where fast moving platforms may need to relay measurement or

track data back to a ground station many tens of kilometres away. Because of the

long distances that may need to be covered, or because of the low Signal-to-Noise

Ratio (SNR) by the time the information arrives, critical measurement data may

either be delayed, or lost entirely. With data missing, the fusion system may not be

able to reach it’s own “optimal” performance, and tracking accuracy could become

diminished. The missing data problem can be partially solved using retransmission

and retrodiction techniques such as the one presented in [132].

The latency problem, where the information still arrives but after an unknown

and potentially varying time delay can often be less than trivial to overcome. Differ-

ent sensors may experience different lengths of latency at each transmission, and at

the fusion centre, these measurements affected by latency may be interleaved with

measurements that are subjected to little or no latency. Methods for resolving the

Out-of-Sequence Measurement (OOSM) problem have been illustrated in the litera-

ture [21,133]. The goal of these algorithms is to efficiently update the current state

estimates with measurements generated much earlier than the current time, while

avoiding the need to reorder any measurements or reassessing any past data associ-

ation (DA) decisions. The DA problem in this case could be very large, as we may

need to redo a very large number of measurement-to-track associations, depending

on how long the delay has been. This large association problem was reviewed, and

different solutions compared, in [134].

Network Architectures

With the sensor network size increasing, the amount of data being transferred be-

tween sensors and the FC will also become much larger. This could put excessive

strains and loads on the communication links and further contribute to the latency

issues discussed previously. One aspect that could be adapted is the fusion net-
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work architecture. In this work, the centralised architecture will be considered,

where measurement-level fusion is performed using all available sensor measure-

ments. Centralised fusion at the measurement level should be the “optimal” method

for performing sensor fusion, and is best suited for cases where a single platform with

multiple sensors is considered, or in situations where sensors may be spread out over

a small geographical area, for example at an airport or a harbour, and physical

connections to the FC are available at all times. Each sensor would, in practice,

perform some pre-processing of the raw data to generate these measurements, be

that a simple thresholding step, or more advanced image processing techniques to

detect targets. In order to save on computation however, an alternative could be

to consider a decentralised, or distributed architecture. This would mean that each

individual sensor would be responsible for performing it’s own target tracking rou-

tine, and only track estimates would need to be shared, vastly reducing the amount

of data that needs to be transmitted. The change to a distributed system comes at

a cost however; the tracking accuracy becomes “sub-optimal” [21,93].

A further alternative could be to consider a hybrid fusion architecture, which

contains a combination of both centralised and decentralised architectures. This

may be appropriate for the following exemplar scenario. Consider a multi-platform

case containing a number of airborne platforms that are attempting to track multiple

targets on the ground. Each of these platforms is likely to contain a multi-modal

suite of sensors available, improving the probability of detecting targets. We can now

imagine that this fusion problem could almost be broken down in to a hierarchical

structure of fusion “layers”. The content and ordering of these layers could also take

multiple forms; for example we could -

1. Perform measurement-level fusion on each individual platform using an on-

board FC; perform track-level fusion between the platforms using a FC on

the ground. This would be implemented much like the structure shown in

Figure 3.3, with the Track Fusion algorithm(s) hosted on a ground platform,

or central computing centre.

2. Perform measurement-level fusion on each individual platform using an on-

board FC; perform track-level fusion between the platforms. This again would

be implemented much like the structure shown in Figure 3.3, however the track

fusion processes would either be hosted on one of the airborne platforms, or

potentially in some form of cloud-based solution. This could also be seen as a

form of small airborne mesh network.

3. Perform track-level fusion between each of the sensors on each platform and

then perform track-level fusion between the platforms. In this case, tracks

would be generated inside each sensor as shown in Figure 3.2, with the Track

Fusion algorithm(s) hosted on one of the platforms or in the cloud.
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Figure 3.1: Measurement-level Fusion.

All of these possibilities would lead to different output tracks, depending on which

fusion architecture we adopt and which order we choose for sensors to be used.

Ordering of Sensors

When considering a larger set of sensors in a synchronous network where sensors

record measurements at the same time, deciding on a process to perform sensor

updates is an important design choice. There are two main choices available; a

batch processing (multi-sensor) update, or an iterative (iterated-corrector) update

through each sensor. In general, the batch processing method does not scale well

in the number of sensors, and the number of measurements per sensor, because of

the high-dimensional association problem that needs to be resolved. For example,

if we were to have a sensor network containing five sensors observing a congested

scene with 100 targets, this would generate 500 different detections (assuming the

detection profile is perfect with no false alarms, this would only make the problem

even larger). Trying to use an association algorithm such as Munkres on this scale

of problem would be rather time-consuming.

The alternative to performing a series of updates from each of the sensors pro-

vides a suitable alternative to the batch processing method, and can often be per-

formed more efficiently in practice [114]. Choosing which order to perform sensor

updates in can give quite vastly differing output tracks and resultant accuracies.

For situations where we have high probabilities of detection in all sensors, the effect

of ordering is negligible in most cases. However when we have fluctuating cases, or

sensors with low probabilities, ordering is critical. Problems with ordering have been

presented in [114,135,136] previously. If a sensor with a low probability of detection

or higher measurement uncertainty is placed last in the “queue” for updates, then

we are likely to see worse tracking accuracy. In order to gain the best accuracy from

the iterative scheme, the worst sensor measurements should be updated with first,

and then use the measurements that get progressively more accurate.
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Figure 3.2: Track-level Fusion.

3.2 Proposed Method Framework

An overview of the proposed framework for resolving both the sensor registration and

fusion problems, which is exploited in the remaining chapters, is given in Algorithm

1, with a graphical representation in Figure 3.4. In terms of how the main algorithm

operates, it closely follows the traditional tracking algorithm routine of a prediction

step and an update step. The routine is initialised with a set of particles i = 1, . . . , N

which represent the different sensor registration states qik−1, and each particle has an

associated weight wik−1. Each of these particles also effectively contains a realisation

of the underlying multi-target state θik−1.

During the prediction step, for each particle that we have in the mixture, we

will adjust the weight of each particle using some underlying model. Note that in

Algorithm 1 we still assume that the sensor registration states are static and fixed

and hence are not predicted. We then perform the prediction step for each of the

realisations of the multi-target state in the same way that a normal MTT filter

would, using a NCV model for example.

In the update step, we again need to perform updates on both the multi-target

state realisations, and the sensor registration states. Firstly we perform the multi-

target state update as normal, however during this process we will compute the

Multi-Object Likelihood (MOL) calculation in each of the updates. This MOL

value is required to then update the sensor registration particle weights using (3.2).

We will only update the registration weights if the most recent measurements have
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come from a sensor that we assume is not registered correctly.

An introduction to this framework, the single-cluster method, is provided in

Chapter 2. As eluded to in this introduction to the single-cluster method, the

main recursion can be broken down into two separate recursions, one for the parent

process, and one for the offspring process. Firstly for the parent process, denoted

with ·̂:

P̂k|k−1(qk|Z1:k−1) =

∫
f̂k|k−1(qk|qk−1)P̂k−1(qk−1|Z1:k−1)dqk−1, (3.1)

P̂k(qk|Z1:k) =
ˆ̀
k(qk|Zk)P̂k|k−1(qk|Z1:k−1)∫

ˆ̀
k(q′|Zk)P̂k|k−1(q′|Z1:k−1)dq′

, (3.2)

where f̂k|k−1(qk|qk−1) is a first-order Markov model that represents the change in

sensor registration parameters over time and ˆ̀
k(qk|Zk) is a MOL function. The

recursion for the offspring process is:

Pk|k−1(Xk|qk,Z1:k−1) =

∫
fk|k−1(Xk|Xk−1)Pk−1(Xk−1|qk,Z1:k−1)dXk−1 (3.3)

Pk(Xk|qk,Z1:k) =
`k(Xk|qk,Zk)Pk|k−1(Xk|qk,Z1:k−1)∫
`k(X′|qk,Zk)Pk|k−1(X′|qk,Z1:k−1)dX′

(3.4)

where fk|k−1(Xk|Xk−1) is the chosen dynamical model for the target states, as de-

scribed in Section 2.1. This recursion follows the typical tracking routine equations

shown in Section 2.2.

3.3 Underlying Assumptions

Although an aspect of this thesis is to relax or remove assumptions that have been

made in previous articles in sensor registration and fusion, a number of assumptions

will still need to be kept in place to keep the problem, and the proposed solutions,

tractable. The work that is presented in the following chapters is based on the

following assumptions:

1. All simulated target trajectories will follow a consistent dynamic model, and

multiple model estimation schemes such as IMM will not be required;

2. Each sensor will generate its own measurements independently of other sensors;

3. The false alarm distributions for each sensor are independent ;

4. The connections between the Fusion Centre and the individual sensors are

always available;

5. There is no latency between the sensors and the FC, and OOSMs [21] are not

simulated;
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Algorithm 1 Joint Sensor Registration and Fusion

Input: Set of particles {qik−1, w
i
k−1, θ

i
k−1}Ni=1

Set of measurements Zk

procedure Prediction
for 1 ≤ i ≤ N do

wik|k−1 = ParentPrediction(wik−1) . Eq. (3.1)

θik|k−1 = OffspringPrediction(θik−1) . Eq. (3.3)
end for

end procedure

procedure Update
for 1 ≤ i ≤ N do

θik = OffspringUpdate(θik|k−1,Zk) . Eq. (3.4)
if Zk from reference sensor then

wik = wik|k−1

else if Zk from uncalibrated sensor then
wik = ParentUpdate(θik|k−1, w

i
k|k−1) . Eq. (3.2)

end if
end for

end procedure

Output: Set of particles {qik, wik, θik}Ni=1

6. Two or more sensors will never provide measurements at the same point in

time;

7. Data transmitted between the sensors and the FC will never be lost, or need

to be retransmitted.

These assumptions are in place to help constrain the problems of registration and

fusion, which are the main topics of this thesis. It should be acknowledged that in

practice, problems with network connections and latency are likely to be present

and should be accounted for accordingly.

3.4 Tracking Model Definitions

This section will introduce the chosen underlying dynamical model, and sensor ob-

servation models, that will be applied in the simulations presented in the forthcoming

chapters.

3.4.1 Dynamic Model

The centralised fusion centre should contain all of the raw range-bearing measure-

ments from the radar, and the bearing-only measurements from the camera or IRST
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system, recorded at a given iteration k which corresponds to a physical time tk. The

offspring process is carried out using a 4-D Cartesian state vector with components

xk = [xk ẋk yk ẏk]
′ (3.5)

where xk, yk are the x and y positions of a target, and ẋk, ẏk are the x and y velocities

of a target. As we are dealing with a maritime surveillance application, it will be

assumed that each and every target will follow a NCV dynamic model, as defined

in Section 2.1 [21,52], which is described by

xk = Fkxk−1 + wk (3.6)

where Fk is the state transition matrix

Fk =


1 ∆k 0 0

0 1 0 0

0 0 1 ∆k

0 0 0 1

 , ∆k = tk − tk−1, (3.7)

tk is the current physical time, tk−1 is the last physical time that the target states

were updated, and wk represents the zero-mean white Gaussian process noise with

covariance

Qk =


u∆3

k/3 u∆2
k/2 0 0

u∆2
k/2 u∆k 0 0

0 0 u∆3
k/3 u∆2

k/2

0 0 u∆2
k/2 u∆k

 (3.8)

and u is the acceleration noise value in m2s−3 in both the X and Y directions.

3.4.2 Observation Models

For the presented sensor setup, two differing observation models are required for the

sensors. Firstly for the radar, denoted by superscript R, the measurement model is

defined as

zRk = hR(xk) + ηRk , (3.9)

with,

hR(xk) =

[
ρk

φk

]
=

[ √
x2
k + y2

k

tan−1(xk, yk)

]
, (3.10)

where ρk > 0, tan−1(xk, yk) is the four-quadrant inverse tangent function, and the

resulting azimuth measurement φk lies inside [0, 2π), clockwise from North. The

additive measurement noise term ηRk is defined by

ηRk ∼ N (ηRk ; 0, diag(σ2
ρr , σ

2
φr)) (3.11)
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where σρr and σφr are the radar’s range and azimuth standard deviations respec-

tively.

Secondly, the IRST observation model, denoted as C for camera, is described by

zCk = hC(xk) + ηCk (3.12)

where

hC(xk) = φk = tan−1(xk, yk). (3.13)

The additive noise term ηCk is defined by

ηCk ∼ N (ηCk ; 0, σ2
φc) (3.14)

where σφc is the IRST azimuth standard deviation. This model would also be

appropriate for other types of camera or imaging system that provide angle-only

measurements, and as such, will be denoted with a superscript C for camera.

3.5 Jacobian Matrix Derivation

From the introduction to the Extended Kalman Filter (EKF) in Section 2.2.1, in or-

der to overcome the non-linearity between the Cartesian state-space, and the Polar

observation space assumed in this work, the tracking filters will need to be imple-

mented with EKF update steps. The Jacobian matrices for this implementation are

given by

Jpq =
∂hp
∂xq

, p ∈ {ρ, φ}, q ∈ {1, . . . , 4} (3.15)

where hp is the conventional Cartesian to Polar transformation

hρ = ρ =
√
x2 + y2, hφ = φ = tan−1 (x, y) ,

tan−1 (x, y) is the four-quadrant inverse tangent function and x = [x, ẋ, y, ẏ]T . Dur-

ing an update with radar measurements containing range and azimuth values, the

Jacobian matrix used is

JR =

 x√
x2+y2

0 y√
x2+y2

0

−y
x2+y2

0 x
x2+y2

0

 (3.16)

and for an IRST or camera update, which only contains an azimuth value, the

Jacobian becomes

JI =
[
−y

x2+y2
0 x

x2+y2
0
]
. (3.17)
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3.6 Conclusion

This chapter has set out the main underlying assumptions that will help form the

work presented in the forthcoming chapters. It has provided details of the sensor

fusion architecture that has been chosen for development, with the reasoning behind

its selection, and an overview of alternative fusion frameworks. The information

provided on the dynamic model, observation models, and Jacobian matrices will be

consistent across the remaining chapters.
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Chapter 4

Joint Registration and Fusion with

Point Process Methods

This chapter will introduce an implementation of the single-cluster method [110,111]

that will perform joint sensor registration and fusion between heterogeneous sensors.

These sensors have an angular bias between their respective frames of reference.

The implementation will also involve a grid-based method [49] for representing the

potential sensor registration configurations at each iteration. The results from this

chapter will lead in to chapter 5, where some limitations of this implementation are

addressed. The work that will be presented in this chapter was published in [35].

The main contributions from this chapter include:

• the application of the single-cluster method, which incorporates both the sen-

sor registration and fusion problems in a joint manner, in contrast to existing

techniques in the literature that solve tracking and registration problems sep-

arately using pseudo-measurements [12, 13, 15, 16]; the proposed method also

avoids the computationally expensive data association problem found in other

joint approaches [14];

• a new prediction model for tracking changes in the sensor registration config-

uration, which is included in the parent process computations; this model also

incorporates non-uniform sampling information to overcome the asynchronous

aspect of the different sensors;

• non-linear observation models that take account of the sensor measurements

being provided in polar coordinates, and the Multi-Target Tracking (MTT)

output being provided in Cartesian coordinates; therefore, two implementa-

tions of non-linear estimation algorithms are used, including a novel Extended

Kalman Filter (EKF) version of the Panjer filter;

• a comprehensive set of simulations and results, involving a typically challeng-

ing tracking scenario where target trajectories cross one another; and more
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importantly, the simulations consider a much larger angular bias/offset be-

tween the sensors, by an order of magnitude, compared to those simulated

in [13,17].

• a set of plausible results based on a real data set taken from a live trial in a

maritime environment. Due to issues with the elevation data in the real data

collection, it has been necessary to test on two-dimensional, range-azimuth

data.

4.1 Implementation

The parent process has been represented with a one-dimensional even spread of

particles on a fixed-grid [49], with each particle, at time k, representing a different

sensor registration configuration such that qik = φb, with i = 1, . . . , N . As eluded to

in Section 2.2.2, the grid-based method provides the optimal filtering recursion if the

state space is discrete and has a finite number of states. In this case, the continuous,

wrapped, angle values [−180◦ → 180◦] have been truncated so that the limits of the

angle values are now [−10◦ → 10◦]. This smaller space is then discretised into suit-

able angle increments, allowing for the grid-based estimation method to be applied

here. This then presents a trade-off between resolution and computation time; a

higher resolution grid containing more samples would require a larger computation

time to evaluate. The chosen resolution for the grid in this work is 0.1◦ increments,

giving N = 201 discrete samples to evaluate.

Over time, the registration hypotheses stay constant, removing the need for a

particle resampling step such as those in [65]. This leads to a simpler recursion

for predicting and updating the weights on the grid. At the moment, only one

registration parameter will be estimated in the model. With the particles being fixed

to a grid, the particle weights wik can be computed using the grid-based methods

in Chapter 2. The implemented recursion for predicting and updating the parent

process weights is

wik|k−1 =
N∑
j=1

wjk−1f̂k|k−1

(
qik|q

j
k

)
(4.1)

wik =
wik|k−1

ˆ̀
k(q

i
k|Zk)∑N

j=1 w
j
k|k−1

ˆ̀
k(q

j
k|Zk)

(4.2)

where f̂k|k−1

(
qik|q

j
k

)
= f̂ i−jk|k−1 is a pre-defined, discrete density over the difference in

registration indices, and ˆ̀
k(q

i
k|Zk) is the Multi-Object Likelihood (MOL) function

evaluated for a given sensor registration configuration qik. Equation (4.1) can be
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Figure 4.1: Binomial approximation to a normal pdf.

seen as a convolution between the weights wjk−1 with the chosen kernel f̂ i−jk|k−1:

wik|k−1 = f̂ i−jk|k−1 ∗ w
j
k−1. (4.3)

In this work, the transition function is modelled as a perturbation with a discretised,

wrapped Gaussian distribution. The new integer index is the existing integer index

plus the perturbation generated from this distribution. This distribution can be

approximated using a finite-support, shifted binomial distribution where u ∼ B(n, p)

and i = j + u − n/2 is the relationship between the predicted registration index i,

and the particle index j. The binomial distribution needs to be shifted by n/2 so

that it can also model a negative increment; without this, it would appear that the

registration error would always be non-negative. Here, the values n = 6 and p = 0.5

are used, such that Equation (4.1) can be calculated as the convolution of wk−1 with

the kernel B(6, 0.5) = {0.0156; 0.0938; 0.2344; 0.3125; 0.2344; 0.0938; 0.0156}. This

kernel, and its approximation to a normal probability density function (pdf) is shown

in Figure 4.1. The choice of the binomial distribution in this case is justified as the

grid is made up of discrete samples, and the binomial distribution is discrete. An

alternative approximation for the transition kernel could come from the von Mises

distribution; a continuous distribution on the circle [137].

The parent process weights are initialised to a flat prior distribution such that

wi0 = 1/N , where all sensor registration configurations are equally likely. Depending

on which filter is chosen to perform the offspring process, the information contained

inside θik will be different. For the Probability Hypothesis Density (PHD) filter, this

will contain the intensity µk of the multi-target distribution, or both µk and the

variance in the case of the Panjer filter.
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Figure 4.2: Target trajectories for all simulated scenarios and sensor setups. Both
sensors are co-located at the origin (x, y) = (0, 0).

4.2 Simulations

In order to test the single-cluster method implementation, a challenging simulated

scenario that takes place over 100 iterations has been proposed involving crossing

targets; a typically difficult problem for MTT algorithms to resolve. Two targets

move around inside the Infrared Search and Track (IRST) Field-of-View (FoV) at

speeds of approximately 10 knots and 7 knots respectively, with their trajectories

crossing one another at approximately k = 60. Crossing targets make the data as-

sociation (DA) problem difficult in tracking scenarios, as sensors with slower update

rates such as radar will not generate state estimates fast enough, and track resolu-

tion may be diminished. In order to gain a realistic simulation that appears close to

the scenario present in the real data set, the sensor properties and update rates used

in the simulation are close to those defined in the data sheets for the radar [138].

In the first two experiments, two differing false alarm models will be considered.

The first of these will be the typical Poisson model, and secondly, the negative

binomial clutter model found in [139], which was introduced earlier in Section 2.3.3.

This model will allow for a large variance in the number of false alarms per scan,

which will be pertinent in this maritime application, where crests of waves and rough

sea conditions are likely to generate larger numbers of false alarms [47,48,102]. For

these experiments, where the IRST is calibrated on to the radar frame of reference

(FoR), an azimuth bias of 3◦ has been applied to the IRST measurements.

Due to the differing characteristics and sampling rates of the radar and IRST, a

third experiment has been developed, where the radar measurements contain the az-

imuth bias, and the IRST measurements have no bias. This experiment will provide

proof that it is still possible to estimate the azimuth bias, even with exploiting the
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infrequent radar measurements, rather than the frequent IRST measurements. This

also shows that the single-cluster method is flexible, in that it makes little difference

which sensor is chosen as the reference sensor.

Both of the offspring processes are implemented using a Gaussian mixture to

represent the target states over time. A Gaussian mixture is given by the summation:

p (xk−1) =

Jk−1∑
j=1

wjk−1N
(
xk−1; mj

k−1,P
j
k−1

)
(4.4)

over a collection of weighted Gaussian distributions with parameters{
wjk−1,m

j
k−1,P

j
k−1

}Jk−1

j=1
, each with a weight 0 ≤ wjk−1 ≤ 1. In order to model target

births, a measurement-driven birth process is included, as described in [67], and a

Hellinger distance [98] merging process is included to merge Gaussian components

that sufficiently overlap one another. A standard pruning process is used to remove

components with weights lower than τprune.

The parameters that have been used for these experiments are shown in Table 4.1,

and are set to typical values used in PHD filter simulations [91,97]. Although a range

of these parameters have been selected based on previous works, it would also be

possible to select or estimate some of them in practice. For example, using suitable

Signal-to-Noise Ratio (SNR) curves and target models, it should be possible to gain

a reasonably accurate probability of detection. Furthermore, if a radar has suitable

Constant False Alarm Rate (CFAR) processing built-in, it should be possible to

maintain a consistent false alarm rate λ. Varying the parameters in this table will

of course affect the overall tracking results that we see in the following output graphs.

As some examples:

• having a lower probability of detection will generate fewer measurements on a

target, giving us less data to work with, and track accuracy will likely be re-

duced. Results from Monte-Carlo trials which vary the probability of detection

are shown later in this chapter;

• a higher false alarm rate will likely cause more false tracks to be generated, or

potentially reduce accuracy in our current tracks if one of the false alarms is

used to update a target’s state;

• as the measurement noise increases, the accuracy of the sensor measurements

themselves will decrease and give poorer output track accuracy. Experiments

that vary the measurement noise levels are given in Chapter 5.

The various thresholds listed in the table each play a part in determining when a

track should be declared, removed from the track list, and if it should be merged

with another track that is close by.

All simulated results have been averaged over 50 Monte Carlo (MC) runs, and

the estimated registration angle is taken as the Maximum A Posteriori (MAP) of
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Table 4.1: Tracking Parameters - Simulations

Quantity Symbol Sim Value

Detection Probability pd 0.7 → 0.99

Survival Probability ps 0.95

Gating Threshold τgate 99%

Pruning Threshold τprune 0.001

Merging Threshold τmerge 0.8

Extraction Threshold τextract 0.5

False Alarm Rates λr, λc 2, 5

False Alarm Variance varr, varc 10, 50

Birth Intensity µb 1

Acceleration Noise (m2s−3) u 1

Radar Measurement Noise (m,◦) σrr , σφr 5, 0.06

IRST Measurement Noise (◦) σφc 0.01

the parent process. The true target trajectories are kept consistent throughout all

of the MC runs, however a random set of sensor measurements are generated in

each run, based on the measurement models presented in Section 3.4. This will

account for the randomness of the measurement noise that would be applied to the

measurements in practice. The benchmark result for this work is the case where the

radar and IRST system are perfectly registered, giving an optimal result. This is

shown as the solid green plot on the following figures.

4.2.1 Experiment 1: Poisson Distribution

The first simulation considers the false alarm distribution to be Poisson, where the

mean number of false alarms is equal to the variance, giving a consistent number

of false alarms per measurement scan. From both Figure 4.3 and Figure 4.4, the

importance of taking sensor registration in to account when performing sensor fusion

becomes apparent. Firstly in the pd = 0.99 case, by performing tracking with just

a single radar (red dashed plot), a single-sensor tracking accuracy benchmark is

gained; with an Optimal Subpattern Assignment (OSPA) distance of 29.89 m for

the PHD filter, and 26.65 m for the Panjer filter. However, these accuracies can

be improved by performing sensor fusion with the IRST measurements and perfect

registration (green solid plot). The PHD filter accuracy improves by 15.19 m to

14.70 m, and the Panjer accuracy improves by 14.74 m to 11.91 m.

When an incorrect registration parameter is used and sensor fusion attempted

(blue dotted plot), there is a substantial decrease in tracking accuracy, and the

OSPA distances increase to values larger than when performing single-sensor track-

ing. The OSPA distance for the PHD filter increases to 64.55 m and the Panjer
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Figure 4.3: OSPA Distance over Time, PHD Filter, Poisson Distribution
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Figure 4.4: OSPA Distance over Time, Panjer Filter, Poisson Distribution
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Figure 4.5: Estimated Registration OSPA Distance Comparison, Poisson Distribu-
tion
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Table 4.2: Average OSPA Distances at k = 95, Experiment 1

pd 0.85 0.99

Single Radar
PHD 52.12 29.89

Panjer 47.85 26.65

Incorrect Registration
PHD 85.77 64.55

Panjer 71.41 62.42

Proposed Method
PHD 32.56 21.71

Panjer 30.72 20.08

Correct Registration
PHD 27.66 14.70

Panjer 19.90 11.91

increases to 62.42 m. It can be seen that the proposed solution of using single-

cluster methods (black dash-dotted plot) brings the tracking accuracy close to that

of the perfect registration case. The PHD filter implementation gives an OSPA dis-

tance of 21.71 m, which is 7.01 m from the correct registration result; and the Panjer

filter implementation gives an OSPA distance of 20.08 m, 8.17 m from its correct

registration result.

The results shown in Figure 4.5 show a direct comparison between the PHD

filter implementation of the proposed method, and the Panjer filter implementation

of the proposed method. It can be seen that the Panjer filter outperforms the PHD

filter in both cases. In the pd = 0.99 result, the k = 95 OSPA distances for the PHD

and Panjer filters with estimated registration are 21.71 m and 20.08 m respectively,

and in the pd = 0.85 case, these are 32.56 m and 30.72 m. This shows that being

able to propagate more information about the target population at each time-step

can help to improve the tracking accuracy.

The probability of detection also plays a substantial part in this work, and as

shown in Figure 4.7a and Figure 4.8a on page 75, as the probability of detection

increases, there is an improvement in both the tracking accuracy and the registration

parameter estimation. All of the average OSPA distance results for this experiment

are given in Table 4.2.

4.2.2 Experiment 2: Negative Binomial Distribution

The second experiment uses a negative binomial clutter distribution. This means

that the variance in the number of false alarms is now no longer constrained to

be equal to the mean, and allows for the modelling of situations where we could

encounter sudden bursts of false alarms. For the maritime application presented in

this chapter, large sea swells could generate these bursts of false alarms sporadically

[47, 48]. The original PHD filter is based on the assumption that the underlying

clutter distribution is Poisson and does not take variance information in to account,
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Table 4.3: Average OSPA Distances at k = 95, Experiment 2, pd = 0.85

Single Radar
PHD 37.03

Panjer 32.46

Incorrect Registration
PHD 72.64

Panjer 68.49

Proposed Method
PHD 36.11

Panjer 30.95

Correct Registration
PHD 28.06

Panjer 18.86

whereas the Panjer filter is more flexible and allows for this to be included in the

recursion. The false alarm variance values that are applied during this experiment

are given in Table 4.1.

From Figure 4.6, we can see that the Panjer filter can outperform the PHD filter

in all cases. At k = 95, for the estimated registration case (using the proposed

method), the OSPA distance for the PHD filter is 36.11 m, and 30.95 m for the

Panjer filter. A much larger performance difference can be seen in Figure 4.8, in

that for lower probabilities of detection (pd < 0.9), the performance of the PHD filter

is much worse than that of the Panjer filter. The estimates being drawn from the

Panjer filter implementation are more consistent across all probabilities of detection

simulated.

4.2.3 Experiment 3: Alternative Frame of Reference

In the previous experiments, it was assumed that the radar was the reference sensor,

and the IRST measurements were subjected to a registration error. The third and

final simulated experiment in this chapter concerns the “alternative” registration

case, where the radar measurements contain the angular bias and the IRST mea-

surement are unbiased. This experiment was carried out to show it is possible to

use either sensor as the reference frame to perform fusion in.

From Figure 4.9a on page 77, as expected, the tracking accuracy when using

a single radar has decreased, and the result for the uncalibrated set of sensors is

still very poor. The result using the proposed estimation method is close to the

correctly registered result, with an OSPA distance of 27.53 m at k = 95. The results

shown in Figure 4.9a are tabulated in Table 4.4. As the probability of detection

pd increases, we see similar behaviour to the previous experiments; both the target

tracking accuracy and the registration estimation accuracy improve.
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Figure 4.6: OSPA Distance over Time, Negative Binomial Distribution

74



Chapter 4: Joint Registration and Fusion with Point Process Methods

0.7 0.75 0.8 0.85 0.9 0.95 0.99
0

10

20

30

40

50

pd

A
ve

ra
ge

O
S
P

A
D

is
ta

n
ce

(m
)

PHD Filter

Panjer Filter

(a) Poisson Distributed

0.7 0.75 0.8 0.85 0.9 0.95 0.99
0

10

20

30

40

50

pd

A
ve

ra
ge

O
S
P

A
D

is
ta

n
ce

(m
)

(b) Negative Binomial Distributed

Figure 4.7: OSPA Distance over pd. The average OSPA Distance is taken from
between Iteration 80 and Iteration 100.

Table 4.4: Average OSPA Distances at k = 95, Experiment 3, pd = 0.99

Single Radar 68.90

Incorrect Registration 84.04

Proposed Method 27.53

Correct Registration 17.10
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Figure 4.10: Sensor setup used for recording real data set with radar system in the
background and IRST in the foreground. c© Crown copyright, 2019.

4.3 Real Data - Collaboration with Dstl

4.3.1 Discussion

As an extension to this work, the proposed algorithm was tested on a portion of real

data, made available by Dstl. The sensors shown in Figure 4.10 were located inside

a shipping container next to the sea wall at Fort Blockhouse, Gosport, Portsmouth

Harbour, U.K.. The radar in use was a Kelvin Hughes SharpEye system [138], which

was operating in a 360◦ scanning mode, giving a large surveillance region, but with

a slow update rate of approximately 2.5 s or 0.4 Hz. The radar was equipped with a

number of signal processing and detection techniques, allowing for a range of different

types of maritime target to the detected effectively. The low-profile antenna gives

an azimuth beam-width of less than 1◦ at the 3 dB point [138]. Advanced techniques

such as monopulse [36] to further improve the radar’s accuracy in azimuth were not

in use; target localisation inside the radar beam was not possible.

The IRST system was a recently-developed sensor for research purposes with

little information published in the open literature. IRST is an effective method for

detecting targets that emit infrared signatures. The main difference between this and

the radar system is the wavelength that they operate at. The wavelength of the IRST

is much shorter than that of the radar which, in turn, gives much better angular

resolution. There is however, one main drawback of using the IRST; its detection

performance can be largely affected by atmospheric and weather conditions. The

aim is to exploit the better angular accuracy, and the higher update rate of the

IRST, to gain more accurate tracking information through the use of sensor fusion.

With the sensors looking out over the Solent, there were a large number of
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Table 4.5: Tracking Parameters - Real Data

Quantity Symbol Value

Detection Probability pd 0.6

Survival Probability ps 0.95

Gating Threshold τgate 99%

Pruning Threshold τprune 0.001

Merging Threshold τmerge 0.6

Extraction Threshold τextract 0.5

False Alarm Rates λr, λc 5, 10

Birth Intensity µb 0.01

Acceleration Noise (m2s−3) u 3

Radar Measurement Noise (m,◦) σrr , σφr 3.873, 0.059

IRST Measurement Noise (◦) σφc 0.016

opportunities for detecting maritime targets. A number of instrumented targets

were present in the scene, as well as a large amount of background traffic, including

ferries and cargo ships passing through, allowing for more targets to be tracked, and

therefore increase the MOL and improve the calibration accuracy. In the segment

of data used in this piece of work, a large and persistent target crosses the FoV

approximately 2 km away from the sensors’ location. The target is clearly visible for

50 s and then disappears from the IRST FoV.

4.3.2 Results

It can be seen in Figure 4.11 that after the initial estimate of −10◦, and the ensuing

transition period, an angular registration error of between 1.5◦ and 2◦ is estimated

in the parent process. After the short transition period, the estimated angle only

deviates a small amount which may be due to external factors, such as platform

vibrations, or due to weather conditions such as high winds for example. It is also

possible that the omission of elevation data from the problem may account for this

small deviation. This systematic error, or bias, could account for human error when

the sensors were attached to the platform, as installation is often done by eye.

The main attraction of performing sensor fusion is apparent in Figure 4.12 and

Figure 4.13. The track shown in Figure 4.12 appears smooth, and could represent

a realistic maritime target, moving with a constant velocity. There are quite large

gaps between consecutive radar measurement updates however. These gaps can

however be filled in by using IRST measurements as shown in Figure 4.13. With

range measurements only available as a part of the radar measurements, there are

two larger jumps in the track at (−2000, 400) and (−1850, 450). As shown on the

figure, these are points where range information has become available again and
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Figure 4.13: Real target track using radar and IRST measurements.

updated appropriately.

4.4 Conclusions

In conclusion of this work, it has been demonstrated that single-cluster methods

could provide a suitable solution for performing joint sensor registration and fusion

for asynchronous and heterogeneous sensors. The simulation results on the crossing

targets scenario provide convincing evidence to show the importance of taking sensor

registration in to account before attempting any form of data fusion. The application

of this technique to a set of real data has also been successful, and a plausible offset

in the sensors pointing angle was found.

It was necessary to only use a subset of the available measurements, which gave

more weight to the sparse range-bearing measurements from the radar. Fundamen-

tally, by only using the slow update rate available from the radar, there are long

periods where no target track estimates are given, and therefore track resolution is

lost.
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Chapter 5

Vector-Type Methods for

Improved Accuracy and Efficiency

The solution that was proposed in Chapter 4 for resolving the joint registration and

fusion problem was robust and provided reasonable estimation accuracy. However,

by using vector-type tracking methods, rather than point process methods, further

advantages can be gained such as the ability to maintain target identities over time,

and therefore have a unique track history for each individual target. Vector-type

methods resolve the data association problem during the tracking process, and can

distinguish individual targets within a population, whereas point process methods

such as the Probability Hypothesis Density (PHD) filter do not attempt to asso-

ciate measurements to targets explicitly, and individual targets are not uniquely

distinguishable [80].

The grid-based method used for estimating the sensor registration parameter was

restrictive; it may be possible in extreme cases that the true value of the parameter

could exceed the bounds of the grid. This problem will also be addressed in this

chapter, as the grid-based method is removed, and replaced with a particle filter

and resampling approach, which should improve the flexibility and efficiency of the

algorithm. By improving the accuracy and efficiency in the two-sensor case, this

should lead to larger gains when looking at the many-sensor case in Chapter 6. The

work carried out in this chapter has been published, in part, in publications C2 [140]

and C3 [103], as listed in Chapter 1.

The main contributions of this chapter, and advancements from Chapter 4, in-

clude:

• the extension of a Multi-Target Tracking (MTT) routine based on Message

Passing (MP) that allows for simultaneous sensor registration and fusion; the

proposed technique also addresses the data association (DA) problem effi-

ciently using the Sum-Product Algorithm for Data Association (SPADA) [77];

• the derivation of a suitable Multi-Object Likelihood (MOL) for the particle
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Belief Propagation (BP) implementation presented, so that the algorithm can

be placed in to the hierarchical framework;

• the removal of the grid-based method, which is replaced with a Sequential

Monte-Carlo (SMC) approach, where the particle distribution representing

the registration parameter(s) is sampled and resampled at each time-step; this

gives more flexibility and will reduce the computational complexity when more

parameters need to be estimated (Chapter 6);

• the introduction of the multi-radar use case, which follows on from the work

presented in [140]; a full comparison with the point process approach presented

in Chapter 4 is given as a benchmark.

5.1 Message Passing for MTT

The use of Belief Propagation (BP), also known as Message Passing (MP), or the

Sum-Product Algorithm (SPA), is widespread in the signal processing literature, and

has been applied to a wide range of problems such as channel coding/decoding [141],

cooperative sensor localisation [142], and data association [143]. The use of MP for

MTT brings in a number of distinct advantages:

• “soft” association probabilities can be calculated efficiently;

• a principled technique for deriving MTT methods within a Bayesian inference

framework;

• the MP methods generalise previous MTT techniques such as Joint Proba-

bilistic Data Association (JPDA) [82,83];

• introduces scalable methods for MTT that are suitable for scenarios that in-

volve large numbers of targets and sensors. This point in particular will be

investigated in Chapter 6, when the proposed registration and fusion algo-

rithms are applied to larger sensor networks.

In contrast to the point process-based method previously used in the offspring pro-

cess, which gave an approximation of the joint posterior probability density func-

tion (pdf) that represented the target distribution, the use of MP will give the

marginal posterior pdfs for each of the individual targets. These pdfs can then be

used can then be used to perform Bayesian estimation of the target states. The most

recent methods of BP for MTT [22,23], which will be extended here, scales quadrat-

ically in the number of targets, linearly in the number of sensors, and linearly in the

number of measurements per sensor. The work by Meyer et al. in [22] showed that

MP-based algorithms should perform more efficiently than point process methods.
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The following sections will closely follow the notation found in [22,103,140]. Let

us start by defining some notation that will be used throughout this chapter:

xk,n : target state vector for target n at time k;

rk,n ∈ {0, 1} : target existence indicator for target n at time k;

yk,n = {xk,n, rk,n} : augmented state for target n at time k;

ak : target-oriented association variables at time k;

bk : measurement-oriented association variables at time k;

s? : spatial distribution of false alarms;

Ψ(ak,n, bk,m) : exclusion enforcing function for association assumptions;

f̃(xk,n, rk,n) : belief approximation of target n at time k

5.1.1 Algorithm Formulation

By running an iterative BP scheme on the factor graph, approximations of the

marginal posterior pdfs can be found in a very efficient manner. Because the factor

graph contains loops, a specific order for passing messages should be defined, based

on the following rules:

1. Messages should only flow forwards in time [142].

2. Iterative message passing is only performed for the DA function.

With these, the algorithm can be summarised with the following BP operations.

Firstly, the state prediction step is performed for all targets such that:

α(xk,n, rk,n) =
∑
rk−1,n

∫
f(xk,n, rk,n|xk−1,n, rk−1,n)× f̃(xk−1,n, rk−1,n)dxk−1,n (5.1)

where f̃(xk−1,n, rk−1,n) contain the target beliefs from the previous time-step k − 1.

This follows the same form as the Chapman-Kolmogorov equation, where the under-

lying dynamic model is applied to the previous target beliefs to gain the predicted

beliefs for the current time k.

After the prediction step, correlation and association steps are used to help form

unique tracks on individual targets. The correlation step can be expressed as

β(ak,n) =
∑

rk,n∈{0,1}

∫
v(xk,n, rk,n, ak,n; Zk)× α(xk,n, rk,n)dxk,n (5.2)
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where

v(xk,n, rk,n = 1, ak,n|Zk) =


f(zk,m|xk,n)

s?(zk,m)
pd
λ

ak,n = m ∈Mk

1− pd ak,n = 0
, (5.3)

v(xk,n, rk,n = 0, ak,n|Zk) = 1(ak,n), (5.4)

λ represents the average false alarm rate as per the Poisson point process and m

is the measurement index, m ∈ {1, . . . ,Mk}. As with the Poisson point process

used in the previous chapter, λ will define the cardinality (number) of false alarm

measurements, and these false alarms will be randomly generated within the limits

of the spatial distribution s?. The data association (DA) algorithm SPADA [77]

used here is also based on BP, and has been shown to be more efficient than other

classical techniques. The algorithm is initialised at iteration p = 0 using

ζ(0)
n→m(bk,m) =

Mk∑
ak,n=0

β(ak,n)Ψ(ak,n, bk,m). (5.5)

Once initialised, the two following equations are executed in a loop from p = 1 until

a final iteration P is reached:

υ(p)
m→n(ak,n) =

N∑
bk,m=0

Ψ(ak,n, bk,m)×
∏

n′∈N\{n}

ζ
(p−1)
n′→m(bk,m) (5.6)

ζ(p)
n→m(bk,m) =

Mk∑
ak,n=0

β(ak,n)Ψ(ak,n, bk,m)×
∏

m′∈Mk\{m}

υ
(p)
m′→n(ak,n). (5.7)

For the simulations presented later in Section 5.4, the association scheme will run

for a pre-defined number of iterations P = 30. After the final loop is completed, the

message to be passed out to the update step is given by

η(ak,n) =

Mk∏
m=1

υ(P )
m→n(ak,n). (5.8)

Depending on whether a target still exists or not, the update equation will either be

γ(xk,n, rk,n = 1) =

Mk∑
ak,n=0

v(xk,n, rk,n = 1, ak,n; Zk)η(ak,n) (5.9)

γ(xk,n, rk,n = 0) = η(ak,n = 0). (5.10)
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Lastly, the beliefs that represent the marginal posterior pdfs are obtained by

f̃(xk,n, rk,n = 1) =
1

Ck,n
α(xk,n, rk,n = 1)γ(xk,n, rk,n = 1) (5.11)

f̃(xk,n, rk,n = 0) =
1

Ck,n
α(xk,n, rk,n = 0)γ(xk,n, rk,n = 0) (5.12)

where Ck,n contains normalisation constants -∫
α(xk,n, rk,n = 1)γ(xk,n, rk,n = 1)dxk,n + α(xk,n, rk,n = 0)γ(xk,n, rk,n = 0). (5.13)

5.2 Multi-Object Likelihood Derivation

5.2.1 Derivation of Posterior

In order to use this type of BP algorithm for sensor registration in the single-cluster

framework, a suitable MOL is required to link the processes together, as described

in Section 2.3.3. The equations presented in this subsection can be found in [22].

First, it should be assumed that the prior distribution from k − 1 can be factorised

as

p(Xk−1, rk−1|Zk−1) =
N∏
n=1

p(xk−1,n, rk−1,n|Zk−1), (5.14)

and the state evolution can also be factorised as

f(Xk, rk|Xk−1, rk−1) =
N∏
n=1

f(xk,n, rk,n|xk−1,n, rk−1,n), (5.15)

such that the joint target density can be formed as a product of all of the individual

target densities. The prediction equation for {xk,n, rk,n}Nn=1 can therefore be written

as

p(Xk, rk|Zk−1) =

∫
f(Xk, rk|Xk−1, rk−1)p(Xk−1, rk−1|Zk−1)dXk−1. (5.16)

which is in the same form as the Chapman-Kolmogorov equation. For simplicity,

this prediction equation will be written as a product of marginal predictions, such

that

p(Xk, rk|Zk−1) =
N∏
n=1

α(xk,n, rk,n) (5.17)

where α(xk,n, rk,n) is a marginal prediction in the same form as equation (5.1):

α(xk,n, rk,n) =
∑
rk,n

∫
f(xk,n, rk,n|xk−1,n, rk−1,n)p(xk−1,n, rk−1,n|zk−1)dxk−1,n. (5.18)
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The next step is to introduce the target-oriented association variables ak into the

formulation. This gives an update equation, based on Bayes’ rule, for the MP

implementation:

p(Xk, rk, ak|Zk,Z1:k−1) = p(Zk|Xk, rk, ak)×
p(ak|Xk, rk,Z1:k−1)p(Xk, rk|Z1:k−1)

p(Zk|Z1:k−1)
(5.19)

where ak are the target-oriented association variables, p(Zk|Xk, rk, ak) is the single-

object association likelihood, p(Xk, rk|Z1:k−1) contains the predicted target states

obtained from (5.16), and p(Zk|Z1:k−1) is the evidence term, which is necessary for

the derivation of the MOL function.

This then leads to an application of the stretching process discussed in Sec-

tion 2.4. In order to stretch the graph in this case, a latent random variable bk is

introduced, which represents the measurement-oriented association variables. This

information stored in bk can be directly derived from ak, giving a seemingly redun-

dant formulation. However this is a critical step in finding a more detailed factor

graph, and reducing the dimensionality. This stretching process may introduce loops

into a part of the factor graph. Having loops means that the messages or beliefs

being passed in the loopy part of the graph are no longer exact, and are only ap-

proximations. By exploiting the final factorisation given in [22, Eq. (27)], and also

exploiting both ak and bk with the update equation given in (5.19), it can be shown

that

p(Xk, rk, âk|Zk) ∝ Ψ(âk)

∏N
n=1 v(xk,n, rk,n, ak,n|Zk)

∏N
n=1 α(xk,n, rk,n)

p(Zk|Z1:k−1)
(5.20)

where v(xk,n, rk,n, ak,n|Zk) are computed through equations (5.3) and (5.4), âk =

{ak,bk}, and Ψ(âk) is an “indicator” term that excludes all infeasible association

events [144].

5.2.2 MOL for MP Implementation

In order to gain the posterior in equation (5.20) from [22], there was no conditioning

on the parameters to be estimated q; this was never taken into account in the article,

and was assumed known. Equation (5.20) can be re-written with this conditioning:

p(Xk, rk, âk|Zk,qk) ∝ Ψ(âk)

∏N
n=1 v(xk,n, rk,n, ak,n|Zk,qk)

∏N
n=1 α(xk,n, rk,n|qk)

p(Zk|Z1:k−1,qk)
(5.21)

The next step is to rearrange equation (5.20). The evidence term can be moved from

the denominator of the right-hand side to the left-hand side, and by marginalising
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over ak, Xk and rk, this therefore gives an expression for the evidence term:

p(Zk|Z1:k−1,qk) ∝
∑
ak

∑
rk

∫
· · ·
∫ N∏

n=1

v(xk,n, rk,n, ak,n|Zk,qk)

× α(xk,n, rk,n|qk)dxk,1, . . . , dxk,n. (5.22)

The product over N is removed from the multidimensional integral, so that this

expression can be simplified further using [22, Eq. (31)]:

β(ak,n) =
∑
rk,n

∫
v(xk,n, rk,n, ak,n|Zk,qk)α(xk,n, rk,n|qk)dxk,n, (5.23)

so that the final expression for the MOL of the MP implementation is:

p(Zk|Z1:k−1,qk) ∝
∑
ak

N∏
n=1

β(ak,n) = ˆ̀
k(qk|Zk) (5.24)

The β(ak,n) terms can be interpreted as an approximation of the single-target asso-

ciation weights commonly found in the Probabilistic Data Association (PDA) and

JPDA filters [21]. This MOL is based on the correlation and association informa-

tion, which from a wider perspective, follows the conclusions proposed by Vermaak,

Maskell and Briers in [34], and by Li et al. in [14], in that the performance of the

association process could have an inherent effect on the sensor registration estima-

tion.

The final equation given in (5.24) can be directly implemented between the

correlation and association steps of the offspring process, on the matrix of size ((Mk+

1)×N) containing the weights, where Mk is the number of current measurements.

An extra row is required in this matrix to take account of the possibility that the

measurement will not correlate, or associate, with any of the current targets. Firstly,

a product is taken across the columns to create a single column vector. A summation

is then performed across the elements in this column vector to provide a single output

value representing the MOL.

The MOL that is derived in (5.24) is of a similar form to that of the matrix perma-

nent [145,146]. There are a range of techniques available for finding approximations

of the permanent; approximations are required when the matrix is high-dimensional

due to an exponential scaling in the number of operations necessary to compute

it. This would be appropriate if we were to deal with very congested scenarios

containing many targets and many sensor measurements. However, in the smaller

surveillance cases presented in this thesis which have a relatively small number of

measurements and targets, this likelihood or permanent can be computed directly.
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Figure 5.1: A reminder of the registration problems being resolved, as described
initially in Chapter 1. (a) A homogeneous network containing two radars, with
range bias rb and azimuth bias φb. (b) A heterogeneous network where Radar B has
been replaced with a camera that has azimuth registration bias φb.

5.3 Implementation

The two scenarios that the proposed method is aiming to solve are highlighted in

Figure 5.1, using the implementation details presented next.

5.3.1 Sensor Registration

As before, the high-level process in the implementation will estimate the potentially

time-varying sensor registration configuration q at each iteration of the algorithm.

This will follow the parent process recursion given in Chapter 3.

Similar to the implementation in Chapter 4, the registration configuration qk

will be represented using a particle distribution such that qik, 1 ≤ i ≤ N ≈ qk,

where each i represents a different configuration. Each of the particles has its own

weight wik, and a corresponding set of underlying MTT statistics θik which will be

dependent on the type of algorithm used in the low-level offspring process. Each

particle qik is an independent test of the registration parameters; the uncertainty in

each of these tests is not shared or reflected in any other test. Following from the

equations presented previously in Section 2.2.2 on page 20, the equations for the
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parent process recursion are:

P̂k|k−1(qk|Z1:k−1) =
N∑
i=1

wik|k−1δ(qk − qik), (5.25)

P̂k(qk|Z1:k) =
N∑
i=1

wikδ(qk − qik), (5.26)

wik|k−1 =
N∑
j=1

wjk−1P̂ (qik|q
j
k−1), (5.27)

wik =
wik|k−1

ˆ̀i
k∑N

j=1w
j
k|k−1

ˆ̀j
k

(5.28)

where ˆ̀i
k = ˆ̀

k(q
i
k|Zk) is the MOL function. After updating the high-level weights

wik, i = 1, . . . , N , the effective sample size (Equation (2.28) on page 23) is computed,

in order to test for particle degeneracy. If the effective sample size is below a given

threshold τresample, a systematic resampling [65] strategy is performed on the particle

distribution to increase their spread in the high-level state space. The decision to

use systematic resampling over other more traditional resampling methods in this

application is justified due to the shape of the posterior distribution in the high-level

state space. This distribution tends to be very sharp; with a very localised peak at

the true value; small errors in azimuth can lead to track inaccuracies in the order

of hundreds of metres in some cases. These inaccuracies lead to large reductions in

the MOL function, and therefore the particle weights of the outliers. When these

particle weights were resampled using the simple random resampling method, it was

noticed that the particle(s) with very high weight were being chosen many times,

reducing the diversity of the particles.

5.3.2 Multi-Target Tracking

The low-level offspring process in the hierarchy continues to estimate the potentially

time-varying multi-target state Xk ∈ X , which is dependent on the sensor registra-

tion configuration qk. This multi-target state will continue to be updated through

the offspring process recursion in Chapter 3. The MTT process will evolve with a

first-order Markov model fk|k−1(Xk|Xk−1), which will continue to be a near-constant

velocity (NCV) model [52] as in Chapter 4.

A similar particle BP algorithm to the one that is implemented here can be found

in [22]; however the factor graphs are different, due to the asynchronous nature of the

sensors considered here. The implementation in [22] assumes a synchronous network

of sensors, meaning that it is possible to perform the correlation, association and

update steps in parallel for all sensors, and these messages can all be passed back

to the variable node y. For the asynchronous case presented in this thesis, this
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Figure 5.2: Factor Graph for MP for MTT implementation.

parallel, or batch processing method cannot be performed as only one sensor will

provide measurements at a given iteration. The exact factor graph (assuming the

beliefs in the prior factorise) used here is given in Figure 5.2, and contains the

following notation:

f̃ : target beliefs from time k − 1;

f : represents the prediction step f(xk,n, rk,n|xk−1,n, rk−1,n);

α : the marginal predictions;

v : likelihood function computed through (5.3) and (5.4);

β : contains correlation information to initialise the association process;

η : result of the association process;

γ : contains measurement update information.

All of the messages being passed around the graph are only approximations of the

true messages because of the use of particle BP [22,23].

5.4 Simulations

The results shown in the previous chapter were generated using the single-cluster

framework with a grid-based method [49] to represent the parent process. The par-

ticles were spread evenly across a grid with rigid boundaries, giving a consistent

parameter test, and removing the need for performing any sort of particle resam-

pling [65]. This was overly restrictive as time was used to update particles that

were far away from the true value, and not contributing to the overall result. In

order to resolve this, the systematic resampling strategy is now introduced into the

implementation in this chapter. Both of the presented simulations use 182 = 324
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Figure 5.3: Simulated target trajectories for all scenarios. Sensor locations shown
for homogeneous case; sensors are colocated at (x, y) = (0, 0) in heterogeneous case.

particles in the parent distribution, and are initialised uniformly across an appro-

priate parameter space, as shown in Figure 5.4. The reasoning behind the choice of

324 particles, a square number, in this case is to have a uniform distribution across

the two-dimensional space created for the multi-radar scenario. While this choice

of uniform distribution follows the one used in the previous chapter, there is a lot

of design flexibility available in the initial prior. The simulated parameters used in

the offspring process are given in Table 5.2, and are kept consistent across all of

the scenarios, and the 100 Monte Carlo (MC) runs. As shown in Figure 5.5, the

results from a stability experiment show that the Generalised Optimal Subpattern

Assignment (GOSPA) results should be consistent at 100 MC runs. An overview of

the simulated target trajectories is shown in Figure 5.3. The dynamical model for

the targets, and the sensor measurement models are the same as those presented in

Section 3.4. To make a suitable comparison between two particle-based methods,

the offspring process for the PHD method presented in this chapter is formed of

the SMC-PHD filter [99], rather than the Extended Kalman Filter (EKF)-PHD or

Panjer filters from Chapter 4.

The algorithms will also be compared in terms of the computation time per

iteration. All results have been generated on a desktop PC containing an Intel

Core i7-6700K CPU with a clock speed of 4 GHz and 16GB of RAM. Because all

of the particles in the parent process are independent of one another, it is possible

to further improve the performance as the estimation process can be parallelised.

The filtering recursions for each of the particles are performed in parallel, and once

completed, the normalisation of the particle weights in the parent process, and the

resampling strategy can be performed sequentially.

The plots given in Figure 5.5 indicate that both the PHD approach and the MP
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Figure 5.4: An example of the sensor configurations represented by a particle dis-
tribution in the parent process for the homogeneous scenario.
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Figure 5.5: Indication of stability for the algorithms being tested.

Table 5.1: Measurement Noise Levels
Noise Level σrr σφr σφc

Low Noise 5 m 0.05◦ 0.01◦

Medium Noise 10 m 0.1◦ 0.03◦

High Noise 20 m 0.2◦ 0.05◦
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Table 5.2: Tracking Parameters

Quantity Symbol Value

Survival Probability ps 0.95

Gating Threshold τgate 99%

Pruning Threshold τprune 0.001

Extraction Threshold τextract 0.5

Resampling Threshold τresample 162

False Alarm Rate λr, λc 2, 5

Birth Intensity µb 1

Acceleration Noise u 1 m2s−3

Particles per Target N 1000

approach are stable, even for low numbers of MC trials. The average target tracking

accuracy given by GOSPA is consistent, and there is a small reduction in the spread

of the final result as the number of trials increases. The spread reduces by 2.22 m

for the PHD approach, and by 2.18 m for the MP approach.

Results have been generated for three differing levels of measurement noise. In

practical fusion systems, there are likely to be sensors present in the network that

have different levels of measurement accuracy, which may also be time-varying.

For example, the radar measurement uncertainty is often dependent on whether

advanced signal processing techniques such as monopulse are available, and the

angle off the radar boresight. Angles further away from the boresight, closer to the

edge of the radar beam typically have a higher uncertainty than those closer to the

centre [36]. The range uncertainty is dependent on factors such as the size of each

range bin, and the type of radar waveform being exploited.

In all of the plots from Figure 5.6 to Figure 5.12, the results shown are from the

low measurement noise case. A full summary of results for the low, medium and

high noise cases (measurement noise values for these cases are shown in Table 5.1)

are shown in Table 5.3 and Table 5.4.

5.4.1 Multi-Radar

For this first scenario, a multi-radar sensor setup is considered, where two radars

survey a common region of interest. The two radars themselves are physically sep-

arated by a number of kilometres in fixed and known locations; however there is

some uncertainty in their relative azimuth orientation, and a range bias between

the two sets of measurements. Both of these parameters will be estimated alongside

the multiple target states. For this simulated scenario, the true biases simulated are

q = [30 m, 2◦].

From looking at Figure 5.6a and Figure 5.6b, it can be seen that the proposed
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Figure 5.6: Multi-radar, pd = 0.99
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Figure 5.7: Parameter estimation, multi-radar, pd = 0.99
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Figure 5.8: RMSE, multi-radar, pd = 0.99
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Figure 5.9: Varying pd results, homogeneous sensors, average value at k = 200.
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method of simultaneous registration and tracking (shown as the black dot-dashed

plot) outperforms the use of a single radar (shown as the red dashed plot) in terms

of the GOSPA distance by 29.54 m and 26.73 m respectively, but does not reach the

“optimal” performance of the perfectly registered set of sensors (shown in green).

The PHD approach is 12.22 m away from the accuracy with correct registration, and

14.87 m away from the correct registration in the MP approach. As with the results

shown and conclusions taken from Chapter 4, the case containing the unregistered

set of sensors (shown as the blue dotted plot) performs much worse than the other

cases, further emphasising the importance of having accurate registration to perform

sensor fusion. There appears to be a larger gap between the single radar plot and

unregistered plot in Figure 5.6b than in Figure 5.6a, which may be due to the

sensor measurements appearing too far away from each other and therefore not

correlating and associating with one another. For the PHD approach in Figure 5.6a,

the reduction in accuracy between the single radar case and the unregistered case

is 22.74 m, and for the MP approach the reduction is 28.37 m. Because the PHD

approach from Chapter 4 does not attempt to resolve the DA problem explicitly, it

may be more forgiving of outliers and therefore make loose measurement-to-target

associations, hence reducing the GOSPA distance.

At the end of the scenario, the GOSPA distance for the PHD approach is 64.2 m

and 54.2 m for the MP approach, giving a performance gain of approximately 10%.

In terms of the registration estimation results shown in Figure 5.7, we see that the

PHD approach has less variation than the MP approach in estimating the range

bias (Figure 5.7b), however both methods are within ±2 m of the true value for

the majority of the scenario. The angle estimates in Figure 5.7b are consistently

accurate throughout the scenario for the MP approach with very little variation.

The average angle estimate from the MP approach is within 0.07◦ of the true value,

and 0.13◦ from the true value for the PHD approach.

The plots in Figure 5.9 show results involving a range of probabilities of detection

pd. As the probability of detection increases from 0.80 to 0.99, the tracking accu-

racy continually increases for both methods, and the GOSPA distance decreases as

expected; with the MP approach always outperforming the PHD approach. From

the results involving the parameter estimation in Figure 5.9b and Figure 5.9c, there

is only a small change in the average estimates for the parameters over pd; however

the spread of the result slowly decreases as pd increases.

From the tabulated results in Table 5.3, which contain GOSPA values on a range

of measurement noise levels, and a range of probabilities of detection, we can see

that the MP method is more accurate at the low measurement noise level in almost

all cases. In the medium noise cases, we start to see a decrease in accuracy for

both methods, with the MP approach deteriorating at a faster rate than that of the

PHD approach. This may be a result of the MP approach attempting to resolve the
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data association problem explicitly; measurements may appear much further away

from the target states, and therefore lie outside the correlation gates or thresholds.

Because a measurement is outwith the threshold, it will not be eligible for association

and it would be likely that a track is not updated and not declared as a target state

for extraction. In the high noise scenario, both methods perform very poorly, as

would be expected.

In terms of execution time, the PHD approach took 0.781 s per iteration on

average, with the MP approach marginally slower at 1.086 s per iteration.

5.4.2 Heterogeneous Sensors

We now consider the heterogeneous sensing case, where a radar and an Infrared

Search and Track (IRST) system are co-located on the same static platform, similar

to the simulation presented in Chapter 4. The high update rate of the IRST system

is exploited to update the track estimates more often. In this case, it is desired to

estimate the relative angular bias q = 2◦ between the sensors, alongside the multiple

target states.

From Figure 5.10a, it can be seen that both the PHD approach and the MP

approach give better accuracy than their respective single radar cases in terms of the

GOSPA metric, but not as accurately as their correct registration cases as expected.

The approach that is proposed in this Chapter gives a higher accuracy than the PHD

approach from Chapter 4 in almost all of the low measurement noise cases. At the

end of the scenario (k = 200), the GOSPA distance for the MP approach is 47.8 m,

and 72.6 m for the PHD approach, giving a more substantial performance boost than

that shown in the multi-radar scenario (Section 5.4.1). The parameter estimation

result given in Figure 5.11a shows that the two methods are closely comparable in

terms of accuracy, with the MP approach 0.05◦ away from the true value on average,

and the PHD approach 0.06◦ away on average.

When considering the results over a range of probabilities of detection in Fig-

ure 5.12, a similar behaviour to that seen in Figure 5.9 is apparent; the GOSPA

distance for both methods decreases while pd increases, with the MP approach more

accurate than the PHD approach; and the MP approach provides a more accurate

average estimate of the bias angle between the sensors. The full breakdown of the

results on the range of probabilities of detection, and the different measurement

noise levels is given in Table 5.4. Again, we see very similar behaviour to that of

the multi-radar results; the proposed MP method performs most accurately in the

low noise cases, the MP approach deteriorates more rapidly than the PHD approach

when considering the medium noise level, and both methods perform poorly at the

high noise level as expected. The PHD approach took on average 1.203 s per it-

eration to execute, with the proposed MP approach taking 1.530 s per iteration to

execute.
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Figure 5.10: Heterogeneous sensors, pd = 0.99
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Figure 5.11: Angular bias estimation, heterogeneous sensors, pd = 0.99
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Figure 5.12: Varying pd results, heterogeneous sensors, average value at k = 200.
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5.5 Conclusions

From the comprehensive simulations presented in the previous section, it can be

seen that the proposed approach of using an MP algorithm inside the single-cluster

method framework gives more accurate target tracking and sensor registration esti-

mation than the point process method presented in Chapter 4. When considering

the low noise cases for both sensor setups, the MP approach performs approximately

17% more accurately in terms of the GOSPA metric. Again the results also highlight

the importance of maintaining an accurately registered set of sensors when attempt-

ing to perform data fusion, as tracking accuracy is greatly reduced when the correct

registration is not taken in to account.

When considering the medium measurement noise and high measurement noise

cases, the results show that the MP-based method proposed in this chapter dete-

riorates in performance at a faster rate than the PHD approach. By having these

larger values of noise included in the sensor measurements, the measurements are

more likely to be reported much further away from the true target location. When

these are used in the correlation step of the MP method, it is quite likely that they

will lie outside of the gating threshold, and therefore, will not be associated with

existing targets. However, as the PHD approach does not attempt to resolve data

association, it may be more forgiving to these “outlier” measurements and hence

improve the tracking accuracy.

Previous works in the area of MP for MTT have shown that it should be less

computationally expensive to use MP methods, rather than point process methods

such as the PHD filter [22,23]. However so far, this has not been seen in this work;

the MP implementation is currently approximately 20% slower than that of the

PHD approach. This may be due to coding inefficiencies, and problems relating to

parallelisation of the algorithm such as reading/writing overheads.

Now that we have a more accurate solution to resolving the sensor registration

and fusion problem for the two-sensor case, the next chapter of this thesis will at-

tempt to scale the algorithm in to larger scenarios that contain many more sensors.
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Chapter 6

Single-Cluster Methods vs. BP

Frameworks in Larger Networks

So far, the use of single-cluster methods for performing joint registration and fusion

has proven to be a suitable solution. It has been shown in both Chapter 4, and

in Chapter 5 that the proposed methods have been able to accurately estimate the

sensor registration parameters, and the states of the multiple targets. Chapter 5

proposed the idea of inserting Belief Propagation (BP) algorithms in to the single-

cluster framework, and the results showed an increase in tracking and registration

estimation accuracy for scenarios containing two sensors, over the implementation

based on point process methods from Chapter 4. However, one aspect of performance

that is important for practical deployment has not yet been explored; the scalability

of these algorithms, how many sensors could realistically be registered, and their

measurements fused, in a larger sensor network?

A very recent addition to the literature [50] has proposed a detailed factor graph

and BP implementation that allows for other parameters to be estimated alongside

the multiple target states. This method however, as with many other pieces of lit-

erature discussed in Chapter 2, is also based on assumptions such as synchronous

sensors, and that the parameter estimates must be chosen from a pre-determined,

discrete set of values. This chapter will explore the possibility of extending this

algorithm to estimate appropriate sensor registration parameters alongside the tar-

get states. The proposed implementation will then be compared to the hierarchical

model that has been developed previously in Chapter 4 and Chapter 5 of this thesis.

The simulated scenarios will begin at two sensors, and be increased to a maximum

of 16 sensors. The results presented should give a perspective of how well these

algorithms could perform when deployed in a real system.

The main contributions of this chapter, and advancements from Chapter 4 and

Chapter 5, include:

• the extension of the previously proposed methods, to address much larger sets

of sensors that observe a common region, in order to test the scalability of the
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methods presented;

• the extension of the implementation given in [50], by showing that it is possible

to estimate from a continuous space containing variables such as distances and

orientation angles, rather than being constrained to selecting from finite set of

discrete values;

• a robust and well-rounded comparison between the single-cluster, hierarchi-

cal approach presented in Chapter 4 and Chapter 5, and the full BP-based

approach developed during this Chapter.

6.1 Joint Estimation using Message Passing

In previous chapters, only the hierarchical estimation framework has been consid-

ered as a solution to the joint sensor registration and fusion problem. In order to

implement the full-Message Passing (MP) approach for parameter estimation, the

factor graph that was presented in Chapter 5 will need to be extended, so that the

registration parameters can now be represented with messages and beliefs, rather

than using the parent process. These new messages will still be represented using

particles, but will be embedded into the graph structure, and not predicted and

updated through the parent process recursion in equations (3.1) and (3.2) on page

58.

The formulation given in [50] will need to be adapted to suit this problem. The

parameters should not be explicitly chosen from a set of pre-defined values; the

particles should search the parameter space for the best set of parameters. Aspects

of the single-cluster, or hierarchical, method from Chapter 5 will be implemented,

such as the particle resampling strategy for the parameter estimation. The initial

parameter hypotheses are distributed uniformly across an appropriately sized pa-

rameter space, and these will evolve independently through a first-order Markov

model. The notion of having a reference sensor will still apply in this Chapter; all

other sensors will be registered with respect to this single reference. There will be

one appropriately sized parameter space for each of the unregistered sensors, which

will be predicted and updated separately. This proposed method does not stack all

of the registration parameters for all sensors into a common vector to try and resolve

the global registration between all pairs of sensors.

With the parameter hypotheses represented with particles, and the registration

parameters for a sensor s being independent of all other sensors, the prior Probability

Mass Function (PMF) of the estimated parameters will be

p(q) =
S−1∏
s=1

p
(
q

(s)
0

) k∏
k′=1

p
(
q

(s)
k′ |q

(s)
k′−1

)
. (6.1)
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where p
(
q

(s)
k′ |q

(s)
k′−1

)
is an appropriate first-order Markov model to represent the

change in the registration parameters over time, and s ∈ {1, . . . , S − 1} represents

the sensor number. We only require up to sensor S−1 as registration is not required

on the reference sensor.

The posterior probability density function (pdf) of the target states f(xk,n, rk,n|Z)

is a marginal of the joint posterior pdf f(X, r, a,b,q|Z) that includes all of the target

states X, the existence variables r, the association variables a and b, the registra-

tion parameters q, and the measurements Z. A detailed factor graph that represents

the factorisation of the joint posterior pdf f(X, r, a,b,q|Z) is required so that an

appropriate MP schedule and order can be defined. Because Z is observed by the

sensors and is fixed, the number of measurements m will also be fixed. This then

leads to the equations defined in [50, Eq’s (16)-(18)]:

f(X, r, a,b,q|Z)

= f(X, r, a,b,q,m|Z)

∝ f(Z|X, r, a,b,q,m)f(X, r, a,b,q,m) (6.2)

= f(Z|X, r, a,m)f(X, r, a,b,q,m) (6.3)

= f(Z|X, r, a,m)p(a,b,m|X, r,q)f(X, r)p(q) (6.4)

6.2 Implementation

The overall algorithm follows many of the same assumptions and MP rules that were

defined earlier in Chapter 5, such as messages always being sent forward in time,

and iterative Message Passing is only performed for the data association function.

The algorithm implemented here follows the same steps as the one presented in

Section 5.1.1 starting on page 84, but now contains extra messages and computations

to estimate the registration parameters on the factor graph. The steps carried out

follow the same order, and start with the prediction step.

Each and every target still follows a near-constant velocity (NCV) motion model

over time, whereas the registration parameters are expected to follow a random

walk, or Brownian motion model. The parameters are assumed to be static over

time; the inclusion of the random walk will allow for the variance of the particles to

be increased a small amount, and help to avoid the problems of particle degeneracy

and particle impoverishment from Section 2.2.2. We now have two separate messages

that are the result of the prediction step, one representing the targets, and one to

represent the parameters. The target message is given by

α(xk,n, rk,n) =
∑

rk−1,n∈{0,1}

∫
f̃(xk−1,n, rk−1,n)× f(xk,n, rk,n|xk−1,n, rk−1,n)dxk−1,n,

(6.5)
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which is the same as equation (5.1). The new parameter message that represents

the prediction of the registration parameters is given by

χ
(
q

(s)
k

)
= p̃

(
q

(s)
k−1

)
p
(
q

(s)
k |q

(s)
k−1

)
(6.6)

where p̃(q
(s)
k−1) are the parameter estimates for sensor s at time k−1, and p

(
q

(s)
k |q

(s)
k−1

)
applies the Brownian motion to the registration parameter states.

Moving to the correlation step, the calculation for the messages β
(
a

(s)
k,n

)
has

been extended from Chapter 5, such that it includes the messages representing the

predicted parameter estimates from (6.6). These are now calculated as

β
(
a

(s)
k,n

)
=

∑
rk,n∈{0,1}

∫
v
(
xk,n, rk,n, a

(s)
k,n,q

(s)
k ; Z

(s)
k

)
× α(xk,n, rk,n)χ

(
q

(s)
k

)
dxk,n

(6.7)

The data association step is identical to the previous implementation, and is based

on Sum-Product Algorithm for Data Association (SPADA) [77], where iterated mes-

sages are passed until a stopping criteria is reached. This stopping criteria is still

preset to a value of P = 30 iterations as in Chapter 5. The equations for the SPADA

algorithm are given in equations (5.5) to (5.8).

Next, depending if a target continues to exist or not, the measurement update

steps are given by

γ(s)(xk,n, rk,n = 1) =
∑
q
(s)
k

M
(s)
k∑

a
(s)
k,n=0

v
(
xk,n, rk,n = 1, a

(s)
k,n,q

(s)
k ; Z

(s)
k

)
× χ

(
q

(s)
k

)
η
(
a

(s)
k,n

)
(6.8)

γ(s)(xk,n, rk,n = 0) , η
(
a

(s)
k,n = 0

)
. (6.9)

Equation (6.8) differs from equation (5.9), as it now also includes the messages relat-

ing to the predicted registration parameters; equation (6.9) is the same as equation

(5.10).

Finally, updated beliefs need to be calculated for the multiple target states, and

for the estimated parameters. The beliefs that approximate the posterior pdfs of

the target states are calculated by

f̃(xk,n, rk,n) =
1

Ck,n
α(xk,n, rk,n)γ(s) (xk,n, rk,n) (6.10)

where the normalisation constants Ck,n are equivalent to those given in equation

(5.13). The final beliefs approximating the posterior pdfs of the registration param-

eters are given by

p̃
(
q

(s)
k

)
= χ

(
q

(s)
k

)
ε
(
q

(s)
k

)
(6.11)
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Figure 6.1: Factor Graph for fully-MP implementation.

with

ε
(
q

(s)
k

)
=

M
(s)
k∑

a
(s)
k,n=0

∫
v
(
xk,n, rk,n = 1, a

(s)
k,n,q

(s)
k ; Z

(s)
k

)
η
(
a

(s)
k,n

)
× α(xk,n, rk,n = 1)dxk,n + η

(
a

(s)
k,n = 0

)
α(xk,n, rk,n = 0) (6.12)

The exact factor graph used here is given in Figure 6.1. This factor graph does differ

slightly from the graph proposed in [50]; as again one of the underlying assumptions

made in the article is that the sensors all operate synchronously, and a batch update

of all of the target states, and all parameters, can be undertaken.

6.3 Simulations

The simulated scenario used in this chapter is inspired in part by the scenarios pre-

sented by Uney et al. in [122, 123], where a number of sensors are placed in a grid

formation and observe a number of targets moving around inside a small surveil-

lance region. This scenario could potentially occur around a small site such as an

airport for example. Although these articles consider a distributed fusion scenario,

where track information is traded between neighbouring sensors, this simulation

and subsequent results will assume a centralised fusion architecture as with previ-

ous chapters. This is also loosely based on the Sensing for Asset Protection with

Integrated Electronic Networked Technology (SAPIENT) interface [124], where a

number of plug-and-play sensors can be connected to a Fusion Centre (FC), also

referred to as a High-Level Decision Making Module (HLDMM) in [124], and sensor

registration and/or management performed. All of the sensors will produce range-

bearing measurements following the radar measurement model in Chapter 3. The

target trajectories are identical to those used in the simulations in Chapter 5, and

an overview of this scenario is given in Figure 6.2.
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Table 6.1: Tracking Parameters - Simulations

Quantity Symbol Sim Value

Detection Probability pd 0.99

Survival Probability ps 0.95

Gating Threshold τgate 99%

Pruning Threshold τprune 0.001

Merging Threshold τmerge 0.8

Extraction Threshold τextract 0.5

False Alarm Rates λr, λc 2, 5

Birth Intensity µb 1

Acceleration Noise (ms−2) u 1

Radar Measurement Noise (m,◦) σrr , σφr 2, 0.01

The true range and azimuth bias in each of the sensors will be initialised to

an integer value between [−150 m → 150 m] and [−3◦ → 3◦] respectively. The

particles used to estimate these biases will be initialised uniformly across this space,

with all of these hypotheses being equally weighted. All of the results presented

here are averaged over 100 Monte Carlo (MC) runs, where in each run, the sensor

measurements generated are randomised, however the range and azimuth biases will

be kept consistent. The registration parameter estimation will be compared using

an average Root Mean Square Error (RMSE), with the target tracking accuracy

again compared with the Generalised Optimal Subpattern Assignment (GOSPA)

metric [128]. The parameters used in the GOSPA metric are p = 2, c = 100 m and

α = 2.

In the following results, the proposed method from Chapter 5 is referred to as

Hierarchical Models, and the method proposed earlier in this chapter is referred to

as Fully MP.

6.3.1 Experiment 1: Two Sensor, Varying Hypotheses

The first experiment again considers the two-sensor case, with two radars detecting

targets. This will test the scalability of the algorithms in terms of the number of

parameter hypotheses required to accurately register the sensors and mitigate biases.

The number of particles used to estimate the parameters will be increased through

the square numbers from 22 → 202.

From Figure 6.3, it can be seen that there is a little difference between the two

methods over time; the hierarchical approach appears to reach the true azimuth bias

faster than the fully MP approach, and therefore reaches a lower GOSPA distance

at an earlier iteration. The additive range bias estimates shown in Figure 6.3a are

comparable across the whole scenario. After approximately iteration k = 60, the
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Figure 6.2: Simulated scenario containing the maximum 16 sensors.

GOSPA distances in Figure 6.3c are almost identical. Looking at the RMSE results

in Figure 6.4, there appears to be a curve on the performance. Using 100 hypothe-

ses to represent the registration parameters appears to give an “optimal” trade-off

between accuracy and efficiency; using any more hypotheses than this would ex-

pend more computational resources with no further gains in tracking accuracy, or

registration estimation accuracy.

An important result is shown in Figure 6.5, where the average iteration execution

times are compared. Both techniques scale linearly in the number of hypotheses as

expected; however the hierarchical model follows a much steeper gradient than that

of the fully-MP approach. The fully-MP approach is approximately 2.25 times faster

on average across all of the runs.

6.3.2 Experiment 2: Up to 16 Sensors, 100 Hypotheses

Following on from the results in Experiment 1, which showed that using beyond 100

parameter hypotheses gave no further performance gain in terms of both registration

and fusion accuracy, the second experiment will test the scalability in terms of

the number of sensors that are present in the region. The number of parameter

hypotheses will now be fixed to 100, in order to estimate the relative biases between

the reference sensor, and each of the other sensors providing measurements.

From this second set of results, it can again be seen in Figure 6.6 that there is no

discernible, or statistical difference between the two methods in terms of estimation

accuracy, both in the GOSPA results for tracking accuracy, and the RMSE results

for sensor registration. By taking the average across the points plotted in Figure 6.6,

the tabulated results in Table 6.2 can be found. It is positive to see that by adding

more sensors to the network, there is no decrease in estimation accuracy, both in

terms of the parameters and the target tracks. The key result is again in the timing
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Figure 6.3: Parameter estimation and tracking accuracy, two sensors, pd = 0.99, 100
hypotheses
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Figure 6.4: Estimation accuracy over number of registration parameter hypotheses.
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Figure 6.5: Execution time over number of registration parameter hypotheses.

Table 6.2: Average Results for Experiment 2

Average Range RMSE
Fully MP 2.51 m

Hierarchical Models 2.64 m

Average Azimuth RMSE
Fully MP 0.19◦

Hierarchical Models 0.21◦

Average GOSPA Distance
Fully MP 9.58 m

Hierarchical Models 9.57 m

analysis of the two methods in Figure 6.7; the fully-MP approach is on average 92%

faster at achieving a very similar result to that of the hierarchical model.

6.4 Conclusions

This chapter has shown that extending factor graphs to include parameter estimation

is a useful and very efficient tool for resolving the joint registration and fusion

problem. The results have shown that the advancements made to the algorithm

that allow for continuous variables to be estimated, rather than just from discrete

sets, have been successful, and provided a very similar outcome to the two previous

chapters in terms of estimation accuracy. From the scalability tests that have been

presented here, the average speed-up from using a fully-MP framework, rather than

the hierarchical models developed earlier is approximately 158%. This large speed-

up makes MP algorithms much more attractive for deployment in real systems,

especially given that there is no decrease in accuracy.
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Figure 6.6: Estimation accuracy over number of sensors.
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Chapter 7

Discussion and Conclusion

7.1 Summary

The main focus of this thesis was to investigate and develop scalable Multi-Target

Tracking (MTT) and sensor fusion methods, which also incorporate sensor registra-

tion estimation in a joint manner. The work presented has been driven from an

application perspective, and has taken problems that we may face in practice in to

account, such as:

Limited resources being available on platforms, and hence the requirement for

efficient and/or parallelisable algorithms.

Dynamic, time-varying biases that require a continual, online, calibration scheme.

Asynchronous sensors where there is no fixed time of arrival for the next set of

sensor measurements, nor a guarantee which sensor will provide these mea-

surements.

This thesis has shown that extending, and further developing, the single-cluster

method to new applications of both sensor registration and fusion is an appropriate

solution to these problems. It has been shown that this hierarchical approach is

flexible, as a novel extension to Message Passing (MP) algorithms for MTT was

successfully applied to this framework. This included the derivation of a suitable

likelihood function to link the sensor registration and MTT processes together. The

results presented on both the multistatic radar scenario and the heterogeneous case

have highlighted the great importance of having accurate sensor registration knowl-

edge, before attempting to perform any sort of sensor fusion. If the registration is

left uncorrected, and biases remain in the measurements, the performance of the

fusion algorithm is dramatically reduced. The methods that have been developed

in this thesis have shown that it is possible to estimate appropriate sensor registra-

tion parameters jointly with the states of multiple dynamic targets in an efficient

manner.
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The single-cluster method framework presented in Chapter 4 that included the

point process-based MTT algorithms, gave a suitable and robust technique that

was able to accurately estimate the targets and parameters. However, the grid-

based method was overly restrictive and attempting to scale the algorithm in that

current setup would have resulted in an exponential growth in the execution time.

In Chapter 5, a number of changes and further developments were made in order

to gain more accurate estimation in both the sensor registration and the target

tracking. The flexibility of the single-cluster method was proven as it was shown to

be possible that alternative vector-based methods such as MP algorithms could be

inserted into the framework. A suitable Multi-Object Likelihood (MOL) was derived

in order to link the MTT with the newly-integrated Sequential Monte-Carlo (SMC)

with resampling method that represented the sensor registration estimation process.

Finally in Chapter 6, the scalability of the single-cluster method was put to the

test, in comparison with a very recent development in the literature; a fully-MP

framework capable of estimating discrete variables alongside target states. The final

set of results have shown that in terms of estimation accuracy, both the single-

cluster method, and the fully-MP framework, are very similar; however in terms of

execution time, the fully-MP method can reach this accuracy in a much faster time.

The scalability of the two methods are very similar; however the “constant” part is

much less for the fully-MP method.

7.2 Future Directions

As a result of the work presented in this thesis, there are a number of interesting

research routes that could be followed to extend this work. These include more

complex and larger scenarios, considering alternative approximations in the formu-

lation, and algorithmic design changes that could further improve performance of

the proposed methods.

7.2.1 Dynamic Platforms

The simulated scenarios that have been presented in this thesis have all contained

static sensors/platforms. The next steps on this thread could relate to the mod-

elling and simulation of dynamic platforms, which, in turn, may contain dynamic

biases such as Global Positioning System (GPS) drift through platform vibrations

for example. For airborne platforms, there may also be issues with measurements

coming from an Inertial Measurement Unit (IMU) as gyroscope readings could also

contain bias if incorrectly calibrated before take-off.

Some related work has been carried out in different application areas, such as

estimating the drift of a microscopy stage [147], correcting drift in telescope data

[148] and also in aerial video registration [149]. These works however only consider
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single sensor and single platform scenarios; ideas from these references could be

adapted to suit dynamic situations.

7.2.2 Fusion Architectures

As discussed in Chapter 3, there are a number of different architectures in which

sensor fusion can be deployed. However, the implementations have so far only fo-

cused on the centralised fusion framework, where the Fusion Centre (FC) has access

to all of the raw measurement data that is output from each of the sensors after some

pre-processing. If we were to consider a fully-distributed fusion architecture with

track-to-track fusion instead, it would be of interest to see if a similar hierarchical

model concept could directly be applied, or if it would require some adaptation.

Another interesting experiment would involve the hybrid fusion framework in a

2-platform case, where centralised fusion could be performed on each platform, then

followed by distributed fusion between the platforms. This could raise a number of

questions such as where should registration estimation be performed, as part of the

centralised fusion, the distributed fusion, or even both?

7.2.3 Resampling Strategies

As described in [65], there are many resampling strategies available that could have

been implemented as a part of the parent process in the hierarchical model, and for

resampling the particles in the Belief Propagation (BP) algorithm. At the moment,

the implementations use systematic resampling. For this work, and to further save

on computational effort, it would be of interest to see if other resampling strategies

would be more efficient. One idea may be to include a method that allows for sample

sizes to be adapted over time, such as the work carried out in [150]. For example,

once we become more confident in the estimation of the registration parameters

and the variance of the particles reduces, we could begin to reduce the sample

size in order to save further on resources. We could also arguably “switch off”

the registration estimation completely if the uncertainty is sufficiently small; the

embedded MTT algorithm of choice with the estimated parameters could be run

on its own. Depending on the situation, it would be trivial to reintroduce the

registration estimation if necessary.

7.2.4 BP Approximations

There are a plethora of techniques available in the BP literature that could be used

in place of the particle BP algorithm used here. Other techniques use different ap-

proximations and have alternative representations of messages and beliefs. It would

be interesting to use Gaussian Mixture BP (an alternative to the Extended Kalman

Filter (EKF)-Probability Hypothesis Density (PHD) filter [91] used in Chapter 4),
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analytical linearisation BP (similar to an EKF), or sigma-point BP (similar to an

Unscented Kalman Filter (UKF) [59]) and perform a large comparison of these tech-

niques to see which is most appropriate for MTT and fusion applications. It may

also be possible to adapt the algorithm to other non-parametric techniques such as

Kernel BP, where messages are represented as functions in Hilbert spaces.

7.2.5 Algorithm Programming/Parallelisation

The single-cluster method is potentially parallelisable, in that each of the particles

used in the parent process is independent of one another while performing the filter-

ing step. Previous work has been carried out in [108] to program the single-cluster

method on to a Graphics Processing Unit (GPU), resulting in a large performance

boost. This thesis only shows results for parallelisation on a Central Processing

Unit (CPU) using four cores, which would be faster than serial processing. It would

be interesting to see if the proposed hierarchical methods could be implemented on

a GPU and test to see if any further speed-up was possible. If any speed-up was

found, the hierarchical model results shown in Figure 6.5 and Figure 6.7 may be

much closer to that of the fully-MP method.

When first attempting to replicate the MTT method that was presented in [22,

23], which in turn led to the formulation of the method described in Chapter 5, it

was not possible to recreate both the timing and accuracy performance benchmarks

given in the original papers. This highlights the importance of having an open

repository of code for these types of algorithm, so that a fair, unbiased and rigorous

comparison of techniques is possible. The current intention is to convert the methods

presented in this thesis in to the Stone Soup repository [151–153] such that other

tracking and fusion practitioners can access the code easily.

7.2.6 Estimation of System Model Parameters

The registration problem presented here has been focused on distance and orienta-

tion biases; however there are a number of other parameters that it would be useful

to estimate if possible. For example, it could be very useful to try and estimate

network parameters such as the time-varying latency between sensors and nodes, so

that the Out-of-Sequence Measurement (OOSM) problems highlighted in Chapter 3

can be mitigated in an online, real-time manner.

Many of the parameters used in MTT are often set at the beginning of the sce-

nario, and then kept fixed over the duration. In highly-dynamic scenarios (e.g. when

performing maritime surveillance over rough seas, or in a dense urban environment)

parameters such as the average false alarm rate, or the probability of detection may

vary by large amounts over time. Being able to estimate and tune the false alarm

rate in an online adaptive manner could result in more accurate tracks, and less
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false tracks for example. It may also be possible to estimate other entities that

are important for the tracking of targets. If more extensive data was available or

simulated, we could potentially estimate target attributes such as target size.

7.2.7 Filter Overconfidence

Lastly, it has been shown in some pieces of literature [154, 155] that the EKF can

sometimes become overconfident in its estimation of the uncertainty in a target’s

state, compared to the real uncertainty in reality. It has also been noted that

other techniques based around the sigma-points method found in the UKF give

more realistic and robust representations of the covariance/uncertainty. It would be

interesting to see the performance of a UKF-PHD filter implementation to see how

comparable the results are with the EKF-PHD filter implementation presented in

this thesis.
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Appendix A

Mathematical Tools

This appendix provides a summary of some mathematical operations and tools that

can be used to manipulate point processes and Probability Generating Functionals

(PGFLs) so that the PHD filter, Panjer filter, and their respective MOLs could be

found. To begin with, let (Ω,F ,P) be a probability space with a sample space Ω,

σ−algebra F and probability measure P. In the following sections, all of the random

variables are defined on this probability space (Ω,F ,P).

A point process can be characterised by its Probability Generating Functional

(PGFL)

GΦ(h) =
∑
n≥0

∫ [ n∏
i=1

h(xi)

]
P

(n)
Φ (x1 . . . xn)dx1 . . . dxn, (A.1)

where P
(n)
Φ are the permutation-invariant probability measures on X n for all n ≥ 0,

and h is a real-valued function. The permutation-invariance arises as it is assumed

that permutations of the same sequence ϕ have the same probability. A PGFL is

effectively a Probability Generating Function (PGF) that takes a function as its

input, and a PGF is equivalent to a z-transform of a Probability Mass Function

(PMF) [95,156]. Using PGFs allows for straight forward calculation of the moments

of a point process; the nth moment around zero is the nth derivative of the Moment-

Generating Function (MGF), evaluated at zero. The use of a PGFL in this case is

very useful for mathematically representing a point process, as it gives a model of

the number of objects by considering all of the cardinalities n in the summation in

(A.1), and their stochastic properties (using the probabilities P
(n)
Φ for each fixed n).

A.1 Common PGFLs

Definition A.1.1 (Bernoulli process). Bernoulli processes are used to describe bi-

nary events; the event either happens with probability p?, or does not happen with

probability 1 − p?. With parameter p?, and spatial distribution s?, the PGFL of a
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Bernoulli process is

GBer(h) = (1− p?) + p?

∫
h(x)s?(x)dx. (A.2)

A Bernoulli process can be used to describe the detection and survival of individual

targets in the surveillance region as they only have two possible outcomes; either, the

object no longer exists (or is not detected by the sensor) with probability (1− p?), or

the object continues to exist (or is detected by the sensor) with probability p?, and

will evolve according to the chosen spatial distribution s?(·).

Definition A.1.2 (Poisson process). A Poisson process with parameter λ, and spa-

tial distribution s? is an independent and identically distributed (i.i.d.) cluster pro-

cess with a spatial distribution s?, whose size is Poisson distributed with rate λ. The

PGFL of a Poisson point process is [157]

GPoi(h) = exp

(∫
[h(x)− 1]µ(x)dx

)
, (A.3)

where the intensity of the process µ(·) = λs?(·). The compact form shown in (A.3)

is found by substituting the PMF of a Poisson distribution in to (A.1), and then

exploiting the series expansion of an exponential function to remove the infinite

sum.

Definition A.1.3 (Panjer process). A Panjer point process with parameters α and

β, and a spatial distribution s? is an i.i.d. cluster process with spatial distribution

s?. The size of the described population is modelled with a Panjer distribution with

parameters α and β [96]. The PGFL for the Panjer process is [97, 139]

GPan(h) =

(
1 +

1

β

∫
[1− h(x)]s?(x)dx

)−α
. (A.4)

By taking the limit α → ∞, and keeping the ratio α
β

constant, Equation (A.4)

will reduce down to the Poisson PGFL in Equation (A.3) with λ = α
β
. By choosing

negative values for both α and β according to the properties listed in Section 2.3.3,

a binomial process can be obtained. Conversely, if positive values are chosen, a

negative binomial process is found. This makes the Panjer process very versatile

and allows for much more flexibility in modelling choices than the Poisson process.

These Panjer use cases are presented in more detail in Section 2.3.3.

A.2 Working with PGFLs

In order to compute explicit formulae for the MOLs, we can use the chain differential,

which will allow for a higher-order product and chain rule [158]. Note that other
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common differential operators such as the Gâteaux and Fréchet differential could be

exploited [159].

Definition A.2.1 (Chain differential [158, 159]). Let (ηn : X → R+)n∈N be a se-

quence of positive, bounded functions converging pointwise to a function η : X → R+

and let (εn)n∈N be a sequence of positive real values converging to 0. The chain dif-

ferential of a functional G with respect to its functional argument h : X → R+ in

the direction of η can be defined as

δG(h; η) = lim
n→∞

G(h+ εnηn)−G(h)

εn
(A.5)

If this limit exists, it will be unique for any sequence (εn)n∈N and (ηn : X → R+)n∈N

with the above properties.

The chain differential gives both an n-fold product rule [157]

δn(F ·G)(h; η1, . . . , ηn) =
∑

ω⊆{1,...,n}

δ|ω|F (h; (ηi)i∈ω) δ|ω̄|G (h; (ηj)j∈ω̄) (A.6)

with ω̄ being a set complement {1, . . . , n}\ω, and an n-fold chain rule (Faà di Bruno’s

formula for chain differentials) [158]

δn(F ◦G)(h; η1, . . . , ηn) =
∑
π∈

∏
n

δ|π|F
(
G(h);

(
δ|ω|G(h; (ηi)i∈ω)

)
ω∈π

)
. (A.7)

Faà di Bruno’s formula provides a general form of the chain rule for higher-order

derivatives, which in turn provides a useful tool for finding the higher-order moments

of a distribution.

By differentiating a PGFL, the statistical moments of a point process can be

obtained, and with those, more properties can be found. Two properties that are of

interest are

1. Calculating the expected value:

E[GΦ] = δGΦ(h; η)|h=1 (A.8)

2. Extracting the probability measure of having exactly n objects:

P
(n)
Φ (x1, . . . , xn) = δnGΦ(h; δx1 , . . . , δxn)|h=0, (A.9)

where δx is the Dirac delta function, being non-zero at x only [160]. Equation

(A.9) is important in deriving the MOLs for these filters, as we need the likelihood

of obtaining exactly m measurements z1, . . . , zm, given the current sensor registra-

tion configuration. Many problems that fall under the Bayesian filtering framework
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cannot be fully described using a single point process; several processes are of-

ten combined in the prediction and update steps. Joint PGFLs can be written

in a similar form to that of Equation (A.1), but instead with joint probabilities

P
(n,m)
Φ (x1, . . . , xn, z1, . . . , zm). In general, this does not simplify, but there are two

special cases of point process concatenation that are of interest, namely superposi-

tion and branching [95,156].

1. Superposition: If the two point processes are independent of one another, their

joint PGFL will decompose into a product of the form

GΦ,Ψ(h, g) = GΦ(h)GΨ(g). (A.10)

This case is used when adding the spontaneous clutter to the model, as the

clutter is assumed to be independent of the target process.

2. Branching: If each point in the point process Φ creates a new point process

Ψ, the resultant PGFL is a concatenation of the individual functionals

GΦ,Ψ(h, g) = GΦ(hGΨ(g|·)). (A.11)

This type of structure is required to represent the detection process of the

current targets. For example, each target is either detected, or not detected,

which could be represented using a Bernoulli process (Equation (A.2)); the

predicted target process could be represented with a Poisson process (Equation

(A.3)).

By exploiting these cases, the general form of the PGFL that describes the joint mea-

surement and target processes, dependent on the sensor registration configuration

q, is of the form

GJ(g, h|q) = Gpr(hGd(g|·, q))Gc(g|q) (A.12)

where Gd(g|·, q) characterises the Bernoulli detection process for a given target state

x and registration configuration q, with detection probability p?(x) = pd(x|q) and

single-object measurement association likelihood s?(·) = l(x|·, q) such that

Gd(g|x, q) = 1− pd(x|q) + pd(x|q)
∫
g(z)l(x|z, q)dz (A.13)

and where Gpr is the PGFL of the predicted target process, and Gc is the PGFL of

the clutter process [112].
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