2,885 research outputs found

    Interaction Analysis in Smart Work Environments through Fuzzy Temporal Logic

    Get PDF
    Interaction analysis is defined as the generation of situation descriptions from machine perception. World models created through machine perception are used by a reasoning engine based on fuzzy metric temporal logic and situation graph trees, with optional parameter learning and clustering as preprocessing, to deduce knowledge about the observed scene. The system is evaluated in a case study on automatic behavior report generation for staff training purposes in crisis response control rooms

    Interaction Analysis in Smart Work Environments through Fuzzy Temporal Logic

    Get PDF
    Interaction analysis is defined as the generation of situation descriptions from machine perception. World models created through machine perception are used by a reasoning engine based on fuzzy metric temporal logic and situation graph trees, with optional parameter learning and clustering as preprocessing, to deduce knowledge about the observed scene. The system is evaluated in a case study on automatic behavior report generation for staff training purposes in crisis response control rooms

    Semantic Similarity of Spatial Scenes

    Get PDF
    The formalization of similarity in spatial information systems can unleash their functionality and contribute technology not only useful, but also desirable by broad groups of users. As a paradigm for information retrieval, similarity supersedes tedious querying techniques and unveils novel ways for user-system interaction by naturally supporting modalities such as speech and sketching. As a tool within the scope of a broader objective, it can facilitate such diverse tasks as data integration, landmark determination, and prediction making. This potential motivated the development of several similarity models within the geospatial and computer science communities. Despite the merit of these studies, their cognitive plausibility can be limited due to neglect of well-established psychological principles about properties and behaviors of similarity. Moreover, such approaches are typically guided by experience, intuition, and observation, thereby often relying on more narrow perspectives or restrictive assumptions that produce inflexible and incompatible measures. This thesis consolidates such fragmentary efforts and integrates them along with novel formalisms into a scalable, comprehensive, and cognitively-sensitive framework for similarity queries in spatial information systems. Three conceptually different similarity queries at the levels of attributes, objects, and scenes are distinguished. An analysis of the relationship between similarity and change provides a unifying basis for the approach and a theoretical foundation for measures satisfying important similarity properties such as asymmetry and context dependence. The classification of attributes into categories with common structural and cognitive characteristics drives the implementation of a small core of generic functions, able to perform any type of attribute value assessment. Appropriate techniques combine such atomic assessments to compute similarities at the object level and to handle more complex inquiries with multiple constraints. These techniques, along with a solid graph-theoretical methodology adapted to the particularities of the geospatial domain, provide the foundation for reasoning about scene similarity queries. Provisions are made so that all methods comply with major psychological findings about people’s perceptions of similarity. An experimental evaluation supplies the main result of this thesis, which separates psychological findings with a major impact on the results from those that can be safely incorporated into the framework through computationally simpler alternatives

    Context Aware Computing for The Internet of Things: A Survey

    Get PDF
    As we are moving towards the Internet of Things (IoT), the number of sensors deployed around the world is growing at a rapid pace. Market research has shown a significant growth of sensor deployments over the past decade and has predicted a significant increment of the growth rate in the future. These sensors continuously generate enormous amounts of data. However, in order to add value to raw sensor data we need to understand it. Collection, modelling, reasoning, and distribution of context in relation to sensor data plays critical role in this challenge. Context-aware computing has proven to be successful in understanding sensor data. In this paper, we survey context awareness from an IoT perspective. We present the necessary background by introducing the IoT paradigm and context-aware fundamentals at the beginning. Then we provide an in-depth analysis of context life cycle. We evaluate a subset of projects (50) which represent the majority of research and commercial solutions proposed in the field of context-aware computing conducted over the last decade (2001-2011) based on our own taxonomy. Finally, based on our evaluation, we highlight the lessons to be learnt from the past and some possible directions for future research. The survey addresses a broad range of techniques, methods, models, functionalities, systems, applications, and middleware solutions related to context awareness and IoT. Our goal is not only to analyse, compare and consolidate past research work but also to appreciate their findings and discuss their applicability towards the IoT.Comment: IEEE Communications Surveys & Tutorials Journal, 201

    Representations for Cognitive Vision : a Review of Appearance-Based, Spatio-Temporal, and Graph-Based Approaches

    Get PDF
    The emerging discipline of cognitive vision requires a proper representation of visual information including spatial and temporal relationships, scenes, events, semantics and context. This review article summarizes existing representational schemes in computer vision which might be useful for cognitive vision, a and discusses promising future research directions. The various approaches are categorized according to appearance-based, spatio-temporal, and graph-based representations for cognitive vision. While the representation of objects has been covered extensively in computer vision research, both from a reconstruction as well as from a recognition point of view, cognitive vision will also require new ideas how to represent scenes. We introduce new concepts for scene representations and discuss how these might be efficiently implemented in future cognitive vision systems

    A review on intelligent monitoring and activity interpretation

    Get PDF
    This survey paper provides a tour of the various monitoring and activity interpretation frameworks found in the literature. The needs of monitoring and interpretation systems are presented in relation to the area where they have been developed or applied. Their evolution is studied to better understand the characteristics of current systems. After this, the main features of monitoring and activity interpretation systems are defined.Este trabajo presenta una revisión de los marcos de trabajo para monitorización e interpretación de actividades presentes en la literatura. Dependiendo del área donde dichos marcos se han desarrollado o aplicado, se han identificado diferentes necesidades. Además, para comprender mejor las particularidades de los marcos de trabajo, esta revisión realiza un recorrido por su evolución histórica. Posteriormente, se definirían las principales características de los sistemas de monitorización e interpretación de actividades.This work was partially supported by Spanish Ministerio de Economía y Competitividad / FEDER under DPI2016-80894-R grant
    • …
    corecore