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Zusammenfassung

Semantische Beschreibungen von Personengruppen und Interaktionen können mittels lo-

gischer Schlussfolgerung aus multimodaler maschineller Wahrnehmung abgeleitet wer-

den. Eine solche automatische Interaktionsanalyse hat viele potentielle Anwendungen in

den Bereichen Robotik, intelligente Wohn- und Arbeitsumgebungen, adaptive Benutzer-

schnittstellen, Videoüberwachung, Entscheidungsunterstützung und Multimediasuche. Ei-

ne mögliche Anwendung ist die automatische Protokollierung von Feuerwehrstabsübungen.

Mit den heutigen Mitteln ist man nicht in der Lage den Übungsteilnehmern individuelle,

aufgabenbezogene Rückmeldung zu bieten. Automatisch generierte Verhaltensprotokolle

könnten hier Abhilfe schaffen, da sie für eine semi-automatische Leistungsbewertung der

Teilnehmer herangezogen werden können. So können nach der Übung Fragen beantwor-

tet werden wie: “Wer hätte an welcher Gruppenbesprechung teilnehmen sollen?”, “Wie

lange haben die Teilnehmer gebraucht um einzelnen Aufgaben zu erledigen?”, “Welche Fla-

schenhälse traten auf?”, “Welche Ressourcen blieben unbenutzt?”, und “Inwiefern wurden

Standardarbeitsanweisungen beachtet?” Wenn durch maschinelle Wahrnehmung Identität,

Position, Orientierung und Sprachaktivität der Übungsteilnehmer, sowie Information über

die Objekte im Raum, bekannt ist, kann das vorgestellte System automatisch die dazu

gehörige Gruppenbeschreibungen und -visualisierungen erzeugen; wer macht was mit wem,

mit Hilfe von welchen Unterstützungs-Werkzeugen? Ein typisches Beispiel einer solchen

Beschreibung ist: “Die Sachgebietsleiter S1 und S2 bearbeiten gemeinsam die Lagekarte.”

Um Abhängigkeiten von maschineller Wahrnehmung zu vermeiden, wird sie simuliert mit

Hilfe eines speziell dafür entwickelten Softwarewerkzeugs. Eine Feuerwehr-Stabsübung

wurde audiovisuell aufgezeichnet und die entsprechenden Personen-Tracks und weitere

Attribute der Personen und Objekten im Raum wurden annotiert. Das entwickelte Sys-

tem, das diese Daten als Eingaben benutzt, basiert auf unscharfer metrisch temporaler

Logik (FMTL) und Situationsgraphenbäumen (SGTs). Diese Methode zeichnet sich aus

durch ihre Ausdrucksfähigkeit und Introspektion. Domänenwissen kann verhältnismäßig

leicht formalisiert werden in logischen Formeln und Baumstrukturen, da diese nah an der

menschlichen Intuition liegen. Die Methode ermöglicht die Erzeugung der komplexen Mo-

delle, die für diese Fallstudie gebraucht werden. Es wurde ein Satz an neuen FMTL-Regeln

und SGTs entwickelt und die Methode wurde erweitert um ein Clustering-Verfahren und

ein Parameter-Lernverfahren. Das Clustering vereinfacht die Schlussfolgerung und das

Lernverfahren steigert die Leistung des Systems. Die generierten Gruppenbeschreibungen

wurden quantitativ gegen eine Grundwahrheit evaluiert, die mittels eines speziell dafür

entwickelten Softwarewerkzeugs erzeugt wurde. Auch wurden unter anderem die Laufzeit,

auftretende Fehler und das Verhalten bei verrauschten Daten analysiert. Die Ergebnisse

sind vielversprechend, aber es wurden auch einige Möglichkeiten für zukünftige Arbeiten

definiert.
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Notation

These symbols and conventions are mostly applied in Chapter 4.

Symbol Meaning

∧ Fuzzy conjunction: semantics explained in Section 2.7.1

∨ Fuzzy disjunction: semantics explained in Section 2.7.1

¬ Fuzzy negation: semantics explained in Section 2.7.1

← Fuzzy implication

3[t1,t2] Interval diamond operator: at least once between times t1 and t2

2[t1,t2] Interval box operator: always between times t1 and t2

3dt Relative diamond operator: at time t = t0 + dt

2a%
dt1,dt2

Fractional box operator: at least a% of time interval [t0 + dt1, t0 + dt2]

! Cut operator: prevents a rule from querying its remaining conditions

= .. Decomposition operator: splits a predicate into a list containing its
predicate name and arguments

V (P ) Truth value operator: returns the truth value of predicate P

Conventions:

• list variables are boldfaced,

• nested predicate variables are capitalized,

• constant arguments are non-italic to distinguish them from variables allowing one to

omit quantifiers (all variables in a logic formula are implicitly universally quantified

with scope over the entire formula, for example: ¬Human(x) ∨Mortal(x) stands

for: ∀x(¬Human(x)∨Mortal(x)) which is logically equivalent to: ∀x(Human(x)→
Mortal(x)) ),

• the situation graph trees (SGTs) in Section 4.2 and the source code snippet in

Section 4.1.4 applies an inverted capitalization convention for practical reasons.
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Chapter 1

Introduction

Automatic interaction analysis can be achieved through a combination of machine per-

ception and reasoning. This thesis presents a system for logic-based reasoning, applied

to interaction analysis in smart work environments. It is based on fuzzy metric temporal

logic (FMTL) and situation graph trees (SGTs). The motivation for this work is pre-

sented in Section 1.1. Then, the approach is introduced in Section 1.2. The contribution

of the thesis is explained in Section 1.3, and Section 1.4 gives the outline of the remaining

chapters.

1.1 Motivation

The motivation of this study is to come closer to domain independent reasoning methods

for automatic interaction analysis and related problems. Interaction analysis is defined

as the generation of semantic descriptions about groups and interactions within them,

from multimodal machine perception observing multiple persons and objects. Interaction

analysis and the encompassing research field of high-level reasoning still contain many

challenges. Although computer vision and other areas of machine perception (e.g. per-

son tracking and human pose estimation) have enjoyed great progress in recent years,

corresponding high-level reasoning methods that use such machine perception have not

progressed at the same pace. This is in part because machine perception is itself an ac-

tive and challenging field of research. High-level reasoning often requires input that the

state-of-the-art in machine perception cannot provide, or the effort involved in developing

such machine perception is too large, causing researchers to focus on other problems. But

as machine perception progresses and as the system tasks and perceived world become

more complex, e.g. in robotics and smart environments, the need for powerful and flexible

reasoning methods that bridge the semantic gap rises.

1.1.1 Suitable Application Domains

High-level reasoning can be used in many application domains. Research in this direction

is relevant if computers need to understand the relations between the objects and people in

11



the world in order to describe them or react appropriately. Because the reasoning system

presented in this thesis is only connected to underlying machine perception through a

generic symbolic interface, any combination of sensors and machine perception components

can be used to provide it with input data. The case study that is presented below is based

on cameras and microphones, but other types of sensors such as satellite navigation, radar,

laser scanners, RFID tags, and pressure sensors can be used just as well. In addition,

activities and information in cyberspace can be monitored to obtain further input data.

As the presented reasoning methods can use any combination of machine perception

components (human pose estimation, speech recognition, vessel tracking, etc.), the range

of possible application domains is wide: multimedia retrieval, robotics, smart homes, am-

bient assisted living, smart work environments, intelligent user interfaces, smart cities, the

internet of things, indoor and outdoor surveillance, air traffic control, decision support for

military and civil security, and more. In a complex system of systems, the applied reason-

ing methods can also facilitate camera control, sensor deployment planning, prediction,

information exchange between system components, and top-down knowledge for machine

perception components to guide their search and improve their outputs.

The obvious application for video surveillance, reconnaissance, and air traffic control

is to guide an operator’s focus of attention by emphasizing anomalous situations in a

multitude of camera streams or geographic visualizations, reducing cognitive load and in-

creasing detection rates. The presented methods can also be used in sports analysis to

automatically classify game situations from tracking data for example. This could allow se-

mantic multimedia retrieval for improved training procedures and for semantically guided

media consumption. On a related note, multimedia retrieval for entertainment purposes

could benefit from such semantic-gap-bridging technologies as well. Other applications are

conceivable in the area of partially automated biological, psychological, and sociological

research. Machine perception and subsequent high-level reasoning about the observed be-

havior of humans and animals could improve the efficiency and reliability of experiments

in behavioral science. Such interaction analysis could be used for semi-automatic analysis

of group behavior in animals, for cognitive modeling of driving behavior, and for modeling

and predicting the dynamics within an urban society.

1.1.2 The Smart Control Room

Although this study focuses on the case study described below, it is part of a larger body

of research represented by the Smart Control Room laboratory and related installations at

the Fraunhofer IOSB in Karlsruhe, Germany. The Smart Control Room (Figure 1.1) is a

research platform for human machine interaction. It uses multiple interaction modalities,

most notably (beyond) state-of-the-art computer vision observing the people in the room.

Multiple users can interact with multiple large and small screens through person tracking,

human pose estimation, gesture recognition, head pose estimation, speech recognition,

12



Figure 1.1: The Smart Control Room laboratory at the Fraunhofer IOSB in Karls-
ruhe, Germany: a research platform for multimodal, multi-user, multi-display interaction
through computer vision and related technologies.

and touch control. All interaction modalities and interaction devices are interconnected,

allowing seamless and intuitive interaction across multiple screens. For more details about

this research platform, see [12, 125].

Using the reasoning methods for interaction analysis presented in this thesis, the Smart

Control Room could reason about user behavior on a semantic level, using a world model

that contains all available perception modalities. This would allow the automatic gen-

eration of reports and visualizations of the situation in the room and enable the room

to react more intelligently. For example, based on the observed locations, orientations,

speech patterns, and screen contents, two individual workspaces could merge into a col-

laborative one if the room detects that two users are trying to work together on the same

problem. Furthermore, the Smart Control Room could present its users with interactive

tools that are appropriate for their current roles and activities. The main demonstrator

in the Smart Control Room is a hypothetical crisis response control room of the future,

which motivated us to perform the case study described below.

The Smart Control Room laboratory arose from a research project that focused on

computer vision for human machine interaction and its application to civil security in the

form of smart control rooms. Because of their leading role in German and international

crisis response, the fire brigade was chosen as potential end-user group of such a smart

control room. However, current fire brigade control rooms are not equiped with the tech-

nical means to facilitate this change and their staff is reluctant to change their standard

operating procedures to new technology. In other words, these end-users are not ready

to adopt the solutions provided by the Smart Control Room laboratory. Novel human

machine interaction will likely be adopted by the fire brigade in the near future, but for

now, an application is needed that does not influence their current way of working. Based
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Figure 1.2: Staff exercise at the State Fire Service Institute North Rhine-Westphalia.
The presented case study’s goal is to model and recognize the interactions between the
staff members and the objects in the room. In this image, these are: “conversation”
(left/center), “analyzing a document together” (top center), and “editing a display” (top
right).

on feedback from potential end-users, the project hence arrived at the case study that is

treated in this thesis: automatic report generation for training purposes in crisis response

control rooms.

1.1.3 Case Study: Report Generation in Crisis Response Control Rooms

The presented case study is situated at the State Fire Service Institute North Rhine-

Westphalia, at one of their staff exercises for crisis response control room operations (Fig-

ure 1.2). During such role playing exercises, trainees take on the roles of control room

staff while others simulate field units, crisis dynamics, distress calls, and radio communi-

cations. We are dealing with control rooms at the highest strategic level, which are only

occupied during major catastropic events. Hence, storylines for such exercises are usually

concerned with events such as large traffic accidents, widespread fires, or floodings. During

the exercise that is the topic of this case study, the storyline was shaped around a collision

between a passenger train and a cargo train carrying hazardous material.

In today’s staff exercises, individual and task oriented feedback is hard to provide

and often neglected. Instructors do not have the tools required to provide such feedback,

at least not with enough quality and with manageable effort. Automatically generated

behavior reports can improve this situation. They could be used to automatically or semi-

automatically assess the performance of the individual participants: How close did they

follow standard operating procedures? Who should have been part of which group? How

long did it take them to complete specific tasks? Which bottlenecks have occurred? Which

available resources were left idle?

When combined with visualizations, audiovisual recordings, and trails of developments
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in the crisis response software that is being used (field unit status, crisis dynamics, and

other context information), such a system could provide a rich information source for feed-

back and learning, conveniently searchable for specific situations. Furthermore, exercises

and subsequent evaluations could become more dynamic, e.g. by evaluating the effect of

alternative decisions. Through these support functions, operational and administrative

tasks would take less time, leaving more time for training at the strategic level. The

presented case study is of scientific and practical interest because of its uniqueness, the

large set of persons, objects, and attributes involved, and the described issues with current

training solutions.

To enable such a system, the simulated crisis dynamics, field units, etc. need to be

modeled, but also the situation within the control room, the latter being the focus of

this case study. Hence, the goal is to automatically generate behavior reports during

fire brigade control room exercises in order to increase their learning effect. To achieve

this, the knowledge base presented in Chapter 4 aims to recognize group behavior during

control room operations by modeling and recognizing the different types of person-person

interaction and person-object interaction in various group formations. For this, the static

and dynamic properties of the persons and objects in the room need to be perceived using

machine perception. Second, these properties need to be analyzed by a reasoning engine to

generate the behavior reports. If machine perception can perceive the identity, position,

orientation, and speech activity of the staff members over time, as well as the state of

the objects in the room, the reasoning engine can automatically generate corresponding

descriptions and visualizations of group formations and interaction patterns, i.e. of who is

doing what with whom, using which support tools. An example of such an automatically

generated description is: “First officers S1 and S2 are editing the overview map together.”

To wrap up this section, Figures 1.3 and 1.4 provide some photos from the exercise that

is the focus of the presented case study.

1.1.4 Thesis Goal

Following from this motivation, the goal of the presented study is: development of a

reasoning system for interaction analysis and its evaluation in a case study: automatic

report generation for training purposes in crisis response control rooms. The developed

reasoning system should also be applicable to other application domains.

1.2 Approach

The architecture developed to achieve this goal is visualized in Figure 1.5 and explained

below.

15



Figure 1.3: Top left: first officer S2 and his assistant engaged in a conversation. Top
right: director of operations and his assistant discussing a document. Center left: two
staff members occupied with the overview map. Center right: focus area map and unit
status table. Bottom left: workspace of director of operation’s assistant. Bottom right:
another workspace, with the table for strategic planning in the background.
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Figure 1.4: Top: both sides of the hatch connecting the control room (visible through
the window on the left) to the outside world by paper messages. Center and bottom:
simulation of crisis dynamics and field units just outside the control room, in a mobile
command center (center, outside and inside) and two separate rooms (bottom), each
responsible for an operational area, supposedly at different geographic locations.
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Figure 1.5: Schematic of the developed architecture.
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1.2.1 Perception

In the future, machine perception should be used to perceive the control room for subse-

quent reasoning, but the required machine perception is not available. It would require

tremendous effort to develop and for some of the required perception modalities it is

questionable whether the current state-of-the-art can provide the required quality and ac-

curacy. In order to avoid machine perception dependancy problems and to remain focused

on high-level reasoning, this study replaces the required machine perception with anno-

tated input data. Hypothetical machine perception outputs are annotated based on real

audiovisual data, using a self-developed data annotation tool. This is a step along the way

toward a real-time system containing various automatic machine perception components.

A fire brigade control room and the staff members and objects within it (notepads,

messages, displays, tables, etc.) were recorded using five cameras and four microphones.

Audio was used as-is while video from all five cameras was sampled at 1fps and merged

into five-pane images that are convenient for the input data annotation process. The

1fps five-pane images and audio tracks are displayed in an image viewer and an audio

player. A human annotator analyzes them in order to mimic them in symbolic form using

mouse and keyboard and the developed input data annotation tool. This results in so-

called hypothetical machine perception outputs, mimicing the machine perception that

the reasoning engine requires. This input data consists of symbolic object descriptions:

persons, notepads, messages, displays, and a few others. Their attributes describe their

position, orientation, speech, gesture, and body pose.

1.2.2 Reasoning

The developed system uses fuzzy metric temporal logic (FMTL) and situation graph trees

(SGTs) as the basis for reasoning. The FMTL/SGT approach was chosen, because it pro-

vides the expressive power and introspection that is needed for the performed case study.

Domain knowledge can be formalized into logic formulas and tree structures relatively

easily, because the logic paradigm is intuitive to use and close to human reasoning. The

FMTL/SGT approach provides a rich language for reasoning with complex models that

are understandable by humans. The annotated input data is read by an interface imple-

mented in FMTL, yielding the atomic facts that form the bottom building blocks (i.e. the

terminal leaves) of the reasoning process. The entire network of FMTL rules is grounded

in these atomic facts. From a top-down perspective, the SGT traversal algorithm triggers

FMTL queries, each starting a logic deduction process. During SGT traversal, reasoning

results in the form of situation descriptions are generated. They describe group interac-

tions that occur often during staff exercises. Optimal trapezoid truth function parameters

can be learned through maximization of an adapted F-score performance measure. Some

of the conducted experiments use a simple form of postprocessing to filter out redundant

or otherwise unwanted results.
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An adapted clustering algorithm is used in some experiments, as preprocessing before

reasoning, to enrich the person descriptions in the annotated input data with cluster mem-

bership information. The persons in the room are clustered according to their positions in

the room, simplifying the subsequent reasoning process. With the necessary adaptations

to the FMTL rules and SGTs, this allows for the so-called cluster-as-agent approach dur-

ing reasoning. Here, each traversal is performed with a cluster of persons as the center of

reasoning (agent) instead of a single person as is the case in the so-called person-as-agent

approach. This leads to a more global approach which is more intuitive. Furthermore,

it leads to transitive group membership relations, yielding more consistent results for ob-

long groups and less redundant results in general. Finally, clustering as preprocessing can

avoid some redundant traversals and it can replace part of the combinatorial search that

is required with the person-as-agent approach, potentially leading to better runtimes.

1.2.3 Evaluation

To evaluate the system, reasoning results need to be compared to annotated ground-truth.

A human annotator uses his mouse and keyboard and the ground-truth annotation tool

that was developed for this purpose to enrich the annotated input data with situation

descriptions that the system should deduce. The main idea is to quantitatively compare

the reasoning results to the annotated ground-truth. The system includes tools to visualize

them (side by side) and to plot them together on a time axis. The main performance

measurement tool plots precision, recall, and F-score values over different truth value

thresholds. The evaluation also contains runtime analysis, error analysis, experiments on

noisy data, measurements of inter-annotator agreement, measurements of the effect of a

new clustering parameter, and measurements of the effect of using parameter learning to

optimize FMTL rules. To evaluate the system’s robustness, a tool was developed that can

add different amounts of noise to any of the annotated object attributes.1 2

1.3 Contribution

In summary, the contribution of this thesis comes from its unique application domain

and from the reasoning models that were developed for it, supported by the development

of an enabling software toolkit and the conducted evaluation. Fuzzy metric temporal

logic (FMTL) and situation graph trees (SGTs) are applied to interaction analysis for the

first time. In the past, similar methods have only been applied in traffic and surveillance

settings. The contribution of this thesis mainly consists of the development and evaluation

1In some cases, the 1fps sampling rate of the annotated input data is not sufficient, so the data manip-
ulation tool can be used to interpolate the data with arbitrary rates. But this feature is not used in the
evaluation.

2Five more manipulations are described in this thesis: adding outliers, confidence values, data gaps,
superfluous atomic facts, and systematic errors that are likely to occur when working with real machine
perception. These types of imperfections are not used in the evaluation, but they are explained in the
thesis and suggestions are made on how they can be handled by the presented system.
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of new reasoning models within a novel context rather than newly developed reasoning

methods. These new reasoning models recognize groups and interaction patterns rather

than movement patterns of one or two vehicles or persons as is the case in previous work.

We now discuss the contribution of this thesis in detail.

The case study along which the presented system was developed, provides scientific

novelty. It is concerned with the automatic generation of reports during fire brigade control

room exercises to increase their learning effect. In previous work, increased situational

awareness is achieved by modeling the site of the (simulated) crisis using geographical

information systems (GIS) and other software tools, but the situation inside the control

room has never been modeled and used. The case study is both unique and challenging,

involving many persons and objects and the interaction between them, each with a variety

of attributes. This contribution is found in Section 1.1.3, Chapter 3, and Chapter 4.

Because of this novel application domain and case study, new reasoning models had

to be developed (FMTL rules, SGTs, and supporting components). These are able to

recognize multiple group constellations and interaction patterns within them, as opposed

to mainly movement patterns of one or two vehicles or persons. Never have such group

and interaction models been achieved before. The developed FMTL rules, SGTs, and

supporting components implement some powerful fuzzy spatiotemporal concepts that are

of scientific and practical interest, applicable to other domains. This contribution is found

in Chapter 4.

Additionaly, there are two novel components that solved specific problems that have

occurred during development. First, the combination of FMTL/SGT reasoning with a

customized clustering algorithm as preprocessing (with corresponding changes to FMTL

rules and SGTs). Second, learning optimal trapezoid truth function parameters through

maximization of an adapted F-score performance measure. These contributions are found

in Section 4.2.

Several steps toward an integrated development toolkit were completed: new software

tools for input data annotation and ground-truth annotation, as well as a new dataset

with corresponding ground-truth. The system was evaluated on the presented dataset

using precision, recall, and F-score measures. Furthermore, its runtime and the errors

that occurred were analyzed. The system’s robustness against noise was also evaluated,

and the inter-annotator agreement between different ground-truth annotations has been

analyzed. Finally, a newly introduced parameter for the clustering algorithm, as well as

the application of parameter learning on trapezoid truth functions were evaluated. The

toolkit, dataset, and evaluation procedure are of practical and scientific interest because of

their unique character, but also because of their applicability to other research problems.

These supporting contributions are found in Chapters 3 and 5.
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1.4 Thesis Outline

That concludes Chapter 1, establishing the motivation, the approach, and the contribu-

tion of this thesis. Next, Chapter 2 provides the required background knowledge while

discussing related work. Different methods that can be used for interaction analysis are

presented as well as how they are applied in literature. Then, the strengths and weak-

nesses of description-based and statistical approaches are compared, and the FMTL and

SGT methods are presented in terms of related work and basic functionality. Chapter 3

explains the case study as well as the dataset that was developed for it: the way they work

in crisis response control rooms, how a control room exercise was recorded, and how the

data was annotated. The core of the thesis is found in Chapter 4, describing the reasoning

models that were developed for the case study, divided into the so-called primary models

and secondary models. The reasoning models are evaluated in Chapter 5, first describing

the applied evaluation methods and then evaluating the primary and secondary models in

a variety of ways. Finally, Chapter 6 provides a conclusion consisting of a summary and

a discussion on future work.3

3This thesis is based on the author’s previous work represented by [6, 13]. His publications [3, 5, 7, 8]
and supervised student theses [14, 15, 17] are also related, but they are not used in this thesis. Finally,
[1, 2, 4, 9, 10, 11, 12, 16, 18, 19] represent the author’s work on novel methods for human-machine
interaction through computer vision and some other research topics.
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Chapter 2

Background and Related Work

First, this chapter introduces the different types of approaches to high-level reasoning for

interaction analysis and related problems (Sections 2.1 through 2.4). Then, some relevant

studies on ambient intelligence, smart environments, and related application domains are

presented (Section 2.5). Before homing in on the methods that are used in this thesis (Sec-

tion 2.7), a discussion on the strenghts and weaknesses of statistical and description-based

approaches is provided (Section 2.6). We start out by summarizing five relevant survey

papers. In [20], Aggarwal and Ryoo explain that many computer vision applications in

surveillance, patient monitoring, and human-computer interfaces require automated recog-

nition of high-level activities, composed of multiple atomic actions that are performed by

a single person. After reviewing recognition methodologies for atomic actions, recognition

methodologies for high-level activities are presented and compared. They put special focus

on the recognition of human-object interactions and group activities.

Single-layered approaches operate directly on sensor data, whereas hierarchical ap-

proaches divide the problem into multiple layers. Single-layered approaches are divided

into space-time approaches such as template matching in 3D xyt-space and sequential

approaches such as hidden Markov models (operating directly on sensor data). They are

suitable for the recognition of gestures and actions with sequential characteristics, but they

are not suitable for the problem described in this thesis. Hierarchical approaches enable

the recognition of high-level activities based on the recognition results of atomic actions.

For example, a high-level interaction like “fighting” may be recognized by detecting a se-

quence of several punching and kicking interactions, which are in turn composed of atomic

actions such as “streching hand” and “withdrawing hand”. This makes the recognition of

high-level activities computationally tractable and understandable by humans, and the de-

tectors for the atomic actions can be reused in the recognition of many different high-level

activities. Usually, atomic actions are recognized by the single-layered approaches that

are described in [20]. So the major advantage of hierarchical approaches is their ability to

recognize high-level activities with more complex structures. They are especially suitable

for a semantic-level analysis of interactions between humans and/or objects as well as

complex group activities. This is because they can easily incorporate domain knowledge
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and because they need less training data than single-layered approaches would.1 Domain

knowledge is incorporated by specifying the composition of and the relationships within

and between high-level activities. Single-layered approaches are not easily interpretable

(they are more black-box-like), preventing a user from incorporating domain knowledge.

Furthermore, single-layered approaches would generally require a large amount of training

data to recognize high-level activities. For example, single-layered hidden Markov models

would need to learn a large number of transition and observation probabilities, since the

number of hidden states increases as the activities get more complex.

Lavee et al. [84] describe the problem as the translation of low-level content in video

sequences into high-level semantic concepts, with applications such as surveillance, se-

mantic video database indexing, and interactive systems. Turaga et al. [124] highlight

applications such as content-based video annotation and retrieval, highlight extraction,

and video summarization (in the context of security and surveillance, but also entertain-

ment and personal archiving). They too distinguish between the recognition of atomic

actions and high-level activities, the latter being more complex, involving coordinated ac-

tions among a small number of humans. Vishwakarma and Agrawal [128] provide another

survey along these lines. Finally, Ye et al. [135] illuminate a different research area: situa-

tion identification techniques in pervasive computing. They define situation identification

as an enabling technology that resolves noisy sensor data and abstracts it into higher-

level concepts that are interesting to applications. Concretely, they focus on applications

in smart environments and ambient assistant living (e.g. the recognition of activities of

daily living). An interesting difference from the surveys discussed above, is that the work

that is discussed here, uses many different sensor types beyond video cameras. The books

[26, 58, 60] also provide valuable resources on interaction analysis and related topics. As

proposed by [20], the available hierarchical approaches and their reasoning methods are

divided into statistical, syntactic, description-based, and hybrid approaches below.

2.1 Statistical Approaches

Statistical approaches use probabilistic graphical models such as hidden Markov models

or dynamic Bayesian networks to derive situation likelihoods. Berger wrote a standard

work on statistical reasoning [32]. In [138], a two-layered hidden Markov model is used

to classify group situations in meetings. The first layer uses audio and video features

to model person activities and the second layer combines them to group situations. A

smart meeting room is demonstrated in [41] that uses an event-driven multilevel dynamic

Bayesian network to enable semantic understanding of human behavioral and social sig-

nals from sensor data in group interaction scenarios. Similarly, in [57], group situations

are detected using dynamic probabilistic networks. Another statistical approach is pre-

1Note that the system presented in this thesis does not need training data at all. The use of training
data is only shown as an optional extra feature in one of the evaluated models.
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sented in [127], recognizing human activities such as cooking, showering and sleeping in

a smart home. A different application domain is investigated in [81]: understanding of

behavior and workflow in an industrial plant. They use a Bayesian filter supported by hid-

den Markov models. The user’s feedback is incorporated, improving the system through

online correction of erroneous classification results. In [119], dynamic Bayesian networks

are used for intention recognition during human-machine interaction, allowing intelligent

machines and robots to proactively adapt to a human’s intentions. The paper discusses an

example of a human commanding a mobile robot remotely. In [114], propagation networks

are used to recognize the steps involved in a blood glucose monitor procedure from video

data of people performing the procedure. Vision-based hand and object tracking and state

information measured from the glucose monitor are used to recognize successful and failed

execution, indicating which steps are missing in case of failure. This work is motivated

by the desire to create assistive technology within a domestic environment. The described

task is performed frequently by elderly people who develop late stage diabetes. Finally,

Fischer and Beyerer apply dynamic Bayesian networks to two completely different appli-

cation domains: maritime surveillance [51] and video surveillance of a parking area [50].

SMILE (Structural Modeling, Inference, and Learning Engine) is a C++ implementation

for Bayesian networks and related methods, and GeNIe provides a corresponding graphical

development environment.2

2.2 Syntactic Approaches

Syntactic approaches combine atomic events into complex situations using grammars,

mapping spatiotemporal changes in image sequences to events for instance. Syntactic ap-

proaches model human activities as a string of symbols, where each symbol corresponds

to an atomic action. Human activities are represented as a set of production rules gen-

erating a string of atomic actions. They are recognized by a parsing mechanism, similar

to the way computer programs and natural languages are parsed. The production rules

of (stochastic) context-free grammars naturally lead to a hierarchical representation and

recognition of activities.

Gesture recognition and video surveillance applications are demonstrated in [72]. Their

system can correctly interpret activities of multiple interacting persons and objects. The

lower level detections are performed using probabilistic event detectors and the outputs

are used in a stochastic context-free grammar. The corresponding parsing mechanism

provides temporal constraints, disambiguation of uncertain low-level detections, and the

inclusion of a priori domain knowledge about the structure of temporal events. In [78],

activity grammars are learned from video data recorded by a camera that is mounted above

the checkout of a convenience store. The system recognizes actions such as “customer

removes money from tray” and “employee takes receipt from register”, but also specific

2http://genie.sis.pitt.edu/
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concatenations thereof. A language for human action is proposed in [22], with its own

phonemes, morphemes (words), syntax, and machine learning methods. The proposed

language is meant to facilitate human-centric interfaces, allowing humans to interact with

robots and intelligent machines like they do with other humans. To achieve this, data of

human activities from various sensors is analyzed and interpreted. The paper proposes

applications in health care, artificial intelligence, and cognitive systems. Finally, [56]

presents a new algorithm for plan recognition called ELEXIR (Engine for LEXicalized

Intent Recognition) that uses so-called combinatory categorial grammars. It allows the

system to postpone commitment to a specific solution, which also reduces runtime.

2.3 Description-Based Approaches

Description-based approaches incorporate domain knowledge in the form of logic formulas

and related modeling techniques. This thesis follows a description-based approach. High-

level human activities are represented in terms of simpler activities and ultimately in

the atomic actions that compose them, describing their temporal, spatial, abstract, and

logical relationships. Recognition of the activity is performed by searching for the sub-

activities that satisfy the relations specified in its representation. After the development

of interval temporal logic by Allen and Ferguson [21] in which a successful axiomatization

of time periods was introduced, it became feasible to model situations and actions in

terms of temporal logic. The hierarchical logic approach for example [115], combines

interval temporal logic with event logic to analyze football games. In [34], the required

rules are automatically generated from OWL-DL ontologies. These are combined with a

temporal constraint net, consistency checking, and multi-hypothesis tracking. First results

are given using examples of airport activities such as aircraft refueling. Limited first order

logic is used in [129] to combine several subevents that satisfy predefined temporal and

spatial constraints constituting a situation. This system was evaluated on a video dataset

displaying a bank attack scenario and train station vandalism. A rule-based recognition

system for hierarchically-organized activities is presented in [49]. This system returns

only logically consistent scenarios by formulating conflicts as weighted partial MaxSAT

clauses. Furthermore, robustness against noise is shown, and the desired level of detail

can be adjusted by assigning preferences to clauses of the SAT problem. The system is

evaluated in the context of ambient assisted living. Non-monotonic reasoning [23] can

provide a means to retract deduced information as new information comes in.

Prolog is the most widespread logic programming language, used in application do-

mains such as natural language processing, theorem proving, expert systems, games, auto-

mated answering systems, ontologies, and control systems. It was developed in the 1970s

by Colmerauer and Roussel [39] as a declarative progamming language, expressed in terms

of relations (facts and rules). Logical deductions are started by running a query over these
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relations. The Castor logic library 3 is a C++ library that allows the use of the logic pro-

gramming paradigm from within object oriented programs. Probabilistic logic programs

are logic programs in which some of the facts are annotated with probabilities. ProbLog4

offers a Python implementation for probabilistic logic.

2.4 Hybrid approaches

The statistical and description-based approach can be combined in Markov Logic Net-

works (MLNs) [45, 107]. Visual event recognition for surveillance is performed in [123],

using common sense domain knowledge to overcome noise and missing observations. The

knowledge is represented in first-order logic with associated weights expressing confidence.

These are used to construct MLNs. They test their system on parking lot surveillance

videos containing complex interactions of people and vehicles. Markov Logic Networks are

combined with the temporal semantics of event calculus in [116] to recognize the high-level

events “meeting”, “moving”, “fighting”, and “leaving an object” in a video surveillance

setting. In [77], a video understanding system is developed for scenarios at bus stops,

crosswalks, and intersections. Basketball scenes are classified in [92] by tracking players,

their hands and feet, and the ball. They formalize the rules of the game as well as physical

constraints into spatio-temporal descriptions based on Allen’s interval logic (i.e. domain

knowledge). Robustness to low-level observation uncertainty is provided by the corre-

sponding MLNs. Moving away from video, satelite navigation data (GPS) is used in [109]

to understand human interactions, attempted interactions, and intentions, as opposed to

only successful actions of single individuals or statistical properties of groups of people.

A GPS-based game of capture the flag is used to evaluate the approach, involving many

distinct cooperative and competitive joint activities (such as players capturing enemies).

Domain knowledge is formalized from the geometry of the game area, the motion model

of the players, and by the rules and dynamics of the game. Again, constraints must not

be hard, due to the use of MLNs. By using context information, the system can infer

multi-agent activities under substantial amounts of noise or missing data. The reference

C++ implementation for MLNs is called Alchemy.5 ProbCog provides Python and Java

implementations for MLNs and Bayesian logic networks.6 Related literature is provided

by [73, 74].

2.5 Smart Environments and Related Application Domains

These hierarchical methods are often applied in the community around ambient intelligence

and smart environments, a research area where high-level reasoning and interaction anal-

3http://mpprogramming.com/cpp/
4http://dtai.cs.kuleuven.be/problog/
5http://alchemy.cs.washington.edu/
6http://ias.in.tum.de/software/probcog/
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ysis are established relatively well. The book [96] provides an overview of this area up to

2010. In particular, we draw inspiration from studies such as [36, 61, 89, 97, 117, 120, 126].

In [130], Waibel and Stiefelhagen were mainly concerned with perceiving humans in smart

environments, but the book also contains chapters on the corresponding high-level rea-

soning problems (p. 121–132, p. 315–340). The state-of-the-art in multimodal fusion for

human-computer interaction up to 2010 is described in [121].

In [27], frequent relationships between actions are discovered from a collection of sensor

data and the user is able to finetune the system. In [113], a framework is introduced for

modeling intelligent environments. It is based on fuzzy transfer learning, allowing the

transfer of learned models across different environments. This system predicts temperature

development to allow for proactive control. A formal framework based on multi-valued

temporal propositional logic is proposed in [87]. Similarly, bigraphs are introduced for the

description, design, and analysis of intelligent environments in [68]. Context lattices are

introduced in [134], allowing the inclusion of semantic information about the nature and

relationships between sensor data and observed activities. The study presented in [105]

uses a combination of first-order logic, fuzzy logic, and temporal logic exemplified in a

military application.

Markov logic networks are applied to the recognition of activities of daily living in

[37], without the use of cameras or wearable sensors. In [82], a training-free method is

introduced that generates probabilistic inference systems from causal models for human

behavior. A goal-directed human activity computing model that captures the seman-

tic relations between different atomic activities is presented in [132]. From the field of

robotics, [131] discusses how manipulation actions are structured in space and time using

temporal anchor points where two objects (or hand and object) touch or un-touch each

other. This results in a condensed representation by which different manipulations can be

recognized and encoded. They also provide examples of robotic manipulation recognition

and execution that are based on this representation.

2.5.1 Particular Inspirations for this Thesis

A temporal framework (see Section 2.7.1 – Temporal Modality) is used in [108] to define

composite interactions between people in terms of atomic actions. Typical interactions

they want to detect are: fighting, greeting, assault, and pursuit. They take advantage from

the fact that perception is only concerned with learning and detecting the atomic actions.

Complex compositions are provided by the layer on top. They also propose a probabilistic

reasoning component that solves for missing and superfluous atomic actions. A classic sta-

tistical approach that inspired this thesis is presented in [35], where the perceptual outputs

are fed to hidden Markov models after some preprocessing. Here, speech detection, ambi-

ent sound detection, tracking, and posture estimation are used to classify social activities

in an ambient intelligence setting. In [62], instead of cameras and microphones, they use
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wearable motion and RFID sensors for recognizing activities of daily living. Nonetheless,

they inspired this thesis, since it strives for a general purpose framework, independent of

sensor setup and application domain. They use an emerging patterns approach and sliding

time windows to classify sequential, interleaved, and concurrent activities.

The work presented in [63] is concerned with storyline extraction from sports videos

using and-or graph representations. This approach overcomes some of the limitations

of hidden Markov models and dynamic Bayesian networks, because not only the model

parameters are learned, but the model structure too. In [133], and-or graphs are used to

generate text descriptions for a large dataset containing many different types of videos and

images. These last two studies also provide means to generate reports in natural language.

In [139], they study semantic information in abstract images created from collections of

clip art. It involves a thorough analysis of the semantic importance of visual features,

made possible by the use of a large set of abstract data instead of video data. Finally,

the author was inspired by applying the methods used in this thesis to video surveillance

in [8]. The goal was to recognize situations such as “getting into a car” and “unloading a

package from the trunk” in the VIRAT video surveillance dataset. Not only did this show

the broad applicability of the applied methods, it also lead to a fruitful cross-fertilization

between the two studies. Recent work on the VIRAT dataset is presented in [140].

2.5.2 Literature from Sociology and Crisis Response

In sociology, there is extensive research on group behavior. For example, [80] explains

necessary and sufficient conditions for groups as well as the so-called personal space lay-

ers. The distance category “personal distance” in which most conversations take place

is 45–120cm for western culture. In [75], the related terms “participation structure” and

“spatial organization of activity” are introduced. Both [70] and [75] share some insight on

scientific practices for interaction analysis. Much like this thesis, they use manual anno-

tation of audiovisual recordings in order to analyze them. But unlike this thesis, they do

not use these annotations to automatically deduce semantic situation descriptions, nor do

they have the ultimate goal to automate perception.

There are some interesting studies on crisis response management. The Pandora system

is presented in [28], a management and training system that integrates computational

intelligence with the intelligence of the trainer and the trainees to provide an emotionally

engaging augmented/virtual reality training environment for crisis response. In [110],

another system for disaster response management and training is presented. The developed

software supports the real-time coordination between staff members and organizations.

Two related studies [86, 122] aim to improve improvisation skills and collaboration through

serious gaming. In these examples, increased situational awareness is achieved by modeling

the site of the (simulated) crisis, but the situation inside the control room has never been

used. The book [71] provides an overview of the current and future design and ergonomics
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of control rooms. Finally, [54, 79, 118] provide insight into the current procedures and

best practices that are applied in German crisis response and fire brigade management.

2.5.3 Maritime Surveillance

In [40], a system is described for situational awareness against piracy and other maritime

threats. Reasoning and related aspects of this project are discussed in [102], and [103]

focuses on how the computational overhead can be reduced by applying data structures

from the field of moving object databases and methods for behavior estimation using

computational movement analysis. The applied methods are description-based. Other

studies from the maritime domain, applying statistical methods (probabilistic graphical

models) include [44, 51, 83, 85]. The author’s own investigations in this direction are

represented by [1].

2.6 Discussion

In the second half of the twentieth century, great AI promises were made based on classic,

symbolic expert knowledge systems, i.e. the description-based approach. Because these

promises were not fulfilled, interest waned and most of the funding stopped. This is

sometimes called the AI winter.7 Later though, AI experienced a revival through machine

learning and the statistical approach, with great success. Currently, we are experiencing

a resurrection of the description-based approach as well as a tendency toward hybrid

systems that combine the best of both worlds. Although off-the-shelf machine learning

techniques and the statistical approach as such are very powerful and successful, they do

not scale well to knowledge intensive problems that exhibit a certain type of complexity,

as further explained below. The shift toward description-based approaches could also have

something to do with the fact that our exponentially faster computers are now able to

handle their poor worst case time complexity (which is discussed below). When comparing

description-based approaches to statistical approaches, it becomes apparent that both have

their strenghts and weaknesses. Some problems are better solved with one and some with

the other. Furthermore, upcoming hybrid approaches show great promise for a general

purpose framework. Because syntactic approaches share many strenghts and weaknesses

with description-based approaches, they are not discussed separately here.

2.6.1 Strengths of Description-Based Approaches

The description-based models for representation and reasoning that are used in this the-

sis are based on formalized domain knowledge rather than learned from training data.

Compared to other approaches, domain-knowledge-based representation and reasoning in

FMTL and SGTs is intuitive and flexible. The clear boundary between machine perception

7The story is actually more complicated, involving many factors besides this one, two periods of reduced
interest and funding (1974–1980, 1987–1993), and several smaller episodes. Source: Wikipedia – AI winter
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and reasoning makes it easier to improve one without the other. Furthermore, deductions

are understandable by humans and completely provable, and existing FMTL rules and

SGTs can be adapted to new settings with relatively little effort. The ability for humans

to understand the reasoning process is essential to the presented case study. FMTL/SGT

expert systems are suitable for knowledge intensive problems with heterogeneous search

spaces such as the one presented here. A main advantage of description-based is that

modeling is intuitive, because logic can remain relatively close to human language. It

is relatively easy and fast to create new models once there is a firm basis to build on.

Another main advantage is that in general, logics have greater expressive power than

probabilistic graphical models. Aggarwal and Ryoo [20] emphasize that description-based

approaches are able to represent and recognize human activities with complex temporal

structures, sequential ones as well as concurrent ones. In [31], a case is made for using

a description-based approach as opposed to a statistical one for planning and control of

robot motion.

2.6.2 Weaknesses of Description-Based Approaches

However, these advantages come at a cost. Model checking in FMTL and many other

logics (evaluating whether a given formula holds in a given world model) has a poor worst

case time complexity. In practice though, timely and even real-time operation can be

achieved in many cases. This is confirmed by Table 5.1, showing the runtimes for the

primary experiments in this thesis. The time complexity of model checking depends on

the restrictions and extensions that are put on the language and on which algorithm is

used to solve the problem. Literature shows that polynomial worst case time complexity

can be reached in many cases (as a function of the size of the world model and the length

of the formula that has to be evaluated). The review paper [112] describes the worst

case and practical time complexities of model checking in three temporal logics with and

without certain restrictions and extensions. In [42], the complexity and expressiveness of

different forms of logic programming is analyzed: propositional logic programming and

Datalog, but also more general logic programming with extensions. Finally, in [76], the

complexity of Prolog and quantified Horn clauses in general is analysed. They propose an

algorithm that can evaluate a formula in O(n3) time. In any case, statistical approaches

generally exhibit better runtime behavior than description-based approaches.

Another potential weakness is the lack of the concept “conditional probability”. This

is a key concept in most statistical approaches, but it is not available in FMTL. Other

(probabilistic) logics do have it [52, 88, 98, 106], but in FMTL, one has to make do without.

The lack of an operator like A→P B (If A then, with probability P , also B) did not lead

to any issues during this study, but it might in other cases. Ryoo and Aggarwal [20] state

that one of the limitations of description-based approaches is that they are fragile when

their input data is noisy or if some of it is missing. Some description-based approaches
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can handle this problem however [8, 63, 99, 108]. Furthermore, as will be discussed below,

if fuzzy logic is deployed correctly, it can handle noise and missing data too.

2.6.3 Strengths of Statistical Approaches

Statistical approaches, as do syntactic ones, provide a probabilistic framework for reliable

recognition with noisy and missing inputs. Another strong point of statistical approaches

(usually probabilistic graphical models) is that they are well suited for machine learning.

It is safe to say that this is one of the greatest success stories in computer science and

artificial intelligence. Machine learning opens up pitfalls like overfitting and lack of training

data to cover the search space, but above all, it offers great opportunities. Description-

based approaches can incorporate machine learning as well, but literature shows that

this is less common. Some statistical approaches, like dynamic Bayesian networks for

example, can also work well without machine learning. Just like with FMTL/SGTs and

other description-based approaches, domain knowledge has to be formalized to obtain

model structures and parameters. In general though, this is harder to do in probabilistic

graphical models if the domain knowledge that needs to be formalized is complex enough,

because they are harder to interpret (more black-box-like). On the other hand, provided

that the problem is suitable, domain-knowledge-based dynamic Bayesian networks for

example can yield elegant models too [50, 51].

2.6.4 Weaknesses of Statistical Approaches

Statistical approaches generally provide less introspection. Many of them behave like

black boxes, providing good solutions given the training data, but without logical expla-

nations for them. Deductions are often not understandable by humans. Furthermore, they

usually discover correlation, not causality. Another issue is that instances of off-the-shelf

statistical approaches tend to be tweaked to their respective application domains, problem

configurations, and training data. Porting them to other settings tends to involve a lot

of effort. This issue might be partially solved by adding abstractions and configuration

tools that facilitate this porting effort. The methods are based on statistical hypothesis

testing. This is great for anomaly detection (rejecting the null hypothesis) and the related

problem of classifying statistically different data points. But it fails if the semantics of the

data are not solely expressed through statistical difference. This is because data points

that lie within a class of statistically similar points cannot be extracted through statistical

hypothesis testing.

Aggarwal and Ryoo [20] explain that statistical approaches are especially suitable when

recognizing sequential activities. With enough training data, statistical models can reliably

recognize activities, even from noisy or partial data. Their major limitation would be the

inability to recognize activities with complex temporal structures, such as an activity

composed of concurrent actions. For example, HMMs and DBNs have difficulty modeling
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the relationship of an activity A that occurred during, started with, or finished with an

activity B. The edges of HMMs or DBNs specify the sequential order between two nodes,

suggesting that they are suitable for modeling sequential relationships, not concurrent

relationships. They also state that syntactic approaches have this problem.

2.6.5 Implications

Description-based approaches and statistical approaches both have their strenghts and

weaknesses. Some problems are better solved with one and some with the other. When

considering planning in robotics for example, low-level motion planning is best solved us-

ing a statistical approach and machine learning, whereas high-level action planning is best

solved using a description-based approach. In other words, description-based for deter-

mining what to do and statistical for determining how to do it. The former problem has a

large parameter space, the latter requires a lot of knowlege (semantics other than statis-

tics). The choice also involves a trade-off between runtime and expressive power. Without

the expressive power of logic, some problems cannot be solved. If and only if models of

a certain complexity are required, logic can be the best choice for developing intelligent

systems, taking its potentially poor runtime for granted or improving it through an ap-

propriate adaptation. Finally, hybrid approaches, especially Markov logic networks seem

to provide a good balance that combines the strenghts of both approaches. Markov logic

networks have more expressive power and they are more intuitive than pure probabilistic

graphical models, but they can be faster and they are better suited for machine learning

than pure logic.

2.7 Fuzzy Metric Temporal Logic and Situation Graph Trees

The complexity of the presented problem has lead to a hierarchical description-based ap-

proach using fuzzy metric temporal logic (FMTL) combined with situation graph trees

(SGTs). In this thesis, these methods are applied to interaction analysis in smart work

environments for the first time. Nagel [95] provides an overview over the research of his

group using the FMTL and SGT methods. They focus their efforts on the understanding

of inner-city road traffic scenes. Their cognitive vision system spans the entire spectrum

from video data, via conceptual knowledge and temporal development, up to natural lan-

guage descriptions of the depicted scene. The system mediates between the spatiotemporal

geometric descriptions extracted from video and a module that generates natural language

text. In [25], an updated design for the cognitive vision system is presented, with detailed

accounts of the subsystems for computer vision, knowledge representation, and natural

language generation. In [55], the algorithm that extracts vehicle trajectories from monoc-

ular video data is presented in detail. These trajectories are imported into a conceptual

representation based on FMTL and interpreted as verb phrases describing elementary ac-

tions of vehicles. As illustration, here is an example of a natural language output that was
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generated by their system from a video sequence recorded at an intersection:

“Vehicle 1 entered the lane. Later vehicle 2 entered the lane. The vehicles

formed a pair. Later vehicle 3 entered the lane. In the meantime the vehicles

formed a queue. Vehicle 3 was the last vehicle of the queue. Vehicle 1 was the

head of the queue.”

Nagel et al. also applied these methods to complex scenes recorded at a gas station,

yielding natural language outputs such as:

“Vehicle 1 enters the gas station and stops at the second pump. Later vehicle 1

drives around vehicle 2 and leaves the gas station.”

Furthermore, the FMTL and SGT methods were applied in cognitive vision systems for

surveillance, deducing semantic descriptions from human movement patterns (among other

things). Situations of interest are deduced from trajectories of one or more persons,

extracted from videos of pedestrian intersections, parking lots, and public buildings. In

[7] for example:

“Person 1 leaves a bag and walks away (alarm is raised). Over 400 frames

later, person 1 returns and picks up the bag (alarm is withdrawn).”

“Person 1 and person 2 are walking together. At frame 390 they are standing

together, at 402 they split up, at 410 person 1 stands together with person 3,

and finally at 441, person 1 and person 3 are walking together.”

Similarly, the situations “person entering car”, “person leaving car”, “person loading ob-

ject”, and “person unloading objected” are detected in [8]. In [29], such methods are

used to control distributed pan-tilt-zoom cameras, following situations of interest in pub-

lic buildings. This is used to reduce uncertainties in the observed scene and to maximize

the amount of information extracted from it. González et al. [47, 48, 59] have also success-

fully applied FMTL and SGTs to surveillance applications, generating natural language

outputs in English, Spanish, and Catalan, for example:

“The pedestrian appears by the lower right side. He walks by the lower sideway.

He waits to cross. He is waiting with another pedestrian. He crosses by the

crosswalk. He walks by the upper sidewalk. He leaves by the upper right side.”

“The person appears by the lower right side. He walks by the cafeteria. He

waits at the vending machine. He walks by the cafeteria. He walks among

chairs. He sits on a chair. He walks among chairs. He walks by the cafeteria.

He leaves by the upper right side.”
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In [30, 66], similar methods are applied to robot control, although [66] is more of a hybrid

approach that incorporates logic reasoning. A rich source of in-depth information on

reasoning with FMTL and SGTs is provided by the four dissertations [24, 67, 100, 111].

The situation descriptions that are presented in this thesis differ greatly from the ones

listed above and from any of the other related studies described above. In summary, the

reasoning process works as follows. Annotated input data are fed into a reasoning engine

based on FMTL and SGTs. The reasoning models were implemented using F-Limette8,

an FMTL reasoning engine (similar to Prolog) written in C, and the SGT-Editor9, a

Java application for editing and traversing SGTs. The SGTs constitute the top part of

the reasoning process. FMTL rules are called from their nodes to perform the bottom

part of the reasoning process. FMTL rules are largely domain independent and typically

about spatiotemporal relations, whereas SGTs are more domain specific as they usually

constitute abstract relations between the FMTL rules they deploy. Once an FMTL rule

base has been established, it stays relatively fixed and it can be used by different SGTs

within the same application or even across different application domains. Over the years,

the FMTL/SGT methods were incrementally improved while adhering to their validity

demonstrated in [7, 24, 25, 55, 59, 111].

2.7.1 Fuzzy Metric Temporal Logic

The FMTL language, introduced by Schäfer and Nagel [95, 111], is a first order logic

(or predicate logic) extended with fuzzy evaluation and temporal modality. This section

explains both these extensions.

Fuzzy Evaluation

Fuzzy evaluation means that the language uses fuzzy instead of binary truth values. The

term fuzzy logic was officialy introduced by Zadeh in [136], but fuzzy logic has been stud-

ied since the 1920s by  Lukasiewicz, Tarski, and others. It has been successfully applied in

control engineering, artificial intelligence, computational linguistics, and other fields. The

book [91] provides an extensive overview. A key feature of many intelligent systems is

the ability to associate information with truth values between 0.0 and 1.0. But what do

these truth values mean? They are often referred to as “degree of belief”, “confidence”,

“probability”, or “likelihood”, suggesting that the truth values reflect uncertainty, not

vagueness, nor both. Degree of belief is the most neutral term, with less semantic bias

toward uncertainty than the other three. Berger [32] provides a detailed source on rea-

soning under uncertainty. Here, we apply the following definition, consistent with the one

8http://cogvisys.iaks.uni-karlsruhe.de/Vid-Text/f limette
9http://cogvisys.iaks.uni-karlsruhe.de/Vid-Text/sgt editor
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provided in [24, p. 9]. Having a range of truth values between 0.0 and 1.0 instead of just

two (0 and 1) is called fuzziness, which can have at least two different meanings: vagueness

and uncertainty.10

Vagueness is an inherent property of many (natural) language concepts which has

little to do with noise or uncertainty. A statement like “a is close to b” or “a is fast”

can be either completely true, completely false, or somewhere in between, depending on

the physical distance between a and b and the physical speed of a respectively. Even if

perception is flawless, without noise or uncertainty, the truth values of these statements

should be able to lie anywhere between 0.0 and 1.0. Uncertainty about information on

the other hand, is caused by limited knowledge about the state of the world. In many

intelligent systems, it arises through noisy and otherwise imperfect machine perception.

In [69, p. 24], a more detailed and subtle analysis of vagueness and uncertainty is given.

It states that there are multiple types of each, and that the terms are interrelated in some

cases. For many applications, one needs to explicitly handle vagueness, uncertainty, or

both. This thesis focuses on handling vagueness, but it also contains some thoughts and

experiments on how to handle uncertainty and noise, as well as how to handle vagueness

and uncertainty at the same time (below and in Section 3.5). Chapter 4 contains many

examples of how the presented system handles vagueness, and Chapter 5 contains the

corresponding evaluations, as well as an experiment with noisy data.

Table 2.1 provides the most common semantics for fuzzy conjunction, disjunction, and

negation; weak, medium, and strong. Figure 2.1 provides the corresponding graphical rep-

resentation. F-Limette uses the default semantics (boldfaced in Table 2.1 and Figure 2.1)

weak conjunction, strong disjunction, and medium negation. These default semantics are

applied throughout Chapters 4 and 5. These particular semantics are applied, because

they are the closest to our intuition and because it is common practice when using fuzzy

logic reasoning. Fuzzy operator semantics are also discussed in [24, p. 35]. The weak, the

medium, as well as the strong semantics fulfill the following logical conditions:

10As discussed below, this definition can (and should) be expanded by allowing truth values to express a
combination of vagueness and uncertainty, or by having two truth values per atomic fact: one for vagueness
and one for uncertainty.
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Table 2.1: The most common semantics for fuzzy conjunction, disjunction, and negation;
weak, medium, and strong. The semantics that are applied throughout Chapters 4 and 5
are boldfaced. V (C) is the truth value of C.

Weak Medium Strong

C1 ∧ C2 min(V (C1), V (C2)) V (C1) · V (C2) max(0, V (C1) + V (C2)− 1)

C1 ∨ C2 min(1, V (C1) + V (C2)) (V (C1) + V (C2))− (V (C1) · V (C2)) max(V (C1), V (C2))

¬C 1− V (C)2 1− V (C) 1−
√

V (C)

V(C1 ∧ C2)

V(C1)
V(C2)

min(V(C1, V(C2)) V(C1) · V(C2) max(0, V(C1) + V(C2) − 1)

V(C1 ∨ C2)

V(C1)
V(C2)

min(1, V(C1) + V(C2)) (V(C1) + V(C2)) − (V(C1) · V(C2)) max(V(C1), V(C2))

V(C)

V
(¬

C
)

1 - V(C)

1 - V(C)2

q
1 -    V(C)

Figure 2.1: A graphical representation of the semantics for fuzzy conjunction, disjunction,
and negation; weak, medium, and strong. The semantics that are applied throughout
Chapters 4 and 5 are boldfaced. V (C) is the truth value of C.
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• conjunction:

– upper bound (neutrality); V (C1) = 1 ⇒ V (C1 ∧ C2) = V (C2) ,

– lower bound; V (C1) = 0 ⇒ V (C1 ∧ C2) = 0 ,

– monotony; V (C1) ≤ V (C2) ⇒ V (C1 ∧ C3) ≤ V (C2 ∧ C3) ,

– commutativity; V (C1 ∧ C2) = V (C2 ∧ C1) ,

– associativity; V ((C1 ∧ C2) ∧ C3) = V (C1 ∧ (C2 ∧ C3)) ,

• disjunction:

– upper bound; V (C1) = 1 ⇒ V (C1 ∨ C2) = 1 ,

– lower bound (neutrality); V (C1) = 0 ⇒ V (C1 ∨ C2) = V (C2) ,

– monotony; V (C1) ≤ V (C2) ⇒ V (C1 ∨ C3) ≤ V (C2 ∨ C3) ,

– commutativity; V (C1 ∨ C2) = V (C2 ∨ C1) ,

– associativity; V ((C1 ∨ C2) ∨ C3) = V (C1 ∨ (C2 ∨ C3)) ,

• negation:

– upper bound; V (C) = 0 ⇒ V (¬C) = 1 ,

– lower bound; V (C) = 1 ⇒ V (¬C) = 0 ,

– monotony; V (C1) < V (C2) ⇒ V (¬C1) ≥ V (¬C2) .

Temporal Modality

The second extension, temporal modality, enables the modeling of developments along the

time axis instead of just at a single point in time. Modern temporal logic was greatly

inspired by the work of Prior, founder of tense logic, which is now also known as temporal

logic. In his metaphysical work [104], he introduces the temporal modalities past, present,

and future as basic ontological categories of fundamental importance for our understanding

of time and the world. Pnuelli [101] successfully used temporal logic to reason about the

behavioral properties of parallel programs and more generally reactive systems. With

interval temporal logic [21], Allen and Ferguson provided a successful axiomatization of

time periods that has been applied in many studies since.

The idea of temporal logic is that rule conditions can be grounded in past, current,

and future states of the world. Furthermore, FMTL possesses a metric on time, allow-

ing expressions about exact time differences in addition to categorical concepts such as

“before” and “after”. Temporal modality is essential for modeling the speed of an ob-

ject for example, and for modeling situations consisting of multiple phases. It can also

achieve a smoothing effect against noise, outliers, and brief changes that should be ignored.

Chapter 4 uses the following temporal logic operators:

• interval diamond operator 3[t1,t2]: at least once between times t1 and t2

• interval box operator 2[t1,t2]: always between times t1 and t2,

• relative diamond operator 3dt: at time t = t0 + dt, and

• fractional box operator 2a%dt1,dt2 : at least a% of time interval [t0 + dt1, t0 + dt2].
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Horn Fragment and Higher-Order Constructs

Analogous to Prolog, F-Limette reduces FMTL to its Horn fragment FMTHL (Fuzzy Met-

ric Temporal Horn Logic). This means that only formulas of a certain form are allowed,11

leading to a reduction in time complexity (see Section 2.6.2). Furthermore, F-Limette

allows higher-order constructs, leading to an increase in time complexity. In particular,

predicates can be nested within other predicates, whereas in standard first order logic,

you are only allowed to nest functions in predicates, not other predicates.12 Examples

of predicates nested in other predicates can be found in Formulas 4.25 and 4.45 and in

Filter(p, C, q) in Table 4.2. Here, C is instantiated with an entire predicate to be nested.

Further examples that indirectly use nested predicates are Formulas 4.33 and 4.42. Here,

the predicate to be nested is built from the supplied predicate name and arguments for it

from the supplied lists (and constant in the latter case). This behavior is made possible

by the predicate Call(C). It calls predicate C and returns its truth value dynamically at

runtime. Another powerful example of nested predicates is found in Formula 4.48.

Handling Uncertainty in the Input Data

The presented system contains a tool for input data manipulation (see Section 3.5). This

tool was developed because the presented reasoning methods need to work with real ma-

chine perception in the future. It can add noise and perform interpolation as well as

several other manipulations. One of them is the addition of confidence values (patterns

of initial truth values associated with the input data). In [5], the author described on a

theoretical level how the applied methods could handle such imperfections, and in partic-

ular how initial truth values expressing confidence in the input data might be combined

with truth values expressing vagueness. Just like vagueness, confidence in the atomic facts

should be reflected in the high-level situation descriptions that are deduced from them.

The remainder of this section describes how the presented methods could handle noise,

outliers, data gaps, and confidence values. The discussion is an extended version of the

one found in [5].

Noise and outliers. The presented approach can inherently handle noise and outliers to

a certain degree by applying temporal filtering and fuzzy evaluation. Robustness against

noise is evaluated in Section 5.5 in an exemplary fashion. Although the models evalu-

ated here were not optimized for it, the results show that they are robust against small

11Horn clauses are disjunctions of literals with at most one positive literal: e.g. T (a, b) ∨ ¬R(a, b) ∨
¬S(a, b). They are logically equivalent to the form that is used in Prolog and F-Limette, in this case:
T (a, b)← R(a, b) ∧ S(a, b). Other forms in Prolog and F-Limette have to be logically equivalent to these.

12In first order logic, functions can be nested because they return legal arguments for predicates such as
object names and numbers. Examples of functions nested within predicates: Larger(age(a), age(b)) and
Likes(mother(a), mother(b)). Predicates return truth values and cannot be nested as such. To distinguish
functions from predicates, the former are usually not capitalized. In order to nest predicates within
predicates, F-Limette uses a special construct as explained below.
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amounts of noise. More modeling effort is required to handle larger amounts of noise

(and outliers). Independently of the chosen modeling and reasoning methods, robustness

against noise and outliers can be increased by applying outlier detection and smoothing

during preprocessing. Furthermore, noise and outliers might be detected by the reasoning

process itself, using rules about the data’s expected dynamics, potentially even providing

machine perception with top-down knowledge about this to improve its outputs or guide

sensor and resource deployment.

Data gaps. In logic reasoning, the effects of data gaps can be countered to a certain

degree using abduction, where intermediate conditions that can not be deduced are “hallu-

cinated” instead so that reasoning can continue and certain events can be detected despite

their missing conditions. Furthermore, interpolation across data gaps can be applied dur-

ing preprocessing, independently of the chosen modeling and reasoning methods. This

effectively turns the data gap problem into a confidence problem, because interpolated

data should have appropriate confidence values associated with them that depend on the

confidence values in the surrounding data used for interpolation as well as on the temporal

distances between new data points and the ones they were calculated from. Confidence

values should increase towards an interpolated gap’s edge, and large gaps should cause

ever lower confidence values as you move to the center. In [8], the author described how to

apply abduction as well as interpolation to the FMTL/SGT framework. In [108], a prob-

abilistic reasoning component is proposed that solves for missing and superfluous atomic

actions.

Confidence Values. Let us consider an obvious approach to handling confidence values

in the input data (from interpolation or other causes), using DistBetweenCenters(p, q, c)

(Formula 4.11). It calculates the distance between the centers of objects p and q and

associates this distance with distance category c. Each input i can have a truth value P [i]

between 0.0 an 1.0 that reflects confidence. Let Position(p, xp, yp) and Position(q, xq, yq)

retrieve the center positions on a plane for objects p and q (as listed in Table 4.1), with

confidence values P [Position(p, xp, yp)] and P [Position(q, xq, yq)]. The Euclidian distance

between the centers of objects p and q are calculated using Formulas 4.16 and 4.21. Confi-

dence values are usually combined through multiplication and dpq depends on p and q, so

P [dpq] = P [p] · P [q]. The FMTL rule AssocDistBetweenCenters(dpq, c), corresponding

to Figure 4.5 (top left), is used to associate distance dpq with distance category c, yielding a

vague truth value V[DistBetweenCenters(p, q, c)] = V[AssocDistBetweenCenters(dpq, c)]

between 0.0 an 1.0, independent of the value of P [dpq]. This means that uncertainty and

vagueness are represented separately. Optionally, one could use the weak, medium, or

strong conjunction semantics from Table 2.7.1 to combine them into a truth value V ′ re-

flecting both uncertainty and vagueness: V’[DistBetweenCenters(p, q, c)] = V[AssocDist-

BetweenCenters(dpq, c)] · P[dpq]. This is an obvious but naive approach. Multiple theories
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for combining uncertainty and vagueness need to be evaluated, and the applied heuristics

need to be chosen carefully. To find out whether their behavior makes sense, one needs to

examine their formal properties in terms of monotonicity, asymptotics, etc. Useful insights

in this direction can be found in [43] and in [65] for example. Type-2 fuzzy logic [90, 137]

models uncertainty and vagueness as two separate dimensions, adding a third dimension

to truth functions such as the ones displayed in Figure 4.5.

2.7.2 Situation Graph Trees

SGTs, introduced by Arens and Nagel [24, 95], are used as an abstraction layer for FMTL.

Figure 2.2 shows an abstract SGT example that recognizes moving and stationary groups

as well as meetings at tables and interaction with displays. An SGT is a hypergraph that

consists of situation graphs, represented by unfilled rounded rectangles. Each situation

graph contains one or more situation schemes, represented by filled rectangles. Each situa-

tion scheme possesses a name (top segments of filled rectangles in Figure 2.2), one or more

conditions (middle segments), and zero or more actions (bottom segments). Typically,

there is one SGT traversal per frame per observed person (or vehicle for example). Each

traversal normally starts by selecting an agent for that traversal (in the Root situation

scheme). The selected object becomes the center of the reasoning process during that

SGT traversal. During each traversal, all possible paths between the root and the leafs of

an SGT are traversed. If a condition along a path cannot be fulfilled, that path is done

and the next one is started. The traversal algorithm that is applied in this thesis (adapted

from earlier work) is described in [93].

The situation schemes’ conditions initiate deductions in FMTL; Prolog-like reasoning

processes in F-Limette (FMTL reasoning engine). Each condition returns a truth value

between 0.0 and 1.0, depending on the rules that were directly or indirectly evaluated, and

ultimately on the atomic facts from the input data. The next condition Cnext (either within

the same situation scheme or in the next, conceptually refined, situation scheme) uses the

truth value returned by the previous condition Cprev as base truth value. More specifically,

weak conjunction semantics (default, see Table 2.7.1) are used as follows: V ′[Cnext ] =

min(V [Cprev ], V [Cnext ]). During the next step down the tree, the same manipulation is

performed, using V ′[Cnext ] as V [Cprev ]. This means that the situations deduced along each

path of an SGT are always ordered from generic to specific, as their truth values cannot

increase along the way. As soon as a condition returns the truth value 0.0, reasoning

stops and the next path is started from the Root situation scheme. The situation schemes’

actions generate the final outputs of the system: situation descriptions, or in embodied

settings also actuator commands. The truth value returned by the last condition above

each action is also associated with the action, representing vagueness (or uncertainty,

or both). Actions below unfulfilled conditions (returning the truth value 0.0) are not

executed, and, as we will see in Chapter 5, one can ignore outputs with a truth value
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Figure 2.2: An abstract example of a situation graph tree (SGT) that recognizes moving
and stationary groups as well as meetings at tables and interaction with displays. During
SGT traversal, the conditions (the middle segments of the rectangles) initiate deductions in
FMTL (i.e. Prolog-like reasoning processes in F-Limette). The actions (bottom segments)
can either be the generation of situation descriptions or actuator commands.

smaller than a certain threshold.

Trying to deduce a more specific situation after a more generic one is called conceptual

refinement. This is demonstrated by the situation schemes Stationary group, Meeting at

table, and Interaction with display in Figure 2.2. To model temporal dynamics and situa-

tions consisting of multiple phases, situation schemes can be connected through temporal

edges as demonstrated by the situation schemes Stationary group and Moving group in

Figure 2.2. Moving group is only activated if either Stationary group or Moving group

has held (with V > 0.0) in the previous frame. The squares in the upper left and upper

right corners of situation schemes indicate start situations and end situations in temporal

chains, and the circles on their upper right corners represent reflexive temporal edges. The

models in Chapter 4 use various temporal FMTL rules, but no temporal SGT edges, with

the exception of the SGT displayed in Figures 4.19 through 4.21. Temporal modality at

FMTL rule level was introduced in Section 2.7.1.

That concludes Chapter 2 on background and related work. Statistical, syntactic, descrip-

tion-based, and hybrid approaches were introduced, some relevant studies on smart envi-

ronments and related application domains were discussed, the strenghts and weaknesses

of the different types of approaches were compared, and the FMTL/SGT approach was

discussed in terms of related work and background.
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Chapter 3

Case Study and Dataset

This chapter explains how the dataset for the case study was produced. The dataset and

the applied annotation methods form an important part of the presented research and

they provide it with extra novelty. The required audiovisual data was gathered at the

State Fire Service Institute North Rhine-Westphalia during one of their staff exercises

for crisis response control room operations.The annotation methods consist of four parts:

audiovisual data recording (Section 3.2), input data annotation (Section 3.3), ground-

truth annotation (Section 3.4), and optional input data manipulation (Section 3.5). But

we start with a summary of the organisation and workflow of the recorded staff exercise.

3.1 Control Room Organisation and Workflow

The director of operations coordinates the entire affair and has the final responsibility.

His first officers are responsible for specific functional areas: unit management (S1), sit-

uation assessment (S2), strategy (S3), and supplies (S4). Depending on staff availability,

additional functional areas can be added or they can be collapsed together instead. The

first officers as well as the director of operations have one or two additional staff members

answering to them. Other staff members are concerned with maintaining displays (e.g.

maps and unit tables), editing documents, and managing incoming and outgoing mes-

sages. Meanwhile, several instructors are offering assistance to the trainees, the director

of operations being one of them. Finally, the simulation of the world outside the control

room is performed by a combination of instructors and trainees.

The staff members have predefined roles and they follow standard operating procedures

as much as possible.1 The typical workflow consists of periodic cycles of briefings and

dynamic control room operations, where briefings contain multiple phases lead by the first

officers responsible for the functional areas. During dynamic operations between briefings,

the staff members scatter across the room, attending to their displays, documents, and

messages. Groups are constantly forming and breaking with lots of discussion going on.

1Note that despite standard operating procedures, improvisation is an important skill in crisis manage-
ment [86].
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Figure 3.1: Example video data recorded at the fire brigade staff exercise, with views from
all five cameras. Such images, sampled from the raw video data at 1fps, are used during
input data annotation.

3.2 Audiovisual Recording

The six hour long staff exercise was recorded using five cameras and four microphones,

providing complete and redundant coverage of the control room. After the recordings, the

video footage was sampled at 1fps, yielding the five-pane images exemplified by Figure 3.1.

These images, along with the recorded audio tracks, are used during input data annotation

as described below. An image sampling rate of 1fps proved to be sufficient for the current

purposes. Human annotators are able to annotate the input data based on 1fps images,

and the reasoning methods as well as human annotators are able to recognize the targeted

situations based on the annotated input data, since the targeted situations do not have

fast dynamics.2

The first cycle, containing the introductory phase described below, was analyzed thor-

oughly and two four minute fragments and two ten minute fragments were selected for

the annotation process. First, everybody is preparing their workspaces, waiting for the

director of operations to introduce the current crisis situation. When he does, everybody

stops working and returns to their seats to listen. After the introduction, the director of

operations tells his staff to continue their preparations and asks his first officers to join him

at the central table for strategic planning. Once this is done, the director of operations

addresses the whole room, announcing that everybody must attend to their tasks until

the next briefing.

After this initial phase, their behavior becomes highly dynamic. Director of operations,

first officers, their subordinates, and supporting staff scatter across the room, attending

to their displays, documents, and messages. Groups are constantly forming and breaking,

2Computer vision algorithms (especially ones with tracking) could benefit from higher sampling rates.
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and there is a lot of discussion going on. In due time, the director of operations calls the

next briefing and everybody returns to their seats. After an introduction by the director

of operations, each of the first officers stands in front of the appropriate wall display to

give a status report on their own functional area. Everybody listens quietly, except for

the director of operations who is occasionally asking the presenter questions, sometimes

involving one of the other first officers in the discussion. The director of operations con-

cludes the briefing by summarizing the current action plan and everybody gets back to

performing dynamic control room operations.

3.3 Input Data Annotation

Because the required machine perception is not yet available, a human annotator has to

analyze the audiovisual data in order to produce hypothetical machine perception out-

puts. This approach avoids machine perception dependancy problems and allows research

to focus on high-level reasoning. It is a step along the way toward a real-time system

containing various automatic machine perception components. A dedicated input data

annotation tool was developed for this purpose (Figure 3.2). The recorded 1fps five-pane

images exemplified by Figure 3.1 are displayed in an image viewer and the audio tracks

are played by an audio player, while a human annotator analyzes them in order to produce

corresponding symbolic data using mouse and keyboard. This is done by manipulating the

modeled persons and objects in the birdseye view of the input data annotation tool. The

reasoning engine uses the result as input data. From the six hours of recorded audiovisual

data, two four minute sections and two ten minute sections were selected for annotation.

They include data for each phase observed in the control room workflow and the transi-

tions between them: briefings (consisting of multiple phases) as well as dynamic control

room operations.3 The video footage contains all the information needed to annotate

the symbolic data, except for the participants’ speech activity and some useful auditory

context information about the operations in the control room, which are provided by the

audio footage.

In the input data annotation tool (Figure 3.2), each person can be moved and rotated,

and their body pose, gesture activity, and speech activity can be set. Speech is indicated

by a rim around the head and speech-supporting gesticulation by a rim around the right

hand. An extended and optionally rotated arm indicates pointing or interaction with dis-

plays, notepads, and messages. An extended head indicates looking down and extended

legs indicate sitting. Notepads and messages can only be moved around. Of course, func-

tionality for recording, playing back, and navigating through the data is included in the

user interface and data files can be saved to be reloaded later. Using this method, be-

tween 10 and 20 seconds of input data can be annotated in an hour. This is alright for

developing reasoning methods using manageable amounts of data, but a more automatic

3Most of the models presented in Chapter 4 recognize group behavior during the dynamic phases.
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Figure 3.2: Screenshot of the developed input data annotation tool. It is used to annotate
hypothetical machine perception outputs for each of the 1fps images exemplified by Fig-
ure 3.1. This annotated hypothetical machine perception is used as input by the reasoning
engine.
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Figure 3.3: An exemplary frame of video data with the corresponding annotated input
data.

47



approach is required in the long run. This can range from e.g. wearable sensors to ob-

tain tracking data automatically while manually annotating other attributes, to computer

vision and speech detection, i.e. fully automatic unintrusive perception.

The resulting input data for the reasoning engine consists of symbolic person and object

representations over time. The dynamic objects (with attributes that change over time) are

notepads and paper messages, and the static objects (with only constant attributes) are:

tables, displays, doors, and devices. Their attributes are: name, type, position, horizontal

orientation, width, and height (in the horizontal plane), and additionally for persons:

gesture activity (two types: one binary for speech supporting gesticulation, one horizontal

angle for pointing gestures), speech activity (yes/no), vertical head orientation (up/down),

and body pose (sitting/standing). Hence, the data annotations for persons consist of state

descriptors of the form [name:el, type:person, x:774, y:412, w:54, h:20, orientation:144,

speech:false, gesture:-18, looking down:true, sitting:false], meaning: person “el” is located

at x = 774cm and y = 412cm, has width 54cm and height 20cm, and an orientation of

144◦. He is not speaking, pointing 18◦ left of his orientation, looking down, and not sitting.

The persons and objects in Figure 3.2 and similar images throughout the thesis are simply

visualizations of such state descriptors.4

The described taxonomy is analogous to the one proposed by Fischer and Beyerer [51,

p. 44–45]. In 2011, Fraunhofer IOSB organized a study group on term formalization,

consisting of the author of this thesis and five other researchers, because there is a lack of

concensus in this area. The goal was to arrive at common definitions for some key terms.5

In this thesis, the following terms are applied:

• A person or object is a description in the world model of a physical entity in the real

world.

• Its attributes can be divided into static ones (i.e. properties, a person’s name for

example) and dynamic ones (i.e. states, an object’s position for example). A person

or object can also have inferred attributes and inferred relations with other objects,

e.g. the degree to which two persons are close to each other.

• A frame is the set of all persons and objects and their observed and inferred attributes

and relations at a given time.6

• A group is defined through the models in Chapter 4. They are defined in terms of

the proximity, orientations, and interaction patterns of their members (persons and

objects).

4Annotated input data with higher sampling rates than 1fps can be achieved through additional anno-
tation or through interpolation of the existing 1fps annotated input data, as described in Section 3.5.

5Although the author of this thesis is not one of the authors of [51], he did contribute to it indirectly
through the study group.

6In [51], the configuration space is the collection of all persons and objects (they call them object
representatives) and all possible values of all their attributes. Thus, frames are points in the configuration
space and a sequence of frames is a trajectory through the configuration space.
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• A situation is a semantic statement about the world model that has a truth value

between 0.0 and 1.0 associated with it, inferred from the attributes of the objects and

persons in the current frame and the surrounding ones. Situations abstract away

from the level of detail that is available in the world model. The term situation

description refers to the reasoning engine’s output.

3.4 Ground-Truth Annotation

After the input data has been produced, corresponding ground-truth is required to com-

pare to the reasoning engine’s output. These are the situation descriptions that the system

should deduce. This is also achieved through manual annotation, in a dedicated software

tool developed for this purpose: Figure 3.4. The annotator analyzes the symbolic input

data (from Section 3.3) in the birdseye view to determine the correct situation descriptions.

The annotator has to repeatedly select the appropriate situation type as well as the

involved persons and objects, using the interaction panel on the right side of Figure 3.4.

The resulting situation descriptions (i.e. ground-truth results) are stored in the list in the

top-right corner and the corresponding boundingboxes are drawn in the birdseye view.

Much like the input data annotation tool, the ground-truth annotation tool offers func-

tionality for recording, playback, navigation, saving, and reloading. With between 50 and

80 seconds of ground-truth per hour, ground-truth annotation is less time-consuming than

data annotation (10–20 seconds per hour). Without knowledge of the reasoning process’

inner workings, the annotator was instructed to annotate the ground-truth according to

his own observations and common sense. Chapter 5 describes how the system is evaluated

by comparing the resulting ground-truth to the situation descriptions that are deduced by

the reasoning engine.

The following ground-truth situations were annotated, because they represent common

group constellations and interaction patterns that occur during dynamic control room op-

erations. Italics signify variables that should be instantiated with a person or object,

and bold-italics signify variables that should be instantiated with a list of persons. Be-

tween four and six minutes of 1fps ground-truth was produced for each of the following

situation types. These ground-truth situation types are automatically deduced through

logic reasoning by the primary and secondary models presented in Sections 4.1 and 4.2

respectively. Figure 3.5 provides some corresponding visual examples, generated by the

developed ground-truth annotation tool.
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Figure 3.4: Screenshot of the developed ground-truth annotation tool. It is used to an-
notate ground-truth that can be compared to the reasoning engine’s output in order to
evaluate its performance.
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Primary models:

• group is listening to person,

• conversation between persons in group g,

• silent group g,

• persons in group g are sitting,

• persons in group g are standing,

• persons in group g are moving,

• persons are joining group,

• persons are leaving group,

• constant group g,

• person is pointing at object,

• person is pointing at object and group is looking at it,

• person is speaking and pointing at object, and

• person is speaking and pointing at object and group is looking at it.

Secondary models:

• group oriented at center,

• group oriented at object o,

• group oriented at person p,

• person talking to group,

• person talking to group about object,

• group in dialogue,

• group in dialogue about object,

• person carrying document,

• person moving document,

• person reading document,

• person writing document,

• person picking up document, and

• person laying down document.
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Figure 3.5: Some visual ground-truth examples, generated by the developed ground-truth
annotation tool.

3.5 Input Data Manipulation

The presented system contains a tool for input data manipulation. It can add noise,

perform interpolation, and several other manipulations. This tool was developed because

the presented reasoning methods need to work with real machine perception in the future.

Noise. The data manipulation tool can add noise to any of the dynamic person and

object attributes: position, orientation, and arm rotation, but also boolean attributes:

speaking, sitting, looking down, and gesticulating. This is used to evaluate the system’s

robustness against noise in Section 5.5. The amount of noise to add to which attribute(s)

can be configured, and the resulting noisy data can be visualized in the tools described in

Sections 3.3 and 3.4.

Interpolation. In some cases, the 1fps sampling rate of the annotated input data is

not sufficient. To obtain a more flexible offer of input data, higher sampling rates can

be achieved with corresponding annotation effort, or by interpolating the hypothetical

machine perception outputs that were already annotated with 1fps. We chose the latter

approach. The data manipulation tool can be used to interpolate the annotated input data

with arbitrary rates. Although this feature is not used for the evaluations in Chapter 5, it

could allow for the recognition of other situations that have faster dynamics, and for more

finegrained temporal modeling. The 1fps data can contain large jumps which can cause

52



loss of important data relations, e.g. directional speed. However, standard interpolation

methods only work to a certain degree. Changes in direction between frames would still be

lost for example. Higher sampling rates can also be required to obtain more suitable data

for the subsequent addition of data gaps for example. Adding noise and other features of

the data manipulation tool can be used with or without prior interpolation.

Other Manipulations. Five more manipulations are conceivable: outliers, confidence

values (patterns of initial truth values associated with the input data), data gaps (missing

atomic facts), superfluous atomic facts, and systematic errors that are likely to occur when

working with real machine perception. Systematic errors include missing, superfluous,

swapped, and drifting person tracks for example, and they can have characteristics of all

the other error types described here. When working with real perception, these types of

imperfect data can arise from noisy sensors, occlusions in the sensor data, areas without

sensor coverage, technical problems with machine perception components, etcetera. Not

all of these manipulations were fully implemented in the data manipulation tool and they

were not used in the evaluations in Chapter 5. But Section 2.7.1 includes a discussion on

how to handle such imperfections in the input data.

That concludes Chapter 3. First, the organisation and workflow within the control room

was illustrated. Then, the audiovisual data recording process was explained, followed by

the input data annotation methods and the ground-truth annotation methods. Finally,

options for the manipulation of input data were discussed.
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Chapter 4

Knowledge Base for Interaction
Analysis

This chapter forms the core of this thesis, describing the SGTs, FMTL rules, and sup-

porting methods that constitute the developed knowledge base for interaction analysis.

The models are divided into the primary models (Section 4.1) and the secondary models

(Section 4.2). They use logic reasoning to automatically deduce the ground-truth situa-

tion types listed in Section 3.4. Besides its use for the current case study and evaluation,

this knowledge base is relevant to the field of high-level reasoning in general, and to many

different application domains, such as the ones presented in Section 1.1.1.

After analyzing the data, axioms for group models were formulated on a natural lan-

guage level and then formalized into SGTs and FMTL rules using common sense knowledge

and empirical trials (defined by experts as opposed to learned from training data). Which

numeric distances, angles, and speeds correspond to which semantic concepts was also de-

termined through common sense and empirical trials, and by comparing the data to other

real-world examples (e.g. from surveillance data and average pedestrian speeds). The

primary models, originally published in [6], provide a detailed taxonomic representation

of spatiotemporal concepts, interaction patterns, and group constellations that are com-

monly encountered in control room settings. The secondary models, originally published

in [13], are based on the primary models. Their SGTs employ part of the FMTL interface

and FMTL rule base from the primary models while other rules were changed or added.

The four primary models use the conventional person-as-agent approach, whereas the

first and third secondary models use the cluster-as-agent approach through DBSCAN

preprocessing. The difference will be discussed in Section 4.2. The second secondary

model uses the person-as-agent approach, employing temporal modality at SGT level

instead of the temporal modality at FMTL rule level employed by the other models.

Furthermore, the first secondary models was optimized through parameter learning as

described in Section 4.2.2. As we will see in Chapter 5, the evaluation of the secondary

models is based on the evaluation performed on the primary models, with some interesting

extensions: robustness against noisy data and inter-annotator-agreement.
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4.1 Primary Models

The four primary models that are described below are used to recognize:

• groups with speaking and listening members (SGT 1),

• groups with sitting, standing, and moving members (SGT 2),

• groups with joining and leaving members (SGT 3), and

• groups oriented at a referred object (SGT 4).

Following from the data analysis and knowledge formalization process, these models rep-

resent groups in terms of the proximity of their members and the similarity between their

orientations, their orientations toward each other, or orientations toward a mutual object

or person. Two of the primary SGTs use this group model as their base, but they have

different conceptual refinements. One of them models speech behavior across time within

recognized groups and distinguishes between monologues, discussions, and silent groups.

The other describes the sitting, standing, and moving members within groups. These

refinements are again based on the observed data and on common sense knowledge. The

third SGT uses the same group model as its base, but it extends it across time in order to

recognize staff members that are joining and leaving groups. Following from the observed

data and common sense knowledge, the fourth SGT applies a different strategy. It detects

staff members that are referring to objects through pointing gestures and speech. Then,

it selects the surrounding staff members that are oriented at the object or person that is

being referred to. In Section 4.1.1, the four SGTs for the primary models are presented

in detail. All of them use the same FMTL base, presented in Sections 4.1.2 through 4.1.5:

interface specification, rule specifications, FMTL formulas, and trapezoid truth functions.

4.1.1 Primary SGTs

Figures 4.1 through 4.4 display the four SGTs for the primary models.1 All FMTL rules

that are directly or indirectly used by these four SGTs are listed and explained in Tables 4.1

(interface specification) and 4.2 (rule specifications in alphabetical order). Furthermore,

the rules in Table 4.2 that are considered non-trivial and not too verbose are included as

formulas in Section 4.1.4.2 The applied truth value functions are included in Section 4.1.5.3

1These SGTs were rendered by the SGT-Editor; the same program that is used to edit the SGTs and
to run the actual reasoning process.

2These formulas are the logic notation equivalent of the actual source code.
3These graphs are simply visualizations of further source code.
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SGT 1:

• recognizes groups with speaking and listening members,

• is displayed in Figure 4.1, and

• generates outputs of the form:

– group is listening to person,

– conversation between persons in group g, and

– silent group g.

All four primary SGTs have the same Root node, selecting a person as the agent for the

current traversal (SelectPersonAsAgent(p), Table 4.1). The first SGT recognizes groups

and their speaking and listening members. Its Group node selects all persons other than

the agent as possible patients (SelectPersonsAsPatients(p, qq), Table 4.1) and filters them

to only the ones that can be considered part of the same group as the agent, using Filter(qq,

InSameGroup(p, elem), group) (Table 4.2 and Formula 4.5).

Then, the node Silent checks whether neither the agent nor any of the other persons

in the group are speaking during a 5s interval, using Not(InShortInterval(Speaking(p))),

Filter(group, InShortInterval(Speaking ( elem)), speakers), and Empty(speakers) (Ta-

bles 4.1 and 4.2, Formula 4.25). If this is the case, AppendHead(p, group, group )

(Table 4.2) appends agent p to group, yielding an output of the form “silent group p q1

q2 q3 ”, where p is the agent for the current traversal and q1, q2, q3 are three other persons

that fulfill the described conditions. InShortInterval(C) uses a 5s interval, because this

proved to be a suitable time frame for this situation. Similarly, rules can be implemented

for InMediumInterval(C) and InLongInterval(C) for intervals of 7s and 9s respectively.

To make this approach more flexible, one would have to implement a recursive rule called

InInterval(C, i) where i is the length of the interval to consider. Formulas 4.50–4.52 pro-

vide another means to make the approach more flexible by applying an arbitrary temporal

mask of length 5s.

In the other branch, the node Not silent checks to what degree the agent and the other

persons in the group are speaking during the same 5s interval, using the same FMTL rules.

Then, if the agent (p) is speaking, the SGT checks whether at least one of the other persons

in the group is also speaking: Filter(group, InShortInterval(Speaking( elem)), speakers)

and Not(Empty(speakers)) in node Conversation. If so, the SGT appends p to speakers

and to group and outputs something of the form “conversation between p q1 in group p

q1 q2 q3 ”. If none of the other persons in the group are speaking (Empty(speakers) in

node Monologue), an output of the form “q1 q2 q3 listening to p” is generated.
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Figure 4.1: SGT 1 recognizes groups and their speaking and listening members.
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SGT 2:

• recognizes groups with sitting, standing, and moving members,

• is displayed in Figure 4.2, and

• generates outputs of the form:

– persons in group g are sitting,

– persons in group g are standing, and

– persons in group g are moving.

The second SGT recognizes groups and their sitting, standing, and moving members. Its

Root and Group node are the same as in Figure 4.1, except for the additional condition

AppendHead(p, group , group) (Table 4.2). Then, the SGT splits into three branches.

In the node Sitting, the agent’s sitting property should hold (Table 4.1) and the persons

in the group are filtered to only those that are sitting. The corresponding output is of the

form “p q1 in group p q1 q2 q3 are sitting” (p is the current agent, q1, q2, q3 are other

persons fulfilling the appropriate conditions).

In the node Standing, the agent’s sitting property should not hold, neither should

he be moving (Not(SpeedInShortInterval(p, some)), Formula 4.15). Using NegFilter(. . . )

(Table 4.2, the group is then filtered to only the members that are not sitting and not

moving, i.e. the ones that are standing. The corresponding output is of the form “p q1

in group p q1 q2 q3 are standing”. Finally, the node Moving uses a similar method to

generate output of the form “p q1 from group a q1 q2 q3 are moving”.
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Figure 4.2: SGT 2 recognizes groups and their sitting, standing, and moving members.
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SGT 3:

• recognizes groups with joining and leaving members,

• is displayed in Figure 4.3, and

• generates outputs of the form:

– persons are joining group,

– persons are leaving group, and

– constant group g.

The third SGT (Figure 4.3) starts with the usual Root node and a node called Group

in short interval. It uses GroupInShortInterval(p, qq, groupBefore, groupNow) (For-

mula 4.3) to detect the group around agent p during the previous and current frame.

Then, it uses JoiningAndLeavingGroup(groupBefore, groupNow, joiningMembers,

leavingMembers) (Formula 4.6) to determine which members join and leave the group

during this time. If the list of joining members is not empty, the node Joining outputs

something like “q1 joining p q2 q3 ”. The node called Leaving does the same for leav-

ing members, e.g. “q1 leaving p q2 q3 ”. Finally, in Neither joining nor leaving, output

of the form “constant group p q1 q2 q3 ” is generated if Empty(joiningMembers) and

Empty(leavingMembers).
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Figure 4.3: SGT 3 recognizes groups and their joining and leaving members.
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SGT 4:

• recognizes groups oriented at a referred object,

• is displayed in Figure 4.4, and

• generates outputs of the form:

– person is pointing at object,

– person is pointing at object and group is looking at it,

– person is speaking and pointing at object, and

– person is speaking and pointing at object and group is looking at it.

The fourth and last of the primary SGTs recognizes groups that are gathered around an ob-

ject that is being referred to. After the Root node, it uses PointingAtNearbyObject(p, q, c)

(Formula 4.2) to determine whether the agent is pointing at a nearby object. Then, the

nodes Not speaking and Speaking use InShortInterval(Speaking(p)) (Formula 4.25) to de-

termine whether the agent is speaking in a 5s interval, generating the corresponding output

“p pointing at q” or “p pointing at q and speaking”. Instead of a 5s interval, one could

use 7s or 9s, or one could define a more flexible version of InShortInterval(C) that takes

the desired length of the interval as an argument.

The nodes Looking 1 and Looking 2 are identical, except for their outputs. They use

DistBetweenInnerPerimeters(. . . ) (Formula 4.12) to find the persons close to the agent

and LookingAtNearbyObject(. . . ) (Formula 4.1) to filter them to only the ones that are

looking at the object that the agent is pointing at. Their outputs are of the form “p

pointing at q and r1 r2 r3 looking at it” and “p pointing at q and speaking and r1 r2 r3

looking at it” respectively.
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Figure 4.4: SGT 4 recognizes groups oriented at an object that is being referred to.

64



4.1.2 Interface Specification

The interface that connects the primary models to the world outside the reasoning engine

is provided in Table 4.1. The interface contains rules for selecting persons and objects

as agents and patients during reasoning, rules that read the input data and translate it

into the atomic facts that the reasoning process is grounded in, and a rule for generating

output, i.e. the situation descriptions that must be compared to the ground-truth. Most

of this interface is also used by the secondary models described in Section 4.2.

Table 4.1: The interface specification for the primary models (Section 4.1); rules for
selecting persons and objects as agents and patients, rules for obtaining atomic facts from
the input data, and a rule for generating output. The secondary models explained in
Section 4.2 also use most of this interface.

Rule head Explanation

SelectPersonAsAgent(p) Select person p as center of reasoning (i.e. agent) for current
traversal – Type(p,person).

SelectPatient(p, q) Select person/object q as reasoning subject (i.e. patient) with
agent p – q 6= p.

SelectPatients(p, q) Select list q containing all patients for agent p –
q ∈ q ⇔ q 6= p.

SelectPersonsAsPatients(p, q) Select list q with all patients of type person for agent p –
q ∈ q ⇔ q 6= p ∧ Type(q, person).

Type(p, t) Query type t for person/object p.

Position(p, x, y) Query position x, y for person/object p.

Size(p, w, h) Query size w, h (horizontal plane) for person/object p.

Orientation(p, o) Query horizontal orientation o for person/object p.

Geometry(p, x, y, w, h, o) Query geometry x, y, w, h, o for person/object p.

Speaking(p) Query if person p is speaking.

Gesticulating(p) Query if person p is gesticulating.

ExtendingArm(p, o) Query hor. orientation o of person p’s extended arm.

LookingDown(p) Query if person p is looking down.

Sitting(p) Query if person p is sitting.

Output(a, b, . . . ) Output string a + b + . . . (arbitrary nr. of arguments).
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4.1.3 Rule Specifications

Table 4.2 provides an alphabetically sorted overview of all the FMTL rules that are directly

or indirectly used by SGTs 1 through 4 (Figures 4.1 through 4.4). Their use is explained

in Section 4.1.1. The rules that are considered non-trivial and not too verbose are included

as formulas in Section 4.1.4.

Table 4.2: The rule specifications for the primary models; all rules that are directly or
indirectly used by SGTs 1 through 4 (Figures 4.1 through 4.4) in alphabetical order. Some
of these rules are also used by the secondary models described in Section 4.2.

Rule head Explanation

AbsOrientationOfExtended-
Arm(p, o)

Orientation o (in ◦) is the absolute orientation of person p’s ex-
tended arm (Formula 4.9).

AppendHead(p, q, r) Append element p to the head of list q, yielding list r
(r = {p} ∪ q).

AngleBetween-
Points(x1, y1, x2, y2, a)

Angle a is the angle of the line between points (x1, y1) and (x2, y2)
(Formula 4.23).

AssocDiffBetweenOriAnd-
AngleToCenter(d, c)

Associate difference d (in ◦) with difference category c, where d is
the difference between the orientation of a person/object and the
angle of the line between its center and another person’s/object’s
center. Category c can either be instantiated (e.g. with “small”)
which returns an appropriate truth value, or uninstantiated, al-
lowing the rule to return a truth value > 0 for each defined and
appropriate category (e.g. more than one of “no, small, medium,
large”) (Section 4.1.5).

AssocDiffBetween-
Oris(d, c)

Associate difference d (in ◦) with difference category c, where d is
the difference between the orientations of two persons/objects.
Category c can either be instantiated or uninstantiated (Sec-
tion 4.1.5).

AssocDistBetween-
Centers(d, c)

Associate distance d (in cm) with distance category c, where d
is the distance between the centers of two persons/objects (Sec-
tion 4.1.5).

AssocDistBetween-
InnerPerimeters(d, c)

Associate distance d (in cm) with distance category c, where d is
the distance between the inner perimeters of two persons/objects
(Section 4.1.5).

AssocSpeedIn-
ShortInterval(v, c)

Associate speed v (in cm/s) with speed category c, where v is the
speed of a person/object over 3s (Section 4.1.5).

Atanoid(dx, dy, a) Angle a is the slope for two perpendicular lines dx and dy, like
atan2 (arctangent for signed inputs), but in a different coordinate
system.

Continues next page.
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BuildGroup(p, q, r) List r contains person p and all persons q ∈ q that fulfill In-
SameGroup(p, q) (r = {p} ∪ {q ∈ q : InSameGroup(p, q)}, For-
mula 4.4).

CalcDiffBetweenOriAnd-
AngleToCenter(p, q, d)

Calculate difference d (in ◦) between the orientation of per-
son/object p and the angle of the line between p’s center and
another person/object q ’s center (Formula 4.19).

CalcDiffBetween-
Oris(p, q, d)

Calculate difference d (in ◦) between the orientations of two per-
sons/objects p and q (Formula 4.18).

CalcDistBetween-
Centers(p, q, d)

Calculate distance d (in cm) between the centers of per-
sons/objects p and q (Formula 4.16).

CalcDistBetweenInner-
Perimeters(p, q, d)

Calculate distance d (in cm) between the inner perimeters of per-
sons/objects p and q (Formula 4.17).

CalcSpeedIn-
ShortInterval(p, v)

Calculate speed v of person/object p, using a 3s interval (For-
mula 4.20).

Call(C) Call rule head C and return its truth value. This is used to call
rules dynamically at runtime.

DiffBetween-
Angles(a, b, d)

Calculate difference d (in ◦) between angles a and b (For-
mula 4.22).

DiffBetween-
Angles(x1, y1, x2, y2, b,d)

Calculate difference d (in ◦) between the angle of the line spanning
points (x1, y1) and (x2, y2), and angle b (Formula 4.24).

DiffBetweenOriAnd-
AngleToCenter(p, q, c)

Calculate the difference between the orientation of per-
son/object p and the angle of the line between p’s center and
another person/object q ’s center. Then associate this difference
with difference category c (Formula 4.14).

DiffBetweenOris(p, q, c) Calculate the difference between the orientations of per-
sons/objects p and q and associate this difference with difference
category c (Formula 4.13).

Difference(p, q, r) List r is the set difference of lists p and q (r = p \ q); r contains
all members of p that are not members of q.

DistBetween-
Centers(p, q, c)

Calculate the distance between the centers of persons/objects p
and q and associate this distance with distance category c (For-
mula 4.11).

DistBetweenInner-
Perimeters(p, q, c)

Calculate the distance between the inner perimeters of per-
sons/objects p and q and associate this distance with distance
category c (Formula 4.12).

DistBetween-
Points(x1, y1, x2, y2, d)

Calculate distance d (in cm) between points (x1, y1) and (x2, y2)
(Formula 4.21).

Empty(p) Determine whether p is an empty list (p = ∅).
Filter(p, C, q) Filter list p, applying rule head C to its elements. List q con-

tains the elements of p that fulfill rule head C (q = {p ∈ p : p
fulfills C}). The truth value returned by Filter(p, C, q) is the
average of the truth values returned by rule head C applied to
the elements of p. If none fulfill C, q = ∅, and Filter(p, C, q)
returns truth value 1.0. Rule head C has the constant “elem” as
one of its arguments, which is a placeholder for the elements of p.

Continues next page.
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GroupInShort-
Interval(p, q, r, s)

List r contains person p and all persons in list q that fulfill Build-
Group(p, q, r) at t = tcurrent − 1. List s contains person p and
all persons in list q that fulfill BuildGroup(p, q, s) at t = tcurrent
(Formula 4.3).

InSameGroup(p, q) Persons/objects p and q are in the same group if the distance
between their centers is small and, either q is oriented at p, or p
and q have the same orientation, or they are oriented at the same
person/object r (Formula 4.5).

InShortInterval(C) Call rule head C for every second in interval [tcurrent−2, tcurrent +
2] and return a truth value that is proportional to the number of
seconds that C is fulfilled (Formula 4.25).

Intersection(p, q, r) List r is the set intersection of lists p and q ( r = p ∩ q); r
contains all elements that are in p as well as in q.

JoiningAndLeaving-
Group(p, q, r, s)

Given a group at t = t1 (p) and at t = t2 (q), lists r and s
respectively contain the members that joined and left the group
between t1 and t2 (Formula 4.6).

LookingAt(p, q) Determine whether person p is looking at person/object q (For-
mula 4.7).

LookingAtNearby-
Object(p, q, c)

Determine whether person p is looking at person/object q and
associate the distance between p and q with distance category c
(Formula 4.1).

MaxAnd-
Min(a, b, max, min)

Given two numbers a and b, determine their maximum and min-
imum.

NegFilter(p, C, q) Filter list p, applying rule head C to its elements. List q contains
the elements of p that do not fulfill rule head C (q = {p ∈ p : ¬(p
fulfills C )}). NegFilter(p, C, q) returns truth value 1.0. Rule
head C has the constant “elem” as one of its arguments, which is
a placeholder for the elements of p.

NormalizeAngle(a, b) Angle b is the normalized equivalent of angle a.

Not(C) Invert the truth value returned by rule head C (the F-Limette
equivalent of “¬”).

OrientedAt-
Same(p, q, r)

Determine to what degree persons p and q are oriented at the
same person/object r, depending on their distances to r as well
as their orientations relative to r (Formula 4.10).

PointingAt(p, q) Determine whether person p is pointing at person/object q (For-
mula 4.8).

PointingAtNearby-
Object(p, q, c)

Determine whether person p is pointing at person/object q and
associate the distance between p and q with distance category c
(Formula 4.2).

RayHitsObject(p, o, q) Determine whether the ray emanating from person p’s center, and
following his orientation o, hits object q.

ReturnTruthValue(v) When used inside another rule, that rule returns truth value v.

Singleton(p) Determine whether p is a list containing only one element.

SpeedInShort-
Interval(p, c)

Calculate speed of person/object p in a 3s interval and associate
this speed with speed category c (Formula 4.15).
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4.1.4 FMTL Formulas

This section lists the FMTL rules that play a central role during reasoning with the

primary models (their use is explained in Section 4.1.1). Many of the conditions in the

formulas below are included as formulas themselves, and all rule heads and conditions

are listed with a brief explanation in Tables 4.1 and 4.2. The trapezoid truth functions

that are used by Formulas 4.11 through 4.15 (starting with Assoc. . . ) are displayed in

Figure 4.5. Note that the formulas in this section are the logic notation equivalents of the

actual source code. To show the ease of this translation step, the F-Limette source code

for Formulas 4.1 through 4.3 is included below the last formula (capitalization is inverted).

LookingAtNearbyObject(p, q, c)← (4.1)
LookingAt(p, q) ∧DistBetweenInnerPerimeters(p, q, c)

PointingAtNearbyObject(p, q, c)← (4.2)
PointingAt(p, q)∧
CalcDistBetweenInnerPerimeters(p, q, d)∧
[c = small∨(¬LookingDown(p) ∧ c = notLarge)∨

(¬LookingDown(p) ∧ Type(q,display) ∧ c = any)]∧
AssocDistBetweenInnerPerimeters(d, c)

—

GroupInShortInterval(p, q, r, s)← (4.3)
3−1BuildGroup(p, q, r) ∧ BuildGroup(p, q, s)

BuildGroup(p, q, r)← (4.4)
Filter(q, InSameGroup(p, elem), r′) ∧AppendHead(p, r′, r)

InSameGroup(p, q)← (4.5)
DistBetweenCenters(p, q, small)∧
[DiffBetweenOrientationAndAngleToCenter(q, p, small)∨

DiffBetweenOrientations(q, p, small)∨
OrientedAtSame(p, q, r)]

JoiningAndLeavingGroup(p, q, r, s)← (4.6)
Intersection(p, q, t) ∧Difference(q, t, r) ∧Difference(p, t, s)

—

LookingAt(p, q)← (4.7)
p 6= q ∧Orientation(p, op) ∧ RayHitsObject(p, op, q)

PointingAt(p, q)← (4.8)
p 6= q ∧AbsOrientationOfExtendedArm(p, oarmp

)∧
RayHitsObject(p, oarmp

, q)

AbsOrientationOfExtendedArm(p, oarmp
)← (4.9)

Orientation(p, op) ∧ ExtendingArm(p, oarm)∧
o′armp

= op + oarm ∧NormalizeAngle(o′armp
, oarmp

)

OrientedAtSame(p, q, r)← (4.10)
SelectPatient(p, r) ∧ SelectPatient(q, r)∧
DistBetweenCenters(p, r,notLarge)∧
DistBetweenCenters(q, r,notLarge)∧
LookingAt(p, r) ∧ LookingAt(q, r)
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—

DistBetweenCenters(p, q, c)← (4.11)
CalcDistBetweenCenters(p, q, d)∧
AssocDistBetweenCenters(d, c)

DistBetweenInnerPerimeters(p, q, c)← (4.12)
CalcDistBetweenInnerPerimeters(p, q, d)∧
AssocDistBetweenInnerPerimeters(d, c)

DiffBetweenOris(p, q, c)← (4.13)
CalcDiffBetweenOris(p, q, d)∧
AssocDiffBetweenOris(d, c)

DiffBetweenOriAndAngleToCenter(p, q, c)← (4.14)
CalcDiffBetweenOrientationAndAngleToCenter(p, q, d)∧
AssocDiffBetweenOrientationAndAngleToCenter(d, c)

SpeedInShortInterval(p, c)← (4.15)
CalcSpeedInShortInterval(p, v)∧
AssocSpeedInShortInterval(v, c)

—

CalcDistBetweenCenters(p, q, d)← (4.16)
Position(p, xp, yp) ∧ Position(q, xq, yq)∧
DistBetweenPoints(xp, yp, xq, yq, d)

CalcDistBetweenInnerPerimeters(p, q, d)← (4.17)
CalcDistBetweenCenters(p, q, dpq)∧
Size(p, wp, hp) ∧ Size(q, wq, hq)∧
MaxAndMin(wp, hp, dpout

, dpin
)∧

MaxAndMin(wq, hq, dqout
, dqin)∧

d = dpq − 0.5 dpin − 0.5 dqin

CalcDiffBetweenOris(p, q, d)← (4.18)
Orientation(p, op) ∧Orientation(q, oq)∧
DiffBetweenAngles(op, oq, d)

CalcDiffBetweenOriAndAngleToCenter(p, q, d)← (4.19)
Position(p, xp, yp) ∧ Position(q, xq, yq)∧
Orientation(p, op) ∧DiffBetweenAngles(xp, yp, xq, yq, op, d)

CalcSpeedInShortInterval(p, v)← (4.20)
3−1 Position(p, x−1, y−1)∧

Position(p, x0, y0)∧
31 Position(p, x1, y1)∧
DistBetweenPoints(x−1, y−1, x0, y0, d−1,0)∧
DistBetweenPoints(x0, y0, x1, y1, d0,1)∧
v = 0.5 (d−1,0 + d0,1)

—
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DistBetweenPoints(x1, y1, x2, y2, d)← (4.21)

dx = x2 − x1 ∧ dy = y2 − y1 ∧ d =
√
d2x + d2y

—

DiffBetweenAngles(x1, y1, x2, y2, a1, d)← (4.22)
AngleBetweenPoints(x1, y1, x2, y2, a2)∧
DiffBetweenAngles(a1, a2, d)

AngleBetweenPoints(x1, y1, x2, y2, a)← (4.23)
dx = x2 − x1 ∧ dy = y2 − y1 ∧Atanoid(dx, dy, a)

DiffBetweenAngles(a1, a2, d)← (4.24)
MaxAndMin(a1, a2, amax, amin) ∧ d′ = amax − amin∧
NormalizeAngle(d′, d)

—

InShortInterval(C)← (4.25)

[2100%
−2,2 Call(C) ∧ ReturnTruthValue(1.0)∧!]∨

[2 80%
−2,2 Call(C) ∧ ReturnTruthValue(0.8)∧!]∨

[2 60%
−2,2 Call(C) ∧ ReturnTruthValue(0.6)∧!]∨

[2 40%
−2,2 Call(C) ∧ ReturnTruthValue(0.4)∧!]∨

[2 20%
−2,2 Call(C) ∧ ReturnTruthValue(0.2)]

// Source code for Formula 4.1:

always(lookingAtNearbyObject(P, Q, C) :-

lookingAt(P, Q) , distBetweenInnerPerimeters(P, Q, C)

).

// Source code for Formula 4.2:

always(pointingAtNearbyObject(P, Q, C) :-

pointingAt(P, Q) ,

calcDistBetweenInnerPerimeters(P, Q, D) ,

(C = small ; (not(lookingDown(P)) , C = notLarge) ;

(not(lookingDown(P)) , type(Q, display) , C = any)) ,

assocDistBetweenInnerPerimeters(D, C)

).

// Source code for Formula 4.3:

always(groupInShortInterval(P, Qs, Rs, Ss) :-

-1 ! buildGroup(P, Qs, Rs) , buildGroup(P, Qs, Ss)

).

71



4.1.5 Trapezoid Truth Functions

The trapezoid truth functions (visualizations of the corresponding source code) that are

used by Formulas 4.11 through 4.15 (starting with Assoc. . . ) are displayed in Figure 4.5.

They associate distances d in cm, angular differences d in ◦, and speeds v in cm/s with

appropriate categories. As values on the x-axes increase, the truth values V on the y-

axes (for the corresponding categories) increase from 0.0 to 1.0, stay constant at 1.0, and

then decrease back to 0.0. The categories that are applied by the primary models have

boldfaced labels and colored curves.

V(d)

d / cm
0

1
AssocDistBetweenCenters(d, c)

300200100

small medium notLarge large

binary-
Small

tiny

V(d)

d / cm
0

1
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300200100

V(d)

d / °

0

1
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Figure 4.5: The trapezoid truth functions used by Formulas 4.11 through 4.15. They asso-
ciate distances d in cm, angular differences d in ◦, and speeds v in cm/s with appropriate
categories. The categories that are applied by the primary models have boldfaced labels
and colored curves.
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The formulas for AssocDistBetweenCenters(d, c) (top left in Figure 4.5) are included

below. These are used in combination with Formulas 4.11 and 4.16. SP (v) in Formula 4.27

is a built-in predicate that makes the rule it is called from return truth value v. The

numbers in Formula 4.26 and a, b, c, and d in Formula 4.27 are the values where the

trapezoid truth function has its inflections: left slope bottom, left slope top, right slope

top, and right slope bottom respectively. In Formula 4.27, the :=-operator assigns a value

to v.

AssocDistBetweenCenters(d, c)← (4.26)
[c = tiny∧Trapezoid(d, 0, 0, 10, 50)]∨
[c = small∧Trapezoid(d, 0, 0, 50, 150)]∨
[c = binarySmall∧Trapezoid(d, 0, 0, 150, 150)]∨
[c = medium∧Trapezoid(d, 50, 150, 200, 250)]∨
[c = large∧Trapezoid(d, 200, 250, 9999, 9999)]∨
[c = notLarge∧Trapezoid(d, 0, 0, 200, 250)]

Trapezoid(p, a, b, c, d)← (4.27)
[p ≥ a ∧ p < b ∧ v := (p− a)/(b− a) ∧ SP (v)]∨
[p ≥ b ∧ p < c ∧ SP (1.0)]∨
[p ≥ c ∧ p < c ∧ v := (d− p)/(d− c) ∧ SP (v)]
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4.2 Secondary Models

The three secondary models that are described below are used to recognize:

• center, object, and person oriented groups (SGT 5),

• monologues and dialogues (SGT 6), and

• persons handling documents (SGT 7).

The secondary models were based on the primary models just described, but they introduce

various new features. They consist of three SGTs with a corresponding FMTL rule base

that uses part of the FMTL interface, rule specifications, formulas, and trapezoid truth

functions presented in Sections 4.1.2 through 4.1.5. The secondary SGTs 5 through 7 and

some of the additional FMTL rules they deploy will be presented in Section 4.2.3. The

model around SGT 5 performs a cluster-based detection of groups that are oriented at the

group’s center, at an object, or at a person. This model is similar to the model around

SGT 1, but it can detect more sophisticated situations. The model around SGT 6 per-

forms cluster-based detection of monologues and dialogues, optionally involving an object.

As such, it is the successor of the model around SGT 4, with greater expressive power.

Finally, the model around SGT 7 applies the conventional person-as-agent approach to

detect individuals handling documents. It is the only SGT in this thesis that uses tem-

poral SGT edges. But before the secondary models are explained in Section 4.2.3, some

newly developed concepts will be introduced: a customized clustering algorithm that is

used as preprocessing (Section 4.2.1) and a customized algorithm for parameter learning

(Section 4.2.2).

4.2.1 Clustering

From the clustering algorithms that are available in literature, DBSCAN was chosen

as a preprocessing method for the FMTL/SGT-based reasoning engine. DBSCAN [46]

A C

B

N
ε

Figure 4.6: Visualization of the DBSCAN algorithm (minPts = 3) with six corepoints
(A/red), two density-reachable points (B/C /yellow), and one noise point (N /blue).
Source: Wikipedia – DBSCAN
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a b c

Figure 4.7: Demonstration of the lack of transitivity in the person-as-agent approach. If
b is the agent, Group(a, b, c) holds, but if a or c is the agent, Group(a, b) or Group(b, c)
is deduced instead.

(Density-Based Spatial Clustering of Applications with Noise, Figure 4.6) is a density-

based clustering algorithm that uses two parameters: ε and minPts. Clusters consist of

core points and density-reachable points. Their core points have at least minPts neigh-

bors that lie within their ε-neighborhood (A/red in Figure 4.6). Density-reachable points

lie within the ε-neighborhood of a core point, but they are not core points themselves

(B/C /yellow in Figure 4.6). Noise points are neither core points nor density-reachable

points, hence they do not belong to a cluster (N /blue in Figure 4.6).

DBSCAN can be used as preprocessing for the FMTL/SGT reasoning engine, based on

the persons’ position attributes. This allows for a more global cluster-as-agent approach, as

opposed to the more local person-as-agent approach that is usually applied. For each frame

of input data, an SGT is traversed once per agent. In the person-as-agent approach, each

person is observed as an agent, whereas in the cluster-as-agent approach, each cluster of

persons found by the DBSCAN algorithm is observed as an agent. Each cluster of persons

is used as a superset within which the FMTL/SGT reasoning engine searches for group

situations by considering all possible subsets of the cluster as a potential group.

Advantages of the Cluster-as-Agent Approach and DBSCAN

The (more global) cluster-as-agent approach has several advantages over the person-as-

agent approach. First, it is more intuitive, i.e. more consistent with the way humans

detect group situations. Second, it ensures that group membership is a transitive relation,4

consistent with intuition. For the person-as-agent approach, group membership is always

reflexive and symmetrical, but not always transitive. Oblong groups are particularly

problematic for the person-as-agent approach, as shown in Figure 4.7. The circles represent

the group neighborhoods of objects a, b, and c. The following problem can be identified

for the person-as-agent approach. If b is selected as the agent, Group(a, b, c) is deduced,

but if a or c is the agent, Group(a, b) or Group(b, c) is deduced, although the situation is

the same. Third, it can significantly improve runtimes by substituting part of the logic’s

4A relation R is transitive if and only if R(a, b) ∧R(b, c)⇒ R(a, c).
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Figure 4.8: An example frame of annotated input data, enriched with outputs from the
DBSCAN algorithm (minPts = 1, ε = 110cm). Each colour represents a different cluster
and the two gray persons are outliers.

combinatorial search and by avoiding redundant traversals. To exploit these advantages,

an adapted form of DBSCAN preprocessing was investigated as explained in this section,

with corresponding changes to the SGTs and FMTL rules. The resulting models are

presented in Section 4.2.3 (around SGTs 5 and 6). They are evaluated in Sections 5.5.1

and 5.5.2.

DBSCAN is well suited for the presented problem, because it uses a dynamic number

of clusters, an essential feature in this case. On a related note, one does not have to

provide the number of clusters as input, as opposed to k -means and hierarchical clustering.

Another important feature of DBSCAN is that it allows individuals to not belong to any

cluster (outliers). The two gray individuals in Figure 4.8 show that this is a desired

property. Finally, because DBSCAN is a density-based approach, it can detect clusters of

varying sizes and shapes (oblong, L-shaped, ring-shaped, etc.). A related but considerably

different study using mean shift clustering and FMTL/SGT reasoning is presented in [94].

Visualization and Parameters

The input data annotation tool explained in Section 3.3 can visualize the cluster infor-

mation generated during DBSCAN preprocessing. An example frame of annotated input

data, enriched with cluster information, is provided in Figure 4.8. Each colour represents a

different cluster and the two gray persons are outliers. DBSCAN’s parameter minPts is set
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Figure 4.9: The effect of augmenting distances across tables using Equation 4.28; ground-
truth (left), clustering without augmentation (center), and clustering with augmentation
(right).

to 1, because it should also detect groups consisting of two people, which is not possible for

minPts > 1. Sensible values for DBSCAN’s second parameter ε are 110–120cm, because

most group situations in the input data have a density that is smaller than that. Further-

more, the term personal distance, a distance category from anthropology, is 45–120cm for

western culture. Most conversations take place within this distance [80].

Modifications to the DBSCAN Algorithm

In order to achieve optimal interaction between DBSCAN and FMTL rules / SGTs, three

modifications to the DBSCAN algorithm were designed and implemented: augmenta-

tion of distances across tables, cluster tracking, and the use of an additional parameter

maxMembers. Furthermore, some modifications to the SGTs and FMTL rules were re-

quired (discussed further below).

Augmentation of Distances across Tables. Clusters form when the Euclidean dis-

tance between two persons is smaller than ε. If there is a table between them, this distance

is often larger than ε, although they do belong to the same group. The data shows that

the personal distance described above tends to be larger across tables, and that group

interactions such as conversations often take place across tables. When using the unmod-

ified Euclidean distance, multiple clusters and outliers are detected instead of the desired

single cluster. Since each cluster is used as a superset within which the FMTL/SGT rea-

soning engine searches for group situations, this leads to errors. To solve this issue, the

augmented distance Dist ′(p, q) between two persons p and q that is to be compared to ε

is defined as:

Dist ′(p, q) = Dist(p, q)− (1− α)DistT (p, q) , (4.28)

where Dist(p, q) is the Euclidean distance between p and q, DistT (p, q) is the distance

between p and q that lies across a table (fraction of Dist(p, q)), and α is a weight between

0.0 and 1.0. If α = 0.0, the entire distance across the table is ignored, and if α = 1.0, the

table counts as normal space. The value of α was set to 0.65, because that yields the best
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results throughout the entire dataset. Figure 4.9 shows the effect of this augmentation.

The ground-truth situation on the left can only be detected by the reasoning engine if

the augmentation is applied (right). Although ul is farther away from s2b and s3 than

ε = 110cm, they are allocated to the same cluster as they should be.

Cluster Tracking. During clustering, each cluster is given an ID number. Convention-

ally, DBSCAN is performed independently of the surrounding frames, and the allocation

of cluster IDs is non-deterministic. This lack of coherence in the cluster IDs prevents

the FMTL/SGT reasoning from performing temporal reasoning. The addition of clus-

ter tracking to the conventional DBSCAN algorithm makes the cluster IDs depend on the

clusters in the previous frames. This is achieved through the so-called Jaccard index which

measures the similarity between two clusters. The Jaccard index is defined as the size of

the intersection divided by the size of the union of the two clusters:

J(a, b) =
| a ∩ b |
| a ∪ b |

. (4.29)

Let c be one of the clusters at time t: c ∈ clusterst. Cluster c gets the same ID as cluster

cmax , the most similar cluster at t− 1:

cmax = arg max
c′∈clusterst−1

J(c, c′) . (4.30)

Figure 4.10 shows three consecutive frames of input data from top to bottom, without

cluster tracking on the left and with cluster tracking on the right. The colours that

represent the cluster IDs constantly change on the left, whereas on the right they remain

constant over time, which is required for subsequent temporal reasoning.5

Additional parameter maxMembers. The runtime of subsequent reasoning using

FMTL rules and SGTs depends on the size of the clusters generated by DBSCAN, be-

cause each cluster of persons is used as a superset within which all possible subsets are

considered as potential groups. For a cluster of size n, there are 2n possible subsets.67

This exponential relation means that the reasoning’s runtime depends heavily on the size

of the clusters.8 If some of the clusters in some of the frames are too large, real-time

or timely performance is not possible. Figure 4.11 illustrates the problem. Note that

this analysis was performed on a single CPU core of an Intel Core i5-2500K chip with

3.3GHz. Runtime can be improved by a factor m where m is the number of cores available

for multithreading. For the analysis, 450 frames of input data were used, fed to the model

5Because the cluster IDs only depend on the previous frame, this method does not track clusters that
briefly disperse or merge.

6The set of all possible subsets of a set is called its powerset.
7Because the empty set and the singleton sets do not have to be considered as groups, the reasoning

engine needs to perform reasoning on 2n − n− 1 subsets per cluster.
8DBSCAN itself is very fast compared to the subsequent reasoning.
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Figure 4.10: Three consecutive frames of input data without cluster tracking (left) and
with cluster tracking (right). Without cluster tracking, the colours that represent cluster
IDs constantly change.
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Figure 4.11: Left: the reasoning engine’s runtime for selected individual frames. The size
of the largest cluster in the frame is displayed along the x-axis. Right: Max. Clustersize
over 450 frames of input data. Conditions: one CPU core of an Intel Core i5-2500K chip
with 3.3GHz, model described in Section 4.2.3 (SGT 5), ε = 110cm.

described in Section 4.2.3 (SGT 5), detecting center, object, and person oriented groups

(DBSCAN’s ε = 110cm).

Figure 4.11 (left) shows the reasoning engine’s runtime for selected frames where the

size of the largest cluster in the frame, Max. Clustersize, is displayed along the x-axis.

Given the fact that only one CPU core was used, and that each frame corresponds to

1 second, real-time performance can be achieved with off-the-shelf hardware for Max.

Clustersize up to 7 or 8. Then, 9 can still be considered timely performance for some ap-

plications. From 10 on, runtimes would be problematic for most applications. Figure 4.11

(right) shows that frames with Max. Clustersize > 7 do not occur often (for about 10% of

the frames in this graph, and only for one or two clusters per frame). But each time they

do, the system slows down considerably. This is why the additional parameter maxMem-

bers was introduced. Whenever a cluster size larger than maxMembers occurs, DBSCAN

is performed on only that cluster again with reduced ε, repeatedly if necessary. Figure 4.12

shows the desired effect. The problematic frames containing large clusters start around

180s. Without maxMembers, the accumulated execution time quickly explodes, as opposed

to with maxMembers = 6, 7, and 8. Using maxMembers can lead to reduced reasoning

performance, but in Figure 5.19, we see that there is no negative effect on performance in

this case.

4.2.2 Parameter Learning

Usually, the parameters of the trapezoid truth functions such as the ones displayed in

Figure 4.5 are set manually. Which numeric distances, angles, and speeds correspond to

which semantic concepts is determined through common sense and empirical trials, and by

comparing the data to other real-world examples (e.g. from surveillance data and average

pedestrian speeds). In this section, we discuss how determining these parameters can
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Figure 4.12: Accumulated execution time without maxMembers and with maxMem-
bers = 6, 7, and 8 (ε = 110cm).

be automated (i.e. how they can be learned) using maximization of an adapted F-score

performance measure.9

Parameter learning was tested in an exemplary fashion on the trapezoid truth functions

that are used by the model around SGT 5 below. This should be considered a proof-of-

concept only, because the test was performed on a relatively small set of data with the

risk of overfitting. The application at hand can further influence what are good parameter

values. Hence, parameter learning should also be performed on other data and in other

application settings. Furthermore, the F-score measure is based on the subjective view

of the ground-truth annotator (as confirmed by Section 5.5.1 – Inter-Annotator Agree-

ment) which can further influence the resulting parameter values. Section 5.5.1 – Effect

of Parameter Learning on Performance presents the difference in performance between

the model around SGT 5 without parameter learning and with parameter learning, using

three different scoring functions.

Learning Strategy. Take the curves labeled “medium” and “small” in the center left

graph in Figure 4.5 for example. They are defined by the x-values of their inflection points,

medium: a = 20◦, b = 45◦, c = 65◦, d = 90◦, small: a = 0◦, b = 0◦, c = 20◦, d = 45◦.

Only trapezoids of the latter form (a = 0 and b = 0) were considered for parameter

learning, because trapezoids with a > 0 or b > 0 do not reflect logical semantics in the

tested model. This is often the case when considering distances and angular differences for

example. Conveniently, having only trapezoids of this form simplifies the learning strategy,

because only the values for c and d have to be learned. Learning consists of two phases.

In the first phase, c and d are increased together with a fixed stepsize, from 0 up to the

value where a scoring function is maximized, i.e. until increasing c and d further leads to

a significant decrease in score. Only small local maxima can occur, so using a threshold on

the allowed decrease in score is sufficient. A more sophisticated method like hill climbing

was not needed. In the second phase, the optimal block-shaped truth function from the

first phase is turned into a trapezoid by decreasing c and increasing d, effectively tilting

9Other parameters that could be learned in the context of this thesis are DBSCAN’s ε and the weights w
that are used by WeightedInInterval(C, w) (Formulas 4.50–4.52).

81



the side of the block function while maximizing the scoring function just like in the first

phase.

Scoring Function. The applied scoring function (Equations 4.31 and 4.32) is based on

Equation 5.4, where α can be set > 1 to emphasize strong precision or < 1 to emphasize

strong recall. In Equation 4.31, the value of α depends on the truth value threshold tvt

(using stepsize 0.1 for example) and a factor x as defined in Equation 4.32. If α does

not depend on the truth value threshold, there is no incentive for trapezoid functions

that are actually fuzzy (with d > c). They will turn out as block functions instead (like

“binarySmall” in the top left of Figure 4.5), with c = d at an optimal value given the input

data and ground-truth. This is because the ground-truth has binary truth values. There

is always a binary reasoning result that has a higher average Fα-score (over all truth value

thresholds, Equation 5.4) than the corresponding reasoning result with fuzzy truth values.

But following this measure leads to overfitting and the loss of important information.

Fαx-score = (1 + αx) · precision · recall

αx · precision + recall
(4.31)

αx =

{
x − 2 · tvt · (x− 1) if 0.0 < tvt ≤ 0.5

1
x − 2·(1−tvt)·(x−1) if 0.5 < tvt ≤ 1.0

(4.32)

Figure 4.13: Standard F-score, Fαx=3 , Fαx=5 , and Fαx=10 for given precion and recall values,
for results without fuzzy truth values (left) and with fuzzy truth values (right). During
parameter learning, the average Fαx-score over all truth value thresholds is maximized.

Figure 4.13 shows the standard F-score (Equation 5.3), Fαx=3 , Fαx=5 , and Fαx=10 for

given precion and recall values.10 On the left, precision and recall do not vary across truth

value thresholds (x-axis, tvt) which is the case for results without fuzzy truth values. The

measure that is optimized during parameter learning is the average Fαx-score over all truth

10F1-Score, FX3-Score, FX5-Score, and FX10-Score in the graph’s legend
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value thresholds. Fuzzy truth values in the results are desired, because they contain extra

information about the degree to which the result holds (because of vagueness and/or

uncertainty). This can be used in intelligent systems, by humans in decision support

systems, or in the presented case study to filter or sort the deduced situations in the

reports that are generated for the staff members. Furthermore, with fuzzy results, one

can use a truth value threshold to put more emphasis on precision or recall, without

changing anything else. Last but not least, overfitting can be avoided to some extent by

using fuzzy truth functions. Fuzzyness is achieved through Equation 4.31 by rewarding

high recall values at low truth value thresholds and by rewarding high precision values at

high truth value thresholds. The larger the value of x in Equation 4.32, the wider the

slopes of the trapezoid truth functions become. This can be used to purposefully influence

the amount of fuzzyness in the results.

4.2.3 SGTs and FMTL Rules

This section discusses the secondary SGTs 5 through 7 and some of the additional FMTL

rules that they deploy.
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SGT 5:

• recognizes center, object, and person oriented groups,

• is displayed in Figure 4.14, and

• generates outputs of the form:

– group oriented at center,

– group oriented at object o, and

– group oriented at person p.

This SGT and the next one use the cluster-as-agent approach as opposed to the person-as-

agent approach. DBSCAN preprocessing is used to obtain the required cluster information

as described in Section 4.2.1.

Close Groups. During each traversal, the Root node in Figure 4.14 selects one of the

clusters found by DBSCAN as the current agent. Then, the node CloseGroup finds all

subclusters within the current agent-cluster. The set of subclusters scsc contains all

subsets of cluster c, i.e. scsc = {sc : sc ⊆ c}.11 Next, a distance criterium is applied

to each subcluster sc in scsc:12

CloseGroup(sc, dc)← (4.33)
AllTuplesInList(sc, t)∧
CalcAvgForTuples(t,CalcDistBetweenCenters, davg)∧
AssocDistBetweenCenters(davg, dc)

Here, AllTuplesInList(sc, t) generates the list of all possible tuples t within subcluster sc.

CalcAvgForTuples(t, CalcDistBetweenCenters, davg) applies CalcDistBetweenCenters(p,

q, d) (Formula 4.16) to all tuples (p, q) in t and stores the average over all returned values

d in davg.
13 Finally, AssocDistBetweenCenters(davg, dc) (Figure 4.5, top left) associates

davg with distance category dc, determining the truth value V that Formula 4.33 returns.

In this case, the SGT in Figure 4.14 has set dc to “binarySmall”, so V is 1 if davg ≤ 150cm

and 0 otherwise. Truth values < 1 are formed further down this SGT. The subclusters

that fulfill Formula 4.33 (the ones that return V = 1) are conceptually refined in the three

bottom nodes in Figure 4.14 to find center oriented, object oriented, and person oriented

groups.

11scsc is the powerset of c.
12The system is devised in such a way that Formula 4.33 is applied repeatedly until no further instanti-

ations of sc are possible.
13Note that CalcAvgForTuples can apply other rules than CalcDistBetweenCenters as well.
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Figure 4.14: SGT 5 recognizes center, object, and person oriented groups using the cluster-
as-agent approach.
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Groups Oriented Towards Center. The bottom left node in Figure 4.14, OrientedTo-

wardsCenter, calculates to what degree groups are oriented towards the center of the group,

Formula 4.34, and generates the corresponding output. First, CalcCenter(sc, xc, yc) calcu-

lates the center (xc, yc) of subcluster sc by averaging the positions of its members. Then,

AllTuplesForListAndPoint(sc, xc, yc, t) generates the list of tuples t = {(p, (xc, yc)) :

p ∈ sc}.

CenterOriented(sc, dc)← (4.34)
CalcCenter(sc, xc, yc)∧
AllTuplesForListAndPoint(sc, xc, yc, t)∧
CalcAvgForTuples(t,CalcDiffBetweenOriAndAngleToPoint, davg)∧
AssocDiffBetweenOriAndAngleToCenter(davg, dc)

CalcAvgForTuples(t,CalcDiffBetweenOriAndAngleToPoint, davg) applies the rule CalcD-

iffBetweenOriAndAngleToPoint(p, (xc, yc), d) to the tuples in t and averages the returned

values d (angular differences between persons p and the center of the subcluster (xc, yc)),

yielding davg. The value of (xc, yc) is then associated with difference category dc, in this

case “small” (AssocDiffBetweenOriAndAngleToCenter(davg, dc), Figure 4.5, center right).

Groups Oriented towards Object. The bottom center node in Figure 4.14 (Orient-

edTowardsObject) uses Formula 4.35 to generate fuzzy outputs of the form “subcluster

oriented towards object”. For this to hold, object needs to be a message, notepad, display,

laptop, or projector. AssocDistBetweenObjectAndPoint(o, xc, yc, binaryMedium) asso-

ciates the distance between object o and the group’s center (xc, yc) with distance category

“binaryMedium” (trapezoid truth function with inflections at 0, 0, 200, and 200). So

if this distance is smaller than 200cm, OrientedAt (Formulas 4.38 through 4.41) can be

applied through ConjunctionForTuples (Formula 4.36), after AllTuplesForListAndPoint

supplies all possible tuples between the members of sc and the object’s center (xo, yo), to

determine to what degree the group’s members are oriented at object o.

ObjectOriented(sc, o, dc)← (4.35)
[Type(o,message) ∨ Type(o,notepad) ∨ Type(o,display)∨

Type(o, laptop) ∨ Type(o,projector)]∧
CalcCenter(sc, xc, yc)∧
AssocDistBetweenObjectAndPoint(o, xc, yc,binaryMedium)∧
Position(o, xo, yo)∧
AllTuplesForListAndPoint(sc, xo, yo, t)∧
ConjunctionForTuples(t,OrientedAt, small)

ConjunctionForTuples([(a, b) | t], predName, cat)← (4.36)
C = .. [predName, a, b, cat ]∧
Call(C)∧
ConjunctionForTuples(t, predName, cat)

ConjunctionForTuples([ ], predName, cat) (4.37)
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ConjunctionForTuples (Formula 4.36) recursively takes the first tuple (a, b) from list t and

combines it into C using the = .. operator, resulting in a predicate with predicate name

predName and arguments a, b, and cat. Calling Call(C) and then ConjunctionForTuples

(recursively) on the rest of the list results in a concatenation of conjunctions with weak

conjunction semantics.14 Formula 4.37 is the recursion’s stop condition with truth value

1.0. OrientedAt(p, q) (Formulas 4.38 through 4.41 and Formula 4.43 later on) is an

improved version of Formula 4.7. Besides the horizontal orientation of p, it also uses p’s

lookingDown attribute and the distance between p and q, in a way that depends on the

type of object q. For messages for example, p should be looking down and the distance

between p and q should be very small. For displays, p should not be looking down if the

distance is medium and he can either look down or not if the distance is small.15

OrientedAt(p, q)← (4.38)
[Type(q,notepad) ∨ Type(q,message)]∧
LookingDown(p)∧
DistBetweenInnerPerimeters(p, q, verySmall)∧
DiffBetweenOriAndAngleToCenter(p, q, small)

OrientedAt(p, q)← (4.39)
Type(q,display)∧
Orientation(p, op) ∧ RayHitsObject(p, op, q)∧
{[¬LookingDown(p) ∧DistBetweenInnerPerimeters(p, q,medium)]∨

DistBetweenInnerPerimeters(p, q, small}

OrientedAt(p, q)← (4.40)
Type(q, laptop)∧
DistBetweenInnerPerimeters(p, q, small)∧
DiffBetweenOriAndAngleToCenter(p, q, verySmall)

OrientedAt(p, q)← (4.41)
Type(q,projector)
LookingDown(p)∧
DistBetweenInnerPerimeters(p, q, small)∧
DiffBetweenOriAndAngleToCenter(p, q, verySmall)

Groups Oriented towards Person. In the bottom right node of Figure 4.14, outputs

of the form “persons oriented towards person” are generated. It uses a similar construc-

tion as the previous node (Figure 4.14 bottom center), as listed in Formula 4.42. This

time, the instantiation of OrientedAt(p, q) in Formula 4.43 applies, because q is a person.

14weak (default) conjunction semantics, min(V (A), V (B)), see Table 2.7.1
15The distance and difference categories used in these formulas are similar to the ones that are used by

the primary models.
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Table 4.3: Motivation for the conjunct ¬LookingDown(p) ∨ [Sitting(q) ∧ ¬Sitting(p)] in
Formula 4.43. S(p) stands for Sitting(p), S(q) for Sitting(q), and L(p) for LookingDown(p).
Vertical Allignment? shows in which cases one would expect vertical alligment from
intuition. The underscored 1 is subject to debate.

S(p) S(q) L(p) Vertical Allignment? ¬L(p) ∨ [S(q) ∧ ¬S(p)]

1 1 1 0 0 0 0 0

1 1 0 1 1 1 0 0

1 0 1 0 0 0 0 0

1 0 0 1 1 1 0 0

0 1 1 1 0 1 1 1

0 1 0 1 1 1 1 1

0 0 1 0 0 0 0 1

0 0 0 1 1 1 0 1

PersonOriented(sc, p)← (4.42)
Remove(p, sc, sc′)∧
AllTuplesForListAndPerson(sc′, p, t)∧
ConjunctionForTuples(t,OrientedAt, small)

OrientedAt(p, q)← (4.43)
Type(q,person) ∧ p 6= q∧
{¬LookingDown(p) ∨ [Sitting(q) ∧ ¬Sitting(p)]}∧
DiffBetweenOriAndAngleToCenter(p, q, verySmall)∧
DiffBetweenOriAndAngleToCenter(q, p, smallOrMedium)

The choice for the conjunct ¬LookingDown(p)∨ [Sitting(q)∧¬Sitting(p)] in Formula 4.43

is motivated through Table 6.3. Here, S(p) stands for Sitting(p), S(q) for Sitting(q), and

L(p) for LookingDown(p). The column Vertical Allignment? shows in which cases one

would expect vertical alligment between two persons to hold from intuition. The logical

condition in the right column (and in Formula 4.43) corresponds to the natural language

expression “For vertical allignment from p to q, p should not be looking down, unless q is

sitting and p is not”. One could argue that the underscored 1 in Table 6.3 should be a 0

from intuition, because p would be looking over q’s head in this case. Finally, the last two

conditions in Formula 4.43 state that p should be clearly oriented horizontallly at q, but q

should also be somewhat oriented horizontally at p in order for interaction to take place.
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SGT 6:

• recognizes monologues and dialogues,

• is displayed in Figures 4.15 through 4.18, and

• generates outputs of the form:

– person talking to group,

– person talking to group about object,

– group in dialogue, and

– group in dialogue about object.

The SGT overview in Figure 4.15 contains seven nodes. Under the Root node, the Speak-

ingSituation node uses temporal criteria to search for speaking persons within each clus-

ter. At the level below that, these are separated into monologues (containing one speaker,

“talking to” situations) and dialogues (containing two or more speakers). At the bottom

level, these are separated into unspecific monologues and monologues about an object on

the one hand, and unspecific dialogues and dialogues about an object on the other hand.

The four outputs listed above are generated in the four leaves of this SGT. The nodes

from this overview are displayed in detail in Figures 4.16 through 4.18.

Figure 4.15: SGT 6 recognizes monologues and dialogues using the cluster-as-agent ap-
proach – overview, with details in Figures 4.16, 4.17, and 4.18.
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Figure 4.16: SGT 6: the SpeakingSituation node from Figure 4.15.

Speaking Situations. The node that is displayed in Figure 4.16 activates Filter(p, C, q)

twice (see Table 4.2) to extract speaking persons from clusters in the current interval.

Formulas 4.44 through 4.47 are responsible for this. Formula 4.45 checks whether C

holds at least once between t = −3 and t = 3, yielding ShortTermSpeakers in this case.

Formula 4.47 checks whether C holds at t = 0. If this fails, it goes on to check that C

holds at t = −1 and at t = 1. This is done to filter out speech interrupts that are one

frame in length, yielding Speakers. Groups around these speaking persons (within the

current cluster) are detected further down the SGT.

AnytimeSpeakingInSurroundingFrames(p)← (4.44)
AnytimeInSurroundingFrames(Speaking(p))

AnytimeInSurroundingFrames(C)← (4.45)
3[−3,3]Call(C)

SpeakingNowOrInSurroundingFrames(p)← (4.46)
NowOrInSurroundingFrames(Speaking(p))

NowOrInSurroundingFrames(C)← (4.47)
[Call(C)∧!]∨
[3−1Call(C) ∧31Call(C)]

Monologues. On the one hand, the members of the list Speakers from the SpeakingSi-

tuation node are evaluated as monologue-holders (top node in Figure 4.17). Here, Non-

Speakers consists of the members of ClusterMembers that are not in ShortTermSpeakers

(using Difference(p, q, r) from Table 4.2). Each subset of NonSpeakers is then inves-

tigated as Listeners in the two bottom nodes of Figure 4.17. In the bottom left node,

UnspecificMonologue, Formula 4.4816 is applied to each possible combination of Speaker

and Listeners within the current cluster, where Listeners is a non-empty subset of Non-

Speakers. AllTuplesForListAndPerson(q, p, t) in Formula 4.48 prepares a list of tupes t

containing pairs of each member of Listeners with Speaker. Then, ConjunctionForTuples

(Formula 4.36) is applied to t, predicate OrientedAt (Formula 4.43 because we are only

dealing with persons), and distance category “small”.

16The suffix “Smooth” is used for all rules that incorporate the mechanism provided by WeightedInIn-
terval (Formula 4.52).
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Figure 4.17: SGT 6: the monologue subtree from Figure 4.15.

AudienceSmooth(p, q)← (4.48)
AllTuplesForListAndPerson(q, p, t)∧
WeightedInInterval(Conj.ForTuples(t,OrientedAt, small), shortSymmetric)

ObjectOrientedAudienceSmooth(p, q, r)← (4.49)
ObjectFilter(p, q, r)∧
WeightedInInterval(OrientedAt(p, r, small), shortSymmetric)∧
AllTuplesForListAndObject(q, r, t)∧
WeightedInInterval(Conj.ForTuples(t,OrientedAt, small), shortSymmetric)

WeightedInInterval(C, shortSymmetric)← (4.50)
WeightedInInterval(C, [0.0, 0.3, 0.6, 0.3, 0.0])

WeightedInInterval(C, symmetricBoosted)← (4.51)
WeightedInInterval(C, [0.2, 0.3, 0.6, 0.3, 0.2])

V [WeightedInInterval(C,w)] =
2∑

t=−2
wt · V [3tC] (4.52)

This is wrapped in WeightedInInterval(C, w) (Formula 4.52), a powerful, newly developed

fuzzy temporal concept that calculates a weighted average over the truth values of an ar-

bitrary condition C across multiple frames, using arbitrary weights w = {wt−2, wt−1, wt0,

wt1, wt2} for the interval t = [−2, 2]. An intermediate step is required that translates the

name of the weights-list into the actual weights: Formula 4.50. In this case, “shortSym-

metric” is associated with w = {0.0, 0.3, 0.6, 0.3, 0.0}. One can define as many of these

weights-lists as desired. The weights can add up to one, but they do not have to. If they

do not, the result is amplified or dampened. If the resulting truth value is larger than

one, it is set to 1.0. In the bottom right node, MonologueAboutObject, Formula 4.49 is

applied to all combinations of Speaker, Listeners, and Object, following the same principle.

ObjectFilter(p, q, r) makes sure that only the relevant objects r are considered that are

in the vicinity of p and q . Depending on the type of object r, Formula 4.38, 4.39, 4.40,

or 4.41 applies.
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Figure 4.18: SGT 6: the dialogue subtree from Figure 4.15.

Dialogues. Figure 4.18 displays the right branch of Figure 4.15 in detail. Each subset

of size > 1 within ShortTermSpeakers (from Figure 4.16) is investigated as a dialogue.

The application of intersection(ConversationGroup, Speakers, SpeakersInCG) followed by

not(empty(SpeakersInCG)) guarantees that at least one of the speakers in the interval

t = [−3, 3] is speaking at t = 0 or at t = −1 and t = 1, i.e. that part of the dialogue is

currently taking place. The bottom left node of Figure 4.18, UnspecificDialogue, applies

Formula 4.53 to ConversationGroup. It determines to what degree two speakers are ori-

ented at each other and uses the weights defined in Formula 4.51. Finally, the bottom

right node of Figure 4.18, DialogueAboutObject, applies Formula 4.55 to Conversation-

Group, with ObjectFilter(p, q) making sure that only the relevant objects q in the vicinity

of p are considered.

ConversationGroupSmooth(p)← (4.53)
AllTuplesInList(p, t)∧
ConjunctionForTuples(t,ConversationPartnersSmooth)

ConversationPartnersSmooth(p, q)← (4.54)
WeightedInInterval(OrientedAt(p, q), symmetricBoosted)∧
WeightedInInterval(OrientedAt(q, p), symmetricBoosted)

ObjectOrientedSmooth(p, q)← (4.55)
ObjectFilter(p, q)∧
AllTuplesForListAndObject(p, q, t)∧
WeightedInInterval(Conj.ForTuples(t,OrientedAt, small), symmetricBoosted)
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SGT 7:

• recognizes persons handling documents,

• is displayed in Figures 4.19 through 4.21, and

• generates outputs of the form:

– person carrying document,

– person moving document,

– person reading document,

– person writing document,

– person picking up document, and

– person laying down document.

As opposed to the previous two SGTs, the one in Figure 4.19 uses the person-as-agent

approach again. It is the only SGT that makes use of temporal SGT edges. Documents

are either messages or notepads, both treated equally by this model. (In the data, ground-

truth, and results visualizations throughout this thesis, starting with Figure 3.2, messages

are pink or red. Notepads are light or dark blue and slightly larger.) The temporal SGT

edges are located in the situation graph containing three situation schemes on the left of

Figure 4.19.

Figure 4.19: SGT 7 recognizes persons that are handling documents, using the person-as-
agent approach with temporal SGT edges – overview, with details in Figures 4.20 and 4.21.
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Figure 4.20: SGT 7: the subtree from Figure 4.19 responsible for documents located on
tables.

The right subtree in Figure 4.19 is displayed in detail in Figure 4.20. It detects situ-

ations where persons are close to documents on tables. The node Sheet SPLIT, finds all

documents that are close enough to the current agent to be considered. Then, the node

close checks to what degree a document is “close but not very close” to the current agent.

The corresponding trapezoid truth function has its inflection points at 32, 32, 37, and 45

so that documents that are very close to the agent (< 32cm) are only considered in the

left subtree.

This is conceptually refined by the nodes reading and writing in Figure 4.20. The

reading node requires looking down and not pointing at the document (to distinguish it

from writing). Pointing at (i.e. extending arm, Formula 4.8) is the closest thing we have to

writing. Finally, reading requires that the agent is sufficiently oriented at the document

in the current 3s interval. Just like reading, the writing node requires looking down.

Furthermore, the truth value of writing is determined by how much the agent is pointing

at the document in the current 5s interval. Again, pointing at means extending one’s

arm, in this case writing. These two nodes use the same temporal construct as before:

WeightedInInterval, Formulas 4.50 through 4.52.

The left hand side of Figure 4.19 is displayed in detail in Figure 4.21. It models

the handling of documents, from picking up to laying down, with multiple situations

in between. The node pickUp is the start situation which needs to be detected first.

Effectively, the conditions in the pickUp node check whether the distance between agent

and document is larger than 80cm at t = [−2,−1], and that the distance is smaller than

80cm at t = [0, 1, 2]. Its last condition makes sure that the document is moving between

t = −1 and t = 1 (inflection points 5, 10, 9999, and 9999 cm/s) in order to exclude

(common) situations where the agent moves close to a document but does not pick it up.
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Figure 4.21: SGT 7: the subtree from Figure 4.19 responsible for documents that are
being handled.
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Only after pickUp has been detected, carrying can apply for any number of frames,

until the end situation layDown is detected. Every time carrying is detected, the SGT

tries to conceptually refine it in the nodes moving and readingCarry. The former applies

if the agent is moving (trapezoid inflection points 20, 50, 9999, and 9999 cm/s) and the

latter applies if he is looking down, sufficiently oriented at the document within a 3s

interval. Finally, the end situation layDown is detected if the distance between agent and

document is smaller than 80cm at t = [−2,−1] and larger than 80cm at t = [0, 2].

That concludes Chapter 4, the core of this thesis. It first explained the primary models and

their SGTs and FMTL rules. Then, clustering and parameter learning were introduced

and the SGTs and FMTL rules of the secondary models were discussed.
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Chapter 5

Evaluation

This chapter presents the experiments that were performed to evaluate the presented

system. First, the applied evaluation methods are introduced in Section 5.1. Then, the

primary models described in Section 4.1 are evaluated in Section 5.2. The corresponding

error analysis and runtime are presented in Sections 5.3 and 5.4. Finally, the secondary

models described in Section 4.2 are evaluated in Section 5.5, introducing some additional

evaluation methods.

5.1 Evaluation Methods

All the models described in Chapter 4 were evaluated in the experiments described in this

chapter. The goal was to have the situation graph trees (SGTs) produce the same situation

descriptions as a human annotator. Input data for these experiments was annotated using

the method described in Section 3.3. These input data are fed into the SGTs presented in

Chapter 4 and the results are compared to appropriate ground-truth that was annotated

using the method described in Section 3.4. From the 28 minutes of available input data,

four minutes were selected for ground-truth annotation, containing group constellations

and interaction patterns that occur frequently during dynamic control room operations.

Each model evaluation uses more than 1,000 ground-truth results. On average, there are

six ground-truth results per second for each model.

The situation descriptions generated by the system were compared to the ones pro-

duced by a human annotator in a performance evaluation counting false negatives (fn),

false positives (fp), and true positives (tp), in order to calculate precision, recall, and

F-score (harmonic mean of precision and recall): Equations 5.1 through 5.3. This was

repeated for truth value thresholds between 0.1 and 1.0 (with step size 0.1). Reasoning

results with truth values smaller than the applied truth value threshold are rejected, so

increasing the truth value threshold leads to higher precision but lower recall. The F-score

uses the harmonic mean (as opposed to the arithmetic mean) of precision and recall in

order to punish unbalanced ratios between precision and recall. We want them both to

have decent values. The Fα-score (Equation 5.4) can be used to put more emphasis on
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either precision (α > 1) or recall (α < 1). The experiments in this chapter use the neutral

F-score in Equation 5.3. But Equation 5.4 forms the basis for the scoring function that is

used for parameter learning: Equations 4.31 and 4.32. The motivation behind this scoring

function is explained in detail in Section 4.2.2 – Scoring Function.

precision =
tp

tp + fp
(5.1)

recall =
tp

tp + fn
(5.2)

F-score = 2 · precision · recall

precision + recall
(5.3)

Fα-score = (1 + α) · precision · recall

(α · precision) + recall
(5.4)

Note that the presented problem is not a classification problem between a few classes.

Instead, the situation template (e.g. “conversation between persons in group g”) must be

classified correctly, and all involved persons and objects (e.g. instantiating the list variables

persons and g) must be consistent with the annotated ground-truth. In Section 5.5.1,

some additonal evaluation methods are introduced and performed. They measure inter-

annotator agreement, robustness against noise, and the effects of DBSCAN parameter

maxMembers and parameter learning (for trapezoid truth functions) on performance.

To introduce the evaluation procedure, Figure 5.1 shows a complete example frame

with ground-truth annotations (top) and corresponding reasoning results with their truth

values (bottom), rendered by the ground-truth annotation tool described in Section 3.4

and a similar tool that can visualize reasoning results. The displayed frame is from the

first evaluation described below. It contains the situation descriptions “group is listening

to person”, “conversation between persons in group g”, and “silent group g”.

5.2 Primary Models – Experiments

This section provides the evaluation results for the four primary models presented in

Section 4.1: “groups with speaking and listening members”, “groups with sitting, standing,

and moving members”, “groups with joining and leaving members”, and “groups oriented

at referred object”. All four primary models were evaluated on 240 frames of annotated

input data (four minutes worth).
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Figure 5.1: Complete example frame with ground-truth annotations (top) and correspond-
ing reasoning results and truth values (bottom), from the experiment in Section 5.2.1.
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5.2.1 Groups with Speaking and Listening Members (SGT 1)

Note that all experiments in this chapter contain images like the ones in this section. The

explanation below applies to all of them. In the first experiment, groups are classified

with respect to which members are speaking, distinguishing between groups listening to

a single speaker, conversations, and silent groups (SGT 1 in Figure 4.1). This SGT

generates situation descriptions of the form “group listening to person”, “conversation

between persons in group g”, and“silent group g”. Example ground-truth (left) and the

corresponding reasoning result (right) are visualized in Figure 5.2. In this example, three

persons are close together with two of them oriented at the third one (s3), satisfying the

conditions for InSameGroup(p, q) (Formula 4.5). Because only s3 is speaking between

t = -2 and t = 2 (InShortInterval(Speaking(p)), Formula 4.25), the output “uad uah is-

are listening to s3” is generated. Further examples from this experiment are provided in

Figure 5.1.

Each of the three situation descriptions generated by this SGT is further exemplified

by the graphs in Figure 5.3, where the truth values of specific situations are plotted over

time. As the positions, orientations, and amounts of speech of the involved persons vary,

the truth values of the recognized situations in Figure 5.3 vary with them. The goal is

to maximize the correspondence between the bold line (annotated ground-truth) and the

thin line (reasoning results). The system performance for this experiment is displayed in

Figure 5.4. Precision, recall, and F-score are plotted as a function of the applied truth

value threshold (below which results are rejected, higher truth value thresholds leading to

higher precision but lower recall). The bottom graphs show the separated performance for

each type of situation description generated by the SGT, in this case: “group is listening

to person”, “conversation between persons in group g”, and “silent group g” (from left

to right). The most important facts about Figure 5.4 are:

• best overall performance (F-score > 0.6) for truth value thresholds 0.2, 0.3, and 0.4,

• overall number of results (gray area in top graph) in good proportion to number of

ground-truth situations (dashed horizontal line),

• “group is listening to person” (bottom left): number of results (gray area) small

compared to number of ground-truths (dashed horizontal line), causing low recall,

• “conversation between persons in group g” (bottom center): only low truth value

results (proportional to amount of speech in group in 3s interval, causing a preference

for low truth value thresholds), too little reasoning results compared to ground-truth

(causing low recall), and

• precision decreases when truth value threshold approaches 1.0, because only few

results with V ≥ truth value thershold remain (not enough for statistical significance)

and tp decreases faster than fp (this also applies to other performance graphs below).
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Figure 5.2: Example ground-truth (left) and corresponding reasoning results with their
truth values (right) from the experiment “groups with speaking and listening members”.

Figure 5.3: Truth values V over time for some example ground-truth and corresponding
reasoning results, from the experiment “groups with speaking and listening members”.
The bold line shows the annotated ground-truth and the thin line shows the reasoning
results.
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Conversation Silent

Figure 5.4: System performance for the experiment “groups with speaking and listening
members”: precision, recall, and F-score over varying truth value thresholds, and the
number of ground-truth results and reasoning results involved (the latter depending on
the truth value threshold). The bottom graphs, from left to right, show the separated per-
formance for each type of situation description generated by the SGT: “group is listening
to person”, “conversation between persons in group g”, and “silent group g”.
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5.2.2 Groups with Sitting, Standing, and Moving Members (SGT 2)

Here, groups are assorted with respect to which members are sitting, standing, and moving

(SGT 2 in Figure 4.2). This SGT generates situation descriptions of the form “persons

in group g are sitting”, “persons in group g are standing”, and “persons in group g are

moving”. Some examples are visualized in Figure 5.5 and plotted over time in Figure 5.6.

In Figure 5.5, uab and uad belong to the same group, because they are close together and

they have appropriate orientations; InSameGroup(p, q), (Formula 4.5). Their positions

across three frames change enough for the system to output “uab uad in group uab uad

are moving”; SpeedInShortInterval(p, c) (Formula 4.15). The system performance for this

experiment is displayed in Figure 5.7. The most important facts about Figure 5.7 are:

• best overall performance (F-score ≈ 0.6) for truth value thresholds 0.4 and 0.5,

• overall number of results in good proportion to number of ground-truths, and

• “persons in group g are moving” (bottom right): relatively poor performance, small

number of situations present.
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Figure 5.5: Example ground-truth (left) and corresponding reasoning results with their
truth values (right) from the experiment “groups with sitting, standing, and moving mem-
bers”.

Figure 5.6: Truth values V over time for some example ground-truth and correspond-
ing reasoning results from the experiment “groups with sitting, standing, and moving
members”. The bold line shows the annotated ground-truth and the thin line shows the
reasoning results.
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Sitting Standing Moving

Figure 5.7: System performance for the experiment “groups with sitting, standing, and
moving members”: precision, recall, and F-score over varying truth value thresholds, and
the number of ground-truth results and reasoning results involved (the latter depending
on the truth value threshold). The bottom graphs, from left to right, show the separated
performance for each type of situation description generated by the SGT: “persons in
group g are sitting”, “persons in group g are standing”, and “persons in group g are
moving”.
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5.2.3 Groups with Joining and Leaving Members (SGT 3)

This experiment deals with groups and persons that are joining and leaving them (SGT 3

in Figure 4.3). The situation descriptions are: “persons are joining group”, “persons

are leaving group”, and “constant group g”. Example screenshots and truth value over

time plots are provided in Figures 5.8 and 5.9. The left column in Figure 5.8 shows a

group of three persons. In the center column, the next frame, s3a is not part of the group

anymore, due to his changed position and orientation. This is achieved using GroupIn-

ShortInterval(p, q, r, s) and JoiningAndLeavingGroup(p, q, r, s), (Formulas 4.3 and 4.6),

yielding the output “s3a is leaving s3a uaf uag”. In the next frame (right column), the

system outputs “constant group uaf uag”, because s3a has left. System performance is

displayed in Figure 5.10. The most important facts about Figure 5.10 are:

• best overall performance (F-score > 0.6) for truth value thresholds 0.3 and 0.4,

• overall number of results in good proportion to number of ground-truths, and

• “constant group group” (bottom right): relatively good performance and large num-

ber of situations present.
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Figure 5.8: Example ground-truth (top) and corresponding reasoning results with their
truth values (bottom) from the experiment “groups with joining and leaving members”,
with three consecutive frames from left to right.
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Figure 5.9: Truth values V over time for some example ground-truth and corresponding
reasoning results from the experiment “groups with joining and leaving members”. The
bold line shows the annotated ground-truth and the thin line shows the reasoning results.
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Joining Leaving Constant

Figure 5.10: System performance for the experiment “groups with joining and leaving
members”: precision, recall, and F-score over varying truth value thresholds, and the
number of ground-truth results and reasoning results involved (the latter depending on
the truth value threshold). The bottom graphs, from left to right, show the separated
performance for each type of situation description generated by the SGT: “persons are
joining group”, “persons are leaving group”, and “constant group g”.
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5.2.4 Groups Oriented at Referred Object (SGT 4)

The fourth and last primary model detects groups in which one of the members is re-

ferring to an object, and others are oriented at it (SGT 4 in Figure 4.4). The situation

descriptions generated by this SGT are: “person is pointing at object”, “person is pointing

at object and group is looking at it”, “person is speaking and pointing at object”, and

“person is speaking and pointing at object and group is looking at it”. The corresponding

example screenshots, truth value over time plots, and system performance are provided

in Figures 5.11, 5.12, and 5.13. For Figure 5.11, the reasoning engine checks whether the

current agent (uag) is pointing at an object (unitTable); PointingAtNearbyObject(p, q, c),

Formula 4.2. Because s3a is in the same group as uag (InSameGroup(p, q), Formula 4.5),

the output “uag is speaking and pointing at unitTable and s3a is looking at it” is generated.

The most important facts about Figure 5.13 are:

• best overall performance (F-score ≈ 0.6) for truth value thresholds 0.7 and 0.8,

• overall number of results large compared to number of ground-truths, causing low

precision, and

• best performance and most situations present for “person is pointing at object”.
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Figure 5.11: Example ground-truth (left) and corresponding reasoning results with their
truth values (right) from the experiment “groups oriented at referred object”.
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Figure 5.12: Truth values V over time for some example ground-truth and corresponding
reasoning results from the experiment “groups oriented at referred object”. The bold line
shows the annotated ground-truth and the thin line shows the reasoning results.
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Figure 5.13: System performance for the experiment “groups oriented at referred object”:
precision, recall, and F-score over varying truth value thresholds, and the number of
ground-truth results and reasoning results involved (the latter depending on the truth
value threshold). The bottom graphs, from left to right, show the separated performance
for each type of situation description generated by the SGT: “person is pointing at object”,
“person is pointing at object and group is looking at it”, “person is speaking and pointing
at object”, and “person is speaking and pointing at object and group is looking at it”.
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5.3 Primary Models – Error Analysis

Section 5.3.1 suggests ways to improve performance and Section 5.3.2 puts the applied

evaluation criteria into perspective.

5.3.1 Possible Optimizations

Some false negatives are caused by correct results with low truth values. In such cases,

correct results are ignored because of the applied truth value threshold. An example

thereof with a truth value of 0.2 is visible in the top-right of the images in Figure 5.1.

Detecting this result using a truth value threshold ≤ 0.2 is not feasible, because it would

lead to many false positives elsewhere in the data. The opposite effect also occurs: wrong

results with truth values higher than the applied truth value threshold. Wrong results

with low truth values on the other hand, can be filtered out using an appropriate truth

value threshold. The models need to be improved to solve these cases.

One of the conditions for the recognition of a group is the proximity of its members.

False negatives occur if this condition is not met. Sometimes, one of the group members is

standing at a distance from the rest of the group. Human annotators can usually deduce

from the context that he is still part of the group, whereas our current knowledge base

applies the proximity between group members as a necessary condition. Optimizing or

learning the parameters (see Section 4.2.2) of the trapezoid truth functions in Figure 4.5

could solve some of these cases, effectively increasing the system’s separating power by

changing the proximity conditions. Other cases cannot be solved like this. They would

require more complex models instead.

Further errors are caused by either too many or too few group members. More specif-

ically, annotators tend to select the largest possible groups, whereas the reasoning engine

sometimes prefers a subgroup thereof, due to failing conditions for some of the persons

involved. Such errors might be solved by applying more subtle (fuzzy and temporal)

conditions, or by optimizing the trapezoid truth functions in Figure 4.5.

In other cases, two groups are interpreted as one because of their close proximity and

harmonic orientations. This could again be partially solved by optimizing the trapezoids,

and by modeling more subtle fuzzy temporal conditions, paying more attention to the

members’ attributes in neighboring frames. Furthermore, single groups are sometimes

interpreted as two groups when the members are not close enough together. The applied

proximity condition could be combined with fuzzy temporal interaction conditions to cover

such cases. There are also cases where persons are recognized as members of two groups

simultaneously. Annotators seem to apply a constraint against this that our knowledge

base does not yet have. Finally, a staff member passing through or passing by a group

is interpreted as joining, belonging to, and leaving the group, leading to further errors.

Additional conditions should check how long the staff member stays and whether he is

interacting with the group.
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To achieve a more powerful knowledge base with more fine-grained control, more FMTL

rules should be wrapped in rules like InShortInterval(C) (Formula 4.25), combining the

power of temporal modality and fuzzy evaluation. Alternatives to InShortInterval(C)

are provided by the secondary models in Formulas 4.45, 4.47, and 4.50–4.52. Especially

these last ones could bring a considerable increase in expressive power and performance.

Furthermore, the slopes of the trapezoid truth functions could be widened to facilitate

fuzziness (the advantage of which is explained in Section 4.2.2 – Scoring Function), and

the rule RayHitsObject(p, o, q) in particular (Table 4.2) could benefit from more fuzzy

conditions. For some temporal modeling (e.g. of speed), a higher temporal resolution than

1fps would be beneficial, which can be approximated by interpolating the current data

annotations.1

5.3.2 Performance Criteria

One could reconsider the applied performance criteria. For some applications, a hard

truth value threshold would not be necessary. One could report and visualize all results

along with their truth values, and have a human operator decide which results are the

most interesting. Under such criteria (truth value threshold ≤ 0.01) one would require

high recall with reasonable precision. Figures 5.4, 5.7, 5.10, and 5.13 show that this can

be achieved. One can also perform the presented evaluations while allowing for small

temporal offsets to show that some correct situations are detected too early or too late,

but within a few seconds from the annotated ground-truth. For some applications, these

results would still be valuable. Similarly, the evaluations can be performed while allowing

for partial group member match. This means that the list variables in the results and

ground-truth only have to match by a fraction between 0.0 and 1.0. Results with partial

group member match would still be valuable for some applications. This idea is similar to

the performance metric “word error rate” from speech recognition. Performance increases

if such concessions are made.

5.4 Primary Models – Runtime

For many applications, real-time performance is essential. The described system provides

its results frame-by-frame, but whether this happens in real-time, depends on the situation

at hand. In this case study, the system achieves near-real-time performance and actual

real-time is within reach. Table 7.1 lists the runtimes for the four experiments explained

above, i.e. how long it took to process the four minutes of 1fps input data that were

used for each experiment. Runtime depends on many factors that are determined by the

application domain at hand. In the current case study, the frame rate is only 1fps, leading

to faster runtimes. However, as many as 25 persons and 35 objects are involved, which

1Standard interpolation methods only work to a certain degree. Changes in direction between frames
are still lost for example.
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Table 5.1: Runtime for the primary models on a desktop computer with a six core Intel
Xeon W3690 CPU: total runtime for each experiment (with 240s of 1fps input data) and
average runtime per frame of input data.

Runtime [s] Runtime [s/frame]

Groups with speaking and
listening members

1131 4.7

Groups w. sitting, standing,
and moving members

959 4.0

Groups with joining and
leaving members

2602 10.8

Groups oriented at
referred object

563 2.3

leads to slower runtimes. The applied hardware and parallelization strategy also have a

profound effect on runtime, in this case a desktop computer with a six core Intel Xeon

W3690 using CPU multithreading. If two or more SGTs have to be evaluated in parallel,

they share computing resources, effectively multiplying these runtimes by the number of

SGTs that is running, unless they are running on separate machines. Finally, runtimes can

be improved by optimizing the SGT traversal algorithm; by avoiding redundant evaluations

and by preserving reasoning results that can be used again in other parts of the traversal

or in different traversals across time for example.
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5.5 Secondary Models

Below, the performance of the three models presented in Section 4.2 is evaluated.

5.5.1 Center, Object, and Person Oriented Groups (SGT 5)

The model around SGT 5 (Figure 4.14) was evaluated on 220 frames of annotated input

data (3:40 min.). DBSCAN preprocessing was performed with ε = 120cm and maxMem-

bers = 7.2 Figures 5.14 through 5.16 provide example results for the three situations that

this model detects: group oriented at center, group oriented at object, and group ori-

ented at person. In each of these figures, the result visualization on the left corresponds

to the results and ground-truth plotted on the right. Besides the correct result3 “s2b s3

oriented at person s4”, Figure 5.16 shows some false positives, because the conditions for

a center oriented group and a person oriented group sometimes hold simultaneously in

constellations like this.

Performance. Figure 5.17 (top) presents the overall performance of this model. Fig-

ure 5.17 (bottom left) shows relatively low performance for center oriented groups. The

gray area and dotted line at the bottom of this graph, representing number of results

(depending on the truth value threshold) and number of ground-truth situations, suggest

that this is partly due to the fact that too little ground-truth situations of this type were

annotated. The instructions to the ground-truth annotator might have been too strict.

Or it is due to the fact that too many results were detected, or, most likely, a combination

of both. This is confirmed by low precision scores (red curve). The performance for object

oriented groups (bottom center) is relatively high and the proportion of the number of

results and ground-truth situations is good. Finally, for person oriented groups (bottom

right), performance is low and there are too many ground-truth situations compared to

the amount of results, reflected by low recall scores.

2DBSCAN’s parameters ε and maxMembers are explained in Section 4.2.1, the latter towards the end
of that section.

3i.e. the result that corresponds to the ground-truth annotations. Given the surrounding frames and
uac’s interaction with message m0, the annotator did not classify him as part of this group.
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Figure 5.14: Visualized result (left) and corresponding results and ground-truth over time
(right) for the situation group oriented at center.

Figure 5.15: Visualized result (left) and corresponding results and ground-truth over time
(right) for the situation group oriented at object.

Figure 5.16: Visualized result (left) and corresponding results and ground-truth over time
(right) for the situation group oriented at person.
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Center oriented Object oriented Person oriented

Figure 5.17: Overall performance for the model described in Section 4.2.3 (top) and per-
formance for the three separate situations that it detects: group oriented at center, group
oriented at object, and group oriented at person.
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Inter-Annotator Agreement. Two out of three situations detected by this models

show relatively poor performance, but is this entirely due to the models themselves? Be-

sides the considerations under Section 5.3.2, one should keep in mind that the ground-truth

annotations themselves are subjective interpretations of the input data. Low performance

can be caused by a failing model or by the fact that a situation is inherently hard to clas-

sify by humans. In the latter case, agreement between reasoning results and ground-truth

cannot be achieved, even with a good model.

To determine how much performance loss comes from a failing model and how much

comes from a situation that is inherently hard to classify by humans, ground-truth from

multiple annotators needs to be compared quantitatively. The most common way of doing

this is using Cohen’s kappa [38] for two annotators and Fleiss’ kappa [53] (multi-annotator

generalization of Scott’s pi) for more than two annotators. Recent adaptations of these

measures include [33, 64]. However, such measures are designed for “normal” classification

problems where each instance belongs to exactly one class. Our problem space is different,

because the system needs to generate complex descriptions instead of merely classifications,

making these measures unusable. The F-score itself can be used instead, on two sets of

ground-truth as opposed to on one set of reasoning results and one set of ground-truth.

Note that Cohen’s kappa compensates for the amount of agreement that occurs by chance

and the F-score measure does not. In our problem space though, there are very many

possible situations and only a few that are actually annotated, so this chance agreement

is negligible.

Inter-annotator agreement was anlyzed for 220 frames with the model “center, object,

and person oriented groups” (SGT 5) and ground-truth from three annotators. Tables 7.2

through 7.4 show the results of this analysis for the three different situations detected

by this model: center oriented group, object oriented group, and person oriented group.

Each cell reports the F-score for the comparison of two different ground-truth sets. The

bottom row shows the F-scores for the three ground-truth sets evaluated against the rea-

soning results.4 Finally, the two numbers in the right column report the average F-scores

reflecting all comparisons between annotators and all comparisons between annotator and

reasoning respectively.5 When looking at the bottom rows of these tables, we see that

reasoning performance fluctuates across different annotators, reflecting the ground-truth’s

subjectivity. This is also reflected by the comparisons between the different annotators.

For center oriented groups (Table 5.2) the F-score that reflects average inter-annotator

agreement is 0.513, significantly higher than 0.353, the average maximum F-score that re-

flects reasoning performance. This means that there is room for improvement in detecting

this situation, but that only a fraction of the way between 0.353 and 1.0 can be solved

4Here, the maximum F-scores over all truth value thresholds is used, because the reasoning results have
fuzzy truth values. This is not needed when comparing ground-truth to ground-truth, because there are
no fuzzy truth values then.

5Not to be confused with the average F-score over all truth value thresholds that is used elsewhere in
this thesis.
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through additonal modeling effort, because this situation is inherently hard to detect ob-

jectively. For object oriented groups (Table 5.3) the F-scores for inter-annotator agreement

and reasoning performance are both 0.657. The fact that inter-annotator agreement equals

reasoning performance suggests that the model can recognize situations of this types about

as well as humans can. Additionaly, the relatively high value of these F-scores means that

this situation type is easier to recognize than the other two (for reasoning and annotators

alike). Finally, person oriented groups (Table 5.4) are hard to detect objectively for both

annotators and reasoning, reflected by the relatively low average F-scores for both. How-

ever, the difference between the two average F-scores is relatively small, suggesting that

reasoning performs almost as well as humans do.

Table 5.2: Inter-annotator agreement for center oriented groups. Each cell reports the
F-score for comparison between two annotators. The bottom row reports the maximum
F-score (over all truth value thresholds) from comparison between annotators and reason-
ing results. The right column reports the average F-scores between all annotators and
between annotators and reasoning.

Annotator 1 Annotator 2 Annotator 3 Average

Annotator 1 - 0.44 0.61 ↘

Annotator 2 0.44 - 0.49 ↘

Annotator 3 0.61 0.49 - 0.513

Reasoning 0.40 0.31 0.35 0.353

Table 5.3: Inter-annotator agreement for object oriented groups (see caption of Table 7.2).

Annotator 1 Annotator 2 Annotator 3 Average

Annotator 1 - 0.67 0.66 ↘

Annotator 2 0.67 - 0.64 ↘

Annotator 3 0.66 0.64 - 0.657

Reasoning 0.67 0.62 0.68 0.657

Table 5.4: Inter-annotator agreement for person oriented groups (see caption of Table 7.2).

Annotator 1 Annotator 2 Annotator 3 Average

Annotator 1 - 0.41 0.40 ↘

Annotator 2 0.41 - 0.46 ↘

Annotator 3 0.40 0.46 - 0.423

Reasoning 0.39 0.33 0.39 0.370

119



Robustness against Noise. In order to evaluate SGT 5’s robustness against noise, the

tool described in Section 3.5 was used to add increasing amounts of noise to the position,

orientation, lookingDown, and sitting attributes of the persons in the annotated input

data. The result over 150 frames is visualized in the four graphs in Figure 5.18. Each

of these four graphs plots the average F-score6 over the amount of noise on one of the

four attributes mentioned above. They contain curves for the overall average F-score

(turquois) as well as the separate average F-scores for each of the three situation types

the model detects (purple, yellow, and red). Each colored curve is the average over four

separate runs, visualized by the gray curves underneath. Four runs were performed for

each graph, because the tool described in Section 3.5 adds noise in a non-determinisitic

fashion, i.e. these are repeated random experiments. At 0 noise (left-most x-value) the

average F-score is the same in all four graphs in Figure 5.18, because this corresponds

to a normal experiment without noise.7 The horizontal lines in the bottom two graphs

indicate that the attributes lookingDown and sitting are not used in the conditions of all

three situations that are recognized by SGT 5.

Effect of DBSCAN Parameter maxMembers on Performance. Towards the end

of Section 4.2.1, the additional parameter for DBSCAN maxMembers was introduced to

facilitate real-time/timely performance. Figure 5.19 shows that, while having a profound

positive effect on runtime, the use of maxMembers does not have a negative effect on system

performance in this particular case. For maxMembers = 6 (right), precision, recall, and

F-score are almost identical to the graph on the left, without maxMembers.8

6Average F-score: Favg =
∑1.0

tvt=0.1 Ftvt

9
, where tvt stands for truth value threshold, with stepsize 0.1, and

Ftvt stands for the F-score at truth value threshold tvt , as visualized in Figure 5.17 for example.
7Note that the average F-scores at 0 noise in Figure 5.18 do not correspond to Figure 5.17, because

different input data were used. Furthermore, the average F-scores at 0 noise in the top right graph do not
correspond to the other three graphs, because it was generated using a slightly different set of data and
ground-truth than the other three.

8Note that this comparison was performed using trapezoid truth functions with learned parameters (see
Section 4.2.2). Hence, the left graph in Figure 5.19 corresponds to the center right graph in Figure 5.20
rather than the top graph in Figure 5.17.
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Figure 5.18: Center, object, and person oriented groups, robustness against noise.

Center, object, and person oriented groups
Without maxMembers

Center, object, and person oriented groups
maxMembers = 6

Figure 5.19: Center, object, and person oriented groups, effect of maxMembers.
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Effect of Parameter Learning on Performance. Section 4.2.2 discusses a method for

learning the parameters of trapezoid truth functions using maximization of the adapted

F-score performance measure Fαx-score (Equations 4.31 and 4.32). The evaluation of

this method for “center, object, and person oriented groups” (SGT 5) is visualized in

Figure 5.20. These graphs have the same axes and legend as Figure 5.17 (top). Note that

the left graph corresponds to Figure 5.17 (top) because this experiment was performed

under the same conditions as the standard performance evaluation of this model.

Between the left (parameters of trapezoid truth functions manually determined) and

center left graph (parameter learning using standard F-score) we see a significant per-

formance increase. Then, in the center right (parameter learning using Fαx=3-score) and

right graph (parameter learning using Fαx=10-score), maximum performance stays the same

while the fuzzyness of the results increases. The advantage of this increase in fuzzyness is

explained in detail in Section 4.2.2 – Scoring Function. Increased fuzzyness is shown by

the steeper slopes in opposite directions of the red and blue curves (precision and recall)

as well as the increased angle of the gray area below. For the sake of completeness, the

dark purple curves in the center right and right graph show the Fαx=3-score and Fαx=10-

score respectively. The center right graph provides a good balance between high average

performance over all truth value thresholds and fuzzyness of the results (the advantage of

which is explained in Section 4.2.2 – Scoring Function).

Figure 5.20: Evaluation of parameter learning for “center, object, and person oriented
groups” (same axes and legend as Figure 5.17, top). Left: parameters of trapezoid truth
functions manually determined, center left: parameter learning using standard F-score,
center right: parameter learning using Fαx=3-score, and right: parameter learning using
Fαx=10-score. The dark purple curves in the center and right graph show the Fαx=3-score
and Fαx=10-score respectively.
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5.5.2 Monologues and Dialogues (SGT 6)

The model from Section 4.2.3 was evaluated on 250 frames with DBSCAN’s ε = 120cm

and maxMembers = 7. Figures 5.21 and 5.22 provide example result visualizations with

corresponding ground-truth and result plots for two of the situations that this model

detects: person talking to group about object, and group in dialogue about object. In

the two consecutive frames visualized in Figure 5.21, and in the frames around it, s4 and

s4a speak alternatingly while being close to each other and oriented at each other, so

a dialogue is detected. Furthermore, they are close to and oriented at n0 during these

frames, so the output “s4a s4 in dialgoue about n0” is generated. In Figure 5.22, similar

conditions hold around the display unitReqeusts while uax0 is speaking, in the visualized

frame and the frames around it, so the output “uax0 talking to uab about unitRequests” is

generated. Figure 5.23 (top) shows the overall performance for this model. In the bottom

graphs, we see that the model performs relatively well for three out of four situations.

“Unspecific monologue” (right center) shows low performance. The proportion of number

of results and number of ground-truth situations and the low recall curve tell us that the

reasoning engine finds too little situations of this type. This could be due to the fact that

the conditions of the other three situations apply more strongly.
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Figure 5.21: Two consecutive frames of a visualized result (top) and corresponding results
and ground-truth over time (bottom) for the situation group in dialogue about object.

Figure 5.22: Visualized result (left) and corresponding results and ground-truth over time
(right) for the situation person talking to group about object.
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Dialogue Dialogue about Monologue Monologue about

Figure 5.23: Overall performance for the model described in Section 4.2.3 (top) and per-
formance for the four separate situations that it detects: person talking to group, person
talking to group about object, group in dialogue, and group in dialogue about object.
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5.5.3 Handling Documents (SGT 7)

The very last was performed on 200 frames, without the use of DBSCAN, because this

model detects situations involving individuals and single documents as opposed to groups.

Figure 5.24 displays four consecutive frames; an example result of the temporal part of

the SGT from Figure 4.21. After “ul picked up n1” is detected, the system goes on to find

“ul carrying n1”. The situation “ul moving n1” is not yet detected, because ul ’s speed

is minimal. In Figure 5.25, we find another set of three consecutive frames, showing the

second half of the temporal chain. The situation is correctly described as “ul moving n1”

followed by the end state “ul laying down n1”. Finally, examples of correctly detected

writing and reading situations are displayed in Figure 5.26 (not consecutive frames).

The overall performance for this model and the performance for the six detected sit-

uations is provided in Figure 5.27. Again, performance varies across the situation types

that are offered by the model. Just like in Section 5.5.1, this model’s robustness against

noise was evaluated by analyzing the average F-score (over all truth value thresholds)

for different amounts of noise on the object attributes involved. The result is shown in

Figure 5.28. Each colored curve is the average over multiple runs (gray curves); two for

the position attribute, three for orientation, and two for lookingDown. The overall per-

formance is visualized by the red curve. Note that this model is sensitive to noise on the

position attribute, compared to the top left graph in Figure 5.18, because the trapezoid

truth functions that are used to associate distances between persons and documents with

distance categories use low values to avoid false positive detections. The bottom graphs

in Figure 5.28 show that noise on the attributes orientation and lookingDown have little

influence.
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Figure 5.24: Four consecutive frames of visualized results for the situations person picked
up document and person carrying document.

Figure 5.25: Three consecutive frames of visualized results for the situations person moving
document, and person laying down document.

Figure 5.26: Two non-consecutive frames of visualized results for the situations person
writing document and person reading document.
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Handling documents

Carrying Moving Reading

Writing Picking up Laying down

Figure 5.27: Overall performance for the model described in Section 4.2.3 (top) and per-
formance for the six separate situations that it detects: person carrying document, person
moving document, person reading document, person writing document, person picking up
document, and person laying down document.
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Robustness against noise on orientation attribute

Noise on orientation attribute (standard deviation) [cm]

Figure 5.28: Persons handling documents, robustness against noise.

That concludes Chapter 5. The applied evaluation methods were introduced in Section 5.1.

Then, the primary models described in Section 4.1 were evaluated in Section 5.2. The

corresponding error analysis and runtime were presented in Sections 5.3 and 5.4. Finally,

the secondary models described in Section 4.2 were evaluated in Section 5.5, introducing

some additional evaluation methods.
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Chapter 6

Conclusion

The thesis is concluded with a summary and a discussion on future work.

6.1 Summary

The goal of this study was to develop a reasoning system for interaction analysis and its

evaluation in a case study: automatic report generation for training purposes in crisis

response control rooms. The developed reasoning system should also be applicable to

other application domains. Situation descriptions about groups and interactions are gen-

erated from annotated hypothetical machine perception, using fuzzy metric temporal logic

(FMTL) and situation graph trees (SGTs). The FMTL/SGT approach was chosen, be-

cause it provides the expressive power and introspection that is needed for the performed

case study. Domain knowledge can be formalized into logic formulas and tree structures

relatively easily, because the logic paradigm is intuitive to use and close to human rea-

soning. The FMTL/SGT approach provides a rich language for reasoning with complex

models that are understandable by humans. The annotated input data consists of person

tracks, object information, and information about gestures, body pose, and speech activ-

ity, used as input by the FMTL/SGT reasoning engine to deduce situation descriptions:

various group constellations and interaction patterns that can be used for automatically

generated behavior reports. The described problem is not a classification problem between

a few classes. Situations must be classified correctly and all involved persons and objects

must be consistent with ground-truth.

The contributions of this thesis are as follows. The case study along which the pre-

sented system was developed, is both unique and challenging. In previous work, increased

situational awareness is achieved by modeling the site of the (simulated) crisis using geo-

graphical information systems and other software tools, but the situation inside the con-

trol room has never been modeled and used. This contribution is found in Section 1.1.3,

Chapter 3, and Chapter 4. Further scientific novelty comes from the reasoning models

that were developed. The FMTL/SGT methods were applied to interaction analysis for

the first time. In the past, similar methods have only been applied in traffic and surveil-
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lance settings. The developed models can recognize multiple group constellations and

interaction patterns within them, as opposed to mainly movement patterns of one or two

vehicles or persons. The developed reasoning models implement some powerful and widely

applicable fuzzy spatiotemporal concepts. This contribution is found in Chapter 4. Ad-

ditionaly, FMTL/SGT reasoning was combined with a customized clustering algorithm,

and the use of parameter learning in the FMTL/SGT context was investigated. These

contributions are found in Section 4.2. Supporting contributions come from the enabling

software toolkit that was developed and the evaluation that was conducted. These sup-

porting contributions are found in Chapters 3 and 5. Overall, the study showed promising

results, but also room for improvement. Ideas for future work that were gathered during

the study are summarized below.

6.2 Future Work

There are plenty of opportunities to build upon the work presented in this thesis. One

can create new models and perform additional evaluations. The performed case study

can be extended upon and the presented research can be applied to other application

domains. Finally, improvements and alternatives to the applied reasoning methods should

be investigated.

6.2.1 Additional Models and Evaluations

The FMTL rules, SGTs, and supporting components (such as parameter learning) can

be improved. Some ideas for this have been presented in Section 5.3. Furthermore, more

sophisticated experiments can be performed using the presented dataset, with some new,

more powerful models and new ground-truth. For example, one could model briefings

(a recurring situation in control room operations) and their distinct phases, as well as

persons underway between specific locations, and the delivery and processing of messages

(extending the model from Section 4.2.3). The current models use the proximity between

members as a necessary condition for groups. Future models should also be able to rec-

ognize groups in which members are far apart, based on their orientations, interaction

patterns, and context information. The models in Chapter 4 can provide the basis for

more sophisticated models.

Chapter 5 provides a wide range of evaluation types that can be performed in the

future: overall and situation specific performance, runtime analysis, error analysis, inter-

annotator agreement, effect of parameter learning on performance, and robustness against

noise (plus other types of imperfections, see Section 2.7.1 – Handling Uncertainty in the

Input Data). Another option is the use of n-valued or fuzzy ground-truth instead of bi-

nary ground-truth. Furthermore, the alternative performance criteria under Section 5.3.2

should be investigated further (e.g. using a performance metric that is similar to “word

error rate”). Last but not least, it would be interesting to compare the behavior and per-
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formance of different models, e.g. models with and without clustering as preprocessing,1

or between different reasoning methods entirely (see Section 6.2.3 below).

6.2.2 Extended Case Studies and Other Application Domains

End-users, human science experts, and developers of crisis response software should be in-

volved in further development. The current case study is focused on the physical attributes

of the people and objects in the room, but the system can be improved by taking into

account more domain specific attributes i.e. context information: field unit status, cri-

sis dynamics, staff roles, and more sophisticated object information. These could largely

be obtained by monitoring developments in the crisis response software that is used in

many control rooms. Speech recognition (e.g. keyword analysis through close-talking

microphones) would be another valuable source of context information. Such context in-

formation would allow one to model more sophisticated domain knowledge in FMTL and

SGTs to deduce a richer set of situation descriptions that is of greater use to potential end-

users. Finally, one needs to consider the ethical implications and liability issues following

from such technologies.

The presented system can be applied to other application domains such as the ones

described in Section 1.1.1. A first step could be to deduce a generic approach and best

practices from the presented case study. These could then be applied to other applica-

tion domains, preferably with fully automatic machine perception instead of annotations.

Whether the machine perception that is required for the presented case study and similar

problems can be obtained through cameras and microphones alone is questionable, at least

for the near future. Additional sensors such as RFID tags could help to provide the data

quality that the models need. In parallel, their use in other application domains should

guarantee that the methods and models are not tailormade for a specific application, but

broadly applicable with minor reconfiguration.

6.2.3 Improved and Alternative Methods

The applied methods can be improved through better system development processes. The

reasoning models were implemented using F-Limette, an FMTL reasoning engine (similar

to Prolog) written in C, and the SGT-Editor, a Java application for editing and traversing

SGTs. These programs are outdated, better developer support tools are required, and the

re-use of existing code should be facilitated. The features and usability of the developed

data annotation, ground-truth annotation, and evaluation tools could also be improved

in the future. Additional features that could be added to the FMTL/SGT framework

include asserting new knowledge at runtime (already possible to some extent), checking

the consistency of reasoning results, and adding conditional SGT edges that could enforce

mutual exclusivity between branches for example (by deducing a situation and setting

1Although the SGTs without clustering in Figures 4.1 and 4.4 are similar to the SGTs with clustering
in Figures 4.15 and 4.14 respectively, their behavior and performance could not be compared directly.
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it as a negative constraint for another situation). Finally, runtimes can be improved

by optimizing the SGT traversal algorithm; by avoiding redundant evaluations and by

preserving reasoning results that can be used again in other parts of the traversal or in

different traversals across time for example.

For sure, statistical, syntactic, hybrid, and other description-based approaches need to

be investigated as well (see Chapter 2) with and without the use of parameter learning and

structure learning. Promising candidates include Markov logic networks, Bayesian logic

networks, and-or graphs, and dynamic Bayesian networks. Clustering algorithms could

also play a role here. The clustering strategy can be extended across multiple frames, a

fuzzy version of DBSCAN can be developed relatively easily, and additional attributes can

be incorporated, increasing expressive power and potentially replacing (part of) the logic

reasoning on top.
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[79] K. Klösters, F. Sölken (2005) Führen in Großschadenlagen.
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