16,522 research outputs found

    A Heuristic Neural Network Structure Relying on Fuzzy Logic for Images Scoring

    Get PDF
    Traditional deep learning methods are sub-optimal in classifying ambiguity features, which often arise in noisy and hard to predict categories, especially, to distinguish semantic scoring. Semantic scoring, depending on semantic logic to implement evaluation, inevitably contains fuzzy description and misses some concepts, for example, the ambiguous relationship between normal and probably normal always presents unclear boundaries (normal − more likely normal - probably normal). Thus, human error is common when annotating images. Differing from existing methods that focus on modifying kernel structure of neural networks, this study proposes a dominant fuzzy fully connected layer (FFCL) for Breast Imaging Reporting and Data System (BI-RADS) scoring and validates the universality of this proposed structure. This proposed model aims to develop complementary properties of scoring for semantic paradigms, while constructing fuzzy rules based on analyzing human thought patterns, and to particularly reduce the influence of semantic conglutination. Specifically, this semantic-sensitive defuzzier layer projects features occupied by relative categories into semantic space, and a fuzzy decoder modifies probabilities of the last output layer referring to the global trend. Moreover, the ambiguous semantic space between two relative categories shrinks during the learning phases, as the positive and negative growth trends of one category appearing among its relatives were considered. We first used the Euclidean Distance (ED) to zoom in the distance between the real scores and the predicted scores, and then employed two sample t test method to evidence the advantage of the FFCL architecture. Extensive experimental results performed on the CBIS-DDSM dataset show that our FFCL structure can achieve superior performances for both triple and multiclass classification in BI-RADS scoring, outperforming the state-of-the-art methods

    Electrostatic Field Classifier for Deficient Data

    Get PDF
    This paper investigates the suitability of recently developed models based on the physical field phenomena for classification problems with incomplete datasets. An original approach to exploiting incomplete training data with missing features and labels, involving extensive use of electrostatic charge analogy, has been proposed. Classification of incomplete patterns has been investigated using a local dimensionality reduction technique, which aims at exploiting all available information rather than trying to estimate the missing values. The performance of all proposed methods has been tested on a number of benchmark datasets for a wide range of missing data scenarios and compared to the performance of some standard techniques. Several modifications of the original electrostatic field classifier aiming at improving speed and robustness in higher dimensional spaces are also discussed

    A systematic review of data quality issues in knowledge discovery tasks

    Get PDF
    Hay un gran crecimiento en el volumen de datos porque las organizaciones capturan permanentemente la cantidad colectiva de datos para lograr un mejor proceso de toma de decisiones. El desafío mas fundamental es la exploración de los grandes volúmenes de datos y la extracción de conocimiento útil para futuras acciones por medio de tareas para el descubrimiento del conocimiento; sin embargo, muchos datos presentan mala calidad. Presentamos una revisión sistemática de los asuntos de calidad de datos en las áreas del descubrimiento de conocimiento y un estudio de caso aplicado a la enfermedad agrícola conocida como la roya del café.Large volume of data is growing because the organizations are continuously capturing the collective amount of data for better decision-making process. The most fundamental challenge is to explore the large volumes of data and extract useful knowledge for future actions through knowledge discovery tasks, nevertheless many data has poor quality. We presented a systematic review of the data quality issues in knowledge discovery tasks and a case study applied to agricultural disease named coffee rust

    An efficient kk-means-type algorithm for clustering datasets with incomplete records

    Get PDF
    The kk-means algorithm is arguably the most popular nonparametric clustering method but cannot generally be applied to datasets with incomplete records. The usual practice then is to either impute missing values under an assumed missing-completely-at-random mechanism or to ignore the incomplete records, and apply the algorithm on the resulting dataset. We develop an efficient version of the kk-means algorithm that allows for clustering in the presence of incomplete records. Our extension is called kmk_m-means and reduces to the kk-means algorithm when all records are complete. We also provide initialization strategies for our algorithm and methods to estimate the number of groups in the dataset. Illustrations and simulations demonstrate the efficacy of our approach in a variety of settings and patterns of missing data. Our methods are also applied to the analysis of activation images obtained from a functional Magnetic Resonance Imaging experiment.Comment: 21 pages, 12 figures, 3 tables, in press, Statistical Analysis and Data Mining -- The ASA Data Science Journal, 201

    Artificial neural networks in geospatial analysis

    Full text link
    Artificial neural networks are computational models widely used in geospatial analysis for data classification, change detection, clustering, function approximation, and forecasting or prediction. There are many types of neural networks based on learning paradigm and network architectures. Their use is expected to grow with increasing availability of massive data from remote sensing and mobile platforms

    Data granulation by the principles of uncertainty

    Full text link
    Researches in granular modeling produced a variety of mathematical models, such as intervals, (higher-order) fuzzy sets, rough sets, and shadowed sets, which are all suitable to characterize the so-called information granules. Modeling of the input data uncertainty is recognized as a crucial aspect in information granulation. Moreover, the uncertainty is a well-studied concept in many mathematical settings, such as those of probability theory, fuzzy set theory, and possibility theory. This fact suggests that an appropriate quantification of the uncertainty expressed by the information granule model could be used to define an invariant property, to be exploited in practical situations of information granulation. In this perspective, a procedure of information granulation is effective if the uncertainty conveyed by the synthesized information granule is in a monotonically increasing relation with the uncertainty of the input data. In this paper, we present a data granulation framework that elaborates over the principles of uncertainty introduced by Klir. Being the uncertainty a mesoscopic descriptor of systems and data, it is possible to apply such principles regardless of the input data type and the specific mathematical setting adopted for the information granules. The proposed framework is conceived (i) to offer a guideline for the synthesis of information granules and (ii) to build a groundwork to compare and quantitatively judge over different data granulation procedures. To provide a suitable case study, we introduce a new data granulation technique based on the minimum sum of distances, which is designed to generate type-2 fuzzy sets. We analyze the procedure by performing different experiments on two distinct data types: feature vectors and labeled graphs. Results show that the uncertainty of the input data is suitably conveyed by the generated type-2 fuzzy set models.Comment: 16 pages, 9 figures, 52 reference
    corecore