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Abstract Traditional deep learning methods are sub-optimal 
in classifying ambiguity features, which often arise in noisy and 
hard to predict categories, especially, to distinguish semantic 
scoring. Semantic scoring, depending on semantic logic to 
implement evaluation, inevitably contains fuzzy description and 
misses some concepts, for example, the ambiguous relationship 
between normal and probably normal always presents unclear 
boundaries (normal  more likely normal - probably normal). 
Thus, human error is common when annotating images.  Differing 
from existing methods that focus on modifying kernel structure of 
neural networks, this study proposes a dominant fuzzy fully 
connected layer (FFCL) for Breast Imaging Reporting and Data 
System (BI-RADS) scoring and validates the universality of this 
proposed structure. This proposed model aims to develop 
complementary properties of scoring for semantic paradigms, 
while constructing fuzzy rules based on analyzing human thought 
patterns, and to particularly reduce the influence of semantic 
conglutination. Specifically, this semantic-sensitive defuzzier layer 
projects features occupied by relative categories into semantic 
space, and a fuzzy decoder modifies probabilities of the last output 
layer referring to the global trend. Moreover, the ambiguous 
semantic space between two relative categories shrinks during the 
learning phases, as the positive and negative growth trends of one 
category appearing among its relatives were considered. We first 
used the Euclidean Distance (ED) to zoom in the distance between 
the real scores and the predicted scores, and then employed two 
sample t test method to evidence the advantage of the FFCL 
architecture. Extensive experimental results performed on the 
CBIS-DDSM dataset show that our FFCL structure can achieve 
superior performances for both triple and multiclass classification 
in BI-RADS scoring, outperforming the state-of-the-art methods.

Index Terms  Fuzzy deep neural networks, transfer learning, 
fuzzy fully connected layer, medical image scoring.  
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I. INTRODUCTION

EEP learning has recently gathered huge interest across a 
multitude of disciplines [1, 2], which has resulted in 

researchers applying deep learning to score medical images. 
However, whether pre-training neural networks by natural 
images can effectively identify malignant or normal features in 
medical images has not yet been sufficiently investigated, 
despite the fundamental features between them being diverse.
Further, big datasets may contain high amounts of noise and 
uncertainties. Ambiguity features, for example, semantic 
relative processing, impose great challenges on data 
understanding and classification.   

In order to reduce the noise inherent in these systems and 
improve diagnostic accuracy, fuzzy learning strategies obtain 
specific inherent logic of humans, and have been established 
[3],[4], for example, towards image processing [5], image 
classification [6], and motor control [7]. Researchers have 
engaged in developing some new neural networks with inherent 
and embedded common senses to address highly challenge 
tasks, such as natural language understanding [8], visual 
question answering [9], and aspect extraction in opinion mining 
[10]. Fuzzy theory to optimize multi-input and single-output 
static systems affected by noise has been developed [11], the 
linear and nonlinear defuzzifiers based on fuzzy rules, 
compared with conventional deterministic representations, can
reduce the uncertainties encountered in these raw data [12], as 
well as methods to identify nearest-neighbor memeplexes by 
fuzzy systems [13]. However, this kind of embedded inherent 
knowledge has not yet referred to deep learning classification 
regarding to the adjacent overlap of linear scoring. For instance, 
the Breast Imaging Reporting and Data System (BI-RADS), 
established by the American College of Radiology, is a scheme 
for defining mammogram screening into well-defined 
categories. BI-RADS scoring [14] can evaluate patient
and provide semantic diagnosis by numerical values, such as 
probably benign (BI-RADS 3) or benign (BI-RADS 2), and 
these two categories frequently share similar features, which 
may increase the difficulty for classifying by using 
convolutional neural networks (CNNs). This type of semantic 
or affective diagnosis (denotative and connotative information) 
[15], [16], contains ambiguous information which causes the 
partial divergence of neural networks, unlike either 
auto-categorization or summarization. Therefore, it is natural to 
ask: regarding existing CNNs, how can we reduce the relativity 
of adjacent categories by improving these traditional neural 
networks with inherent knowledge from human thought?
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Our proposed method differs from previous studies since we 
are assembling priori knowledge derived from the suggestion of 
experts (mainly about the property of categories), being greedy 
to lead outputs to the global performance and fitting parameters 
by modifying back propagation errors. Thus, based on one 
previous study [17] for self-constructing fuzzy systems, and to
verify the question about margins reinforcement and classify 
ambiguous cases, we designed three experiments in this study,
including reinforcement of margins and learning of these 
reinforced features through six CNNs in the first learning 
phase, concatenation of the established fuzzy fully connected 
layers (FFCLs) on the top of the best-performing CNN for 
triple in the second learning phase and six-class classifications 
in third learning phase, to gradually improve the inherent 
structure of traditional neural networks. The influence of 
margin status is a significant measurement to evaluate breast 
cancer [18]. We calculated margins by canny and log operators, 
and designed improved neural networks to learn these 
important features in this study, because these two operators are 
recognized as the most generally used edge detectors. 

Depending on FFCL, features represented by these 
pre-trained networks were fused together in this nonlinear 
layer, and then reserved, deblurred, and adjusted. It can offer 
traditional neural networks the ability to build cognitive 
connections among relative categories in the last output layer, 
and more dependable update of weights and biases thereof. For 
instance, the forming of the final probabilities for data 
classification in the output layer can then partially present the 
distribution of features related to high or low scores. Briefly,
after training of several epochs, the neural network without any 
improvement was able to identify BI-RADS scores with 
acceptable accuracy. Refer
of the output layer, FFCL can reduce the uncertainties and noise 
of the original data by updating these output probabilities and 
back propagation errors. As a result, these updated back 
propagation errors can influence the presentation of every 

Overall, FFCL neural networks can be 
applied to more difficult pattern classification tasks, such as 
BI-RADS involving data ambiguity and noise. We selected 
ResNet from seven simple neural networks and supplemented 
FFCL, as this structure leads to better performance than other 
state of the art methods in this study.

In this paper, 1) we verified that the enhancement of visual 
features, such as edges, is not so beneficial to improve the 
performance of CNNs, which essentially demonstrated that 
CNNs can extract visual features; 2) we proved that the transfer 
learning strategy, especially trained by natural categories, can 
extract medical features, because more and deeper 
convolutional layers cannot detect new medical information 
from CBIS-DDSM image dataset; 3) this proposed and 
introduced FFCL architecture, which essentially focused on 
fused fuzzy rules deriving from parsing logic representation 
with traditional convolutional neural networks for semantic 
BI-RADS scoring, weakens the fusion logic in terms of fuzzy 
semantic definition, as this type of semantic diagnosis always 
contains an unstable overlap between two neighbour 
categories; 4) these extensive experiments demonstrated that 
the proposed FFCL architecture is effective and outperforms 
other existing state-of-the-art methods when scoring BIRADS 

based on the CBIS-DDSM dataset. Codes and models are 
available at: https://github.com/ChengKang520/. 

II. SCORING AND FUZZY FULLY CONNECTED LAYER

A. Fuzzy scoring and structure of fuzzy fully connected layer 

Let the training set be 1 1 2 2{( , ), ( , ),..., ( , )}n nT x y x y x y ,
where ix is the variable explaining the data and iy is the 
corresponding label, for all 1,2,...,i n  where n is the number 
of training samples. We assumed that the sample was 
partitioned into m scoring categories, which were defined as 
real score 1 2{ , ,..., }mS S S S . Therefore, for more accurate 
evaluation, the estimated score 1 2{ , ,..., }mS S S S  followed by 
a decimal part. 
1) Fuzzy Function: To minimize the influence between two 
relative categories, this fuzzy function involves directed 
extensional scores. For CNNs, the probabilities are defined by 
sigmoid function:
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where ( , )i iE y x  is the expectation that ix  is predicted as iy ,
and m  is the number of the categories. According to some 
previous common studies of CNNs, the ( | ) (0,1)i iP x y and 
this probabilistic distribution has the following affine forms 
[19]: 
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where W
i

 is the weight in layer i , and b
i

 is the bias in layer i

. To reduce the conglutination between two either neighbors or 
remote classes, the recursive score was calculated by 

i bi P x yi a i i
V

o i b P x yi a i i

,      (5) 

where a  is the trend of negative growth, while b  is the trend 
of positive increasing, for example, the normal trend to become 
healthy, and the abnormal trend to become cancer. Therefore, 
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the output value modified by above operators tend to slip 
forward to the global average position, and we optimized the
redistributed probabilities from Equation (1) to

( , )

=
( , )

1

E y x
j ji V i b eoP x y i

i i E y xb a j i a j jy
m e
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Finally, the back propagation error between the real and the 
estimation was modified from 

=y P x y i
i i i i , (7)

to

=y P x y i
i i i i .       (8) 

  
The influence of the modified 

i
 can be calculated as: 
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then,  

( , ) ( , )

( , ) ( , )

11

E y x E y xj ji V i ii b e eo
E y x E y xb a yj i a j j i iy mm ee yy

.

 (10) 

Because a  and b are variables, we can find that the distance 
from a  to b  is constant. Thus, the left part of formula should 
be  

1
i Vo
b a

.        (11) 

If probabilities from category i a  to category i b  are same,
we will discover that: 

( , )

1
( , )

1
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Therefore, 0 . Although probabilities from category i a
to category i b are not always equal to each other, we define 
the category i is the highest among the entire categories, and 
we find that: 

( , ) ( , )

( , ) ( , )
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Followed by above formulas, we can conclude that 0 during 
these two above conditions. That means i will bring lesser 
influence into whole neural networks, when considering the 
globally optimal strategy in fully connected layer. 

2) Gradient Related Optimization: We used the cross-entropy
function to calculate the error when implementing back
propagation step [20]

1
, log 1 log 1H y y y y y yii i i i i im

, (14)

  
where iy  is the probability of a evaluated output ( | )i iP x y i . 
Based on Equations (1), (5), (6), and (14), the gradients of 
negative or positive log-probabilities in the last layer then 
would be presented as: 

= ly P x y i oi i ii i
l l llayer l o

i i i

, (15)

where l
i  is the parameters in the thl  layer for category i, l

io
is the output lay according to category i. Therefore, we can get 
the follow formulas from (3), (4), and (15): 

= l ly P x y i oi i ii i
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, (16)
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Before assembling FFCL into CNNs, the parameters 
connected with a specific category updated referring to 
traditional errors, and this type of error can induce a chain 
reaction for all layers and the inability to lead parameters to the 
more properly global optimization. For example, the error 1

appearing in Grade1 point which presents in Figure 1 go 
through every layer from Grade1 point to input layer. The thick 
green arrow shows the back propagation of 1  before 
assembling FFCL into CNNs, and referring to the typical ReLU 
functions which can open or close the connection between 
previous and current layers, 1aF  connects with 1L and 2L .
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However, after embedding FFCL into CNNs, the influence of 

1 will switch to the global optimized error. The connections 
swapped to 1F  with 1L  and 3L , because the hyperparameter 

FCLW1 are more likely to close to dispersive solution for neural 
network training, when compared with the hyperparameter 

FCLW1 optimized by fuzzy strategy. Sometimes, some 
redundant functions or blocks will appear in neural networks 
because of the attribute of neural networks. Thus, the blue 1zL

and zL  are the redundant blocks or functions in this system.  
Function layers in Figure 1 include the traditional structures, 
for example, convolutional layers, ReLU layers, pooling layers 
and so on. After such change, the structure of this proposed 
neural network will be modified, more especially, these refined 
ambiguous features extracted by this type of CNNs can to some 
extent achieve a high decorrelation. 
3) Implementation of FFCL: We set the default accuracy rate at
65% before the beginning of FFCL training tasks. If
probabilities of normal trend [1]score and possibly normal 
trend [2]score are approximately equal, and if they are 
obviously greater than that of others, for example, the 
possibility of the abnormal, this appendix can provide relative 
and significant assistance to classify these two ambiguous 
categories. In this study, we defined a proper THRESHOLD. If 
the maximum of output probabilities located among 

-1score i ( 0i ), score i  and s 1score i , where i  is the 
score from 0 to m, there are three conditions that should be 
considered by fuzzy rules (in Figure 2). We also defined 

[ 1]score iy  and [ 1]score iy  as the ascending or descending trends 
of normal or abnormal respectively. For example, we define 
that the trend from the abnormal side to the normal side is 
negative, which means more normal, and if =2i , then

1score i  will be the [1]score , and 1score i  will be the 
[3]score . Moreover, this FFCL is a nonlinear function, which 

can partially verify the error-prone condition. If when the 

probability of [1]score  is 0.32, and that of [2]score  is 0.33, it
will be frequently identified improperly under this condition, as 
the difference of these two ratios is not obvious. To widen the 
gap between these two ratios, the value of [3]score  should be 
considered. Then, the back propagation error will be modified 
by these fuzzy rules with an adaptive parameter based on the 
probabilities of these three categories. During the update of 
weights and bias, the effect of i  will enhance or restrain the 
learning process of significant features. The key pseudocode is 
illustrated in Algorithm 1. 
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III. EXPERIMENTAL RESULTS

A. Dataset and Model Configurations 

 We used the Curated Breast Imaging Subset of Digital 
Database of Screening Mammography (CBIS-DDSM) dataset 
to test our proposed FFCL. The CBIS-DDSM is a large 
collection of digitized film mammography images, which 
includes 3,572 images referring to 2689 patient cases. 
According to BI-RADS, overall BI-RADS assessment from 0 
to 5 has been described in this dataset, including BI-RADS 
score 0 (Incomplete cases), BI-RADS score 1 (Negative cases), 
BI-RADS score 2 (Benign cases), BI-RADS score 3 (Probably 
Benign cases), BI-RADS score 4 (Suspicious Abnormal cases) 
and BI-RADS score 5 (Highly Suspicious Malignant cases), the 
distribution of which in the CBIS-DDSM dataset is shown in 
Table 1. Because there are only three normal cases, for triple 
classification we redistributed three categories, including 
redefining score 0 as incomplete, combining score 2 with score 
3 as benign, and merging scores 4 and score 5 together as 
malignancy. You can search this type of medical dataset on 
[21].

-
-

As shown in Figure 3, a gray-scale mammogram contains 
only one gray colour channel, so strategy 1 (S1) used each gray 
mammogram replicating onto three colour channels. Strategy 2 
(S2) applied edge operators to extract margins and stacked 
them into other two colour channels, while strategy 3 (S3) 
utilized combination of margins and gray mammogram to 
submitted other two colour channels. Red lines in Figure 3
edges of mammograms extracted by two basic edge operators, 

log and canny [22], [23]. Because the ImageNet data has 1000 
classes, the last output layer was submitted by a three-class 
softmax layer, and these three categories consist of incomplete, 
benign and malignant cases.`

-

In Figure 4, to simplify the explanation, we defined that the 
X direction is negative, and its score is 1. The following 
directions are the same pattern above. There are only two 
conditions which can be identified with difficulty. The first is 
that each adjacent category excludes the condition between 
incomplete cases and negative cases, because incomplete cases 
approximately have no relationship with other cases. Surfaces 
XY, yZ, and xy may be difficult to be identified, which means 
there may be medians between XY, yZ or xy, as their 
definitions show the high internal relationship. For example, 
the negative may become the benign in the future, but it 
actually cannot suddenly transform to high BI-RADS scores, 
such as probably benign, suspicious abnormality or high 
suspicious malignancy. Secondly, if there are three 
probabilities which are approximately equal to each other, such 
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as the probabilities of XYZ, xyZ, we defined that the middle 
category has the highest probability. Moreover, if these three 
rectangles seem like that their size on cohorts are not same, that 
means their probabilities are equal to others. 

Many existing CNNs were used in this study (in Table 2),
including the 16-layer and 19-layer VGG networks (VGG16 
and VGG19) [24], the 18-layer, 50-layer and 101-layer residual 
networks (ResNet-18, ResNet-50 and ResNet-101) [25], and 
GoogleNet [26]. Therefore, top layers were designed for whole 
image classification. In Figure 5, after removal of the 
1000-class FCL top layer, six-class FCL or FFCL was stacked 
behind the top layer in all experiments. However, more 
convolutional and pooling layers were trained during the 
second learning phase, and these layers were also added on the 
top layer. Then during every training task, when the validation 
rate was reaching the top, the training process was finished and 
we measured the number of epochs. 

B. Statistical analysis 

Table 2 presents the abbreviation of all plans and the layout 
of all experiments, for example, S1-ResNet-101- 
3Conv-FCLbased on FCL.  In the plan of S1-ResNet-101- 
(+3Conv)-FCL, (+3Conv) means that adding the last 3
convolutional layers and training them with FCL together for 
classifying tasks. NC means the number of classes. Four 
different learning phases were performed utilizing the 
CBIS-
capacity for binary, triple and 6-class classifications. ROC 
curves [27], [28] were generated and aACCs were calculated as 
a metric of classification accuracy. The confusion matrix, 
which is a table that can describe the performance of a 
classification model, was used to test the true values [29]. We 
used two sample T-test to verify the significance of ACC 
sequences between two CNNs, and 95% confidence intervals 
[30] were calculated for ACC values using bootstrapping 
methods [31]. The deep learning network was implemented 
using the Matlab platform running on a desktop computer 
system with the following specifications: Intel Core 
i7-2670QM CPU@2.20GHZ with 8 GB RAM and a Titan X 
Pascal Graphics Processing Unit (GPU). 

C. Networks training strategy 

To verify whether the enhancement of visual features is
important to improve the performance of CNNs, to validate the 
advantage of FFCL step-by-step, and to compare with 
state-of-art, we designed our experiments according to above 
purposes in this study. Figure 5 explains the structure of 
training tasks.  

 First learning phase: This part determined whether the 
important visual edge is the significant feature for deep learning 
improving, and to select the best-performing neural network 
among these pre-trained CNNs. We stacked two different edges 
onto two colour channels and then trained these pre-trained 
neural networks. Depending on pre-trained weights based on 
the ImageNet [30] database, rather than randomly initialized 
parameters, these networks were improved by accelerating 
learning, and more generalizations were successfully produced 
to represent features [2]. In this training stage, parameters 
except the top layer were frozen before training tasks, while 
simultaneously decreasing the learning rate during training 

progress. In order to validate whether margin features can be 
represented or not, S2 and S3 were applied to test these 
pre-trained VGG-16 and ResNet-101. Table 3 shows that 
S1-ResNet-101-FCL performed best among residual neural 
networks, and S1-GoogleNet-FCL was slightly inferior to
S1-VGG-16-FCL, which exceeds S1-VGG-19-FCL. After 
stacking with edges onto the two-colour channels, aACC of 
S2-ResNet-101-FCL and S2-VGG-16-FCL slightly decreased
when compared with these two networks, which only replicated 
the same mammogram figure. 
supported our result, as they demonstrated that VGG-16 and 
ResNet-50 have the obvious advantage to classify 
mammograms [2]. Figure 6 shows ROC curves and confusion 
matrixes for ResNet-101, VGG-16 and GoogleNet. All 
categories can be well-distinguished, but the incomplete cases 
were the most well-defined using both ResNet-101 and
VGG-16. 
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 For the confusion matrix of S1- ResNet-101-FCL, of the 46 
incomplete cases, this model predicted that 3 cases are benign, 
and 13 cases are malignant. Of the 2 normal cases, it predicts 
that all were malignant. And of the 194 benign cases, 4 cases 
are attached to incomplete, 100 cases are predicted to belong to 
benign, and the last 90 cases are deemed to be malignant. Of the 
462 malignant cases, it predicts that 11 cases are incomplete, 52 
cases are benign, and 399 cases are malignant. As the matrix 
shown in Figure 6, both ResNet-101 and VGG-16 have the 
disadvantage to distinguish malignancy from benign; but both 
networks can make obvious distinction between incomplete 
cases and other types of cases. Among the six CNNs, 
ResNet-101 performed best, followed by ResNet-50, 
ResNet-18, VGG-16, GoogleNet and VGG-19 in sequence.

  

While in the first learning phase, all these CNNs can 
satisfactorily distinguish each BI-RADS assessment, but only 
training of the FCL may result in some features that cannot be 
extracted by pre-trained blocks. Due to there still being some 
important features that should be represented by CNNs, the 
larger dataset size or something intrinsic to the characteristics 
of the DDSM dataset should be represented by our models, 
therefore, only training FCL is insufficient. According to 
incomplete cases, which have to be re-examined radiologically, 
the lack of information for diagnosis can inform CNNs that 
these kinds of mammograms have insufficient features and 
should be re-examined. All 6 types of CNNs have an 
encouraging advantage to identify incomplete and malignant 
cases, but are less efficient at recognizing malignant from 
benign cases. Although doctors often disagree on how a 
particular exam should be classified [32] and less than 1% of 
the screening population has cancer [32], [33], researchers 
expect that this problem can be alleviated by using the 
information about whether a person proceeded to develop 
breast cancer in the future as an identifier [34]. Even if the 
mammogram is identified as normal or benign, the incomplete 

cases may become the mortal potential for patients, therefore, a
ognition can make diagnosis 

more reliable. In 
, although three different strategies had been utilized, S1 
presents the best performance, which provides the evidence that 
the enhancement of margins in mammograms will result in the 
graphic degeneration when using ResNet-101 and VGG-16. To
construct a better neural network structure during the following 
experiments, we subsequently designed the second and the 
third learning phases through S1 in those following steps. S2 
may discard some significant features, and this is the reason 
why the ACC array of using S1 is significantly greater than that 
of using S2 (P < 0.01). Sometimes, the enhancement of margins 
for mammograms will result in overfitting, as the ACC array of 
using S3 is significantly less than that of using S1 (P < 0.01). If 
CNNs cannot efficiently extract margins, there may be no 
overfitting during this experiment, because these margin 
features have been reinforced. Thus, this can explain why deep 
learning can represent features that radiologists may not 
distinguish.

The learning phase used pre-trained neural networks. 

For traditional computer-aided detection or diagnosis, 
predefined features are usually used for constructing models, 
which require pre-emptive determination of which features will 
contribute to classification tasks [35]. However, in our study, 
we believe that predefinition of the graphic features is not 
necessary, and before our training tasks based on CBIS-DDSM, 
these visible features have already been automatically 
represented by ImageNet dataset [36]. Obvious features, such 
as margins, can be recognized by radiologists, and it also can be 
detected by the learning process, while intrinsic and invisible 
features which are used for imaging interpretation may not be 
identified by human beings also can be automatically 
recognized by CNNs [35]. 

Many studies have shown the advantage of transfer learning 
to process limited medical data [37]. We provide deeper 
insights in developing optimized transfer learning strategies by 
designing training experiments. However, the incremental 
transfer learning and the observations made here need to be 
evaluated by further analyses and comparative studies.

 The second learning phase: The second part aimed to 
train the last convolutional layers, or add and train the last 
convolutional layers. After the FCL was removed, parameters 
from the bottom layers to the final or penultimate VGG and 
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- - - - - -
- - -

residual blocks were frozen, and the remaining weights and 
bias were trained and updated in the neural network. By 
contrast, we also respectively added one or two VGG and 
residual blocks on the top layer and only trained them to learn 
features. Because some ambiguous features between two 
adjacent categories were difficult to identify, we used the FFCL 
to improve the performance of ResNet-101. In the second 
learning phase, to carry out which kind of structure will 
perform best, we selected ResNet-101 and VGG-16 to 
complete these training tasks. In , the best single ACC rate of 
ResNet-101 is 76.82% which was recorded during one
best-performed single training task, but significantly greater 
than that of ACC array in the variance of ACC array in 
S1-ResNet-101-3Conv-FCL is S1-ResNet-101-FCL (P < 0.01).
Almost the same performance was found between 
S1-ResNet-101-3Conv-FCL and S1-ResNet-101-FFCL (P 
=0.243). On the contrary, training 6 last layers (residual or 
VGG blocks) made the ACC array dropped significantly (P < 
0.01).

After adding VGG or residual convolutional blocks onto the 
top layer,  

shows that the ACC array of S1 -ResNet-101-(+3Conv)-FCL 
is higher than that of S1-ResNet-101-(+6Conv)-FCL (P =
0.032), which indicates that S1-ResNet-101-(+3Conv)-FCL
can represent more features. Compared the performance of 
S1-ResNet-101-FCL and S1-ResNet-101-3Conv-FCL,
S1-ResNet-101-FFCL based on FFCL algorithm can 
significantly increase ACC array. Moreover, the advantage of 
S1-ResNet-101-3Conv-FFCL is obvious (P < 0.01), therefore, 

the influence of FFCL can to some extent improve the 
structures we designed above. To teach and train computers 
about how to recognize can sometimes achieve extraordinary 
success. If the algorithm is not able to be strictly recognized as 

uncert
systems can enhance the probability of distinguishing uncertain 
features [11].

- -
- -

Some traditional machine learning methods, such as Naïve 
Bayes [38], support vector machine (SVM) [39] and random 
forest (RF) [40] were utilized to compare each CNNs. Although 
random forest can reach the same performance of S1-ResNet-
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- - - - - -
- - - - - - - - -

-
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101-3Conv-FFCL, but the best single ACC was different. The 
improved ResNet-101 through updated structures and fuzzy 
rules has the potential to outperform these traditional machine 
learning methods. 

 The third learning phase: One aim of this part was 
to check whether the plan about combining score 2 with score 3 
as benign and score 4 with score 5 as malignancy will influence 
the ACC and classification performance. Another aim was to 
construct an FFCL based on ResNet-101 for 6-class 
classification.

The first task we designed only trained the FCL. The second 
task used the FFCL with ResNet-101. The third task applied the 
structure which performed best in the second learning phase to 
identify BI-RADS assessment, and the last task was based on 
the combination of the second and the third tasks.

- -

According to some categories, which are difficult to identify 
in confusion matrices above, the third learning phase utilized
fuzzy rules to improve the neural  after neural 
networks can partially identify some classes. Finally, in order to 
evaluate the distance between our trained models and the 
convergent globally optimal solution, we used the Euclidean 
Distance [41] (ED) to measure the effect of classification 
performance by neural networks:  

2( )1( , )
m p qi i iGd p q

m

where p  is the value of predicted scores, q  is the value of 
realistic scores, and i is the category. When the output is a
decimal, not an integer, it means a mammogram contains 
uncertain features, and the CNNs will provide radiologists 
probabilities and decimal scores. The reason why we chose ED 
to measure the advantage of FFCL is that the measuring 
distance can be evaluated by t test. The learning rate reduction
helped us avoid unlearning important features.

D. Comparison with other existing methods 

For the CBIS-DDSM medical dataset, after embedding the 
FFCL into some CNNs, Table 8 shows the significant 
advantage of this semantic fuzzy layer when comparing with no 
FFCL before. Although classifying medical images is difficult 
to implement, as their poor quality, collaboration with relative 
information can enhance the performance of CNNs, which 
indicate that artificial neural networks need basic and inherent 
knowledge to enrich themselves, and to limit them to overstep 
the boundary, for example, overfitting. 

- - -
- - - - - - -

IV. CONCLUSION

In this study, we verified that the visual enhancement method 
cannot substantially improve the classification performance,
and we provided an evidence that the transfer learning strategy, 
especially trained by natural categories, can extract medical 
features. A novel architecture which is based on fuzzy system
and embedded in the fully connected layer for scoring images is 
designed for semantic scoring of medical images. This 
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proposed optimal structure demonstrate its advantage in 
CBIS-DDSM dataset for BI-RADS scoring. We firstly proved 
the mathematical availability of the FFCL and designed three 
learning phases to gradually develop CNNs based on FFCL.
Our proposed framework can also shrink the overlap semantic 
space explored under an adaptive weights updating 
environment in this medical dataset. This FFCL architecture 
offers the advantage of weakening the influence of equivocal 
and unclear semantic description for medical diagnosis. 
Although this architecture can positively deal with the 
classification tasks which have overlaps between two 
neighbour classes, it is more likely to weaken the influence of 
semantic conglutination. The future work will focus on 
classifying images annotated by linear categories and relying 
on another assistant CNN to simulate the cognitive activation of 
human brain, such as inhibition, disinhibition and maintenance. 
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