227,418 research outputs found

    The use of foundational mathematical modeling techniques to inform understanding & design of complex biological systems

    Get PDF
    Synthetic biology is a relatively new and diverse field with the potential to revolutionize our command over biological systems via the modification or de novo construction of biological networks and tools. Precise and predictable control over the foundational properties of gene expression and genetic circuit behavior will be critical to the application of synthetic biology in the relevant contexts (for instance, in vivo for therapeutic applications). This level of control can be achieved via the interplay between mathematical modeling and empirical observation. The following work will highlight not only the massive potential of synthetic biology in both bacterial and mammalian systems, but the essential role of mathematical modeling in the field to understand existing biological systems and inform the design of novel systems to control biology. I will also outline my efforts to expand the capabilities of synthetic biology research at William & Mary to include work in mammalian systems, creating a sustainable and accessible framework to enable future students to delve into fundamental control of biological systems on the cutting edge of mammalian synthetic biology research

    TESTING USED ROLLER BEARINGS FOR QUALITY AND SERVICE LIFE

    Get PDF
    Synthetic biology is a rapidly expanding field at the interface of the engineering and biological sciences which aims to apply rational design principles in biological contexts. Many natural processes utilise regulatory architectures that parallel those found in control and electrical engineering, which has motivated their implementation as part of synthetic biological constructs. Tools based upon control theoretical concepts can be used to design such systems, as well as to guide their experimental realisation. In this paper we provide examples of biological implementations of negative feedback systems, and discuss progress made toward realisation of other feedback and control architectures. We then outline major challenges posed by the design of such systems, particularly focusing on those which are specific to biological contexts and on which feedback control can have a significant impact. We explore future directions for work in the field, including new approaches for theoretical design of biological control systems, the utilisation of novel components for their implementation, and the potential for application of automation and machine-learning approaches to accelerate synthetic biological research

    The sound of silence:Transgene silencing in mammalian cell engineering

    Get PDF
    To elucidate principles operating in native biological systems and to develop novel biotechnologies, synthetic biology aims to build and integrate synthetic gene circuits within native transcriptional networks. The utility of synthetic gene circuits for cell engineering relies on the ability to control the expression of all constituent transgene components. Transgene silencing, defined as the loss of expression over time, persists as an obstacle for engineering primary cells and stem cells with transgenic cargos. In this review, we highlight the challenge that transgene silencing poses to the robust engineering of mammalian cells, outline potential molecular mechanisms of silencing, and present approaches for preventing transgene silencing. We conclude with a perspective identifying future research directions for improving the performance of synthetic gene circuits.ISSN:2405-472

    Using synthetic biological parts and microbioreactors to explore the protein expression characteristics of Escherichia coli

    Get PDF
    Synthetic biology has developed numerous parts for the precise control of protein expression. However, relatively little is known about the burden these place on a host, or their reliability under varying environmental conditions. To address this, we made use of synthetic transcriptional and translational elements to create a combinatorial library of constructs that modulated expression strength of a green fluorescent protein. Combining this library with a microbioreactor platform, we were able to perform a detailed large-scale assessment of transient expression and growth characteristics of two <i>Escherichia coli</i> strains across several temperatures. This revealed significant differences in the robustness of both strains to differing types of protein expression, and a complex response of transcriptional and translational elements to differing temperatures. This study supports the development of reliable synthetic biological systems capable of working across different hosts and environmental contexts. Plasmids developed during this work have been made publicly available to act as a reference set for future research

    Genetically modified organisms for the environment: stories of success and failure and what we have learned from them

    Get PDF
    The expectations raised in the mid-1980s on the potential of genetic engineering for in situ remediation of environmental pollution have not been entirely fulfilled. Yet, we have learned a good deal about the expression of catabolic pathways by bacteria in their natural habitats, and how environmental conditions dictate the expression of desired catalytic activities. The many different choices between nutrients and responses to stresses form a network of transcriptional switches which, given the redundance and robustness of the regulatory circuits involved, can be neither unraveled through standard genetic analysis nor artificially programmed in a simple manner. Available data suggest that population dynamics and physiological control of catabolic gene expression prevail over any artificial attempt to engineer an optimal performance of the wanted catalytic activities. In this review, several valuable spin-offs of past research into genetically modified organisms with environmental applications are discussed, along with the impact of Systems Biology and Synthetic Biology in the future of environmental biotechnology. [Int Microbiol 2005; 8(3):213-222

    Rational design of a genetic finite state machine: Combining biology, engineering, and mathematics for bio-computer research

    Full text link
    [EN] The recent success of biological engineering is due to a tremendous amount of research effort and the increasing number of market opportunities. Indeed, this has been partially possible due to the contribution of advanced mathematical tools and the application of engineering principles in genetic-circuit development. In this work, we use a rationally designed genetic circuit to show how models can support research and motivate students to apply mathematics in their future careers. A genetic four-state machine is analyzed using three frameworks: Deterministic and stochastic modeling through di erential and master equations, and a spatial approach via a cellular automaton. Each theoretical framework sheds light on the problem in a complementary way. It helps in understanding basic concepts of modeling and engineering, such as noise, robustness, and reaction¿di usion systems. The designed automaton could be part of a more complex system of modules conforming future bio-computers and it is a paradigmatic example of how models can assist teachers in multidisciplinary education.D.F. was supported by an internal grant from Palacky University Olomouc (no. IGA_PrF_2020_028) and J.A.C. by MEC, grant number MTM2016-75963-P.Fuente, D.; Garibo I Orts, Ó.; Conejero, JA.; Urchueguía Schölzel, JF. (2020). Rational design of a genetic finite state machine: Combining biology, engineering, and mathematics for bio-computer research. Mathematics. 8(8):1-20. https://doi.org/10.3390/math8081362S12088Khalil, A. S., & Collins, J. J. (2010). Synthetic biology: applications come of age. Nature Reviews Genetics, 11(5), 367-379. doi:10.1038/nrg2775Jullesson, D., David, F., Pfleger, B., & Nielsen, J. (2015). Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals. Biotechnology Advances, 33(7), 1395-1402. doi:10.1016/j.biotechadv.2015.02.011Bereza-Malcolm, L. T., Mann, G., & Franks, A. E. (2014). Environmental Sensing of Heavy Metals Through Whole Cell Microbial Biosensors: A Synthetic Biology Approach. ACS Synthetic Biology, 4(5), 535-546. doi:10.1021/sb500286rKatz, L., Chen, Y. Y., Gonzalez, R., Peterson, T. C., Zhao, H., & Baltz, R. H. (2018). Synthetic biology advances and applications in the biotechnology industry: a perspective. Journal of Industrial Microbiology and Biotechnology, 45(7), 449-461. doi:10.1007/s10295-018-2056-yMatheson, S. (2017). Engineering a Biological Revolution. Cell, 168(3), 329-332. doi:10.1016/j.cell.2017.01.001Clarke, L., & Kitney, R. (2020). Developing synthetic biology for industrial biotechnology applications. Biochemical Society Transactions, 48(1), 113-122. doi:10.1042/bst20190349Huynh, L., & Tagkopoulos, I. (2014). Optimal Part and Module Selection for Synthetic Gene Circuit Design Automation. ACS Synthetic Biology, 3(8), 556-564. doi:10.1021/sb400139hMcDaniel, R., & Weiss, R. (2005). Advances in synthetic biology: on the path from prototypes to applications. Current Opinion in Biotechnology, 16(4), 476-483. doi:10.1016/j.copbio.2005.07.002Andrianantoandro, E., Basu, S., Karig, D. K., & Weiss, R. (2006). Synthetic biology: new engineering rules for an emerging discipline. Molecular Systems Biology, 2(1). doi:10.1038/msb4100073Tyson, J. J., Chen, K. C., & Novak, B. (2003). Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Current Opinion in Cell Biology, 15(2), 221-231. doi:10.1016/s0955-0674(03)00017-6Wolfram, S. (1983). Statistical mechanics of cellular automata. Reviews of Modern Physics, 55(3), 601-644. doi:10.1103/revmodphys.55.601Gardner, M. (1970). Mathematical Games. Scientific American, 223(4), 120-123. doi:10.1038/scientificamerican1070-120Bybee, R. W. (2010). What Is STEM Education? Science, 329(5995), 996-996. doi:10.1126/science.1194998Swaid, S. I. (2015). Bringing Computational Thinking to STEM Education. Procedia Manufacturing, 3, 3657-3662. doi:10.1016/j.promfg.2015.07.761Dai, T., & Cromley, J. G. (2014). Changes in implicit theories of ability in biology and dropout from STEM majors: A latent growth curve approach. Contemporary Educational Psychology, 39(3), 233-247. doi:10.1016/j.cedpsych.2014.06.003Willaert, S. S. ., de Graaf, R., & Minderhoud, S. (1998). Collaborative engineering: A case study of Concurrent Engineering in a wider context. Journal of Engineering and Technology Management, 15(1), 87-109. doi:10.1016/s0923-4748(97)00026-xMachado, D., Costa, R. S., Rocha, M., Ferreira, E. C., Tidor, B., & Rocha, I. (2011). Modeling formalisms in Systems Biology. AMB Express, 1(1), 45. doi:10.1186/2191-0855-1-45Rojo Robas, V., Madariaga, J. M., & Villarroel, J. D. (2020). Secondary Education Students’ Beliefs about Mathematics and Their Repercussions on Motivation. Mathematics, 8(3), 368. doi:10.3390/math8030368Schlitt, T., & Brazma, A. (2007). Current approaches to gene regulatory network modelling. BMC Bioinformatics, 8(S6). doi:10.1186/1471-2105-8-s6-s9Karlebach, G., & Shamir, R. (2008). Modelling and analysis of gene regulatory networks. Nature Reviews Molecular Cell Biology, 9(10), 770-780. doi:10.1038/nrm2503Casini, A., Storch, M., Baldwin, G. S., & Ellis, T. (2015). Bricks and blueprints: methods and standards for DNA assembly. Nature Reviews Molecular Cell Biology, 16(9), 568-576. doi:10.1038/nrm4014Appleton, E., Madsen, C., Roehner, N., & Densmore, D. (2017). Design Automation in Synthetic Biology. Cold Spring Harbor Perspectives in Biology, 9(4), a023978. doi:10.1101/cshperspect.a023978Selberg, J., Gomez, M., & Rolandi, M. (2018). The Potential for Convergence between Synthetic Biology and Bioelectronics. Cell Systems, 7(3), 231-244. doi:10.1016/j.cels.2018.08.007Britton, N. F., Bulai, I. M., Saussure, S., Holst, N., & Venturino, E. (2019). Can aphids be controlled by fungus? A mathematical model. Applied Mathematics and Nonlinear Sciences, 4(1), 79-92. doi:10.2478/amns.2019.1.00009Rojas, C., & Belmonte-Beitia, J. (2018). Optimal control problems for differential equations applied to tumor growth: state of the art. Applied Mathematics and Nonlinear Sciences, 3(2), 375-402. doi:10.21042/amns.2018.2.00029Tsimring, L. S. (2014). Noise in biology. Reports on Progress in Physics, 77(2), 026601. doi:10.1088/0034-4885/77/2/026601Székely, T., & Burrage, K. (2014). Stochastic simulation in systems biology. Computational and Structural Biotechnology Journal, 12(20-21), 14-25. doi:10.1016/j.csbj.2014.10.003Bessonov, N., Bocharov, G., Meyerhans, A., Popov, V., & Volpert, V. (2020). Nonlocal Reaction–Diffusion Model of Viral Evolution: Emergence of Virus Strains. Mathematics, 8(1), 117. doi:10.3390/math8010117Mealy, G. H. (1955). A method for synthesizing sequential circuits. The Bell System Technical Journal, 34(5), 1045-1079. doi:10.1002/j.1538-7305.1955.tb03788.xMarchisio, M. A. (2014). Parts & Pools: A Framework for Modular Design of Synthetic Gene Circuits. Frontiers in Bioengineering and Biotechnology, 2. doi:10.3389/fbioe.2014.00042Stefan, M. I., & Le Novère, N. (2013). Cooperative Binding. PLoS Computational Biology, 9(6), e1003106. doi:10.1371/journal.pcbi.1003106Elowitz, M. B., Levine, A. J., Siggia, E. D., & Swain, P. S. (2002). Stochastic Gene Expression in a Single Cell. Science, 297(5584), 1183-1186. doi:10.1126/science.1070919Gillespie, D. T. (1977). Exact stochastic simulation of coupled chemical reactions. The Journal of Physical Chemistry, 81(25), 2340-2361. doi:10.1021/j100540a008Gillespie, D. T. (1976). A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. Journal of Computational Physics, 22(4), 403-434. doi:10.1016/0021-9991(76)90041-3Gillespie, D. T. (2007). Stochastic Simulation of Chemical Kinetics. Annual Review of Physical Chemistry, 58(1), 35-55. doi:10.1146/annurev.physchem.58.032806.104637Railsback, S. F., Lytinen, S. L., & Jackson, S. K. (2006). Agent-based Simulation Platforms: Review and Development Recommendations. SIMULATION, 82(9), 609-623. doi:10.1177/0037549706073695TURING, A. (1990). The chemical basis of morphogenesis. Bulletin of Mathematical Biology, 52(1-2), 153-197. doi:10.1016/s0092-8240(05)80008-4Henkel, J., Wolf, W., & Chakradhar, S. (s. f.). On-chip networks: a scalable, communication-centric embedded system design paradigm. 17th International Conference on VLSI Design. Proceedings. doi:10.1109/icvd.2004.126103

    Extended metabolic biosensor design for dynamic pathway regulation of cell factories

    Full text link
    [EN] Transcription factor-based biosensors naturally occur in metabolic pathways to maintain cell growth and to provide a robust response to environmental fluctua-tions. Extended metabolic biosensors, i.e., the cascading of a bio-conversion pathway and a transcription factor (TF) responsive to the downstream effector metabolite, provide sensing capabilities beyond natural effectors for implement-ing context-aware synthetic genetic circuits and bio-observers. However, the engineering of such multi-step circuits is challenged by stability and robustness issues. In order to streamline the design of TF-based biosensors in metabolic pathways, here we investigate the response of a genetic circuit combining a TF-based extended metabolic biosensor with an antithetic integral circuit, a feed-back controller that achieves robustness against environmental fluctuations. The dynamic response of an extended biosensor-based regulated flavonoid pathway is analyzed in order to address the issues of biosensor tuning of the regulated pathway under industrial biomanufacturing operating constraints.This work is partially supported by grant MINECO/AEI and EU DPI2017-82896-C2-1-R. P.C. acknowledges support from the Universitat Politecnica de Valencia Talento Programme.Boada-Acosta, YF.; Vignoni, A.; Picó, J.; Carbonell, P. (2020). Extended metabolic biosensor design for dynamic pathway regulation of cell factories. iScience. 23(7):1-25. https://doi.org/10.1016/j.isci.2020.101305S125237Agrawal, D. K., Dolan, E. M., Hernandez, N. E., Blacklock, K. M., Khare, S. D., & Sontag, E. D. (2020). Mathematical Models of Protease-Based Enzymatic Biosensors. ACS Synthetic Biology, 9(2), 198-208. doi:10.1021/acssynbio.9b00279Arnold, F. H. (2017). Directed Evolution: Bringing New Chemistry to Life. Angewandte Chemie International Edition, 57(16), 4143-4148. doi:10.1002/anie.201708408Boada, Y., Vignoni, A., & Picó, J. (2017). Engineered Control of Genetic Variability Reveals Interplay among Quorum Sensing, Feedback Regulation, and Biochemical Noise. ACS Synthetic Biology, 6(10), 1903-1912. doi:10.1021/acssynbio.7b00087Boada, Y., Vignoni, A., & Picó, J. (2017). Multi-objective optimization for gene expression noise reduction in a synthetic gene circuit * *This work is partially supported by Spanish government and European Union (FEDER-CICYT DPI2014-55276-C5-1). Y.B. thanks grant FPI/2013-3242 of Universitat Politècnica de València, and also thanks the support from the Ayudas para movilidad dentro del Programa para la Formación de Personal Investigador (FPI) de la UPV para estancias 2016. A.V. thanks the Max Planck Society, the CSBD and the MPI-CBG. The authors are grateful to Prof. Dr. Ivo F. Sbalzarini for hosting Y.B in the MOSAIC Group for a research stay, also to Pietro Incadorna from the MOSAIC Group at CSBD for his help in the parallel algorithm implementation, and to Dr. Gilberto Reynoso-Meza from the PPGEPS at Pontifícia Universidade Católica do Paraná for his always helpful comments regarding the MOOD. IFAC-PapersOnLine, 50(1), 4472-4477. doi:10.1016/j.ifacol.2017.08.376Boada, Y., Vignoni, A., & Pico, J. (2020). Multiobjective Identification of a Feedback Synthetic Gene Circuit. IEEE Transactions on Control Systems Technology, 28(1), 208-223. doi:10.1109/tcst.2018.2885694Briat, C., Gupta, A., & Khammash, M. (2016). Antithetic Integral Feedback Ensures Robust Perfect Adaptation in Noisy Biomolecular Networks. Cell Systems, 2(1), 15-26. doi:10.1016/j.cels.2016.01.004Briat, C., & Khammash, M. (2018). Perfect Adaptation and Optimal Equilibrium Productivity in a Simple Microbial Biofuel Metabolic Pathway Using Dynamic Integral Control. ACS Synthetic Biology, 7(2), 419-431. doi:10.1021/acssynbio.7b00188Carbonell, P., Jervis, A. J., Robinson, C. J., Yan, C., Dunstan, M., Swainston, N., … Scrutton, N. S. (2018). An automated Design-Build-Test-Learn pipeline for enhanced microbial production of fine chemicals. Communications Biology, 1(1). doi:10.1038/s42003-018-0076-9Carbonell, P., Parutto, P., Baudier, C., Junot, C., & Faulon, J.-L. (2013). Retropath: Automated Pipeline for Embedded Metabolic Circuits. ACS Synthetic Biology, 3(8), 565-577. doi:10.1021/sb4001273Ceroni, F., Boo, A., Furini, S., Gorochowski, T. E., Borkowski, O., Ladak, Y. N., … Ellis, T. (2018). Burden-driven feedback control of gene expression. Nature Methods, 15(5), 387-393. doi:10.1038/nmeth.4635Chae, T. U., Choi, S. Y., Kim, J. W., Ko, Y.-S., & Lee, S. Y. (2017). Recent advances in systems metabolic engineering tools and strategies. Current Opinion in Biotechnology, 47, 67-82. doi:10.1016/j.copbio.2017.06.007Chen, X., & Liu, L. (2018). Gene Circuits for Dynamically Regulating Metabolism. Trends in Biotechnology, 36(8), 751-754. doi:10.1016/j.tibtech.2017.12.007Cheng, F., Tang, X.-L., & Kardashliev, T. (2018). Transcription Factor-Based Biosensors in High-Throughput Screening: Advances and Applications. Biotechnology Journal, 13(7), 1700648. doi:10.1002/biot.201700648Choi, J. H., Keum, K. C., & Lee, S. Y. (2006). Production of recombinant proteins by high cell density culture of Escherichia coli. Chemical Engineering Science, 61(3), 876-885. doi:10.1016/j.ces.2005.03.031Delépine, B., Libis, V., Carbonell, P., & Faulon, J.-L. (2016). SensiPath: computer-aided design of sensing-enabling metabolic pathways. Nucleic Acids Research, 44(W1), W226-W231. doi:10.1093/nar/gkw305Dinh, C. V., Chen, X., & Prather, K. L. J. (2020). Development of a Quorum-Sensing Based Circuit for Control of Coculture Population Composition in a Naringenin Production System. ACS Synthetic Biology, 9(3), 590-597. doi:10.1021/acssynbio.9b00451Doong, S. J., Gupta, A., & Prather, K. L. J. (2018). Layered dynamic regulation for improving metabolic pathway productivity inEscherichia coli. Proceedings of the National Academy of Sciences, 115(12), 2964-2969. doi:10.1073/pnas.1716920115Evans, C. R., Kempes, C. P., Price-Whelan, A., & Dietrich, L. E. P. (2020). Metabolic Heterogeneity and Cross-Feeding in Bacterial Multicellular Systems. Trends in Microbiology, 28(9), 732-743. doi:10.1016/j.tim.2020.03.008Gao, C., Xu, P., Ye, C., Chen, X., & Liu, L. (2019). Genetic Circuit-Assisted Smart Microbial Engineering. Trends in Microbiology, 27(12), 1011-1024. doi:10.1016/j.tim.2019.07.005Goldberg, A. P., Szigeti, B., Chew, Y. H., Sekar, J. A., Roth, Y. D., & Karr, J. R. (2018). Emerging whole-cell modeling principles and methods. Current Opinion in Biotechnology, 51, 97-102. doi:10.1016/j.copbio.2017.12.013Hsiao, V., Swaminathan, A., & Murray, R. M. (2018). Control Theory for Synthetic Biology: Recent Advances in System Characterization, Control Design, and Controller Implementation for Synthetic Biology. IEEE Control Systems, 38(3), 32-62. doi:10.1109/mcs.2018.2810459Huyett, L. M., Dassau, E., Zisser, H. C., & Doyle, F. J. (2018). Glucose Sensor Dynamics and the Artificial Pancreas: The Impact of Lag on Sensor Measurement and Controller Performance. IEEE Control Systems, 38(1), 30-46. doi:10.1109/mcs.2017.2766322Johnson, A. O., Gonzalez-Villanueva, M., Wong, L., Steinbüchel, A., Tee, K. L., Xu, P., & Wong, T. S. (2017). Design and application of genetically-encoded malonyl-CoA biosensors for metabolic engineering of microbial cell factories. Metabolic Engineering, 44, 253-264. doi:10.1016/j.ymben.2017.10.011Juminaga, D., Baidoo, E. E. K., Redding-Johanson, A. M., Batth, T. S., Burd, H., Mukhopadhyay, A., … Keasling, J. D. (2011). Modular Engineering of l-Tyrosine Production in Escherichia coli. Applied and Environmental Microbiology, 78(1), 89-98. doi:10.1128/aem.06017-11Koch, M., Pandi, A., Delépine, B., & Faulon, J.-L. (2018). A dataset of small molecules triggering transcriptional and translational cellular responses. Data in Brief, 17, 1374-1378. doi:10.1016/j.dib.2018.02.061LEONARD, E., YAN, Y., & KOFFAS, M. (2006). Functional expression of a P450 flavonoid hydroxylase for the biosynthesis of plant-specific hydroxylated flavonols in Escherichia coli. Metabolic Engineering, 8(2), 172-181. doi:10.1016/j.ymben.2005.11.001Lin, J.-L., Wagner, J. M., & Alper, H. S. (2017). Enabling tools for high-throughput detection of metabolites: Metabolic engineering and directed evolution applications. Biotechnology Advances, 35(8), 950-970. doi:10.1016/j.biotechadv.2017.07.005Liu, D., Mannan, A. A., Han, Y., Oyarzún, D. A., & Zhang, F. (2018). Dynamic metabolic control: towards precision engineering of metabolism. Journal of Industrial Microbiology and Biotechnology, 45(7), 535-543. doi:10.1007/s10295-018-2013-9Liu, D., Xiao, Y., Evans, B. S., & Zhang, F. (2014). Negative Feedback Regulation of Fatty Acid Production Based on a Malonyl-CoA Sensor–Actuator. ACS Synthetic Biology, 4(2), 132-140. doi:10.1021/sb400158wLiu, D., & Zhang, F. (2018). Metabolic Feedback Circuits Provide Rapid Control of Metabolite Dynamics. ACS Synthetic Biology, 7(2), 347-356. doi:10.1021/acssynbio.7b00342Liu, L., Shan, S., Zhang, K., Ning, Z.-Q., Lu, X.-P., & Cheng, Y.-Y. (2008). Naringenin and hesperetin, two flavonoids derived fromCitrus aurantiumup-regulate transcription of adiponectin. Phytotherapy Research, 22(10), 1400-1403. doi:10.1002/ptr.2504Mahr, R., & Frunzke, J. (2015). Transcription factor-based biosensors in biotechnology: current state and future prospects. Applied Microbiology and Biotechnology, 100(1), 79-90. doi:10.1007/s00253-015-7090-3Mannan, A. A., Liu, D., Zhang, F., & Oyarzún, D. A. (2017). Fundamental Design Principles for Transcription-Factor-Based Metabolite Biosensors. ACS Synthetic Biology, 6(10), 1851-1859. doi:10.1021/acssynbio.7b00172McKeague, M., Wong, R. S., & Smolke, C. D. (2016). Opportunities in the design and application of RNA for gene expression control. Nucleic Acids Research, 44(7), 2987-2999. doi:10.1093/nar/gkw151Nielsen, A. A. K., Der, B. S., Shin, J., Vaidyanathan, P., Paralanov, V., Strychalski, E. A., … Voigt, C. A. (2016). Genetic circuit design automation. Science, 352(6281), aac7341-aac7341. doi:10.1126/science.aac7341Nikolados, E.-M., Weiße, A. Y., Ceroni, F., & Oyarzún, D. A. (2019). Growth Defects and Loss-of-Function in Synthetic Gene Circuits. ACS Synthetic Biology, 8(6), 1231-1240. doi:10.1021/acssynbio.8b00531De Paepe, B., Maertens, J., Vanholme, B., & De Mey, M. (2018). Modularization and Response Curve Engineering of a Naringenin-Responsive Transcriptional Biosensor. ACS Synthetic Biology, 7(5), 1303-1314. doi:10.1021/acssynbio.7b00419Rahigude, A., Bhutada, P., Kaulaskar, S., Aswar, M., & Otari, K. (2012). Participation of antioxidant and cholinergic system in protective effect of naringenin against type-2 diabetes-induced memory dysfunction in rats. Neuroscience, 226, 62-72. doi:10.1016/j.neuroscience.2012.09.026Rhodius, V. A., Segall‐Shapiro, T. H., Sharon, B. D., Ghodasara, A., Orlova, E., Tabakh, H., … Voigt, C. A. (2013). Design of orthogonal genetic switches based on a crosstalk map of σs, anti‐σs, and promoters. Molecular Systems Biology, 9(1), 702. doi:10.1038/msb.2013.58Rodriguez, A., Strucko, T., Stahlhut, S. G., Kristensen, M., Svenssen, D. K., Forster, J., … Borodina, I. (2017). Metabolic engineering of yeast for fermentative production of flavonoids. Bioresource Technology, 245, 1645-1654. doi:10.1016/j.biortech.2017.06.043Segall-Shapiro, T. H., Sontag, E. D., & Voigt, C. A. (2018). Engineered promoters enable constant gene expression at any copy number in bacteria. Nature Biotechnology, 36(4), 352-358. doi:10.1038/nbt.4111Shi, S., Ang, E. L., & Zhao, H. (2018). In vivo biosensors: mechanisms, development, and applications. Journal of Industrial Microbiology and Biotechnology, 45(7), 491-516. doi:10.1007/s10295-018-2004-xShopera, T., He, L., Oyetunde, T., Tang, Y. J., & Moon, T. S. (2017). Decoupling Resource-Coupled Gene Expression in Living Cells. ACS Synthetic Biology, 6(8), 1596-1604. doi:10.1021/acssynbio.7b00119Siedler, S., Stahlhut, S. G., Malla, S., Maury, J., & Neves, A. R. (2014). Novel biosensors based on flavonoid-responsive transcriptional regulators introduced into Escherichia coli. Metabolic Engineering, 21, 2-8. doi:10.1016/j.ymben.2013.10.011Snoek, T., Chaberski, E. K., Ambri, F., Kol, S., Bjørn, S. P., Pang, B., … Keasling, J. D. (2019). Evolution-guided engineering of small-molecule biosensors. Nucleic Acids Research, 48(1), e3-e3. doi:10.1093/nar/gkz954Stevens, J. T., & Carothers, J. M. (2014). Designing RNA-Based Genetic Control Systems for Efficient Production from Engineered Metabolic Pathways. ACS Synthetic Biology, 4(2), 107-115. doi:10.1021/sb400201uTrantas, E., Panopoulos, N., & Ververidis, F. (2009). Metabolic engineering of the complete pathway leading to heterologous biosynthesis of various flavonoids and stilbenoids in Saccharomyces cerevisiae. Metabolic Engineering, 11(6), 355-366. doi:10.1016/j.ymben.2009.07.004Wang, R., Cress, B. F., Yang, Z., Hordines, J. C., Zhao, S., Jung, G. Y., … Koffas, M. A. G. (2019). Design and Characterization of Biosensors for the Screening of Modular Assembled Naringenin Biosynthetic Library in Saccharomyces cerevisiae. ACS Synthetic Biology, 8(9), 2121-2130. doi:10.1021/acssynbio.9b00212Wehrs, M., Tanjore, D., Eng, T., Lievense, J., Pray, T. R., & Mukhopadhyay, A. (2019). Engineering Robust Production Microbes for Large-Scale Cultivation. Trends in Microbiology, 27(6), 524-537. doi:10.1016/j.tim.2019.01.006Xu, P., Li, L., Zhang, F., Stephanopoulos, G., & Koffas, M. (2014). Improving fatty acids production by engineering dynamic pathway regulation and metabolic control. Proceedings of the National Academy of Sciences, 111(31), 11299-11304. doi:10.1073/pnas.1406401111Xu, P., Ranganathan, S., Fowler, Z. L., Maranas, C. D., & Koffas, M. A. G. (2011). Genome-scale metabolic network modeling results in minimal interventions that cooperatively force carbon flux towards malonyl-CoA. Metabolic Engineering, 13(5), 578-587. doi:10.1016/j.ymben.2011.06.008Yang, Y., Lin, Y., Li, L., Linhardt, R. J., & Yan, Y. (2015). Regulating malonyl-CoA metabolism via synthetic antisense RNAs for enhanced biosynthesis of natural products. Metabolic Engineering, 29, 217-226. doi:10.1016/j.ymben.2015.03.018Zhou, S., Lyu, Y., Li, H., Koffas, M. A. G., & Zhou, J. (2019). Fine‐tuning the (2 S )‐naringenin synthetic pathway using an iterative high‐throughput balancing strategy. Biotechnology and Bioengineering, 116(6), 1392-1404. doi:10.1002/bit.26941Zygmunt, K., Faubert, B., MacNeil, J., & Tsiani, E. (2010). Naringenin, a citrus flavonoid, increases muscle cell glucose uptake via AMPK. Biochemical and Biophysical Research Communications, 398(2), 178-183. doi:10.1016/j.bbrc.2010.06.04

    Biology, ecology, distribution and control of the invasive weed, lactuca serriola l. (wild lettuce) : a global review

    Get PDF
    Lactuca serriola L. (wild lettuce) is a highly invasive C3 weed in many countries, including Australia, Canada, and the USA. This weed is a severe threat to agricultural systems, especially in crops grown with reduced or no‐tillage approaches, which commonly include wheat, cereals and pulses. Owing to the vertical orientation of its leaves in the north‐south plane and its root architec-ture, L. serriola can maintain high water use efficiency under drought conditions, giving it the ability to expand its range under a drying climate. Each plant can produce up to 100,000 seeds which have no primary dormancy and form a short‐term seedbank lasting up to three years. Most seedlings emerge in autumn and overwinter as a rosette, with a small flush of emergence in spring depicting staggered germination. Research into control methods for this weed has been performed, and these methods include chemical herbicides applied alone and in combination, the establishment of plant competition, tillage, mowing and bioherbicide. Herbicides can provide effective control when applied in the seedling or rosette stage; however, spring germination is difficult to control, as it skips the rosette stage. Some biotypes are now resistant to ALS inhibitor and synthetic auxins, causing concern regarding using herbicides. A dedicated integrated management plan for 3–4 years is recommended for the control of this troublesome species. This review will explore the biology, ecology, distribution, current control techniques and previous research on this weed, allowing us to make recommendations for its future research and management. © 2021 by the authors. Licensee MDPI, Basel, Switzerland

    Who Let the Humanists into the Lab?

    Get PDF
    corecore