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INTRODUCTION 

 Synthetic biology is a relatively new and diverse field with the potential to revolutionize 

our command over biological systems via the modification or de novo construction of biological 

networks and tools. Precise and predictable control over the foundational properties of gene 

expression and genetic circuit behavior will be critical to the application of synthetic biology in 

the relevant contexts (for instance, in vivo for therapeutic applications). This level of control can 

be achieved via the interplay between mathematical modeling and empirical observation.  The 

following work will highlight not only the massive potential of synthetic biology in both 

bacterial and mammalian systems, but the essential role of mathematical modeling in the field to 

understand existing biological systems and inform the design of novel systems to control 

biology. I will also outline my efforts to expand the capabilities of synthetic biology research at 

William & Mary to include work in mammalian systems, creating a sustainable and accessible 

framework to enable future students to delve into fundamental control of biological systems on 

the cutting edge of mammalian synthetic biology research.  

CHAPTER 1: DEGRADATION-BASED CONTROL OF GENE 

EXPRESSION RESPONSE TIME 

Background 

 One of the primary goals of synthetic biology is to create biological tools which can be 

used in a modular, plug-and-play fashion to predictably tune gene and genetic circuit behavior. 

To that end, the field has developed a massive and diverse assortment of well-characterized tools 

which provide a high level of control over static, or steady state, properties of circuit behavior. 

For instance, precise control over gene expression magnitude is obtainable by utilizing one of a 



series of well-characterized promoters or ribosome binding sites (RBSs) (Kelly et al., 2009), and 

genetic switches and logic gates can be constructed on the basis of whether a series of genes are 

“on” or “off” when the system is at steady state (Anderson, Voigt, & Arkin, 2007; Nielsen et al., 

2016; Siuti, Yazbek, & Lu, 2013). As the field delves deeper into controlling and designing 

novel complex biological systems, it has become clear that the highly dynamic nature of cellular 

signal processing demands a move beyond the steady state properties of a system and into deeper 

consideration of the dynamic aspects of gene expression. The ability to precisely control gene 

expression dynamics at a basic level, with a collection of simple and modular tools comparable 

to those available for steady state properties, would therefore be instrumental in elucidating new 

understanding of dynamic signal processing and enabling a new dimension of control over 

biological systems.   

 One fundamental property of gene expression dynamics is response time, or the time 

taken for gene expression output to reach its steady state. Notably, control over gene expression 

response time has been achieved in the past via post-translational modification (Gordley et al., 

2016) and circuit redesign to incorporate additional feedback interactions such as negative 

autoregulation (Maeda & Sano, 2006; Rosenfeld, Elowitz, & Alon, 2002). However, it would be 

particularly useful to predictably control response time with the simple insertion a single genetic 

part, much like the insertion of a particular ribosome binding site confers a predictable change in 

gene expression magnitude at steady state. This type of genetic part-level control would be ideal 

in the interest of speeding up a given circuit’s output response without redesigning the 

architecture of the circuit itself.  

 Here we present a simple, modular, accessible framework for the control of gene 

expression response time based on a mathematical model which predicts a relationship between 



response time and protein degradation. We demonstrate that protein degradation can be used to 

control response time in a predictable manner based on this model, and that output steady state 

can be manipulated independently of this response time change. Finally, we investigate the 

control of response time in the context of an incoherent feedforward loop, a more complex 

circuit architecture which generates a pulse output, to demonstrate that this framework could be 

applied to control circuit dynamics beyond simple response time.  

Mathematical model 

 The basis of this framework is a simple mathematical model described by Uri Alon which 

is used to describe the output over time of an inducible gene (Alon, 2006). As seen in Equation 

1, the change in output protein concentration (x) over time is based on the production and 

degradation We can represent the production and degradation rates for the output protein using 

lumped parameters to create a simple and generalizable model as seen in Equation 1.  

𝑑𝑥

𝑑𝑡
=  𝛼 −  𝛾𝑥         (1) 

The production rate for our protein is represented by α, encompassing both transcription and 

translation rates. Likewise, the parameter γ combines both degradation rate and dilution due to 

cell division.  

  By solving Equation 1 we can determine the concentration of protein x for a given time t 

in terms of the above production and degradation parameters:  

𝑥(𝑡) =
𝛼

𝛾
(1 −

1

𝑒𝛾𝑡
 )       (2) 



This equation is characterized by an exponential relaxation up to some constant protein 

concentration, known as steady state, at the value 
𝛼

𝛾
. Since the function approaches steady state 

asymptotically, we choose τ1/2, the time taken to reach half of steady state, as a metric for gene 

expression response time. Solving for this metric, we find: 

𝜏1/2 =
ln (2)

𝛾
        (3) 

The implication of this solution is that control over degradation alone can be used to control 

response time, defined here as time to half of steady state; furthermore, we predict an inverse 

relationship between response time and degradation rate.  

Degradation-Based Framework for Response Time Control 

 In order to gain tunable, genetic part-based control over gene expression response time, 

we chose to utilize a collection of modular protein degradation tags (pdts) which was designed 

and characterized by the Collins lab in 2014 (Cameron & Collins, 2014). Each 27 amino acid 

tag, when added to the C-terminus of a protein of interest, is recognized and targeted by the mf-

Lon protease for degradation. Notably, this protease is native to the Mesoplasma florum bacteria 

and has been shown to act orthogonally to E. coli-native protease systems; in other words, E. coli 

endogenous proteases do not recognize Collins’ pdts, and mf-Lon does not recognize native E. 

coli tags (Gur & Sauer, 2008). We chose 5 pdts with distinct protease affinities, hoping to 

achieve distinct response times and predicting that insertion of tags with a higher protease 

affinity would yield a higher degradation rate and therefore confer a more rapid expression 

response time. 



 In order to create and test this framework, we utilized a series of inducible reporter 

constructs, each consisting of the mScarlet-I fluorescent protein tagged with a pdt under the 

control of an anhydrous tetracycline (ATc)-inducible promoter. The inducible reporter constructs 

were cloned onto high-copy plasmid backbones and co-transformed with the gene for the mf-

Lon, which was placed under the control of an Isopropyl β-D-1-thiogalactopyranoside (IPTG)-

inducible promoter and cloned onto a low-copy plasmid. To measure response time, time-course 

experiments were conducted over 4 hours, with fluorescence measurements taken using 

fluorescence-activated cell sorting (FACS) every 20 minutes. A full account of experimental 

methods and construct design can be found in Appendix I. 

 In the interest of expanding our work to include a more complex dynamic behavior 

beyond simple response time, we investigated dynamic control in the context of the pulse-

generating circuit architecture known as an incoherent feedforward loop (IFFL). This circuit 

consists of the simultaneous activation of both an output and a repressor for the output. The 

delayed repression of the output leads to an initial rapid increase in output concentration 

followed by a sharp decrease once the repressor takes effect, creating a pulse. We were able to 

recreate this circuit architecture within the pdt/mf-Lon framework by simultaneously inducing 

our output reporter and the mf-Lon protease which targets the tagged output protein. Within this 

framework, we expected the affinity of the pdt with the protease to correlate to the sharpness of 

the pulse produced by the IFFL.  

Results 

 We found that as expected, the inducible reporter expression did display response times 

that were dependent upon the tag strength (Figure 1a). Since our time course experiments were 

conducted in the context of the IFFL circuit, with simultaneous induction of our reporter and mf-



Lon constructs, we were able to go beyond response time analysis and further found that the 

sharpness of the pulse generated by the IFFL was also dependent on the strength of the pdt used 

(Figure 1b).  

    

Figure 1: (a) Time course measurements for absolute fluorescence (MEFL) of ATc inducible 

reporter + pdt constructs; pdts are listed in order of increasing protease affinity. These 

measurements are normalized to their steady state value and, for clarity of response time 

visualization, traces are truncated once steady state (defined as the time point at which the two 

following measurements were not above the value of that time point) is reached. (b) Untruncated 

time courses to enable visualization of the full pulsatile output generated by the IFFL circuit 

architecture. For (a) and (b), each data point represents the geometric mean of 10,000 or more 

single cell measurements taken via flow cytometry of three biological replicates. Shading 

represents +/- one geometric standard deviation from the mean.  

We also sought to determine whether the degradation-dependent change in response time 

followed the inverse mathematical relationship predicted by the model. We determined relative 

degradation rates for each pdt by taking the ratio of their final, steady state fluorescence relative 

to the untagged control (Figure 2a). We then plotted these relative degradation rates against the 



response time for each pdt as well as for a tagless control (Figure 2b). We found that relative 

degradation rate and response time do indeed display an inverse scaling relationship, as predicted 

by the mathematical model. 

Figure 2: (a) Relative degradation rates for each of the pdt reporter constructs, determined by 

taking the steady state fluorescence relative to untagged fluorescence. Each data point 

represents the population geometric mean of at least 10,000 cells for a biological replicate; the 

line represents the geometric mean of the three replicates. (b) Plot of relative degradation rate 

versus response time in minutes. The blue line represents a guide to the eye demonstrating an 

inverse relationship between the two variables. 

Discussion 

 While our work empirically demonstrates an inverse scaling relationship between gene 

expression response time and relative degradation rate, we wanted to ensure that pdts could be 

useful in controlling the response time of an existing arbitrary circuit. One notable consequence 

of increasing degradation rate via pdts in order to control response time is that the steady state 

output concentration decreases. However, given that steady state is defined according to our 



model by production rate over degradation rate, we find that steady state concentration can be 

readjusted to its original value by increasing production rate. Furthermore, since our model 

dictates that degradation rate alone contributes to the gene expression response time, we expect 

that changes to production rate will not affect the change in response time. As a proof of concept, 

we successfully achieved this effect for one of the pdts, increasing production rate by increasing 

inducer concentration to readjust steady state back to its original tag-free value (Appendix II).  

 One notable limitation of our framework is the potential for toxicity associated with the 

expression of the mf-Lon protease. Although the protease was determined to be orthogonal to E. 

coli’s endogenous protein degradation systems (Gur & Sauer, 2008), empirically we experienced 

problems with cell toxicity. We found that the expression of the protease construct on a medium- 

to low-copy plasmid alleviated this toxicity to some extent; however, expression of this construct 

over a period of hours remained problematic. For this reason, response time measurements were 

primarily taken in the context of the IFFL circuit, with simultaneous induction of our reporter 

and protease constructs. While ideally, a response time control demonstration could be achieved 

with induction of our reporter occurring while the protease is already at steady state, we are 

continuing work to obtain reliable data through this method by adjusting induction conditions. 

Ultimately, the results obtained via simultaneous induction provide a proof-of-concept of 

response time control via modular control of degradation rate; with additional parameter 

optimization, this framework will be accessible and implementable for a variety of circuit 

contexts, enabling researchers more precise and predictable control over the dynamic properties 

of gene expression. 



CHAPTER 2: THE ROLE OF MATHEMATICAL MODELING IN 

SYSTEMS & SYNTHETIC BIOLOGY – A CASE STUDY  

Rationale 

 Synthetic biology is historically deeply intertwined with the use of mathematical 

modeling and simulation in the design of novel biological circuits. The works widely recognized 

as the first two primary articles in synthetic biology are heavily reliant on the use of simple 

mathematical models to optimize the parameters necessary to achieve the desired functionality, 

and to predict the outputs of their newly designed circuits. Both investigators utilized systems of 

ordinary differential equations to evaluate the stability of their circuit’s desired behavior under 

varied conditions (Elowitz & Leibier, 2000; Gardner, Cantor, & Collins, 2000). As the field 

continues to develop and turns to more complex questions and systems, however, the 

construction of quantitative models faces exponentially larger challenges: the introduction of 

dynamical complexity, increase in number of network components and states, and uncertainties 

in parameterization offer major challenges to constructing a robust and accurate model (Le 

Novere, 2015).  Regardless, a carefully constructed model can play a crucial role in elucidating 

complex biological mechanisms such as pattern formation, especially when supplemented with 

quantitative empirical observations.  

Here I choose a biological system of interest, the Notch signaling pathway, and delve into 

the use of mathematical modeling to improve the understanding and control over this system. I 

will evaluate different iterations of models describing the system and discuss the advantages and 

limitations of using models to represent this signaling pathway. Notch is a highly conserved 

signaling pathway which is responsible for a massive variety of cellular behaviors and decisions, 



including cell-fate determination and pattern formation during development (Sjöqvist & 

Andersson, 2019). While within a biological context it has been found that there exist many 

varieties of Notch ligands, each of which confers complex differences in signal processing and 

gene expression outcomes (Bray, 2016), for the purposes of this analysis I will focus on the 

generalizable aspects of Notch behavior and the mathematical modeling thereof; I will then 

comment on the limitations and potential elaborations upon this approach. 

Background & Early Models 

 The Notch signaling pathway is characterized by juxtacrine interactions between a sender 

cell, which expresses the membrane-bound Delta ligand, and a receiver cell, which expresses the 

membrane-bound Notch receptor. The mechanical force of the interaction between Delta and 

Notch induces regulated intramembrane proteolysis (RIP) within the Notch protein, resulting in a 

release of the Notch Intracellular Domain (NICD), which is transported to the nucleus to activate 

target genes (Gordon et al., 2015; Sprinzak et al., 2010). The lack of intermediates between the 

membrane receptor and the gene expression change in the nucleus means that there is no signal 

amplification, unlike many other signaling pathways involving phosphorylation cascades and 

more complex signal transduction. This lack of signal amplification makes the Notch pathway 

relatively more accessible from a mathematical modeling standpoint (Bray, 2016). 

The Notch pathway was first modeled in 1996 by Joanne Collier and colleagues. They 

formulated a simple system of ordinary differential equations to simulate pattern formation via 

Notch-mediated lateral inhibition (Collier, Monk, Maini, & Lewis, 1996). This model was later 

adjusted in 2010 to incorporate the phenomenon of mutual inactivation, where the Delta ligand 

expressed on a cell interacts with and inhibits the activity of a Notch receptor expressed on the 

same cell membrane (also knows as cis-interaction or cis-inhibition) (Sprinzak et al., 2010). We 



can simulate this model without any feedback, as a simple mutual inactivation model to describe 

boundary formation, or a negative feedback component can be added to describe lateral 

inhibition patterning. The mutual inactivation model consists of a set of ordinary differential 

equations describing the concentrations of Notch, Delta, and the NICD which produces the 

output for the pathway (represented here by S) (Equation 1) (Sprinzak et al., 2010).  

On its own, we see that this set of ordinary differential equations produces an 

ultrasensitive switch between 2 cell fates: a “sending” state, where the cell primarily expresses 

the Delta ligand, and a “receiving” state, where the cell preferentially expresses the Notch 

receptor. This phenomenon is a product of the mutual inactivation: when production rates of 

Notch and Delta are exactly balanced, cis-inactivation cancels the activity of both. However, a 

slight surplus of either Notch or Delta production leads to a strong preferential expression of that 

component. This ultrasensitivity lends itself to the formation of defined boundaries between cell 

types. Notably, this boundary formation is dependent not on the absolute concentrations of Notch 

and Delta, but rather the ratio between the two expression levels, making the process robust to 

extrinsic noise (Sprinzak, Lakhanpal, LeBon, Garcia-Ojalvo, & Elowitz, 2011; Sprinzak et al., 

2010).  

𝑑𝑁

𝑑𝑡
=  𝛽𝑁 −  𝛾𝑁 −

𝐷𝑁

𝑘𝑐
−  

𝐷𝑡𝑟𝑎𝑛𝑠𝑁

𝑘𝑡
   

𝑑𝐷

𝑑𝑡
=  𝛽𝐷 −  𝛾𝐷 −

𝐷𝑁

𝑘𝑐
−  

𝐷𝑁𝑡𝑟𝑎𝑛𝑠

𝑘𝑡
            (1) 

𝑑𝑆

𝑑𝑡
=  

𝐷𝑁𝑡𝑟𝑎𝑛𝑠

𝑘𝑡
−  𝛾𝑆𝑆    

Equation 1: Mutual Inactivation model described by Sprinzak and colleagues. N, D are 

concentrations of Notch and Delta, respectively. β terms represent production rates; γ terms 



represent degradation rates. Dtrans and Ntrans represent concentrations of Delta and Notch, 

respectively, on the neighboring cell with which our cell of interest interacts. kc and kt represent 

the strengths of cis- and trans- interactions, respectively (Sprinzak et al., 2010).   

This mutual inactivation model may also be adapted to simulate lateral inhibition 

patterning, wherein the expression of the Delta ligand is downregulated by the output reporter of 

Notch activity. Therefore, when a cell receives a signal from a neighboring sender cell, its own 

Delta production is repressed; this feedback mechanism yields a checkerboard pattern, where a 

sender cell is surrounded by receiver cells. While other circuit architectures have been proposed 

to explain lateral inhibition pattern formation via Notch, Sprinzak and colleagues demonstrated 

that lateral inhibition via mutual inactivation (LIMI) enables robust patterning with a wide range 

of parameters, and more rapid patterning dynamics than alternative models. Sprinzak also 

proposes a similar, even simpler circuit architecture involving mutual inactivation, wherein 

Notch upregulates itself in response to trans-activation (this is called the Simplest Lateral 

Inhibition with Mutual Inactivation, or SLIMI, circuit). Overall, the superiority of the LIMI and 

SLIMI models provides a strong rationale for further investigating the role of mutual inactivation 

in vivo during development (Sprinzak et al., 2011). 

One foundational Notch behavior which was hypothesized and modeled in detail far more 

recently is the activation of the Notch receptor by a Delta ligand expressed on the same cell, or 

cis-activation. Formosa-Jordan and Ibañes produced theoretical predictions via mathematical 

modeling which posited the possibility of cis-activation, hypothesizing that this form of 

interaction could act to inhibit pattern formation (Formosa-Jordan & Ibañes, 2014). At the time 

of that publication, and indeed until recently, there had been no evidence of cis-activation within 

the Notch pathway in nature (Binshtok & Sprinzak, 2018). However, recent findings from 



Nandagopal and colleagues suggest that cis-activation can occur in vitro between a variety of 

ligand and receptor types within the Notch pathway, and within a large variety of cell types. 

While the influence of this potential interaction in vivo remains unclear, it has been hypothesized 

that cis-activation could further expand the possible pattern formation and pattern refinement 

capabilities of Notch (Nandagopal, Santat, & Elowitz, 2019). 

These early models of Notch/Delta interaction provide a strong foundation for the 

fundamental behaviors of the Notch signaling pathway. Indeed, many of the more recent 

mathematical models for Notch signaling build directly off of the system of differential 

equations seen in Equation 1 (Engblom, 2018; Hadjivasiliou, Hunter, & Baum, 2016; Khait et 

al., 2016; Nandagopal et al., 2019; Shaya et al., 2017; Sprinzak et al., 2011).Using these early 

models as a starting point, we can now walk through a series of possible additional 

considerations that may be factored into the mathematical model to more fully address the 

complexities of in vivo signaling. While this is not an exhaustive list, the following models have 

the advantage of being generalizable and testable within a variety of biological contexts for 

which Notch plays a key role.   

Protrusion-Mediated Signaling 

 Since the construction of these foundational models, further in vivo imaging studies and 

modeling of bristle pattern formation via lateral inhibition in the Drosophila melanogaster notum 

have revealed that Notch signaling does not exclusively occur between neighboring cells. By 

comparing the simulations of lateral inhibition based on the early 1996 model with in vivo 

observations of this pattern formation process during bristle precursor differentiation in 

Drosophila, Cohen et al. found that simple lateral inhibition between neighboring cells was not 

sufficient to explain the spatial distribution of bristle precursor cells. Confocal imaging of the 



patterning process revealed the presence of “basal filopodia”: transient, actin-based cellular 

protrusions which can mediate signaling between non-neighboring cells at an average length of 

1.4 cell diameters. To test the hypothesis that these filopodia serve to mediate Notch signaling 

between non-neighboring cells, Cohen and colleagues incorporated protrusion-based signaling 

dynamics into the mathematical lateral inhibition model. They assumed that signaling was 

mediated by filopodia of varying lengths with transient lifetimes. The resulting simulation 

revealed a pattern far closer to the observed precursor cell spacing. Using a Neuralized-Gal4, 

UAS-Moesin GFP (Neu-GFP) as a marker for Notch activity in vivo, Cohen and colleagues 

observed GFP-positive basal protrusions mediating cell-cell interactions in the time immediately 

prior to cell fate determination, implying that these filopodia may play a role in Notch signaling 

during lateral inhibition. They also imaged the same pattern formation process with two different 

mutant cell lines in which key regulators of filopodia formation, scar and Rac, were knocked 

out; these observations revealed irregular spacing compared to wild type pattern formation. 

These experiments, in tandem with mathematical modeling, provided strong evidence of 

protrusion-mediated Notch signaling during lateral inhibition patterning.  (Cohen et al., 2010). 

Since this discovery, it has become clear that protrusion-mediated Notch signaling is not limited 

to bristle patterning in Drosophila—indeed, a similar mechanism was shown to play a role in 

zebrafish pigment patterning development (Hamada et al., 2014).  

 When we move beyond lateral inhibition-based checkerboard patterning, the 

phenomenon of protrusion-mediated signaling dramatically diversifies the possible patterns that 

can be created via Notch signaling mechanisms (Binshtok & Sprinzak, 2018; Bray, 2016). There 

have been several efforts to incorporate protrusion-mediated signaling into mathematical Notch 

models to explore the possibilities of this space. In the most recent iteration, Hadjivasiliou and 



colleagues build a mathematical model based on the mutual inactivation model discussed 

previously (Equation 1). In addition to incorporating considerations of protrusion-mediated 

signaling, this model also develops a novel component motivated by the physical mechanism of 

Notch function, namely the fact that a mechanical force is required for successful Notch 

proteolysis (Gordon et al., 2015). This requirement implies the possibility that Notch-Delta 

interaction in trans may occur without actual Notch activation if insufficient mechanical force is 

present. To account for this possibility, the notation from the original model is adjusted slightly 

to differentiate between <Din>, the amount of incoming trans-Delta, and <Dout>, the amount of 

trans-Delta whose binding results in successful Notch activation and release of the NICD 

(Equation 2) (Hadjivasiliou et al., 2016).  

𝑑𝑁

𝑑𝑡
=  𝛽𝑁 − 𝛾𝑁𝑁 −

𝐷𝑁

𝑘𝑐
−  

〈𝐷𝑖𝑛〉𝑁

𝑘𝑡
   

𝑑𝐷

𝑑𝑡
=  𝛽𝐷

1

1+ 𝑅𝑚
−  𝛾𝐷𝐷 −

𝐷𝑁

𝑘𝑐
−  

𝐷〈𝑁𝑖𝑛〉

𝑘𝑡
          (2) 

𝑑𝑅

𝑑𝑡
=  𝛽𝑅

(〈𝐷𝑜𝑢𝑡〉𝑁)𝑆

𝑘𝑅𝑆+(〈𝐷𝑜𝑢𝑡〉𝑁)𝑆 −  𝛾𝑅𝑅  

Equation 2: Hadjivasiliou, Hunter & Baum’s amendment to Sprinzak’s 2011 lateral inhibition 

with mutual inactivation model (note that this is similar to Equation 1, with the addition of Delta 

repression in response to Notch activation). N, D, R are concentrations of Notch, Delta, and 

intracellular Notch reporter; kRS is the dissociation constant of the intracellular signal. m and s  

are cooperativity parameters (Hadjivasiliou et al., 2016; Sprinzak et al., 2011). Remaining 

notation is consistent with Equation 1. 

 Protrusion-based signaling is incorporated into the model within the definitions of <Din>, 

<Dout>, and <Nin>: each is a weighted combination of the summation of protrusional and 



junctional contacts from surrounding cells (Equation 3). The weighting parameters factors allow 

us to account for potential differences in signaling efficiency between protrusional and junctional 

contact points. Filopodia were modeled as a function of length and protrusion angle. Simulations 

revealed that adjustment to these parameters, as well as the weighting parameters, produced a 

wide variety of possible patterns (Hadjivasiliou et al., 2016). As an additional consideration, 

Vasilopoulos & Painter constructed a similar model in which they accounted for the theoretical 

possibility of varying the spatial distribution of Delta along the protrusion. While this 

amendment to the model would theoretically enhance the potential complexity of pattern 

formation, Hadjivasiliou and colleagues commented that its feasibility is limited by the precision 

with which a cell could realistically regulate such ligand distribution along an individual 

protrusion (Hadjivasiliou et al., 2016; Vasilopoulos & Painter, 2016). Further single-cell imaging 

work is necessary to determine the constraints of this theory.  

 〈𝐷𝑖𝑛〉 =  𝑤𝑎〈𝐷𝑖𝑛
𝑎 〉 + 𝑤𝑏〈𝐷𝑖𝑛

𝑏 〉  

〈𝑁𝑖𝑛〉 =  𝑤𝑎〈𝑁𝑖𝑛
𝑎 〉 + 𝑤𝑏〈𝑁𝑖𝑛

𝑏 〉             (3) 

〈𝐷𝑜𝑢𝑡〉 =  𝑞𝑎〈𝐷𝑖𝑛
𝑎 〉 + 𝑞𝑏〈𝐷𝑖𝑛

𝑏 〉  

Equation 3: Set of equations for the total amounts of incoming Delta, incoming Notch, and 

incoming Delta leading to Notch activation, respectively. wa and wb are weighting parameters 

for junctional contacts and protrusion-mediated contacts, respectively (same applies for qa and 

qb). <Din
a> represents the sum of incoming Delta from all cells contributing junctional contact; 

<Din
b> represents sum of incoming Delta from all cells contributing protrusional contact. 

Analogous notation applies to the remaining variables (Hadjivasiliou et al., 2016).   



  Within this self-organizing framework, it is prudent to consider the role of stochasticity in 

Notch-mediated pattern formation. Cohen and colleagues created an asynchronous cellular 

automata model to simulate lateral inhibition in a population of cells subject to spatial noise, a 

result of transient protrusion-mediated signaling, and temporal noise, due to fluctuations in 

protein expression over time. They concluded that both sources of noise contribute to pattern 

refinement and rearrangement into “more optimal configurations (dense, ordered fine-grained 

spots…and aligned stripes)”  (Cohen, Baum, & Miodownik, 2011). In another study of 

stochasticity, Engblom adapted the cellular protrusion-based mathematical model from 

Hadjivasiliou et al. and performed a stochastic simulation of the associated reactions using 

Gillespie’s direct method (Engblom, 2018; Hadjivasiliou et al., 2016).  

Membrane Topology & Cell Morphology 

 While much remains to be learned about the precise intracellular regulatory mechanisms 

of Notch and Delta transportation to and localization within the membrane, these considerations, 

alongside cell-cell contact geometry and overall cell morphology, are of potential importance to 

Notch-mediated cell fate decisions during development (Bray, 2016). These questions are 

especially relevant when considering the role and signaling efficiency of protrusion-based 

Notch/Delta interaction in comparison to junctional contact between directly adjacent cells 

(Khait et al., 2016). 

 A recent investigation paired fluorescence microscopy assays with mathematical 

modeling to investigate the dynamic behavior of Notch and Delta within the membrane, as well 

as Notch/Delta interaction as a function of contact area between cells. The mathematical model 

consists of a set of four reaction-diffusion equations (Equation 4) which take into account the 

following processes: Movement of Notch and Delta into and out of the cell membrane via 



exocytosis and endocytosis, lateral diffusion of Notch and Delta across the cell membrane, and 

Notch/Delta interactions between two cells at the contact area (Khait et al., 2016).  

∂𝑁

𝑑𝑡
=  𝐷𝑁∇2𝑁 +  𝑘𝑒𝑥𝑜

𝑁 𝑁0 − 𝑘𝑒𝑛𝑑𝑜
𝑁 𝑁 +  𝐼𝑏(𝑟)(𝑘−[𝑁𝐷𝑙] − 𝑘+𝑁𝐷𝑙)  

∂𝐷𝑙

𝑑𝑡
=  𝐷𝐷𝑙∇

2𝐷𝑙 +  𝑘𝑒𝑥𝑜
𝐷𝑙 𝐷𝑙0 − 𝑘𝑒𝑛𝑑𝑜

𝐷𝑙 𝐷𝑙 +  𝐼𝑏(𝑟)(𝑘−[𝑁𝐷𝑙] − 𝑘+𝑁𝐷𝑙)              

∂[𝑁𝐷𝑙]

𝑑𝑡
=  𝐼𝑏(𝑟)(𝐷[𝑁𝐷𝑙]∇

2[𝑁𝐷𝑙] +  𝑘+𝑁𝐷𝑙 −  𝑘−[𝑁𝐷𝑙] − 𝑘𝑆[𝑁𝐷𝑙])                    (4) 

∂𝑆

𝑑𝑡
=  𝐼𝑏(𝑟)𝑘𝑆 ∫[𝑁𝐷𝑙]𝑑2𝑟 −  𝛾𝑆  

𝐼𝑏(𝑟) =  {
1 𝑓𝑜𝑟 𝑟 ≤ 𝑏
0 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

  

Equation 4: Reaction-Diffusion equations describing concentrations of Notch (N), Delta (Dl), 

Notch-Delta complex ([NDl]), and total signal, concentration of the NICD (S). D is the diffusion 

constant of lateral diffusion on the cell membrane; exocytosis of Notch and Delta into the cell 

membrane from a large cytoplasmic pool with constant concentrations N0 and Dl0 occurs at rate 

kexo; endocytosis out of the membrane back into the cytoplasmic pool occurs at rate kendo. k
+ and 

k – represent association and dissociation rates, respectively, for the Notch-Delta complex. This 

complex is processed at rate kS to generate the total signal S. We assume that the contact area 

between cells is a disk with diameter b; r is our position of interest on the membrane (Khait et 

al., 2016). 

  Using these reaction-diffusion equations, Khait et al. sought to determine the effects of 

ligand diffusion and cell-cell contact area on Notch signaling output. They defined a metric 

known as diffusion-length scale, λ, to represent the typical distance traveled by a Delta ligand as 

it diffuses along the cell membrane before exiting via endocytosis. It was defined as 𝜆 =



 √𝐷/𝑘𝑒𝑛𝑑𝑜, where D is the diffusion coefficient for free Delta and kendo is the rate of Delta 

endocytosis out of the membrane. Simulations revealed that within the contact area, 

concentrations of free Delta are largely depleted, indicating that free ligand quickly complexes 

with trans-Notch. While free Notch concentrations also decrease, the effect is much less 

dramatic; therefore, the diffusion of the ligand was deemed the limiting metric (Khait et al., 

2016).  

An analysis of the effects of contact diameter and diffusion-length scale (λ) on Notch 

signaling output revealed two major outcomes: if the cell-cell contact diameter is larger than the 

diffusion-length scale, then Notch output is proportional to the contact area. However, if contact 

diameter is smaller than the diffusion-length scale, then Notch output is far more dependent on 

the diffusion of Delta ligands into the contact area. Importantly, this finding speaks to the 

predicted signaling efficiency for junctional signaling between adjacent cells as compared to 

protrusion-mediated signaling. When contact is initiated via filopodia, signaling efficiency is 

expected to be strongly dependent on the diffusion-length scale of the Delta ligand; signaling is 

far more dependent on contact area for junctional signaling (Khait et al., 2016).  

Interestingly, fluorescence-imaging-based diffusion assays conducted by Khait and 

colleagues revealed highly variable diffusion-length scales for the Delta ligand between cells of 

the same type. Based on this finding, it was hypothesized that cells may actively regulate 

diffusion-scale lengths of membrane ligands such as Delta in order to control Notch signaling 

output. Within filopodia, their analysis of Delta transportation dynamics indicated that Delta may 

reach protrusional contacts via active transport; these findings imply that active transport of 

Delta in filopodia may be regulated as a contributor to control over Notch signaling (Khait et al., 



2016). Further work is necessary to characterize the transportation of Delta ligands along 

filopodia to determine whether this proposed regulatory mechanism holds true.  

 A more recent analysis focused on the junctional contact case, in which contact diameter 

is greater than diffusion-length scale (Khait et al., 2016). Shaya and colleagues supplemented in 

vitro micropatterning experiments with mathematical modeling to investigate the effect of 

contact area on Notch signaling efficiency. They adapted the Sprinzak 2011 model in the context 

of lateral inhibition patterning in order to isolate signaling along each cell-cell boundary. 

Preliminary in vitro experiments revealed that cell-cell contact area can be linearly correlated 

with Notch signaling output, so within the model they took Notch signaling efficiency along 

each boundary to be proportional to the length of the boundary. They then simulated lateral 

inhibition-based pattern formation for an irregular lattice of cells with boundaries of varying 

lengths. Diffusion was not considered within this model, so ligand concentration was assumed to 

be constant along all cell boundaries (Shaya et al., 2017).  

 Simulations of cell populations with the adapted lateral inhibition model revealed that 

cell size significantly affected the cell’s Notch signaling fate: small cells tended to become 

primarily sender cells, and larger cells tended to become receiver cells. It was hypothesized that 

this outcome is a result of the level of incoming inhibitory signal for a given cell during fate 

determination: smaller cells with smaller perimeters receive less Notch signal, which leads to a 

lower NICD concentration, less repression of the Delta ligand, and therefore a higher overall 

ligand production rate and a sender cell fate. This differentiation pattern was also observed in 

vivo during hair cell selection in the early developmental stages of the chick inner ear—smaller 

cell phenotypes appeared to preferentially differentiate into hair cells, while larger cells became 

supporting cells (Shaya et al., 2017). 



Receptor/Ligand Variability and Dynamics 

 While it was initially postulated that Notch signaling fate determination during processes 

such as lateral inhibition was primarily driven by stochastic differences in concentrations of 

Notch and Delta (Cohen et al., 2010; Sprinzak et al., 2010), we now know that this fate 

determination is a product of ligand expression, which appears to be highly regulated on a spatial 

and temporal level (Bray, 2016; Khait et al., 2016). One key aspect of Notch signaling that has 

not yet been discussed within this review is the variability in types of Notch receptors and 

ligands that exist in nature. Mammals possess four different Notch receptor types and five types 

of Notch ligands (three in the Delta family and two members of the Serrate ligand family) 

(LeBon, Lee, Sprinzak, Jafar-Nejad, & Elowitz, 2014). Importantly, different ligands appear to 

affect Notch signaling output differently in terms of signal strength and duration (Bray, 2016). 

Furthermore, different combinations of ligand/receptor pairings have been shown to differ in 

strength of cis- and trans-interactions; each of these combinations remains to be fully 

characterized (LeBon et al., 2014). 

 Further complications are introduced with the consideration that in many vertebrate 

developmental processes, combinations of multiple receptors and ligands are employed (LeBon 

et al., 2014). While several case-specific in vitro studies investigating particular ligand 

combinations have shed some light on possible interaction patterns (LeBon et al., 2014; Petrovic 

et al., 2014), The extent to which the differences in cis-/trans-interactions from different 

receptor/ligand pairings have an impact on overall signaling output and pattern formation is 

unknown; further investigation is necessary to answer this question (Bray, 2016). 

 Recent work has also found that in some cases, Notch ligand activity may also be 

dynamically encoded. In 2018, Nandagopal and colleagues reported that two different Delta 



ligands, Dll1 and Dll4, result in two differing temporal Notch activity patterns (pulsatile vs 

sustained activation) when interacting in trans with the Notch1 receptor. In a biological context, 

this was shown to result in two opposing cell differentiation phenotypes. Much of this work was 

done using time course fluorescence microscopy of co-cultures of sender and receiver cells, in 

which the NICD was replaced with a Gal4 transcription factor that targeted a Citrine yellow 

fluorescent protein. Mathematical modeling was used interpret actual Notch activity based the 

pulsatile action of the reporter, by taking into account the half-life of the Gal4 transcription 

factor and the mRNA for the reporter protein; using this model they estimated a Notch activity 

pulse duration of approximately one hour in response to Dll1 ligand interaction. Computational 

simulations were also used to determine the effects of changing pulse regularity and frequency 

on the amplitude and variability of Notch signaling; these simulations were used to confirm the 

distinctive dynamics of the two ligands (Nandagopal et al., 2018). In the future it may be useful 

to incorporate these dynamical distinctions into the above foundational models for Notch 

patterning mechanisms, and to further investigate the role of Notch signaling dynamics among 

other ligand/receptor pairs in vivo.  

Limitations & Future Directions 

 While significant progress has been made over the past 10 years in improving upon 

foundational models of Notch signaling, it is essential to critically consider the utility of these 

models; this includes a discussion of the limitations of mathematical modeling in this context. 

For instance, all of the spatial patterning models discussed here are simulated in two dimensions. 

While this may be closer to a realistic situation in cases such as epithelial cell patterning, it is 

clearly not fully representative of a biological tissue environment (Shaya et al., 2017). Another 

consideration that would be essential in representing a truly realistic tissue environment would 



be the potential for interactions between Notch signaling and other signaling pathways. Further 

characterization of the potential opportunities for and consequences of crosstalk with other 

signaling pathways is needed (Binshtok & Sprinzak, 2018).  

 Finally, our understanding of the physical mechanisms surrounding Notch signaling, 

from transportation of the Notch components within the cell to the physical force necessary for 

successful Notch activation, is a limitation to providing a realistic, accurately parameterized 

model. One particular challenge is understanding the specific role of endocytosis in Notch 

activation and NICD release, on the level of a single Notch/ligand pairing in neighboring cells 

and protrusions (Hadjivasiliou et al., 2016) as well as clusters of ligand/receptor pairings 

(Nandagopal et al., 2018). Thus, there is a need to improve upon quantitative measurement and 

imaging techniques to observe and quantitatively characterize these phenomena in vivo and to 

learn the necessary dynamics and stoichiometries for successful Notch signal processing and 

pattern development (Bray, 2016). 

 While these limitations, along with the potential errors associated with parameterization 

and computational error of order (Engblom, 2018), present a challenge to the utility of 

mathematical modeling of Notch signaling, the above examples demonstrate that an interplay 

between mathematical modeling and empirical testing enables researchers to gain new 

understanding of these complex biological processes. These mathematical models are certainly 

not precise representations of the associated biological events; however, these simulations 

provide a useful framework by which one can generate testable hypotheses and predict potential 

outcomes without costly biological experimentation (Binshtok & Sprinzak, 2018). Therefore, the 

use and continuous improvement of mathematical models to represent complex biological 



processes such as Notch signaling is essential for efficient and thorough investigation of these 

phenomena. 

CHAPTER 3: CONTRIBUTIONS TO A SYNTHETIC BIOLOGY 

INFRASTRUCTURE AT WILLIAM & MARY 

Current Status 

 Despite the lack of a Bioengineering Department or Engineering School, or even faculty 

specializing in the field of synthetic biology, the College of William & Mary has garnered 

available resources and significantly enhanced a research program and research opportunities for 

undergraduates in the field of synthetic biology over the past five years. The introduction of new 

coursework, a dedicated Bioengineering Lab space, and independent and team-based research 

opportunities are the first steps in building a platform for undergraduate students to be introduced 

to synthetic biology. There are still many opportunities to continue to increase the resources and 

accessibility for undergraduate students to empower them to engage in original research projects 

at the cutting edge of the field. However, the current resources and opportunities for students 

create a solid foundation upon which additional avenues for research can be built. 

 On an academic level, students are presented with two major opportunities to engage with 

synthetic biology: The Freshman Honors Biology lab, and the one-credit Readings in Synthetic 

Biology seminar. Open to all students, this seminar has primarily been led by undergraduate 

teaching assistants. It takes on a journal club format, where students take turns leading 

discussions on recently published primary articles. This course has, in part, served as a primer for 

students interested in joining the William & Mary iGEM team, whose contribution to synthetic 

biology at William & Mary will be discussed below. However, even apart from iGEM, it also 



provides a solid theoretical framework for students who in many cases have little to no 

experience with synthetic biology, allowing them to improve their primary literature analysis 

skills and gain an understanding of the current state of the field. 

 The Freshman Honors Biology lab is available to students entering William & Mary who 

have earned a score of 5 on the AP Biology exam. It offers an opportunity for these students to 

opt out of the introductory biology lab class and jump straight into building their research skills, 

incorporating elements of primary literature analysis and molecular biology lab techniques along 

a theme of synthetic biology. Finally, students are encouraged to apply the techniques they 

learned by engaging in self-directed research. In the most recent semester the course was offered, 

freshman students had the opportunity to choose between constructing a 3D cell printer from 

scratch or learning about mammalian cell culture techniques and the potential research avenues 

within mammalian synthetic biology. Importantly, both this course and the Readings seminar 

course are led by undergraduate student teaching assistants, offering an opportunity not only for 

students to learn technical skills but for teaching assistants to improve their leadership and 

communication skills. 

 Synthetic biology opportunities can be found in not only the coursework at William & 

Mary, but also in the resources and facilities available to students. The Bioengineering Lab 

(BEL) was established in the new Integrated Science Center (ISC) wing in 2016 to serve as an 

interdisciplinary space dedicated to undergraduate research in synthetic biology and other related 

fields. Since then, the BEL has come to house the William & Mary iGEM team and the 

Freshman Honors Biology Lab, as well as a workspace for a postdoctoral student from the 

Cotton lab and 3D printers used by the Sanderson Lab. The equipment available in this lab, as 

well as in the ISC core lab, have been integral to the work done in this space thus far but present 



a tremendous opportunity for use in research focuses that have yet to be explored at William & 

Mary such as mammalian synthetic biology.  

 The main driver of undergraduate synthetic biology research at William & Mary has been 

the International Genetically Engineered Machine (iGEM) team, which has existed at the 

College since 2014. iGEM is an international synthetic biology competition in which students at 

the high school, undergraduate, and graduate levels spend the summer creating an original 

research project. Historically, the W&M iGEM team has focused on foundational work in gene 

expression measurement and control using Escherichia coli (E. coli) as a model organism, to 

great success on the international level. Notably, iGEM students at W&M have made an effort to 

expand their work beyond the limited timeline of the competition, communicating their findings 

at national conferences and by publishing in peer-reviewed journals (Clifton et al., 2018). The 

evolution of iGEM projects into long-term independent and team projects has contributed to a 

larger infrastructure for synthetic biology at W&M. Over the years, students have developed a 

collection of reliable protocols for bacterial cloning techniques, and a wealth of institutional 

knowledge in both synthetic biology background and troubleshooting techniques. This 

knowledge and material is passed from senior students to new iGEM members, allowing for a 

self-sufficient and largely student-driven collective of synthetic biology researchers at W&M.  

 While the infrastructure for bacterial synthetic biology is steadily growing, there has been 

relatively little progress in tapping into the quickly growing field of mammalian synthetic 

biology. This represents a tremendous opportunity for future students to genuinely engage with 

the cutting edge of what is possible in synthetic biology, whether it be through iGEM or as an 

independent or team project. Given the existing laboratory spaces and resources, and the strength 

of student interest in synthetic biology (as demonstrated by high iGEM application rates and 



consistent student enrollment in the synthetic biology-related courses), there is an opening for the 

expansion of undergraduate synthetic biology research at William & Mary to include work 

within mammalian systems. There exists a major opportunity to jumpstart a sustainable 

infrastructure for research in mammalian synthetic biology within the Bioengineering Lab, 

creating an accessible avenue for future students to engage with and make genuine contributions 

to this exciting field. 

A Sustainable Platform for Mammalian Synthetic Biology at W&M 

 Having served as a participant and as a leader or formal teaching assistant in all of the 

synthetic biology initiatives mentioned above over the past four years at William & Mary, the 

aim of this project was to leave a lasting impact by creating a sustainable infrastructure through 

which students can pursue self-driven research in mammalian synthetic biology in years to come. 

By building off the existing resources and infrastructure, we have created a space for work in 

mammalian tissue culture. This was accomplished via a multifaceted approach: by working to 

build up student awareness of and interest in the exciting field of synthetic biology, designing a 

dedicated workspace for mammalian tissue culture in the Bioengineering Lab, creating new 

opportunities for student-directed research and independent study in this space, and creating 

written standardized protocols so that students may quickly learn the necessary techniques to 

rigorously execute a research project with mammalian cells. Moving forward, students will be 

able to build off this foundation to delve into the cutting edge of mammalian synthetic biology, 

incorporating the use of existing resources at W&M such as the Fluorescence Activated Cell 

Sorter (FACS) and the fluorescence microscope in the BEL to gather high quality data. 

 Essential to building a foundation for mammalian synthetic biology is raising student 

awareness of and interest in the field. To that end, I led the spring semester for the Readings in 



Synthetic Biology seminar course. This course was led in the style of a journal club, with a focus 

on current research (primarily from the past 3 years). After a brief introduction to the field as a 

whole, students took turns choosing and leading discussions on primary articles based on their 

own interests. Discussions focused heavily on motivations, methodology, and future directions, 

encouraging students to approach the articles critically and reflect on the big-picture impacts of 

the work. Students were allowed to choose an article based on their own interests in addition to 

leading the discussions; thus, they were challenged to not only gain a thorough understanding of 

their article of choice but to spend time exploring the diversity of possible research questions and 

applications within the field. Since the majority of students in this seminar are underclassmen, 

the aim of this seminar structure was to garner interest and excitement about the massive 

potential of synthetic biology research. 

 While the main Bioengineering Lab is currently home to the iGEM team, and also 

utilized by Dr. Sanderson and Dr. Cotten, there is a prep room off of the main lab which houses 

the biological safety cabinet, CO2 incubator, and fluorescence microscope. With the assistance 

and resources provided by the university, this room was adapted into a fully stocked tissue 

culture room which could be used for mammalian cell culturing and experimentation. The room 

was re-organized, the incubator was cleaned and calibrated, and the space was stocked with all of 

the materials required for tissue culture work, including a vacuum-powered aspirating system. 

While much of the school year was spent setting up the lab space and researching and ordering 

the necessary materials, I have also begun to mentor and train three freshman students in tissue 

culture techniques. These students have all expressed serious interest in continuing with 

mammalian synthetic biology work in the coming year. Together, we have begun culturing a 

CHO-K1 cell line in order to learn and practice aseptic technique, feeding, and passaging cells.  



 Beyond the setup of the lab itself, it is essential that a strong foundation of background 

knowledge exists so that lab work can continue seamlessly despite student turnover. Over the 

years, the iGEM team has established a thorough set of standardized protcols for bacterial 

cloning techniques. This year we wrote an additional set of protocols for common techniques in 

mammalian cell culture compiled from protocol recommendations from established institutions 

such as Rice University and providers such as ATCC and Invitrogen (Atcc, 2014; Atcc, 

Invitrogen, & Dopico, 2014).These protocols, stored on the online lab notebook software 

Benchling, include Thawing Cells, Feeding Cells, Subculturing and Transfection (full protocols 

can be found in Appendix III). We have also included guidelines for aseptic technique, set up 

and clean up for cell culture work, and compiled a Beginner’s Guide to Mammalian Cell Culture 

as an accessible guide for those completely new to the lab environment (these can also be found 

in Appendix III). These protocols and guidelines could potentially be incorporated into the 

curriculum for future semesters of the Freshman Honors Biology Lab, so that freshmen 

interested in research are introduced to the option of cell culture work in the context of synthetic 

biology.  

 In the coming months, after we are fully comfortable with working with the cells and 

have determined appropriate split ratios, our next step will be to attempt a simple GFP 

transfection. This will allow us to not only practice a new technique, but also to practice the use 

of the fluorescence activated cell sorter (FACS) and fluorescence microscope, the use of which 

will be essential to data collection for more complex projects. One of my mentees has elected to 

remain at William & Mary in the summer to continue working in the cell culture lab in the BEL. 

Ultimately, she aims to design a research project focusing on the Notch pathway, which will be 



made possible given the resources available at W&M and the infrastructure that has been 

established.  

 Moving forward, this project will ensure that mammalian synthetic biology is 

incorporated and maintained as an integral component of the synthetic biology and 

bioengineering research at William & Mary. There exists a group of students who are strongly 

interested in continuing mammalian synthetic biology research in the coming years, and the 

Readings in Synthetic Biology course will continue to urge students to consider pursuing 

research in synthetic biology, whether it be through iGEM, with the mammalian cell culture 

team, or as part of an independent project in the BEL. We hope to coordinate with W&M iGEM 

team members over the summer and encourage them to consider working with mammalian cells 

as a possible aspect of their iGEM project, or alternatively to workshop with them to introduce 

them to mammalian cell culture techniques so that they may be incorporated into future projects. 

Ultimately, it is our goal to create an established, accessible and sustainable foundation for 

mammalian synthetic biology such that students will be able to not only learn about and explore 

this exciting field but also to make genuine contributions to the field in the form of peer-

reviewed publications in the years to come. 
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Appendix I: Experimental Methods for Degradation-Based Control 

of Gene Expression Response Time 

Construct Design & Assembly 

Sequences for pdts and mf-Lon were provided by the Cameron & Collins 2014 article (Cameron 

& Collins, 2014); these sequences were codon-optimized for E. coli and synthesized as gene 

blocks. ATc-inducible reporter constructs were cloned using Gibson Assembly to create the 

following part sequence: pTet promoter – B0034 RBS - mScarlet-I – pdt – B0015 terminator 

followed by a constitutively expressed TetR repressor whose repression of the pTet promoter is 

relieved by ATc. This sequence of parts was cloned onto the pSB1C3 chloramphenicol-resistant 

high-copy plasmid backbone. Likewise, the mf-Lon sequence was placed under the control of the 

IPTG-inducible pLac0-1 promoter using Gibson assembly; on the same plasmid, we added a 



constitutively expressed LacI repressor whose repression of the pLac0-1 promoter is relieved by 

the outside addition of IPTG. This protease construct was added to the medium-copy backbone 

pSB3K3, which includes kanamycin resistance gene. 

Circuit Response Time Characterization  

ATc-inducible reporter constructs were co-transformed with the IPTG-inducible protease 

construct into the 10-Beta strain of E. coli. Colonies were grown on chlor + kan agar plates and 

inoculated into M9 minimal media with 0.4% glycerol overnight. The following day, cultures 

were diluted 1:100 into fresh M9 media and allowed to grow for an additional 4-7 hours, then 

diluted once more to an optical density (OD) of 0.01 into M9 media containing 0.1mM IPTG and 

50ng/mL ATc to begin the time course experiment.  Time points were taken every 20 minutes 

onto ice and immediately measured using flow cytometry (at least 10,000 single cell 

measurements). The FACS was calibrated by taking 10,000 measurements of Rainbow 

Calibration Particles from Spherotek on each day when measurement occurred. These 

measurements were used along with the python package flowcal (Castillo-Hair et al., 2016) to 

convert sample fluorescenct to units of Molecules of Equivalent FLuorescein (MEFLs). 

This account of experimental methods has been adapted from Jones, Monette, et al. (Jones et al., 

2018). 

Author Contributions 

Constructs and experiments were designed by Ethan Jones with assistance from Callan Monette. 

Constructs were cloned and experiments carried out by Callan Monette and Ethan Jones, with 

assistance from Sejal Dhawan, Theresa Gibney, Christine Li, Alyssa Luz-Ricca, and Cici Zheng. 

Ethan Jones, John Marken, Wukun Liu, and Cedar Ren analyzed data, John Marken and Ethan 



Jones produced the figures. All of the above participants helped conceive the project. This work 

is published as a pre-print on BioRxiv; the manuscript was written with equal contributions by 

Callan Monette and Ethan Jones (Jones et al., 2018).  

Appendix II: Readjustment of Protein Steady-State Concentration 

 A notable consideration when manipulating protein degradation rate to decrease gene 

expression response time is the resulting decrease in the resulting output steady state due to 

degradation of the product (Figure i). This outcome may be problematic in the context of a more 

complex gene network, where there may be a need to speed up the output of a given node while 

maintaining said output above a desired threshold of expression magnitude. Fortunately, given 

that our model dictates that the steady state output for an inducible gene is equal to α/γ and that 

our expression response time can be controlled by changing degradation alone, we expect that 

increasing production rate will independently increase the output steady state without affecting 

response time outcome.  

Figure i: (Left) Normalized and (Right) Absolute fluorescence measurements for reporter 

expression response time over the course of 200 min. Absolute fluorescence time course 



illustrates the decrease in steady state output due to the higher degradation rates for constructs 

tagged with pdts of higher protease affinity. 

 As a proof-of-concept, we demonstrated that steady state readjustment could be achieved 

by increasing the ATc inducer concentration for one of our inducible tagged reporter constructs. 

As predicted by the model, we successfully demonstrated that production rate could be 

manipulated independently from the response time change conferred by a change in degradation 

rate (Figure ii).  

Figure ii: (Left) Absolute fluorescence time course demonstrating the decrease in steady state 

with the addition of pdt#3a; this change was readjusted with the increase of inducer 

concentration from 50ng/mL to 85ng/mL ATc, to achieve a steady state similar to that of the 

tagless control. (Right) A normalized version of the same time course demonstrates that the 

change in response time remains consistent between the lower and higher induction conditions, 

implying that production rate can be manipulated independently from response time control via 

degradation. 



Appendix III: Mammalian Cell Culture Protocols and Guidelines 
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