354 research outputs found

    Ash Tree Identification Based on the Integration of Hyperspectral Imagery and High-density Lidar Data

    Get PDF
    Monitoring and management of ash trees has become particularly important in recent years due to the heightened risk of attack from the invasive pest, the emerald ash borer (EAB). However, distinguishing ash from other deciduous trees can be challenging. Both hyperspectral imagery and Light detection and ranging (LiDAR) data are two valuable data sources that are often used for tree species classification. Hyperspectral imagery measures detailed spectral reflectance related to the biochemical properties of vegetation, while LiDAR data measures the three-dimensional structure of tree crowns related to morphological characteristics. Thus, the accuracy of vegetation classification may be improved by combining both techniques. Therefore, the objective of this research is to integrate hyperspectral imagery and LiDAR data for improving ash tree identification. Specifically, the research aims include: 1) using LiDAR data for individual tree crowns segmentation; 2) using hyperspectral imagery for extraction of relative pure crown spectra; 3) fusing hyperspectral and LiDAR data for ash tree identification. It is expected that the classification accuracy of ash trees will be significantly improved with the integration of hyperspectral and LiDAR techniques. Analysis results suggest that, first, 3D crown structures of individual trees can be reconstructed using a set of generalized geometric models which optimally matched LiDAR-derived raster image, and crown widths can be further estimated using tree height and shape-related parameters as independent variables and ground measurement of crown widths as dependent variables. Second, with constrained linear spectral mixture analysis method, the fractions of all materials within a pixel can be extracted, and relative pure crown-scale spectra can be further calculated using illuminated-leaf fraction as weighting factors for tree species classification. Third, both crown shape index (SI) and coefficient of variation (CV) can be extracted from LiDAR data as invariant variables in tree’s life cycle, and improve ash tree identification by integrating with pixel-weighted crown spectra. Therefore, three major contributions of this research have been made in the field of tree species classification:1) the automatic estimation of individual tree crown width from LiDAR data by combining a generalized geometric model and a regression model, 2) the computation of relative pure crown-scale spectral reflectance using a pixel-weighting algorithm for tree species classification, 3) the fusion of shape-related structural features and pixel-weighted crown-scale spectral features for improving of ash tree identification

    Remote detection of forest structure in the White Mountains of New Hampshire: An integration of waveform lidar and hyperspectral remote sensing data

    Get PDF
    The capability of waveform lidar, used singly and through integration with high-resolution spectral data, to describe and predict various aspects of the structure of a northern temperate forest is explored. Waveform lidar imagery was acquired in 1999 and 2003 over Bartlett Experimental Forest in the White Mountains of central New Hampshire using NASA\u27s airborne Laser Vegetation Imaging Sensor (LVIS). High-resolution spectral imagery from 1997 and 2003 was likewise acquired using NASA\u27s Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). USDA Forest Service Northeastern Research Station (USFS NERS) 2001-2003 inventory data was used to define basal area, above-ground biomass, quadratic mean stem diameter and proportional species abundances within each of over 400 plots. Field plots scaled to LVIS footprints were also established. At the smallest scale, metrics derived from single LVIS footprints were strongly correlated with coincident forest measurements. At the larger scale of USFS NERS plots, strong correlations encompassing the full variability of the Forest Service data could not be established. Restrictions set by species composition and land-use, however, significantly improved both the descriptive and predictive power of the regression analyses. Higher amplitude values of 1999 LUIS ground return metrics obtained within two years of the January 1998 ice storm, were found to provide a spatial record of higher levels of canopy damage within older, unmanaged forest tracts. Subjected to repeated disturbance of intermediate severity over the time frame of decades, these particular tracts, predominately found on southeastern aspects, simultaneously support by levels of sugar maple abundance and low levels of sugar maple coarse woody debris. LVIS height metrics were used here to establish a statistical relationship with coarse woody debris data. The integration of waveform lidar with hyperspectral data did enhance the ability to remotely describe a number of common measures of forest structure. Compositional abundance patterns, however, were not improved over use of AVIRIS data alone. Maps predicting species abundance patterns (primarily derived from AVIRIS data) with coincident patterns of stem size (derived from LVIS data) can be created for several of the dominant tree species of this region. The results are the near equivalent of a field-based forest inventory

    Hyperspectral and LiDAR data for the prediction via machine learning of tree species, volume and biomass: a possible contribution for updating forest management plans

    Full text link
    This work intends to lay the foundations for identifying the prevailing forest types and the delineation of forest units within private forest inventories in the Autonomous Province of Trento (PAT), using currently available remote sensing solutions. In particular, data from LiDAR and hyperspectral surveys of 2014 made available by PAT were acquired and processed. Such studies are very important in the context of forest management scenarios. The method includes defining tree species ground-truth by outlining single tree crowns with polygons and labeling them. Successively two supervised machine learning classifiers, K-Nearest Neighborhood and Support Vector Machine (SVM) were used. The results show that, by setting specific hyperparameters, the SVM methodology gave the best results in classification of tree species. Biomass was estimated using canopy parameters and the Jucker equation for the above ground biomass (AGB) and that of Scrinzi for the tariff volume. Predicted values were compared with 11 field plots of fixed radius where volume and biomass were field-estimated in 2017. Results show significant coefficients of correlation: 0.94 for stem volume and 0.90 for total aboveground tree biomass

    The Assessment of habitat condition and consevation status of lowland British woodlands using earth observation techniques.

    Get PDF
    The successful implementation of habitat preservation and management demands regular and spatially explicit monitoring of conservation status at a range of scales based on indicators. Woodland condition can be described in terms of compositional and structural attributes (e.g. overstorey, understorey, ground flora), evidence of natural turnover (e.g. deadwood and tree regeneration), andanthropogenic influences (e.g.disturbance, damage). Woodland condition assessments are currently conducted via fieldwork, which is hampered by cost, spatial coverage, objectiveness and repeatability.This projectevaluates the ability of airborne remote sensing (RS) techniques to assess woodland condition, utilising a sensor-fusion approach to survey a foreststudy site and develop condition indicators. Here condition is based on measures of structural and compositional diversity in the woodland vertical profile, with consideration of the presence of native species, deadwood, and tree regeneration. A 22 km2 study area was established in the New Forest, Hampshire, UK, which contained a variety of forest types, including managed plantation, semi-ancient coniferous and deciduous woodland. Fieldwork was conducted in 41 field plots located across this range of forest types, each with varying properties. The field plots were 30x30m in size and recorded a total of 39 forest metrics relating to individual elements of condition as identified in the literature. Airborne hyperspectral data (visible and near-infrared) and small footprint LiDAR capturing both discrete-return (DR) and full-waveform (FW) data were acquired simultaneously, under both leaf-on and leaf-off conditions in 2010. For the combined leaf-on and leaf-off datasets a total of 154 metrics were extracted from the hyperspectral data, 187 metrics from the DR LiDAR and 252 metrics from the FW LiDAR. This comprised both area-based and individual tree crown metrics. These metrics were entered into two statistical approaches, ordinary least squares and Akaike information criterion regression, in order to estimate each of the 39 field plot-level forest variables. These estimated variables were then used as inputs to six forest condition assessment approaches identified in the literature. In total, 35 of the 39 field plot-level forest variables could be estimated with a validated NRMSE value below 0.4 using RS data (23 of these models had NRMSE values below 0.3). Over half of these models involved the use of FW LiDAR data on its own or combined with hyperspectral data, demonstrating this to be single most able dataset. Due to the synoptic coverage of the RS data, each of these field plot variables could be estimated and mapped continuously over the entire study site at the 30x30m resolution (i.e. field plot-level scale). The RS estimated field variables were then used as inputs to six forest condition assessment approaches identified in the literature.Three of the derived condition indices were successful based on correspondence with field validation data and woodlandcompartment boundaries. The three successful condition assessment methods were driven primarily by tree size and tree size variation. The best technique for assessing woodland condition was a score-based method which combined seventeen inputs which relate to tree species composition, tree size and variability, deadwood, and understory components; all of whichwere shown to be derived successfully from the appropriate combination of airborne hyperspectral and LiDAR datasets. The approach demonstrated in this project therefore shows that conventional methods of assessing forest condition can be applied with RS derived inputs for woodland assessment purposes over landscape-scale areas

    Delineation of individual tree crowns from ALS and hyperspectral data: A comparison among four methods

    Get PDF
    In this paper four different delineation methods based on airborne laser scanning (ALS) and hyperspectral data are compared over a forest area in the Italian Alps. The comparison was carried out in terms of detected trees, while the ALS based methods are compared also in terms of attributes estimated (e.g. height). From the experimental results emerged that ALS methods outperformed hyperspectral one in terms of tree detection rate in two of three cases. The best results were achieved with a method based on region growing on an ALS image, and by one based on clustering of raw ALS point cloud. Regarding the estimates of the tree attributes all the ALS methods provided good results with very high accuracies when considering only big trees

    Accuracy of tree geometric parameters depending on the LiDAR data density

    Full text link
    [EN] The aim of this study was to compare geometric parameters of olive trees (tree height, crown base height, crown diameters, crown area), using LiDAR data of different densities: 0.5, 3.5 and 9 points m(-2). Two strategies were proposed and verified with a focus on raster and raw data analysis. Statistical tests have shown, that for the tree height and crown base height estimation, the choice of strategy was irrelevant, but denser LiDAR data provided more accurate results. The raster analysis strategy applied for sparse and dense LiDAR datasets allowed crown shape to be determined with a similar accuracy which means raster data are useful for estimating other indirect tree parameters. The quality of results was independent from the tree size.The authors appreciate the financial support provided by the Vice-Rectorate for Research of the Universitat Politecnica de Valencia [Grant PAID-06-12-3297; SP20120534].HadĂĄs, E.; Estornell Cremades, J. (2016). Accuracy of tree geometric parameters depending on the LiDAR data density. European Journal of Remote Sensing. 49:73-92. https://doi.org/10.5721/EuJRS20164905S73924

    Uncertainty in parameterizing floodplain forest friction for natural flood management, using remote sensing

    Get PDF
    One potential Natural Flood Management (NFM) option is floodplain reforestation or manage existing riparian forests, with a view to increasing flow resistance and attenuate flood hydrographs. However, the effectiveness of floodplain forests as resistance agents, during different magnitude overbank floods, has yet to be appropriately parameterized for hydraulic models. Remote sensing offers high-resolution datasets capable of characterizing vegetation structure from a variety of platforms, but they contain uncertainty. For the first time, we demonstrate uncertainty propagation in remote sensing derivations of complex vegetation structure through roughness prediction and floodplain flow for extreme flows and different forest types (young and old Poplar plantations, young and old Pine plantations, and an unmanaged riparian forest). The lowest uncertainties resulted from terrestrial and airborne lidar, where airborne lidar is currently best at defining canopy leaf area, but more research is needed to determine wood area. Mean literature uncertainties in stem density, trunk diameter, wood, and leaf area indices (20, 10, 30, 20%, respectively) resulted in a combined Manning’s n uncertainty from 11–13% to 11–17% at 2 m to 8 m flow depths. This equates to 7–8% roughness uncertainty per 10% combined forest structure uncertainty. Individually, stem density and trunk diameter uncertainties resulted in the largest Manning’s n uncertainty at all flow depths, especially for flow though Pine plantations. For deeper flows, leaf and woody areas become much more important, especially for unmanaged riparian forests with low canopy morphology. Forest structure errors propagated to flow depth demonstrate that even small flows can change by a decimeter, while deeper flows can change by 40 cm or more. For flow depth, errors in canopy structure are deemed more severe in flows depths beyond 4–6 m. This study highlights the need for lower uncertainty in all forest structure components using remote sensing, to improve roughness parameterization and flood modeling for NFM
    • …
    corecore