87 research outputs found

    Multimodal Data at Signalized Intersections: Strategies for Archiving Existing and New Data Streams to Support Operations and Planning & Fusion and Integration of Arterial Performance Data

    Get PDF
    There is a growing interest in arterial system management due to the increasing amount of travel on arterials and a growing emphasis on multimodal transportation. The benefits of archiving arterial-related data are numerous. This research report describes our efforts to assemble and develop a multimodal archive for the Portland-Vancouver region. There is coverage of data sources from all modes in the metropolitan region; however, the preliminary nature of the archiving process means that some of the data are incomplete and samples. The arterial data sources available in the Portland-Vancouver region and that are covered in this report include data for various local agencies (City of Portland, Clark County, WA, TriMet and C-TRAN) covering vehicle, transit, pedestrian, and bicycle modes. We provide detailed descriptions of each data source and a spatial and temporal classification. The report describes the conceptual framework for an archive and the data collection and archival process, including the process for extracting the data from the agency systems and transferring these data to our multimodal database. Data can be made more useful though the use of improved visualization techniques. Thus as part of the project, a number of novel, online visualizations were created and implemented. These graphs and displays are summarized in this report and example visualizations are shown. As with any automated sensor system, data quality and completeness is an important issue and the challenge of automating data quality is large. Preliminary efforts to validate and monitor data quality and automate data quality processing are explored. Finally, the report presents efforts to combine transit and travel time data and signal timing and vehicle count data to generate some sample congestion measures

    Freeway Multisensor Data Fusion Approach Integrating Data from Cellphone Probes and Fixed Sensors

    Get PDF
    Freeway traffic state information from multiple sources provides sufficient support to the traffic surveillance but also brings challenges. This paper made an investigation into the fusion of a new data combination from cellular handoff probe system and microwave sensors. And a fusion method based on the neural network technique was proposed. To identify the factors influencing the accuracy of fusion results, we analyzed the sensitivity of those factors by changing the inputs of neural-network-based fusion model. The results showed that handoff link length and sample size were identified as the most influential parameters to the precision of fusion. Then, the effectiveness and capability of proposed fusion method under various traffic conditions were evaluated. And a comparative analysis between the proposed method and other fusion approaches was conducted. The results of simulation test and evaluation showed that the fusion method could complement the drawback of each collection method, improve the overall estimation accuracy, adapt to the variable traffic condition (free flow or incident state), suit the fusion of data from cellphone probes and fixed sensors, and outperform other fusion methods

    Fine-grained traffic state estimation and visualisation

    No full text
    Tools for visualising the current traffic state are used by local authorities for strategic monitoring of the traffic network and by everyday users for planning their journey. Popular visualisations include those provided by Google Maps and by Inrix. Both employ a traffic lights colour-coding system, where roads on a map are coloured green if traffic is flowing normally and red or black if there is congestion. New sensor technology, especially from wireless sources, is allowing resolution down to lane level. A case study is reported in which a traffic micro-simulation test bed is used to generate high-resolution estimates. An interactive visualisation of the fine-grained traffic state is presented. The visualisation is demonstrated using Google Earth and affords the user a detailed three-dimensional view of the traffic state down to lane level in real time

    New Solutions Based On Wireless Networks For Dynamic Traffic Lights Management: A Comparison Between IEEE 802.15.4 And Bluetooth

    Get PDF
    Abstract The Wireless Sensor Networks are widely used to detect and exchange information and in recent years they have been increasingly involved in Intelligent Transportation System applications, especially in dynamic management of signalized intersections. In fact, the real-time knowledge of information concerning traffic light junctions represents a valid solution to congestion problems. In this paper, a wireless network architecture, based on IEEE 802.15.4 or Bluetooth, in order to monitor vehicular traffic flows near to traffic lights, is introduced. Moreover, an innovative algorithm is proposed in order to determine dynamically green times and phase sequence of traffic lights, based on measured values of traffic flows. Several simulations compare IEEE 802.15.4 and Bluetooth protocols in order to identify the more suitable communication protocol for ITS applications. Furthermore, in order to confirm the validity of the proposed algorithm for the dynamic management of traffic lights, some case studies have been considered and several simulations have been performed

    Short-Term Travel Time Prediction on Freeways

    Get PDF
    Short-term travel time prediction supports the implementation of proactive traffic management and control strategies to alleviate if not prevent congestion and enable rational route choices and traffic mode selections to enhance travel mobility and safety. Over the last decade, Bluetooth technology has been increasingly used in collecting travel time data due to the technology’s advantages over conventional detection techniques in terms of direct travel time measurement, anonymous detection, and cost-effectiveness. However, similar to many other Automatic Vehicle Identification (AVI) technologies, Bluetooth technology has some limitations in measuring travel time information including 1) Bluetooth technology cannot associate travel time measurements with different traffic streams or facilities, therefore, the facility-specific travel time information is not directly available from Bluetooth measurements; 2) Bluetooth travel time measurements are influenced by measurement lag, because the travel time associated with vehicles that have not reached the downstream Bluetooth detector location cannot be taken at the instant of analysis. Freeway sections may include multiple distinct traffic stream (i.e., facilities) moving in the same direction of travel under a number of scenarios including: (1) a freeway section that contain both a High Occupancy Vehicle (HOV) or High Occupancy Toll (HOT) lane and several general purpose lanes (GPL); (2) a freeway section with a nearby parallel service roadway; (3) a freeway section in which there exist physically separated lanes (e.g. express versus collector lanes); or (4) a freeway section in which a fraction of the lanes are used by vehicles to access an off ramp. In this research, two different methods were proposed in estimating facility-specific travel times from Bluetooth measurements. Method 1 applies the Anderson-Darling test in matching the distribution of real-time Bluetooth travel time measurements with reference measurements. Method 2 first clusters the travel time measurements using the K-means algorithm, and then associates the clusters with facilities using traffic flow model. The performances of these two proposed methods have been evaluated against a Benchmark method using simulation data. A sensitivity analysis was also performed to understand the impacts of traffic conditions on the performance of different models. Based on the results, Method 2 is recommended when the physical barriers or law enforcement prevent drivers from freely switching between the underlying facilities; however, when the roadway functions as a self-correcting system allowing vehicles to freely switching between underlying facilities, the Benchmark method, which assumes one facility always operating faster than the other facility, is recommended for application. The Bluetooth travel time measurement lag leads to delayed detection of traffic condition variations and travel time changes, especially during congestion and transition periods or when consecutive Bluetooth detectors are placed far apart. In order to alleviate the travel time measurement lag, this research proposed to use non-lagged Bluetooth measurements (e.g., the number of repetitive detections for each vehicle and the time a vehicle spent in the detection zone) for inferring traffic stream states in the vicinity of the Bluetooth detectors. Two model structures including the analytical model and the statistical model have been proposed to estimate the traffic conditions based on non-lagged Bluetooth measurements. The results showed that the proposed RUSBoost classification tree achieved over 94% overall accuracy in predicting traffic conditions as congested or uncongested. When modeling traffic conditions as three traffic states (i.e., the free-flow state, the transition state, and the congested state) using the RUSBoost classification tree, the overall accuracy was 67.2%; however, the accuracy in predicting the congested traffic state was improved from 84.7% of the two state model to 87.7%. Because traffic state information enables the travel time prediction model to more timely detect the changes in traffic conditions, both the two-state model and the three-state model have been evaluated in developing travel time prediction models in this research. The Random Forest model was the main algorithm adopted in training travel time prediction models using both travel time measurements and inferred traffic states. Using historical Bluetooth data as inputs, the model results proved that the inclusion of traffic states information consistently lead to better travel time prediction results in terms of lower root mean square errors (improved by over 11%), lower 90th percentile absolute relative error ARE (improved by over 12%), and lower standard deviations of ARE (improved by over 15%) compared to other model structures without traffic states as inputs. In addition, the impact of traffic state inclusion on travel time prediction accuracy as a function of Bluetooth detector spacing was also examined using simulation data. The results showed that the segment length of 4~8 km is optimal in terms of the improvement from using traffic state information in travel time prediction models

    Freeway Travel Speed Calculation Model Based on ETC Transaction Data

    Get PDF
    Real-time traffic flow operation condition of freeway gradually becomes the critical information for the freeway users and managers. In fact, electronic toll collection (ETC) transaction data effectively records operational information of vehicles on freeway, which provides a new method to estimate the travel speed of freeway. First, the paper analyzed the structure of ETC transaction data and presented the data preprocess procedure. Then, a dual-level travel speed calculation model was established under different levels of sample sizes. In order to ensure a sufficient sample size, ETC data of different enter-leave toll plazas pairs which contain more than one road segment were used to calculate the travel speed of every road segment. The reduction coefficient α and reliable weight θ for sample vehicle speed were introduced in the model. Finally, the model was verified by the special designed field experiments which were conducted on several freeways in Beijing at different time periods. The experiments results demonstrated that the average relative error was about 6.5% which means that the freeway travel speed could be estimated by the proposed model accurately. The proposed model is helpful to promote the level of the freeway operation monitoring and the freeway management, as well as to provide useful information for the freeway travelers

    The use of a Blockchain-based System in Traffic Operations to promote Cooperation among Connected Vehicles

    Get PDF
    Abstract This paper intends to present some ideas for the implementation of cooperative ITS systems based on the Blockchain Technology (BT) concept. Blockchain technology has been recently introduced and, in this paper, we discuss a system that is based on a dedicated blockchain, able to involve both drivers and city administrations in the adoption of promising and innovative technologies that will create cooperation among connected vehicles. The proposed blockchain-based system can allow city administrators to reward drivers when they are willing to share travel data. The system manages in a special way the creation of new coins which are assigned to drivers and institutions participating actively in the system. Moreover, the system allows keeping a complete track of all transactions and interactions between drivers and city management on a completely open and shared platform. The main idea is to combine connected vehicles with BT to promote Cooperative ITS use and a better use of infrastructures

    Investigation of Driver Route Choice Behaviour using Bluetooth Data

    Get PDF
    Many local authorities use small-scale transport models to manage their transportation networks. These may assume drivers’ behaviour to be rational in choosing the fastest route, and thus all drivers behave the same given an origin and destination, leading to simplified aggregate flow models, fitted to anonymous traffic flow measurements. Recent price falls in traffic sensors, data storage, and compute power now enable Data Science to empirically test such assumptions, by using per-driver data to infer route selection from sensor observations and compare with optimal route selection. A methodology is presented using per-driver data to analyse driver route choice behaviour in transportation networks. Traffic flows on multiple measurable routes for origin-destination pairs are compared based on the length of each route. A driver rationality index is defined by considering the shortest physical route between an origin-destination pair. The proposed method is intended to aid calibration of parameters used in traffic assignment models e.g. weights in generalized cost formulations or dispersion within stochastic user equilibrium models. The method is demonstrated using raw sensor datasets collected through Bluetooth sensors in the area of Chesterfield, Derbyshire, UK. The results for this region show that routes with a significant difference in lengths of their paths have the majority (71%) of drivers using the optimal path but as the difference in length decreases, the probability of optimal route choice decreases (27%). The methodology can be used for extended research considering the impact on route choice of other factors including travel time and road specific conditions

    mobile systems applied to traffic management and safety a state of the art

    Get PDF
    Abstract Mobile systems applied to traffic management and control and traffic safety have the potential to shape the future of road transportation. The following innovations, that will be deployed on a large scale, could reshape road traffic management practices: – the implementation of connected vehicles with global navigation satellite (GNSS) system receivers; – the autonomous car revolution; – the spreading of smartphone-based systems and the development of Mobile Cooperative Web 2.0 which is laying the base for future development of systems that will also incorporate connected and autonomous vehicles; – an increasing need for sustainability of transportation in terms of energy efficiency, traffic safety and environmental issues. This paper intends to provide a state of the art on current systems and an anticipation of how mobile systems applied to traffic management and safety could lead to a completely new transportation system in which safety and congestion issues are finally properly addressed
    • …
    corecore