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1. Introduction 

Most transport practitioners today, including local authorities and transport consultancies, rely on traditional 
Transport Modelling assumptions of User Equilibrium to assess the driving behaviour in their case studies. There are 
many cases where transport models and their parameters are transferred without calibration to a new application 
context with undesirable outcomes. Therefore, there is a need for more realistic calibration of these models to real-
world driver behavior. 

Emerging technologies of data collection through sensors, supported by a continuous decrease in their installation 
costs and an increase of data storage and computing capacity, can provide the necessary framework for data-driven 
applications in the field of transport modelling. Currently, due to the sheer amount of incoming real-time data, there 
is a growing need for developing new methods of data analysis to address the limitations of traditional practices. This 
study utilizes some of these techniques to investigate the rationality of drivers in a transportation network from traffic 
sensor data, which in turn provides new parameters to calibrate flow models based on stochastic routing. More 
generally, this illustrates how the new Transport Data Science approach can be used as a complimentary tool and 
provide evidence to support, and enhance traditional transport models.   

1.1. Transport Sensor Data 

The use of passively collected data from ubiquitous sensors is becoming increasingly popular in Transport 
Planning, due to its significant advantages over traditional transport surveys. It provides inexpensive and continuous 
data collection on a 24-hour basis, resulting in a greater spatio-temporal resolution. On the other hand, traditional 
methods typically include data collected from censuses, not frequently updated, or from expensive and infrequent 
transport-related surveys, with limited population coverage, which in many cases are prone to errors (e.g. respondents’ 
cognitive fatigue-sampling bias) or might cause traffic disruption (Yang et al., 2015).  “Big” data is characterized by 
its volume, velocity, variety, veracity and value (Ishwarappa and Anuradha, 2015). Subsequent analysis of data 
collected through mobile phones (Iqbal et al., 2014; Bwambale et al., 2017), GPS and Bluetooth sensors (Barceló et 
al., 2010; Martchouk et al., 2011; Gong et al., 2016), Automated Fare Collection (AFC) systems (Mahrsi et al., 2014), 
Automated Number-Plate Recognition (ANPR) systems (Fox et al., 2010), and Location-based Social Networking 
(LSBN) data from social media (Yang et al., 2015), among others, has the potential of providing useful insights, 
uncovering previously hidden mobility patterns at a high resolution level. This level of analysis has been supported 
by trends and advances in computer power, storage space and cloud computing, since the beginning of the century 
(El-Seoud et al., 2017).  

 

 

Fig. 1. Bluetooth sensor monitoring system [Source: (Barcelo et al., 2010)] 

Bluetooth sensors, specifically, have been primarily used for Origin-Destination and travel time estimation 
(Barceló et al., 2010) or for driver classification (Crawford et al., 2018). Traditional methods of estimating travel 
times, involving inductive loop detectors or probe vehicles combined with GPS devices, are limited in providing a 
complete dataset with multiple time periods during the day and different driver classes (Martchouk et al., 2011). On 
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the contrary, data derived from Bluetooth sensors can provide real time monitoring of travel time and speed for each 
individual passing vehicle being detected by them (fig. 1). The main drawback of Bluetooth data is the ability to 
capture only a subset of the total flow, as many drivers might opt to disable Bluetooth devices for battery conservation 
(Yang et al., 2015). The likelihood also exists that a passing vehicle with a Bluetooth-enabled device will not get 
detected by the sensor. An experiment conducted by Araghi et al. (2014) indicated that on average only 80% of 
detectable vehicles are actually being detected while passing from a Bluetooth sensor zone. To overcome the 
limitations of both approaches, there is a growing research interest in fusing together Bluetooth and loop detector data 
(Bachmann et al., 2013). 

1.2. Traffic Models 

Rational decision-making is often a key assumption in social sciences from economics to transport. The central 
model of economics is the homo economicus which assumes that agents behave rationally and seek to maximise utility 
(Persky, 1995). Simon (1991) argued that due to imperfect and incomplete information it is rather reasonable to 
assume that rationality is “bounded”. Bounded rationality was assumed in a variety of transport models (Di et al., 
2013) and in road safety (Sivak, 2002) or transport policy making (Marsden et al., 2012) as well as route choice studies 
(Nakayama et al., 2001). Transport models usually have some uncertainty effects introduced as random variables 
(Ben-Akiva and Lerman, 1985). The error term as suggested by Daganzo and Sheffi (1979) can be interpreted as the 
uncertainty of travel time. Throughout the years, different route choice models were proposed based on different 
assumptions, i.e. that a driver bases the decision to find the least costly route on the weighted average of time from 
the past (Horowitz, 1984). Hyunmyung (2012) implied that drivers’ behaviour and choices tend to be habitual and 
repetitive. User Equilibrium (UE) models, however, do not take the past experiences into account, so UE solutions 
can be more sensitive to changes in the network than drivers actually are. Kobayashi (1994) implied that the reason 
for thinking that drivers are rational is due to drivers’ learning process. Nakayama et al. (2001), however, argued that 
even after a long learning process, there is heterogeneity in driver’s perceptions of routes and therefore behaviour in 
the network is heterogenous.  Rationality of drivers can be measured by travelling behaviour between origins and 
destinations. This is one of the key components of route choice problems and many plausible solutions have been 
developed.  

In Deterministic UE, users are assumed to have perfect knowledge of the network conditions and make rational 
decisions based solely on the generalized costs of each available route. This assignment model has been particularly 
successful at describing traffic flows in congested networks, for example in the canonical morning peak period that 
stereotypically comprises drivers with perfect network knowledge, strongly motivated to minimize their travel time. 
The travel time along each link depends on the traffic volume, as described by a Volume-Delay function, and link 
costs add together to give origin-destination route costs. A range of different Volume-Delay functions have been 
formulated in the literature based on their specific context, with the one defined by the Bureau of Public Roads (BPR) 
in the USA (1964), being the most widely used (Eq. 1) (Ortuzar and Willumsen, 2011). 
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and 𝑐𝑐𝑎𝑎 (veh/hr) is the link capacity and a and β are calibration parameters. 

UE can be formulated as a linear programming minimization problem (Beckmann et. al, 1956) with the following 
objective function (for fixed demand), 
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where 𝒙𝒙 = [𝑥𝑥𝑎𝑎] is the vector of link flows. Denoting the flow on the 𝑘𝑘-th path connecting OD pair 𝑚𝑚𝑖𝑖 as 𝑓𝑓𝑘𝑘
𝑖𝑖𝑖𝑖 and the 

total OD demand as 𝑄𝑄, applicable flow conservation and non-negativity constraints are as follows: 
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                𝑓𝑓𝑘𝑘 ≥ 0                                                               (4) 
Various algorithms have been proposed in the literature for solving the UE minimization problem, such as Origin-
Based Assignment algorithms (OBA) can achieve convergence even for large networks (Bar-Gera, 2002). 

Stochastic User Equilibrium (SUE), first defined by Daganzo and Sheffi (1977), generalises UE by including an 
error component in the route choice model which can be interpreted as representing incomplete knowledge of network 
conditions by users. This route choice model does not assign all users to minimum cost route(s), hence those users not 
minimizing their generalized cost could be considered not (strictly) rational. It is worth noting that in fact users may 
be heterogeneous regarding the evaluation of route attributes, such as route distance and travel time, while there may 
be even additional parameters influencing route choices (Ortuzar and Willumsen, 2011) and this would give rise to a 
distribution of perceived route costs. Whereas UE provides a good model for congested urban networks, SUE is mostly 
applicable in non-congested and larger scale networks where strict cost minimization is less relevant and individual 
preferences can influence the perceived generalized costs and choice of preferred routes. In traffic networks, where 
congestion steadily increases, traffic flow patterns obtained from SUE gradually converge to the UE equivalent 
patterns (Florian and Hearn, 2008).  Compared to UE, SUE provides a framework to add flexibility to the assignment 
model and incorporate uncertainty, with the trade-off being an increase in computation time. Two different methods 
are commonly adopted for solving SUE, namely Monte-Carlo simulation and application of the Multinomial Logit 
model (Ortuzar and Willumsen, 2011).  Nonetheless, despite the widespread use of MNL due to its simplicity 
(Prashker and Bekhor, 2004), route choice often consists of numerous overlapping alternatives, which violates the 
basic IID principal and makes the use of MNL unsuitable. One of the major concerns in SUE implementation, besides 
their computational complexity, is the quality of data used as input. Parameters for SUE models are typically obtained 
from Revealed (RP) or Stated Preference (SP) surveys with both being prone to errors leading in many cases to model 
misspecification.  The purpose of the present study is to show how we can instead inform these parameters and drivers’ 
rationality specifically, directly from passively collected data. 

2. Methods 

In the following, “rationality” (strict cost minimization) of drivers in their route selection is tested in the area of 
Chesterfield, Derbyshire, UK, making use of its extensive Bluetooth sensor network to collect sensor data, and 
OpenStreetMap data to find optimal routing. Actual driver routes are inferred though a mixture of sensor detections 
and local-scale shortest path assumptions, and optimal routes are inferred from a global shortest-path assumption.  
Actual and optimal routes are compared as a function of route length to measure driver rationality.  Chesterfield region 
was chosen as it is a major area of interest for its local authority, Derbyshire County Council (DCC), due to traffic 
congestion issues making it a bottleneck for drivers. Therefore, DCC wishes to understand whether drivers using the 
local road network act rationally in order to suggest new interventions. 

Traffic data from Bluetooth Sensors (BS) were obtained from the DCC database system. For computational reasons, 
this study uses traffic flow for a single weekday, 14 February 2017. The database preparation and management was 
carried out using the relational database PostgreSQL. Data processing was performed in accordance with DCC and 
University of Leeds privacy policies.  

2.1. Bluetooth Data Cleaning Algorithm 

The Bluetooth data for 31 sites (Table 1) contained detections for each vehicle as unique Media Access Control 
(MAC) addresses along with the timestamp for each detection, at every chosen site. There was significant noise in the 
Bluetooth data caused by repeated detections of a single vehicle at very close instances of less than 60 seconds of 
time. The dataset was cleaned of these unwanted detections during the import, by removing the erroneous detections 
happening for each site separately. The repetitive detections within each site, which were removed during the data 
cleaning process, were about 48% of the actual raw data. The repetitive detections might be due to long queues or 
slow-moving traffic caused by unforeseen traffic conditions (Fox, 2018), resulting in the same vehicle being detected 
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Various algorithms have been proposed in the literature for solving the UE minimization problem, such as Origin-
Based Assignment algorithms (OBA) can achieve convergence even for large networks (Bar-Gera, 2002). 

Stochastic User Equilibrium (SUE), first defined by Daganzo and Sheffi (1977), generalises UE by including an 
error component in the route choice model which can be interpreted as representing incomplete knowledge of network 
conditions by users. This route choice model does not assign all users to minimum cost route(s), hence those users not 
minimizing their generalized cost could be considered not (strictly) rational. It is worth noting that in fact users may 
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(Prashker and Bekhor, 2004), route choice often consists of numerous overlapping alternatives, which violates the 
basic IID principal and makes the use of MNL unsuitable. One of the major concerns in SUE implementation, besides 
their computational complexity, is the quality of data used as input. Parameters for SUE models are typically obtained 
from Revealed (RP) or Stated Preference (SP) surveys with both being prone to errors leading in many cases to model 
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2. Methods 

In the following, “rationality” (strict cost minimization) of drivers in their route selection is tested in the area of 
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(MAC) addresses along with the timestamp for each detection, at every chosen site. There was significant noise in the 
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time. The dataset was cleaned of these unwanted detections during the import, by removing the erroneous detections 
happening for each site separately. The repetitive detections within each site, which were removed during the data 
cleaning process, were about 48% of the actual raw data. The repetitive detections might be due to long queues or 
slow-moving traffic caused by unforeseen traffic conditions (Fox, 2018), resulting in the same vehicle being detected 
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more than once by the same sensor. It was also observed that certain vehicles were detected at different sites at very 
short time-windows, even if the sites were fairly distant from each other. However, calibration of Bluetooth sensors 
was not within this study’s scope so data used were purely based on the detection outputs received. 

 
 

Table 1. Bluetooth sensor sites 

site ID Location description 

 

DCCJT_MAC000010100 A632 Chesterfield Road, Duckmanton 

DCCJT_MAC000010101 A632 Chesterfield Road, Calow 

DCCJT_MAC000010102 A619 Chatsworth Road 

DCCJT_MAC000010103 B6057 Hollywell Street, Chesterfield 

DCCJT_MAC000010104 A61 Derby Road, Chesterfield 

DCCJT_MAC000010105 A619 Worksop Road, Mastin Moor 

DCCJT_MAC000010106 A632 Chesterfield Road, Duckmanton 

DCCJT_MAC000010107 A632 Chesterfield Road, Arkwright Town 

DCCJT_MAC000010108 A619 Chatsworth Road, Chesterfield 

DCCJT_MAC000010109 A619 Markham Road, Chesterfield 

DCCJT_MAC000010110 A619 Markham Road, Chesterfield 

DCCJT_MAC000010111 B6507 Sheffield Road, Stonegravels 

DCCJT_MAC000010112 Lockoford Road, Whittington Moor 

DCCJT_MAC000010113 A619 Rother Way, Chesterfield 

DCCJT_MAC000010114 A61 Tesco Roundabout 

DCCJT_MAC000010115 B6051 Newbold Road, Newbold 

DCCJT_MAC000010116 A619 Market Street, Staveley 

DCCJT_MAC000010117 A619 Chesterfeld Road, Brimington 

DCCJT_MAC000010118 A619 Chatsworth Road, Chesterfield 

DCCJT_MAC000010119 C327 Whitecotes Lane, Walton 

DCCJT_MAC000010120 Whittington Moor Roundabout Dunston Road 

DCCJT_MAC000010121 Whittington Moor Roundabout Station Road 

DCCJT_MAC000010122 A6 Dronfield Bypass 

DCCJT_MAC000010123 A619 Markham Road / Lordsmill Street, Chesterfield 

DCCJT_MAC000010124 A632 Lordsmill St / Chesterfield Road, Chesterfield 

DCCJT_MAC000010125 M1 Jnc 29 Heath Roundabout 

DCCJT_MAC000010126 M1 Jnc 29 Heath Roundabout A6175 Clay Cross 

DCCJT_MAC000010127 A61 High Street Clay Cross 

DCCJT_MAC000010128 A61 Alfreton Rd / Derby Rd 

DCCJT_MAC000010129 HornsBridge RNDBT South side 

DCCJT_MAC000010130 HornsBridge RNDBT North side 

2.2. Map Data 

The routes in this study are defined as paths connecting sensor location origins and destinations via road links. 
Each sensor is located by latitude and longitude. These locations were converted to 2D geometric projections of 
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Cartesian coordinates, which was associated with World Geodetic System, 1984 (WGS84) and the British National 
Grid (BNG). These projections were used for the study to locate the sensors on a 2D map taken from OpenStreetMap 
data as illustrated in Fig 2. Optimal routes were developed using Dijkstra’s Shortest Path algorithm considering each 
sensor location as a node to create links between them and the algorithm utilised physical length between sensor-to-
sensor distance as its cost parameter. 

 

2.3. Baseline Traffic Estimate 

A simple estimate of traffic flows over the network was obtained by aggregating flows along origin-destination 
routes. Here, a set of origins and destinations is defined by Bluetooth sensor locations at the peripheries of the network. 
Journeys on each origin-destination route are then retrieved by selecting matching Bluetooth MACs at the origin and 
destination, such that the destination detection occurs within a 1-hour time window of the origin detection. Assuming 
that the route taken is the shortest Dijkstra path between the origin and destination, each journey on each route can 
then be added to the flow at each segment of its Dijkstra path, to produce a flow estimation map (Fig. 5). This flow 
estimation is based on the assumption that all drivers choose the shortest route, which is the assumption tested 
empirically in this study.  

2.4. Rationality Analysis 

The study’s purpose is to examine whether drivers are strict cost minimizers. Our methodology is briefly illustrated 
in the flowchart of Fig. 3. 

 

Fig. 2. Detector Locations 
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Fig. 3. Methodology Flowchart 

Analysis of Bluetooth detector data was performed to count journeys of min-cost and other routes as follows: 
• Define an OD pair, as illustrated in Fig. 4, as any pair of sensor locations (A, B) to represent an origin A 

and destination B. 
• Define a Measurable Route (MR), as illustrated in Fig.4, from a set of three sensor locations (A, C, B) 

such that C lies along at least one route for OD pair (A, B), such that the route comprises the Dijkstra path 
from A to C and the Dijkstra path from C to B. 

• Define a Measurable Route Pair (MRP) as a pair of routes ((A, C, B) (A, D, B)) from A to B such that 
(A, C, B) and (A, D, C) are measureable routes, and (A, C, B) is the shortest route from A to B. We define 
(A, C, B) the optimal measurable route of the pair, and (A, D, B) the suboptimal measurable route of the 
pair. A measurable route pair enables us to compare sets of per-driver journeys from A to B via two 
different observable midpoints C and D. 

• Define an Alternative Route (AR) any route from A to B when this route does not contain any other sensor. 
A search over OD pairs was performed to find measurable route pairs, from the 31 available Bluetooth sites as 

origins and destinations.  A total of five measurable route pairs were identified. The small number of detected 
measurable route pairs was due to the small network size of the town of Chesterfield. 

Flows on each of the measurable route pairs were calculated by matching the MAC address detections from 
Bluetooth sensors, which also contained the timestamps of each detection.  To filter spurious matches, the timestamp 
of a vehicle at its destination was required to be greater than at the mid-point locations which were in turn greater than 
at the origin location. To filter further spurious matches, the time interval between origin-to-midpoint and midpoint-
to-destination was required to be less than 30 minutes for each, making the origin-to-destination journey time interval 
less than 60 minutes as an average limit for a weekday condition. Finally, multiple detections of the same MAC on a 
route within these time windows were filtered to only the first sightings of the MAC at each location.  

Measurable route flows between an origin sensor, A, and a destination sensor, B, having mid-point sensors, C and 
D, were obtained by counting the number of vehicles that travelled on those routes or paths using the detections (Fig. 
3).  

OD flows from origin A to destination B were also computed for each measurable route pair, using the same filtering 
process as above to count all filtered detection matches at A and B, but without considering midpoints. OD flow thus 
contained the aggregate vehicle flows from both measurable routes plus all possible alternative routes. The traffic 
flow component on alternative routes was then computed by subtracting the shortest or optimal route flow from the 
OD flow.  
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These flows were used to analyse the percentage of people taking optimal and suboptimal measurable routes and 
aggregate alternative routes to give an insight of how drivers chose their routes when length is considered as the main 
constraint.  

To measure behaviour rationality, we propose the Driver Rationality Index (DRI) defined as: 
 

             𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖 =  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑃𝑃𝑃𝑃𝑜𝑜ℎ
𝑖𝑖𝑖𝑖

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑇𝑇𝑜𝑜𝑜𝑜𝑃𝑃𝑇𝑇
𝑖𝑖𝑖𝑖                                                                   (5) 

 
where, i and j are the origin and destination sensors, respectively.  The DRI was calculated using MR and OD flows 

for each OD pair.  

Fig. 4. (a) OD Route, (b) Measurable Route 

3. Results  

3.1. Baseline Traffic Estimates 

`To set the rationality decisions in context, it is useful to examine some baseline traffic estimates. The traffic estimate 
from the Bluetooth OD route flows and for the specific day examined is shown in Fig. 5. This gives an overview of 
the traffic in the whole area, including some regions which have no sensors themselves. It should be mentioned, 
however that these are biased flow estimates because links containing more Bluetooth sensors will show more traffic. 

3.2. Bluetooth Sensor Analysis: Measurable Route Pairs 

The detected vehicles passing through the 5 selected measurable route pairs were filtered based on the methodology 
described and their total flows were calculated. In Table 2, the total volumes travelling between the selected OD pairs 
are presented. The third OD pair, MAC000010119-MAC000010130, contained the highest daily volume (for the 
selected day) of 532 veh/day, while the least number of vehicles were observed in the fourth and fifth OD pairs, 
MAC000010121-MAC000010124 and MAC000010123-MAC000010120, with 2 veh/day and 13 veh/day, 
respectively. The low total volume in those routes has deemed the results obtained from their analysis insignificant. 
In addition, for the two latter pairs, it should be noted that they represent routes mostly on the same links but on 
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different directions of the main entrance of Chesterfield. The low volumes on those routes for that particular day is an 
indication of abnormal road conditions, such as a partial road closure for maintenance works.  

Fig. 5. Flow map between Bluetooth sensors 

In Fig. 6 to Fig. 10, the maps for each OD pair from Table 2 are illustrated. Table 3 shows the respective distance 
and volume of chosen OD routes. Furthermore, in Fig. 10 the relation of traffic flow on each route with its respective 
distance is depicted. 

  

Fig. 6. MRs between MAC00010101-MAC00010119  Fig.7. MRs between MAC00010102-MAC00010104  
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Fig. 8. MRs between MAC00010119-MAC00010130 

 
Fig. 9. MRs between MAC00010121-MAC00010124  

 

 

Fig. 10. MRs between MAC00010123-MAC00010120 

 

Table 2. Total volume for OD pairs 

OD index Selected OD pairs Daily 
Volume (veh) 

1 MAC000010101-MAC000010119 74 

2 MAC000010102-MAC000010104 166 

3 MAC000010119-MAC000010130 532 

4 MAC000010121-MAC000010124 2 

5 MAC000010123-MAC000010120 13 
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Table 3. Distance and volume for MR 

OD 
Index 

Selected OD 
pairs 

Bluetooth sensors Length(m) Volume 
(veh/day) 

 Origin sensors Midpoint sensors Destination sensors 

1 MAC000010101-
MAC000010119 

MAC000010101 MAC000010104 MAC000010119 4690 20 

 MAC000010101 MAC000010118 MAC000010119 5587 3 

       

2 MAC000010102-
MAC000010104 

MAC000010102 MAC000010119 MAC000010104 3738 66 

 MAC000010102 MAC000010118 MAC000010104 3931 59 

       

3 MAC000010119-
MAC000010130 

MAC000010119 MAC000010104 MAC000010130 2625 379 

 MAC000010119 MAC000010109 MAC000010130 3457 10 

       

4 MAC000010121-
MAC000010124 

MAC000010121 MAC000010112 MAC000010124 3426 0 

 MAC000010121 MAC000010113 MAC000010124 3476 2 

       

5 MAC000010123-
MAC000010120 

MAC000010123 MAC000010112 MAC000010120 3317 0 

 MAC000010123 MAC000010114 MAC000010120 3410 12 

 
 

 

Fig. 11. Relation of traffic flow versus distances on MRs 

In Fig. 11, the distance and volume ratios of shortest to longest route pairs are plotted. It can be observed that when 
the ratio of route distances is much less than unity, the traffic volume is strongly in favour of the shortest route. 
Specifically, for the two routes with the most significant distance ratio, namely “MAC00010119-MAC000010130” 
and “MAC000010101-MAC000010119” with distance differences between their respective routes of 832 meters and 
901 meters, a significant portion of drivers choose the shortest routes. Drivers on the OD pair “MAC000010102-
MAC000010104”, with distance ratio close to unity, were observed to be equally distributed between their chosen 
MRs. As stated above, due to the low flow numbers on the remaining two OD pairs it is not possible to derive useful 
insights. 
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3.3. Bluetooth Sensor Analysis: Comparison with Alternative Routes 

The traffic flows on the optimal measurable routes were then compared with the aggregate flows on all possible 
alternative paths. As presented in Table 4 and illustrated in Fig.12, only in the OD pair MAC000010119-
MAC000010130, a large majority of drivers, 71.24%, chooses the measurable shortest path. Nonetheless, the same is 
not documented in the remaining pairs. Specifically, for MAC000010101-MAC000010119 and MAC000010102-
MAC000010104, the percentage of “rational” drivers is 27.03% and 39.76%, respectively. In this study, the other 
alternative paths cannot be explicitly examined as they do not contain a mid-point Bluetooth sensor.  

Table 4. Percentage of drivers on measurable shortest path and on alternative paths 

Selected OD pair Shortest path (%) Alternative path (%) 

MAC000010101-MAC000010119 27.03 72.97 

MAC000010102-MAC000010104 39.76 60.24 

MAC000010119-MAC000010130 71.24 28.76 

MAC000010121-MAC000010124 0.00 100 

MAC000010123-MAC000010120 0.00 100 

 
Excluding the last two pairs from the analysis, the DRI for each route was examined and their average values are 

presented in Table 5. On average, 46% of drivers captured from Bluetooth sensors followed the shortest path, 
indicating that more than half of drivers might deviate from the shortest route. It should be highlighted, that this 
analysis is highly dependent on the current sensor locations inside the network. The three selected OD pairs captured 
only a portion of daily traffic flows in Chesterfield with the vast majority of drivers not being included in the analysis. 
The results might be significantly different, provided that a larger number of measurable routes with sensors on origin-
midpoint-destination could be identified, highlighting the importance of the sensor location problem. 
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Table 3. Distance and volume for MR 
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MAC000010119 
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MAC000010104 

MAC000010102 MAC000010119 MAC000010104 3738 66 

 MAC000010102 MAC000010118 MAC000010104 3931 59 

       

3 MAC000010119-
MAC000010130 

MAC000010119 MAC000010104 MAC000010130 2625 379 

 MAC000010119 MAC000010109 MAC000010130 3457 10 

       

4 MAC000010121-
MAC000010124 

MAC000010121 MAC000010112 MAC000010124 3426 0 

 MAC000010121 MAC000010113 MAC000010124 3476 2 

       

5 MAC000010123-
MAC000010120 

MAC000010123 MAC000010112 MAC000010120 3317 0 

 MAC000010123 MAC000010114 MAC000010120 3410 12 
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4. Discussion 

From the individual vehicles detected, on average less than half (46%) showed shortest-route rational driving 
behaviour (Table 5). Disaggregate analysis on each of the routes examined illustrates the importance of distance 
difference between an optimal and a suboptimal route. According to the dataset examined, drivers show a high level 
of rational behaviour when a significant distance difference between the two routes exists (Table 5), with a high 
percentage (71%) selecting the shortest path, but the percentage of rational drivers decreases (to 27%) as the two route 
distances become more similar. Therefore, it can be concluded that in the latter case, there are other factors that might 
influence route choice apart from travel distances. This conclusion can be further validated using a more longitudinal 
dataset with a higher temporal resolution. Important variables for route choice behaviour are travel cost and travel 
time. Therefore, models determining the shortest path may also include the aforementioned variables, which can be 
captured by personalized travel surveys such as mobile application-based or traditional surveys. 

These percentages, as functions of route distance ratios or differences, could be used to calibrate parameters for 
Stochastic Route Choice models as used to compute Stochastic User Equilibrium. The percentages on optimal routes 
are surprisingly low and suggest that, if distance was the sole consideration, traffic could be made more efficient in 
this area providing more information to drivers about optimal routes, such as via additional signs like Variable 
Messaging Signs or subsidized satnavs. Although, the current methodology is limited by the assumption that distance 
is the only factor considered. The methodology could be extended by using other cost metrics such as travel time, road 
type and local conditions, such as special events (e.g. accidents). Data fusion of different sources, such as Automatic 
Traffic Counts (ATC) including Automatic Number Plate Recognition (ANPR), CCTV footages, data of pavement 
and weather conditions using Artificial Intelligence algorithms (e.g. Artificial Neural Networks) could be included to 
reduce the data limitations within the study. 

The study was limited by the available data and the size of the network used in the case study to only 5 measurable 
route pairs, where a general methodology is presented for using passively collected data to directly derive insights on 
route choice. These were capable of producing meaningful results but much more could be inferred from a similar 
study on a larger scale. Computational power limitations also restricted the research to use daily flow observations for 
only one day. Future research should include traffic flow observations for a longer period of time and more measurable 
route pairs. An important conclusion from this study is the necessity for local authorities install additional sensors 
specifically to increase the number of measurable route pairs for their specific networks. In addition, researchers 
studying general mobility behavior could combine measurable route pairs from multiple local authorities’ data to 
examine spatial differences of driver rationality. Furthermore, the derived DRI, proposed in this study, is an aggregate 
measure that can be used as an additional variable in an aggregate route choice model. Future research could focus on 
an individual level analysis, where a disaggregated DRI could act as a proxy of the individual’s rational behaviour, 
which is the basic assumption made in Random Utility models. 
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4. Discussion 

From the individual vehicles detected, on average less than half (46%) showed shortest-route rational driving 
behaviour (Table 5). Disaggregate analysis on each of the routes examined illustrates the importance of distance 
difference between an optimal and a suboptimal route. According to the dataset examined, drivers show a high level 
of rational behaviour when a significant distance difference between the two routes exists (Table 5), with a high 
percentage (71%) selecting the shortest path, but the percentage of rational drivers decreases (to 27%) as the two route 
distances become more similar. Therefore, it can be concluded that in the latter case, there are other factors that might 
influence route choice apart from travel distances. This conclusion can be further validated using a more longitudinal 
dataset with a higher temporal resolution. Important variables for route choice behaviour are travel cost and travel 
time. Therefore, models determining the shortest path may also include the aforementioned variables, which can be 
captured by personalized travel surveys such as mobile application-based or traditional surveys. 

These percentages, as functions of route distance ratios or differences, could be used to calibrate parameters for 
Stochastic Route Choice models as used to compute Stochastic User Equilibrium. The percentages on optimal routes 
are surprisingly low and suggest that, if distance was the sole consideration, traffic could be made more efficient in 
this area providing more information to drivers about optimal routes, such as via additional signs like Variable 
Messaging Signs or subsidized satnavs. Although, the current methodology is limited by the assumption that distance 
is the only factor considered. The methodology could be extended by using other cost metrics such as travel time, road 
type and local conditions, such as special events (e.g. accidents). Data fusion of different sources, such as Automatic 
Traffic Counts (ATC) including Automatic Number Plate Recognition (ANPR), CCTV footages, data of pavement 
and weather conditions using Artificial Intelligence algorithms (e.g. Artificial Neural Networks) could be included to 
reduce the data limitations within the study. 

The study was limited by the available data and the size of the network used in the case study to only 5 measurable 
route pairs, where a general methodology is presented for using passively collected data to directly derive insights on 
route choice. These were capable of producing meaningful results but much more could be inferred from a similar 
study on a larger scale. Computational power limitations also restricted the research to use daily flow observations for 
only one day. Future research should include traffic flow observations for a longer period of time and more measurable 
route pairs. An important conclusion from this study is the necessity for local authorities install additional sensors 
specifically to increase the number of measurable route pairs for their specific networks. In addition, researchers 
studying general mobility behavior could combine measurable route pairs from multiple local authorities’ data to 
examine spatial differences of driver rationality. Furthermore, the derived DRI, proposed in this study, is an aggregate 
measure that can be used as an additional variable in an aggregate route choice model. Future research could focus on 
an individual level analysis, where a disaggregated DRI could act as a proxy of the individual’s rational behaviour, 
which is the basic assumption made in Random Utility models. 
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