4,056 research outputs found

    A Decentralized Architecture for Active Sensor Networks

    Get PDF
    This thesis is concerned with the Distributed Information Gathering (DIG) problem in which a Sensor Network is tasked with building a common representation of environment. The problem is motivated by the advantages offered by distributed autonomous sensing systems and the challenges they present. The focus of this study is on Macro Sensor Networks, characterized by platform mobility, heterogeneous teams, and long mission duration. The system under consideration may consist of an arbitrary number of mobile autonomous robots, stationary sensor platforms, and human operators, all linked in a network. This work describes a comprehensive framework called Active Sensor Network (ASN) which addresses the tasks of information fusion, decistion making, system configuration, and user interaction. The main design objectives are scalability with the number of robotic platforms, maximum flexibility in implementation and deployment, and robustness to component and communication failure. The framework is described from three complementary points of view: architecture, algorithms, and implementation. The main contribution of this thesis is the development of the ASN architecture. Its design follows three guiding principles: decentralization, modularity, and locality of interactions. These principles are applied to all aspects of the architecture and the framework in general. To achieve flexibility, the design approach emphasizes interactions between components rather than the definition of the components themselves. The architecture specifies a small set of interfaces sufficient to implement a wide range of information gathering systems. In the area of algorithms, this thesis builds on the earlier work on Decentralized Data Fusion (DDF) and its extension to information-theoretic decistion making. It presents the Bayesian Decentralized Data Fusion (BDDF) algorithm formulated for environment features represented by a general probability density function. Several specific representations are also considered: Gaussian, discrete, and the Certainty Grid map. Well known algorithms for these representations are shown to implement various aspects of the Bayesian framework. As part of the ASN implementation, a practical indoor sensor network has been developed and tested. Two series of experiments were conducted, utilizing two types of environment representation: 1) point features with Gaussian position uncertainty and 2) Certainty Grid maps. The network was operational for several days at a time, with individual platforms coming on and off-line. On several occasions, the network consisted of 39 software components. The lessons learned during the system's development may be applicable to other heterogeneous distributed systems with data-intensive algorithms

    City Data Fusion: Sensor Data Fusion in the Internet of Things

    Full text link
    Internet of Things (IoT) has gained substantial attention recently and play a significant role in smart city application deployments. A number of such smart city applications depend on sensor fusion capabilities in the cloud from diverse data sources. We introduce the concept of IoT and present in detail ten different parameters that govern our sensor data fusion evaluation framework. We then evaluate the current state-of-the art in sensor data fusion against our sensor data fusion framework. Our main goal is to examine and survey different sensor data fusion research efforts based on our evaluation framework. The major open research issues related to sensor data fusion are also presented.Comment: Accepted to be published in International Journal of Distributed Systems and Technologies (IJDST), 201

    Global monitoring of ionospheric weather by GIRO and GNSS data fusion

    Get PDF
    Prompt and accurate imaging of the ionosphere is essential to space weather services, given a broad spectrum of applications that rely on ionospherically propagating radio signals. As the 3D spatial extent of the ionosphere is vast and covered only fragmentarily, data fusion is a strong candidate for solving imaging tasks. Data fusion has been used to blend models and observations for the integrated and consistent views of geosystems. In space weather scenarios, low latency of the sensor data availability is one of the strongest requirements that limits the selection of potential datasets for fusion. Since remote plasma sensing instrumentation for ionospheric weather is complex, scarce, and prone to unavoidable data noise, conventional 3D-var assimilative schemas are not optimal. We describe a novel substantially 4D data fusion service based on near-real-time data feeds from Global Ionosphere Radio Observatory (GIRO) and Global Navigation Satellite System (GNSS) called GAMBIT (Global Assimilative Model of the Bottomside Ionosphere with Topside estimate). GAMBIT operates with a few-minute latency, and it releases, among other data products, the anomaly maps of the effective slab thickness (EST) obtained by fusing GIRO and GNSS data. The anomaly EST mapping aids understanding of the vertical plasma restructuring during disturbed conditionsPeer ReviewedPostprint (published version

    A multi-agent architecture based on the BDI model for data fusion in visual sensor networks

    Get PDF
    30 pages, 18 figures.-- Article in press.The newest surveillance applications is attempting more complex tasks such as the analysis of the behavior of individuals and crowds. These complex tasks may use a distributed visual sensor network in order to gain coverage and exploit the inherent redundancy of the overlapped field of views. This article, presents a Multi-agent architecture based on the Belief-Desire-Intention (BDI) model for processing the information and fusing the data in a distributed visual sensor network. Instead of exchanging raw images between the agents involved in the visual network, local signal processing is performed and only the key observed features are shared. After a registration or calibration phase, the proposed architecture performs tracking, data fusion and coordination. Using the proposed Multi-agent architecture, we focus on the means of fusing the estimated positions on the ground plane from different agents which are applied to the same object. This fusion process is used for two different purposes: (1) to obtain a continuity in the tracking along the field of view of the cameras involved in the distributed network, (2) to improve the quality of the tracking by means of data fusion techniques, and by discarding non reliable sensors. Experimental results on two different scenarios show that the designed architecture can successfully track an object even when occlusions or sensor’s errors take place. The sensor’s errors are reduced by exploiting the inherent redundancy of a visual sensor network with overlapped field of views.This work was partially supported by projects CICYT TIN2008-06742-C02-02/TSI, CICYT TEC2008-06732-C02-02/TEC, SINPROB, CAM MADRINET S-0505/TIC/0255 and DPS2008-07029-C02-02.En prens

    TalkyCars: A Distributed Software Platform for Cooperative Perception among Connected Autonomous Vehicles based on Cellular-V2X Communication

    Get PDF
    Autonomous vehicles are required to operate among highly mixed traffic during their early market-introduction phase, solely relying on local sensory with limited range. Exhaustively comprehending and navigating complex urban environments is potentially not feasible with sufficient reliability using the aforesaid approach. Addressing this challenge, intelligent vehicles can virtually increase their perception range beyond their line of sight by utilizing Vehicle-to-Everything (V2X) communication with surrounding traffic participants to perform cooperative perception. Since existing solutions face a variety of limitations, including lack of comprehensiveness, universality and scalability, this thesis aims to conceptualize, implement and evaluate an end-to-end cooperative perception system using novel techniques. A comprehensive yet extensible modeling approach for dynamic traffic scenes is proposed first, which is based on probabilistic entity-relationship models, accounts for uncertain environments and combines low-level attributes with high-level relational- and semantic knowledge in a generic way. Second, the design of a holistic, distributed software architecture based on edge computing principles is proposed as a foundation for multi-vehicle high-level sensor fusion. In contrast to most existing approaches, the presented solution is designed to rely on Cellular-V2X communication in 5G networks and employs geographically distributed fusion nodes as part of a client-server configuration. A modular proof-of-concept implementation is evaluated in different simulated scenarios to assess the system\u27s performance both qualitatively and quantitatively. Experimental results show that the proposed system scales adequately to meet certain minimum requirements and yields an average improvement in overall perception quality of approximately 27 %

    Viewfinder: final activity report

    Get PDF
    The VIEW-FINDER project (2006-2009) is an 'Advanced Robotics' project that seeks to apply a semi-autonomous robotic system to inspect ground safety in the event of a fire. Its primary aim is to gather data (visual and chemical) in order to assist rescue personnel. A base station combines the gathered information with information retrieved from off-site sources. The project addresses key issues related to map building and reconstruction, interfacing local command information with external sources, human-robot interfaces and semi-autonomous robot navigation. The VIEW-FINDER system is a semi-autonomous; the individual robot-sensors operate autonomously within the limits of the task assigned to them, that is, they will autonomously navigate through and inspect an area. Human operators monitor their operations and send high level task requests as well as low level commands through the interface to any nodes in the entire system. The human interface has to ensure the human supervisor and human interveners are provided a reduced but good and relevant overview of the ground and the robots and human rescue workers therein
    corecore