
 

Policy-based Management for Body-Sensor Networks 
Sye Loong Keoh1, Kevin Twidle1, Nathaniel Pryce1, Alberto E. Schaeffer-Filho1, Emil Lupu1, Naranker 

Dulay1, Morris Sloman1, Steven Heeps2, Stephen Strowes2, Joe Sventek2 and Eleftheria Katsiri1 
1Deparment of Computing, Imperial College London, UK 

2Department of Computing Science, University of Glasgow, UK 
 

Abstract—Body sensor networks e.g., for health monitor-
ing, consist of several low-power on-body wireless sensors, 
higher-level devices such as PDAs and possibly actuators such 
as drug delivery pumps. It is important that such networks can 
adapt autonomously to changing conditions such as failures, 
changes in context e.g., user activity, or changes in the clinical 
condition of patients. Potential reconfiguration actions include 
changing the monitoring thresholds on sensors, the analysis 
algorithms or the configuration of the network itself. This 
paper presents a policy-based approach for autonomous man-
agement of body-sensor networks using the concept of a Self-
Managed Cell (SMC). Ponder2 is an implementation of this 
approach that permits the specification and enforcement of 
policies that facilitate management and adaptation of the re-
sponse to changing conditions. A Tiny Policy Interpreter has 
also been developed in order to provide programmable deci-
sion-making capability for BSN nodes. 

Keywords—Autonomic management, adaptive sensing,  
policy-based adaptation, reconfigurable networks. 

I. INTRODUCTION 

On-body and implantable sensors have the potential to be 
used in hospitals or homes for monitoring physiological 
parameters of post-operative and chronically ill patients 
(e.g., those suffering from diabetes mellitus). These sensors 
use wireless communications to form body sensor networks 
(BSNs) [1] and can interact with wearable processing units 
such as PDAs, mobile phones and the fixed network infra-
structure. Health monitoring using BSNs enables early re-
lease of patients from hospital and facilitates continuous 
monitoring of clinical condition in the home or at work. 
Additionally, healthcare personnel can be automatically 
alerted to obtain assistance if the patient’s condition deterio-
rates.  

Whilst much of the current work focuses on the devel-
opment of new sensors and processing the data acquired 
from them [1], we focus on providing adaptation and self-
management at both sensor level and for body sensor net-
works. For example, there is a need to adapt the frequency 
of measurements on a sensor depending on the activity and 
clinical condition of the patient. This enables optimising 
power consumption whilst ensuring that important episodes 

are not missed. Similarly, the use of variable thresholds for 
transmitting sensor readings reduces the need for communi-
cation and thus power consumption. Typically, sensor con-
figuration may also change depending on the user’s context, 
e.g., location, current activity and medical history. Physio-
logical parameters such as heart rate thresholds then need to 
be configured and customised accordingly. Policy-based 
techniques have been used for over a decade in network and 
systems management in order to define how the system 
should adapt in response to events such as failures, changes 
of context or changes in requirements. By specifying the 
policies (i.e., what actions should be performed in response 
to an event) declaratively and separately from the imple-
mentation of the actions, it is possible to dynamically 
change the adaptation directives without changing the im-
plementation or interrupting the functioning of the device. 
Thus, policy-based mechanisms provide feedback control 
over the system and a constrained form of programmability.  

In this paper, we present a policy-based architecture that 
supports autonomic management for body sensor networks, 
based on the concept of a Self-Managed Cell (SMC) [2]. A 
SMC consists of an autonomous set of hardware and soft-
ware components that represent an administrative domain 
such as a body area network of physiological sensors and 
controllers. We introduce Ponder2 [3], a toolkit that sup-
ports the specification and enforcement of policies in the 
form of event-condition-action rules, the grouping of a 
SMC’s components in domains for management purposes 
and the dynamic loading of new functionality and new 
communication protocols. Policies can be defined with 
respect to the SMC’s components, for interactions with the 
other SMCs and for the management (i.e., loading, removal, 
activation) of the policies themselves. We also describe the 
implementation of a policy interpreter for BSN nodes [4].   

The paper is organised as follows: Section II describes 
the SMC architectural pattern. Section III presents the Pon-
der2 policy interpreter as the core component for adaptation 
and feedback control. Section IV describes the implementa-
tion of a policy interpreter for the BSN nodes. Section V 
discusses our prototype implementation of Ponder2 and 
Tiny Policy Interpreter. Sections VI and VII present the 
related work and conclude the paper with directions for 
future work. 



 

II. SELF-MANAGED CELLS (SMC) 

As an example, an SMC represents a body-sensor net-
work consisting of several sensors, i.e., glucose, blood pres-
sure, heart-rate, ECG monitor and actuators such as an 
insulin pump to administer appropriate dosage of insulin in 
a diabetes Type II patient monitoring system. Context sen-
sors such as accelerometers may be used to sense the pa-
tient’s activities in order to facilitate the adjustment of drug 
delivery and monitoring threshold (e.g., for heart-rate).  

Figure 1 illustrates the architectural pattern of a SMC 
that manages a set of heterogeneous components (i.e., man-
aged resources) such as those in a body-sensor network, a 
room or even a large-scale distributed application. Resource 
adapters are instantiated to provide a unified view for inter-
action with the resources as they may use different inter-
faces or communication protocols. For example, interac-
tions with BSN nodes occur via IEEE 802.15.4 wireless 
links, while interactions with PDAs, mobile phones or 
Gumstix1 typically occur over Wifi or Bluetooth.  

 

 
Fig. 1 The SMC architecture pattern 

A SMC can load other components and services for de-
tecting context changes, monitoring component behaviours 
or for security (authentication and access control). How-
ever, the event bus, the policy service, and the discovery 
service work in conjunction with each other and form the 
core functionality of a SMC that must always be present.  

As most pervasive systems are event-driven, the services 
of a SMC interact using a common publish/subscribe event 
bus, although we do not constrain all communication to be 
event-based. The event bus [5] forwards event notifications 
from services onto any interested parties within the SMC 
who have subscribed to receive the event. This has the ad-
vantage of decoupling the services since an event publisher 
does not need to know about the recipients, thus permitting 
the addition of new services to the SMC without disrupting 
the behaviour of existing services. Secondly, multiple ser-
vices in the SMC can respond concurrently and independ-

                                                           
1 www.gumstix.com 

ently to the same notification with different actions. Finally, 
the event bus can be used for both management and applica-
tion data such as alarms indicating that threshold have been 
exceeded.  In order to lower communication overhead, sen-
sors typically only transmit events when an unusual situa-
tion arises rather than transmitting all sensor readings.    

The policy service implements a local feedback control 
loop to achieve adaptation and self-management. It caters 
for two types of policies: obligation policies (event-
condition-action rules), which define the actions that must 
be performed in response to events, and authorisation poli-
cies which specify what actions are permitted on which 
resources and services. The discovery service is used to 
discover new components which are capable of becoming 
members of the SMC, e.g., sensors and other SMCs in the 
vicinity. It establishes a profile describing the services they 
offer and generates an event describing the addition of the 
new device for other SMC components to use as appropri-
ate. The discovery service also manages the SMC’s mem-
bership as it is necessary to cater for transient failures, 
which are common in wireless communications, and to 
detect permanent departure (e.g., device out of range, 
switched off, or failure). 

Complex environments can be realised through the fed-
eration and composition of several SMCs. This permits 
exchanging policies between SMCs and thus programming 
in a restricted way the behaviour of collaborating or com-
posed SMCs [6].  

III. PONDER2 POLICY SERVICE 

Ponder2 [3] is the policy service for the SMC and has 
been inspired by the lessons learnt in the development of 
Ponder [7], a policy language and toolkit developed at Im-
perial College over a number of years. In contrast to Ponder, 
which was designed for general network and systems man-
agement, Ponder2 has been designed as an entirely extensi-
ble framework that can be used at different levels of scale 
from small embedded devices to complex environments.  

Ponder2 combines a general-purpose object management 
system with a domain service, obligation policy interpreter 
and a command interpreter. The Domain Service provides a 
hierarchical structure for managing objects. The Obligation 
Policy Interpreter handles Event, Condition, Action rules 
(ECA). The Command Interpreter accepts a set of com-
mands in XML form via several communication interfaces. 
These commands can be used to interrogate the Domain 
Service and perform invocations on the managed objects.  

Managed objects (also called adapter objects) represent 
sensors and other SMC devices, services within those de-
vices and remote SMCs. Domains and policies are managed 



 

objects in their own right on which actions can be per-
formed, e.g., adding/removing an object from a domain, 
enabling or disabling a policy. Obligation policies are also 
used to decide which adapters should be created when new 
components appear and in which domain they should be 
placed. Other policies specified for that domain will then 
automatically apply to the new component. 

As shown in Figure 2, the overall architecture of the pol-
icy service comprises the domain structure, the triggering 
mechanism matching events to obligation policies and the 
execution invocation engine which is used to make the calls 
to the objects inside the domain structure. Conceptually the 
policy service has an event interface through which event 
notifications are received from the external event bus, an 
invocation interface through which external invocations are 
received and an action interface for invocations on external 
objects. 

 
Fig. 2 The policy service architecture 

Ponder2 uses XML to encode policies, event specifica-
tions and invocation of actions. It interprets XML as a se-
quence of statements that identify the managed object to be 
used and parameters or sub-elements within the XML that 
are to be sent to the managed object. For example, the fol-
lowing snippet identifies the root domain ("/") and sends it 
an add command. The add command has its own structure 
and information saying what is to be added to the domain 
structure. In this example, the managed object to be added 
to the root domain will be called newobject.  
 

 <use name="/"> 
   <add name="newobject"> 
     ... 
   </add> 
 </use> 
 

XML is verbose and not easy to use, so we are develop-
ing a higher-level declarative language from which the 
XML can be generated. 

A. Instantiation of Managed Objects  

 Ponder2 has the ability to load all the code needed on-
demand. This enables us to use it across a wide variety of 
applications and devices with different capabilities by only 
loading those components that are necessary in each case. 
By default, a domain hierarchy rooted at / will be created. A 
built-in domain factory is used to create new domain objects 
within the domain hierarchy. All other managed objects are 
instantiated through factories that can be loaded on demand. 
Ponder2 has defined several other factory objects such as 
policy (authorisation and obligation), basic managed ob-
ject, and event. This provides the flexibility to dynamically 
create policies and managed objects for communicating 
with various sensors and devices with their respective 
communication protocol such as UDP datagram, Bluetooth 
[8], IEEE 802.15.4, or Zigbee [9]. For example, the follow-
ing XML snippet uses a BSN glucose factory object to cre-
ate a managed object for a BSN based glucose sensor and 
places it into the /bsn domain under the name GlucoseSen-
sor. This managed object acts as an adapter to the actual 
sensor and implements the high-level interface in terms of 
interactions with the sensor via IEEE 802.15.4 radio. 
 
       <use name="/bsn"> 
 <add name="GlucoseSensor"> 
    <use name="/factory/BSNglucose"> 
       <create addr="0:0:0:3" />  
             </use> 
 </add> 
       </use> 
 

Once instantiated, managed objects receive commands in 
the form of XML structures. Typically, the main XML 
element is the <use name="x"> construct to identify a man-
aged object, with one or more operations or sub-commands 
represented by child elements. A command to a managed 
object takes the form:  
 

<use name="managedobject" arg1="foo" arg2="bar"> 
  <op1 op1arg1="doh"/> 
  <op2 op2arg1="argh"/> 
  ... 
</use> 
 

where the operations/commands op1 and op2 could have 
child elements of their own. 

B. Integration with Event Buses 

An event factory implements the interface with an exter-
nal event bus and encapsulates the protocols necessary to 
communicate with it. Multiple event factories can be used to 
integrate with different external event buses if required. The 
event factory can be used to create new Event Types that 
issue a subscription to the external content-based event bus 
and define the event type name and its arguments. When an 



 

event corresponding to the subscription expression occurs 
on the event bus, the event factory is notified of its occur-
rence and raises the corresponding event type in the policy 
interpreter in order to trigger the policies.  
 

<use name="/Event"> 
 <add name="highGlucoseEvent"> 
 <use name="/factory/GlasgowEvent"> 
 <create> 

<and> 
 <sub name="level" op="GEQ" value="90" /> 
 <sub name="type" op="EQ" value="glucose"/> 
</and> 
<arg name="type"/> 
<arg name="level"/> 
<arg name="daytime"/> 

 </create> 
 </use> 
 </add> 
</use> 
 

In the above example, an Event Type called 
/event/highGlucoseEvent that has three arguments, sensor 
type, glucose level and context is created. The subscription 
expression to which this event type corresponds is matched 
by the external event bus against published events on the 
bus. In this example all events with type glucose and level ≥ 
90 are matched.  

This example assumes that the sensor transmits glucose 
readings periodically as events to the event bus. The fre-
quency with which this is done is determined by the sensor 
and may be configurable. However, in order to minimise 
power consumption linked to the communication of read-
ings, it is desirable that the sensor itself be programmable in 
terms of basic policies that can determine when actions such 
as raising external notifications should be done. This has led 
us to develop a basic policy interpreter for BSN nodes 
which is detailed in Section IV.  

C. Policy Specification 

We are primarily concerned with two types of policies: 
authorisation policies define what actions are permitted 
under given circumstances and obligation policies define 
what actions to carry out when specific events occur if the 
specified condition is true. An obligation policy specifies 
the Event Type that will trigger the policy together with 
arguments expected of that event, optional conditions that 
must be satisfied and a set of actions to be performed. 

The example below shows the XML encoding of an obli-
gation policy that will respond to events of type 
/event/highGlucoseEvent. The policy becomes active as 
soon as it is created. It makes use of three named arguments 
provided by the event and their value is substituted in the 
actions and constraint by enclosing the name inside the two 
characters "!" and ";", e.g., !level; and !daytime;. The condi-

tion can contain simple Boolean statements comparing 
string and integer values. In the example above, Ponder2 
checks whether the glucose level is greater than 125 and the 
current time is later than 20:00. Conditions can contain any 
combination of and, or, not, eq, ne, gt, ge, lt or le. And and 
or take any number of XML sub-elements, not takes one, 
while the others all take two. Note that the arguments for 
the comparisons have been separated by XML comments to 
ensure that they are separate XML elements. The action part 
consists of Ponder2 XML commands, which are only exe-
cuted after the event has occurred and if the conditions are 
true. In this example, if the conditions are satisfied, the 
policy invokes an action on the insulin pump to increase the 
night dosage by 10%. Other actions defined in a policy 
could be to send an alarm SMS message to a medical ser-
vice or tell the patient to perform some actions. 

 
<use name="/policy"> 
  <add name="AdjustDosagePolicy"> 
    <use name="/factory/policy"> 
      <create type="obligation"     
       event= "/event/highGlucoseEvent"  
       active="true"> 
        <arg name="type"/> 
        <arg name="level"/> 
        <arg name="daytime"/> 
        <condition> 
          <and> 
            <gt>!level;<!-- -->125</gt> 
            <gt>!daytime;<!-- -->20:00</gt> 
          </and> 
        </condition> 
        <action> 
          <use name="/actuators/ip"> 
            <modify ctx=”night” value=”+10”/> 
          </use> 
        </action> 
      </create> 
    </use> 
  </add> 
</use> 

IV. TINY POLICY INTERPRETER 

Although Ponder2 confers a level of programmability 
and adaptation to the SMC, it is equally desirable to be able 
to introduce similar abstractions at the sensor level in order 
to endow sensors with programmable local decision capa-
bility. Consequently, we have implemented a simplified 
policy interpreter for TinyOS [10] that can be deployed to 
BSN nodes [4]. It is implemented as a NesC [11] compo-
nent library that can dynamically add and remove policies 
specified either as textual scripts or as data structures. Fig-
ure 3 shows the component architecture of the Tiny Policy 
Interpreter. The Policy Script Controller is responsible for 
loading, adding and removing policies, while the policy 
interpreter is invoked to execute the actions according to the 
deployed obligation policies when events occur. 



 

 
Fig. 3 Configuration of the Tiny Policy Interpreter 

Tiny Policies are also specified as event-condition-action 
rules. Events represent samples from sensors and carry a 32-
bit parameter that is the sampled value. Conditions are rep-
resented as inclusive ranges: if the value lies within the 
range, the condition is met. Event sources and actions are 
represented by NesC interfaces and they are pre-defined as 
arrays bound to the Tiny Policy Interpreter. 

 

 
Fig. 4 Policy syntax of Tiny Policy Interpreter 

The Tiny Policy Interpreter implements a simple script 
syntax shown in Figure 4. This syntax is much simpler and 
compact than the Ponder2 XML policy syntax, which can 
be translated into the Tiny Policy syntax before deployment 
to sensors. For example, the policy 1? <= 4 -> 2! speci-
fies that if event 1 fires with a parameter less than or equal 
to 4, then perform action 2, while the policy 2? [5..9]  
-> 1! means that if event 2 fires with a parameter between 
5 and 9 inclusive, then perform action 1. The always clause 
is used to execute an action without needing to evaluate any 

policy condition, e.g., the policy 1? always -> 3! means 
that when  event 1 occurs, perform action 3.  

A. Actions Library  

 
Fig. 5 Event source and action libraries 

A set of general-purpose actions for the Tiny Policy In-
terpreter has also been defined as shown in Figure 5. This 
includes actions to add and remove policies from the Tiny 
Policy Interpreter itself. This facilitates adaptation to con-
text changes as policies can be used to decide which set of 
policies applies according to the user’s activity. For exam-
ple, we can load a policy with a higher heart-rate threshold 
when the accelerometer has detected higher levels of physi-
cal activity. Additional actions include the ability to fire an 
internal event which triggers another policy within the in-
terpreter in order to allow for the execution of sequential 
actions, or an external event to the SMC’s event bus in 
order to trigger management actions at the SMC level. Fi-
nally, an additional pre-defined action can be used to log 
measurement values, e.g., to a medical database in the 
SMC. The event sources for triggering policies within the 
Tiny Policy Interpreter are either sensor readings, pre-
defined internal events or events received from the SMC’s 
event bus, e.g., events generated by other sensors or man-
aged objects in the SMC. 

Ponder2 is typically running on a PDA or Gumstix de-
vice can load and remove policies from the Tiny Policy 
Interpreter, thus enabling it to dynamically configure the 
sensing parameters and behaviour. This provides the flexi-
bility to reconfigure the sensor behaviour without needing 
to re-program them.  

V. IMPLEMENTATION AND EVALUATION 

Ponder2 has been implemented in Java 1.4 and a version 
has been ported to J2ME. It is deployable to any computing 
platforms that have a Java Virtual Machine and we have 
used it in PDAs, Gumstix and mobile phones. We have also 
implemented a content-based publish/subscribe event noti-
fication system [5] for the SMC. Other event systems such 

policy = event condition “->” action 
 
Event = uint8 “?” 
 
condition = equals_condition 
  | in_range_condition 
  | less_than_condition 
  | greater_than_condition 
  | always_condition 
 
equals_condition = uint32 
 
in_range_condition = “[”min:uint32 “..” max:uint32“]” 
 
less_than_condition = “<=” max:uint32 
 
greater_than_condition = “>=” min:uint32 
 
always_condition = “always” 
 
action = do_action | set_property_action 
 
do action = uint8 “!” action_arg? 
 
action_arg = “(” uint32 “)” 
 
uint8 = <unsigned 8-bit integer> 
 
uint32 = <unsigned 32-bit integer> 



 

as XMLBlaster [12] and JMS [13] can also be used in con-
junction with Ponder2.  

In terms of evaluation, we have deployed Ponder2 onto a 
Gumstix which has a 400 MHz Intel XScale PXA255 proc-
essor with 16 MB flash memory and 64 MB SDRAM, run-
ning Linux. We observed that the evaluation of policy con-
straints incurs the most overheads as this involves parsing 
of the constraints, string comparisons and arithmetic opera-
tions. Constraints are stored in the policies in XML format 
and substantial gains in performance would be possible by 
pre-compiling them. The time taken to execute a policy 
without a condition and with an empty action is only 13.57 
ms, while it takes 30.05 ms to execute a policy with a sim-
ple condition and an action to publish a new event. We also 
observed that it takes 23.88 ms to execute a policy (with no 
condition) to invoke an action to issue a command to BSN 
node via IEEE 802.15.4. In a medical scenario such as dia-
betes monitoring, many operations take place over time 
frames of minutes or even hours, so these performance 
figure are more than adequate in many cases. Some applica-
tions such as heart ECG monitoring and analysis, require 
much faster processing. In these cases, processing can be 
done directly in the managed objects and sometimes on the 
BSN sensors themselves.  

Each policy is instantiated as a Java object which con-
sumes 3.214 kB. This however includes the policy type 
(obligation or authorisation), the list of events which may 
trigger the policy, the actions to be performed and the con-
straints that need to be evaluated. At the moment we are 
using XML for internal policy representation, which carries 
a significant memory overhead. More compact representa-
tions could be used for devices with limited memory.  

As for the Tiny Policy Interpreter, its current implemen-
tation can be installed on BSN nodes [4] and the size of its 
codebase is 11.61 kB. 

VI. RELATED WORK 

Work on policy-driven systems has been on-going for 
over a decade in various application areas. Traditional ap-
proaches rooted in network and systems management in-
clude PCIM [14], PDL [15], NGOSS Policy [16], Ponder 
[7] and PMAC [17]. They all make use of event-condition-
action rules for adaptation but are aimed at the management 
of distributed systems and network elements and do not 
scale down to small devices and sensors. 

There are a number of pervasive systems that define 
frameworks for realising pervasive spaces. Gaia [18] and 
Aura [19] introduce the notion of active space and smart 
space respectively in order to provide a “meta-operating 
system” to build pervasive applications. These projects 

focus on spaces of relatively fixed size, e.g., a room or a 
house and on specific concerns such as context-related ap-
plications, user presence and intent and foraging for compu-
tational resources. We consider a SMC as an architectural 
pattern that applies at different levels of scale and we focus 
on generic adaptation mechanisms through policies.  

The Pervasive Information Community Organisation 
(PICO) [20] is a middleware platform to enable effective 
communication and collaboration among heterogeneous 
hardware and software entities in pervasive computing. A 
community is a grouping of hardware entities and software 
agents that work together to achieve goals. The notion of 
community is similar to our SMC, but our focus is to facili-
tate self-configuration and self-management using policies.  

CodeBlue [21, 22] is an ad-hoc sensor network infra-
structure for emergency medical care. It integrates low-
power, wireless vital sign sensors, PDAs and PC-class sys-
tems to provide a combined hardware and software platform 
for medical sensor networks. CodeBlue also provides proto-
cols for device discovery, publish/subscribe, multi-hop 
routing and a simple data query interface for medical moni-
toring. CodeBlue investigates the data rates, node mobility, 
patterns of packet loss and route maintenance of the wire-
less sensor network, while the SMC framework focuses on 
the management of body-sensor networks using policies.  

The co-operative artefacts concept [23] is based on em-
bedded domain knowledge, perceptual intelligence and rule-
based inference in movable artefacts. Measurements from 
the sensors are translated into observational knowledge, 
which is then being evaluated against pre-defined rules that 
are defined using Horn logic and domain knowledge. This 
allows the inference engine to derive the artefact’s behav-
iour in response to the changes in the environment.  

Smart-Its Context Language (SICL) [24] is a high-level 
description language for developing context-aware applica-
tions on embedded systems. It is integrated with a tuple-
space-based communication abstraction that enables inter-
object collaboration. The language provides a means of 
specifying sensor interfaces, inference rules for fusing sen-
sors readings, adaptation rules and basic application behav-
iour. However, this approach does not support dynamic re-
configuration of sensors as re-configuration implies repro-
gramming of sensors.  

VII. CONCLUSIONS AND FUTURE WORK 

We have proposed the SMC abstraction as a basic archi-
tectural pattern that provides local feedback control and 
autonomy. Policies in the form of event-condition-action 
rules, provide a simple and effective encoding of the adapta-
tion strategy required in response to changes of context or in 



 

application requirements. The ability to dynamically load, 
enable and disable the policies together with the ability to 
use policies in order to manage other policies caters for a 
wide variety of application needs. Ponder2 has been de-
signed as an extensible framework where all required com-
ponents can be loaded on demand. This enables us to scale 
the pattern down to relatively small devices and customise 
the interpreter for specific application requirements and 
tasks. The ability to provide a constrained form of pro-
gramming such as policies is equally important at the indi-
vidual sensor level. It enables adaptive behaviour of the 
sensor according to context and thus to also adapt computa-
tional requirements and communication and hence power 
consumption. However, it also provides flexibility to re-
program the sensor with new adaptation strategies without 
requiring installation of new code.  

The requirements we have used have been derived from 
the need for self-configuration and adaptation in e-Health 
applications. However, the resulting principles and frame-
work developed are equally applicable to other application 
areas such as unmanned vehicles, ad-hoc networks, virtual 
collaborations as well as network and systems management.  

The implementation of authorisation policies in both 
Ponder2 and Tiny Policy Interpreter is currently under way, 
as we are concerned with trust, security and privacy issues 
particularly for health-based applications. We are currently 
investigating security issues for body sensor networks in the 
CareGrid project [25]. 

ACKNOWLEDGMENT 

We gratefully acknowledge financial support from the 
UK Engineering and Physical Sciences Research Council 
(EPSRC) through grants GR/S68040/01, GR/S68033/01 
(Amuse Project) and EP/C547586/1 (Biosensornet Project). 
We also thank Ralf Damaschke for enhancing the Tiny 
Policy Interpreter during his UROP internship. 

REFERENCES 

1. G.-Z. Yang (Ed.) Body Sensor Networks, Springer-Verlag, 2006. 
2. N. Dulay, E. Lupu, M. Sloman, J. Sventek, N. Badr and S. Heeps. 

Self-Managed Cells for Ubiquitous Systems. In the Proceedings of 
the 3rd International Conference on Mathematical Methods, Models 
and Architecture for Computer Network Security, 2005.  

3. Ponder2 Documentation Available: www.ponder2.net 
4. The BSN Node Specification developed as part of UbiMon project. 

Available: http://vip.doc.ic.ac.uk/bsn/index.php?m=206 
5. S. Strowes, N. Badr, N. Dulay, S. Heeps, E. Lupu, M. Sloman, and J. 

Sventek. An Event Service Supporting Autonomic Management of 
Ubiquitous Systems for e-Health, In Proc. of the 5th Int. Workshop on 
Distributed Event-based Systems, Lisbon, Portugal, July 2006. 

6. E. Lupu, N. Dulay, M. Sloman, J. Sventek, S. Heeps, S. Strowes, K. 
Twidle, S.L. Keoh, and A. Schaeffer-Filho. AMUSE: Autonomic 
Management of Ubiquitous e-Health Systems. Special Issues of the 
Journal of Concurrency and Computation: Practice and Experience, 
Wiley (In Press).  

7. N. Damianou, N. Dulay, E. Lupu, and M. Sloman, In Proceedings of 
the International Worksop on Policies for Distributed Systems and 
Networks (POLICY 2001), Bristol, UK, Jan 2001. 

8. Bluetooth SIG, Inc., Available: http://www.bluetooth.org/ 
9. Zigbee Alliance, Available: http://www.zigbee.org/ 
10. TinyOS, Available: http://www.tinyos.net/ 
11. D. Gay, P. Levis, R. Behren, M. Welsh, E. Brewer, and D. Culler. 

The nesC Language: A Holistic Approach to Networked Embedded 
Systems, In Proceedings of Programming Language Design and Im-
plementation (PLDI), San Diego, June 2003. 

12. XMLBlaster, Available: http://www.xmlblaster.org/ 
13. JMS, Available: http://java.sun.com/products/jms/. 
14. B. Moore, E. Ellesson, J. Strassner, and A. Westerinen, Policy Core 

Information Model Version 1 Specification, Network Working 
Group, RFC2060, http://www.ietf.org/rfc/rfc3060.txt, 2001. 

15. J. Lobo, R. Bhatia, and S. Naqvi, A Policy Description Language. In 
Proceedings of the 16th National Conference on Artificial Intelli-
gence, Orlando, Florida, July 1999. 

16. J. Strassner, Policy-based Network Management, Morgan Kaufmann, 
2004. 

17. D. Agrawal, S. Calo, J. Giles, K.W. Lee, and D. Verma, Policy 
Management for Networked Systems and Applications, In Proceed-
ings of the 9th IFIP/IEEE International Symposium on Integrated 
Network Management, Nice, France, May 2005. 

18. M. Roman, C. Hess, R. Cerqueira, A. Ranganathan, R. Campbell and 
K. Nahrstedt, A Middleware Infrastructure for Active Spaces, IEEE 
Pervasive Computing, 1(4):74-83, 2002. 

19. D. Garlan, D. P. Siewiorek, A. Smailagic and P. Steenkiste, Aura: 
Toward Distraction-Free Pervasive Computing, IEEE Pervasive 
Computing, 1(2), 2002, pp. 22 - 31. 

20. M. Kumar, B.A. Shirazi, S.K. Das, B.Y. Sung, D. Levine, and M. 
Singhal, PICO: A Middleware Framework for Pervasive Computing, 
IEEE Pervasive Computing, 2(3):72-79, 2003. 

21. D. Malan, T. Fulford-Jones, M. Welsh and S. Moulton. CodeBlue: 
An Ad Hoc Sensor Network Infrastructure for Emergency Medical 
Care. In Proc. of the International Workshop on Wearable and Im-
plantable Body Sensor Networks, April 2004.  

22. V. Shnayder, B.-R. Chen, K. Lorincz, T.R.F. Fulford and M. Welsh. 
Sensor Networks for Medical Care. Havard University Technical Re-
port TR-08-05, April 2005. 

23. M. Strohbach, H-W. Gellersen, G. Kortuem and C. Kray. Cooperative 
Artifacts; Assessing Real World Situations with Embedded Technol-
ogy. In Proc. of the 6th Intl. Conference on Ubiquitous Computing. 
Nottingham, UK, September 7-10, 2004 

24. F. Siegemund. A Context-Aware Communication Platform for Smart 
Objects. In Proc. of the 2nd International Conference on Pervasive 
Computing (Pervasive 2004), Vienna, Austria, April 2004. 

25. EPSRC CareGrid Project. Available: http://www.caregrid.org/  

Address of the corresponding author: 

Author:  Sye Loong Keoh 
Institute: Department of Computing, Imperial College London 
Street:  South Kensington Campus, 
City:  London, SW7 2AZ 
Country: United Kingdom 
Email:  sye.keoh@imperial.ac.uk 


