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Abstract The newest surveillance applications attempt more complex tasks such as

the analysis of the behavior of individuals and crowds. These complex tasks may use

a distributed visual sensor network in order to gain coverage and exploit the inherent

redundancy of the overlapped field of views. In this article, a Multi-agent architecture

based on the Belief-Desire-Intention (BDI) model for processing the information and

fuse data in a distributed visual sensor network is presented.

Instead of exchanging raw images between the agents involved in the visual network,

local signal processing is performed and only the key observed features are shared. After

a registration or calibration phase, the proposed architecture performs tracking, data

fusion and coordination. Using the proposed Multi-agent architecture, we focus on the

means of fusing the estimated positions on the ground plane from different agents which

are applied to the same object. This fusion process is used for two different purposes:

(1) to obtain a continuity in the tracking along the field of view of the cameras involved

in the distributed network, (2) to improve the quality of the tracking by means of fusion

techniques, and by discarding non reliable sensors.

Experimental results on two different scenarios show that the designed architecture

can successfully track an object even when occlusions or sensor’s errors take place. The

sensor’s errors are reduced by exploiting the inherent redundancy of a visual sensor

network with overlapped field of views.
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1 Introduction

Automatic capture and analysis of computer vision scenes is a highly active area of

research due to both the number of potential applications and its inherent complexity.

The number of potential applications, the scientific complexity, the speed and price

of the current hardware, and the efforts made in the field of security issues have had

a direct impact on the development of intelligent visual systems [1]. Computer vision

applications can be roughly grouped under three categories [1]: (1) surveillance appli-

cations, (2) control applications and (3) analysis applications. In this article, we will

focus on surveillance applications. The newest surveillance applications attempt more

complex tasks such as the analysis of the behavior of individuals and crowds. These

complex tasks may use a distributed visual sensor network in order to gain coverage

and exploit the redundancy. In this article, a distributed visual sensor architecture de-

veloped using a BDI agent model is presented. A BDI agent model is a type of agent

architecture containing explicit representations of beliefs, desires and intentions.

On the one hand, sensor networks are related to spatially distributed multi-sensor

environments. In the case of camera sensors, they cope with distributed computer

vision techniques known as Visual Sensor Networks (VSNs) [2]. A distinguishing feature

of visual sensors, as compared with other types of sensor such as pressure sensors,

microphones or thermometers, is the considerable amount of data which they generate,

which makes it essential to have local processing which delivers the information on a

conceptualized level. This distributed information must be integrated and fused with

data fusion1 techniques with the aim of obtaining a global view of the environment

being monitored.

On the other hand, Multi-agent systems are composed of several intelligent software

agents. A software agent [3] is a computational process that has several characteris-

tics: (1) ”reactivity” (agents can perceive and respond to a changing environment),

(2) ”social ability” (the means by which agents interact with other agents) and (3)

”proactivity” (through which agents have a goal-directed behavior).

As a result, Multi-agent VSNs have been introduced in an attempt to achieve more

robust, flexible and adaptable computer vision systems. In Multi-agent VSNs, visual

sensing is the mechanism or process whereby the system can be influenced by the

environment around it. In order to develop a process for the automatic capture and

analysis of computer vision scenes, we present a distributed visual sensor network based

on the BDI Multi-agent model. The use of a Multi-agent architecture for processing

the information in a VSN allows the development of an open architecture which is

easy to scale. We could easily add new agents (with different or the same goals) in the

Multi-agent system following the proposed BDI specification and the communication

messages. This issue is demonstrated in the results of the second scenario which show

how the error is reduced when more visual sensors are employed. Also a standard based

Multi-agent architecture, would allow us to inter-operate with third party developers.

Since each agent has a unique name and direction the communication with other agents

could be easily performed by messages.

The Multi-agent architecture presented in this paper, provides several advantages

which could improve a VSN:

1 The term data fusion is widely used in the literature and appears also as information fusion,
data combination or data integration. In this paper, we refer to multi-sensor data fusion, and
the concept means how to combine redundant data from multiple visual sensors (looking at
the same scene) in an optimal way.



3

– The improvement of accuracy and performance due to cooperation, which could

be easily implemented with messages. For example, a better tracking accuracy as

a result of the agents cooperation.

– Usually agents solve problems which are part of a global issue. For example, most of

them perform local tracking using local image processing, but we also need a global

view of the tracking being performed by all of the agents. In a VSN, this global

view consist in the surveillance process of the environment being monitored which

is achieved using a data fusion process with techniques available in the computer

vision literature.

– The easily sharing of information between agents, thus allowing them to correct

errors by their ability to make an explicit coordination.

– The exploitation of the overlapping field of view of the visual sensors, in order to

achieve better global tracking.

– As tracks2or objects are commonly lost, a data fusion process is justified to avoid

tracking inconsistency. This data fusion process is also implemented in a BDI agent

and the required information is obtained by other agent’s messages.

In this paper, we show an implementation of a visual sensor network using the

BDI Multi-agent model. The proposed architecture performs tracking, data fusion and

coordination. Using this architecture, we focus on how to fuse the tracks from different

agents which pertain to the same object. This fused information is used for two different

purposes: (1) to obtain continuity in the tracking along the field of view of the cameras

involved in the distributed network, which provides extended coverage equivalent to

that of a bigger sensor, and (2) to improve the quality of tracking using data fusion

techniques, by discarding non reliable sensors. In the experiments section, results in two

different scenarios with the objective of validating the previous purposes are presented.

This article describes the general steps which are necessary to take into account for

processing the information in a VSN: (1) local processing on the visual sensors, (2)

registration and camera calibration and (3) data fusion. These steps which are common

to traditional multi-camera environments are defined using the BDI Multi-agent model

as beliefs, desires and intentions.

The main contribution of this article is to define a complete architecture for imple-

menting a VSN using the Multi-agent paradigm, specifically the BDI agent model.

The outline of the article is organized as follows: The following section describes

related studies in the area of Multi-agent systems as applied to visual sensor networks.

Section III addresses the tasks of image and data processing in the VSNs. Following

from this, the details of the architecture of Cooperative Sensor Agents are described

in section IV. Section V presents experiments carried out by using the proposed archi-

tecture in two different scenarios: an indoor scenario with 3 cameras and a basketball

match scenario with 5 cameras. Finally, section VI concludes the paper.

2 Related Works

The work on VSNs can be divided into two categories based on visual configuration:

non-overlapping fields of view [28] and overlapping fields of view. In this work, we

assume an overlapping camera configuration and focus on fusing the local coordinate

frames of multiple cameras into a global view by the use of a BDI Multi-agent system.

2 A track is an ordered set of positions all of them generated from the same object.
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The application of Multi-agent systems in computer vision have been explored

in several works. Berge-Cherfaoui and Vachon [4] proposed a Multi-agent approach

based on the blackboard model. The blackboard model is one of the first Multi-agent

communication models, although it is less flexible than current communication models

based on FIPA-ACL3 [29].

There are several coordination models available for Multi-agent systems. An ap-

proach based on the model of information-subscription coordination is used in the Eu-

ropean project MODEST [5]. The MODEST traffic surveillance system deployed four

cameras along a bridge in Brussels and it is FIPA [6] compliant4. The coordination

mechanism uses the directory facilitator (DF) of the FIPA platform [7]. The design-

ers proposed an extension of Semantic Language (SL) in order to take into account

uncertainty and MPEG-7 descriptors.

A different coordination model based on a contract network protocol was used by

Graf and Knoll [8]. They distinguish between two types of agents: masters and slaves

which are connected using a contract network. However, the main difference in their

approach is that they use a proprietary communication language, not a standard one,

which makes interoperability with other systems problematic.

There are also other papers without an explicit coordination scheme. In [9], a Multi-

agent architecture and Hidden Markov Models are used, in order to understand scene

dynamics, by merging the information streamed by multiple cameras. However, they

use a very simple communication mechanism and do not adopt any communication

standard. The system also produces a computational overload due to classification

issues. In Monitorix [10] the authors use neural networks and Multi-agent systems as a

classification approach. They use a FIPA platform [6] and a FIPA ACL communication

language. In this project, the fields of view of the cameras do not overlap. The work

of [11], which is very similar to our work, proposes an architecture for implementing

algorithms which understand the scene in the visual surveillance domain. The aim

of their work is to obtain a high level description of the events observed by multiple

cameras. As in our work, their architecture associates each camera to a software agent

and the tracking is performed on the ground plane. However, they create one agent for

each object detected in the scene. Dynamic memory architecture [12] is proposed by

Matsuyama et.al to coordinate agents in a real time cooperative multi-target tracking

system [13] using Pan-Tilt-Zoom5 (PTZ) cameras. In their framework they use a group

of active vision agents which represent a logical model for a network-connected com-

puter for each active camera and each agent controls a PTZ camera. They designed

a three-layered interaction architecture in which each agent can either be searching

or tracking. They also defined protocols for cooperative tracking between the agents

which perform 3D tracking, but do not use a standard Multi-agent architecture or

communication language. The work of Bakhtari et. al [14] also propose a Multi-agent

system for online sensing system reconfiguration of an active vision system To combine

data from a homogeneous network of sensors for tracking purposes, Marchesotti et.

3 FIPA is the acronym of The Foundation for Intelligent Physical Agents
(http://www.fipa.org), an IEEE Computer Society standards organization that promotes
agent-based technology and the interoperability of its standards with other technologies. ACL
is the acronym of Agent Communication Language, the communication language proposed by
FIPA.

4 Which means that is conformed with the FIPA standards.
5 Pant-Tilt-Zoom is the name given to cameras with zooming, horizontal (Pan) and vertical

(Tilt) movement capabilities.
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al [15] propose an agent-based architecture. They use the color and position of each

detected target in order to identify it. A paper focused on the selection of the most

appropriate camera for each task, taking into account occlusion is presented in [16].

Their work differs from ours, as objects are tracked by only one camera at any given

time.

However, most of the related work focuses on how to solve different visual sen-

sor problems; there are fewer papers focusing on how to build an intelligent VSN

architecture which takes into account all the related problems (tracking, data fusion,

coordination).

3 Image and Data Processing Tasks in the VSN

In a VSN, the images generated in every visual sensor, which have huge amount of

useless raw data, must be processed with image and video analysis algorithms. A

mono-sensor approach generally suffers from limited coverage and low performance in

tracking targets in certain conditions of occlusion, initialization, lighting changes, and

shadows. Therefore the main objectives of our proposed BDI Multi-agent architecture

are to reduce these problems of limited coverage and low performance. We describe

three different types of agents which together are able to make a visual sensor network

operate successfully: (1) surveillance-sensor agents, (2) fusion agents and (3) interface

agents.

Although computer vision research has achieved great advances in recent decades

in building robust and sophisticated solutions for image analysis, the task of fusing the

processing results of different nodes in an accurate, reliable and decentralized schema

has been less studied.

The main advantages of having a visual sensor network are the coverage of an

extended area and the improvement in the process of inferring visual information which

takes advantage of the overlapped fields of view of different sensors and the redundant

information.

In order to achieve these goals, some of the basic factors which need to be taken

into account are: (1) the transformation of the information into a common coordinate

frame (global coordinates), known as calibration or registration, (2) synchronization to

a common time, (3) the removal of corrupted or erroneous objects by analysis and (4)

the combination of estimations obtained by different sensors.

3.1 Acquiring Information. Local Processing

In our proposal, each visual sensor (camera) is associated using a frame grabber with

a software agent, which acquires video frames to estimate local tracks and interpret its

local scene. A typical configuration of processing modules in a surveillance-sensor agent

is arranged in a pipe-line structure consisting of several modules [17][18]. It directly

interfaces with the image stream coming from a camera and extracts the tracking

information of the mobile objects in the current frame. The interface between adjacent

modules is symbolic data and it is set up in a such a way that for each module there

are different interchangeable algorithms.

The main modules of the application are: (1) a detection process for moving objects;

(2) an association process; (3) a prediction process; (4) a track manager; (5) a track
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Fig. 1 When the scene is projected on the image plane information on the depth of the objects
is lost.

updater. The detection process (1) for moving objects must give a list of blobs6 that

are found in a frame. This list must contain information about the position and size of

each blob. The pixels contained in a blob must be locally distinguishable from pixels

which are not part of the blob. Within the tracking process and continuing from the

list of blobs obtained by the previous module, the association process (2) will solve

the problem of blob-to-track multi-assignment, where several (or zero) blobs may be

assigned to the same track and simultaneously several tracks could overlap and share

common blobs. Therefore, the problem we need to solve here is the decision on the

most appropriate grouping of blobs and the way they are assigned to each track for

every processed frame [19]. The prediction process (3), uses the association made by the

tracking process and estimates on where each track will move to during the next frame;

this prediction will be used by the tracking process in order to make the association.

The track manager module (4) eliminates those blobs that have not been associated

with any track and do not initialize new ones, since they are considered to be noise. The

last main module, the track updater (5), updates the tracks obtained in the latest frame

with the information obtained from the previous modules for this frame. The symbolic

data between adjacent modules is normally filtered using the contextual information

of the scene in order to improve the tracking system in complex situations [20].

3.2 Registration and Camera Calibration

The process of combine different field of views and generate a global view of the area

under observation is known as registration. The registration process involves the geo-

metric camera calibration which consist in the problem of estimating the intrinsic and

extrinsic parameters of a camera.

At the fusion stage, the first step carried out by the fusion agent is the time-space

alignment. Spatial alignment means using a common coordinate frame to represent the

objects, which is done with the registration process to project the coordinates from

a local image plane to global coordinates. Visual sensor calibration requires a certain

number of correspondences in order to establish a geometric transformation between

different views. The calibration process, inspired by the human capability of inferring

3D structures from 2D information, uses a geometrical projection known as the pinhole

6 A blob is a connected set of pixels in an image which are assumed that correspond to an
object.
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Fig. 2 Planar projection on ground plane.

model or perspective projection model [25]. In this model, the creation of a digital image

is divided into two processes in order to obtain the digital image itself: (1) The scene

projection on the image plane (sensor), and (2) the sample and digitalization of this

plane. Each process can be stated as a change in the coordinate system.

The algorithms that reconstruct the 3-D structure from an image, or calculate the

position of the objects’ in space need equations that can match the 3-D points with

their corresponding 2-D projections. Even though those equations are defined by the

projection, it is normal to suppose that the 3-D points can be defined by a different

coordinate system than that of the camera and in addition, it is necessary to relate the

coordinates from a point in the image with the corresponding points in the projection

system given by the camera. For this task, a set of points with known positions in

some fixed world coordinates are used. Thus, camera calibration can be modeled as an

optimization process, where the difference between the image field of view point and

the point in the global coordinate system is minimized with respect to the camera’s

intrinsic and extrinsic parameters. The task of obtaining the value of these parameters

is known in computer vision as the camera calibration process.

Some camera calibration techniques have been proposed, being Tsai [25], Heikkilä

[26] and Zhang [27] the most used and important. In this work we employ the Tsai’s

camera model [25] for calibration issues.

Tsai’s camera model is based on the pinhole model of 3D-2D perspective projection

with 1st order radial lens distortion. The model has 11 parameters, five intrinsic or

internal parameters (which relate the reference system of the camera to the image) and

six extrinsic or external parameters (those which relate both 3-D reference systems).

On one hand, the five intrinsic or internal parameters consist of:

– f: effective focal length of the pinhole camera.

– kappa1: 1st order radial lens distortion coefficient.

– sx: scale factor to account for any uncertainty in the framegrabber’s resampling of

the horizontal scan-line.

– Cx, Cy: coordinates of the center of radial lens distortion and the piercing point of

the camera coordinate frame’s Z axis with the camera’s sensor plane.

On the other hand, the six extrinsic or external parameters consist of:

– Rx, Ry, Rz: rotation angles for the transform between the world coordinate and

the camera coordinate frames.

– Tx, Ty, Tz: translational components for the transform between the world coordi-

nate and camera coordinate frames.

The pinhole model establishes the mathematical relation between the spatial points

and their equivalents in the camera image. The image making process is the projection
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Fig. 3 Calibration template used for camera 2 in the first scenario of the experiments section.

of a three-dimensional world onto a two-dimensional image. Therefore, through per-

spective transformation, the correspondence between the real world and the image can

be obtained. Nevertheless, with inverse perspective transformation there is more than

one possible correspondence (because in the direct transform depth information is lost)

and for each image point there is an infinite set of three-dimensional environmental

points (see Fig. 1). Additional information is necessary to obtain a certain space point

from the image which gives the depth loss suffered in the direct transformation. Binoc-

ular disparity (the angular difference between images of the same features in different

image planes) has been considered one of the most important sources in 3-D informa-

tion recovery [21]. Stereo vision systems are able to infer information about the 3-D

structure and the distance of a scene obtained from two or more images taken from

different angles.

Although stereo-vision is the most common method for inferring 3D information in

computer vision systems, there are approximations which simplify the pin-hole model

by adding some restrictions as to the initial knowledge of the environment. In our

experimentation, we have followed the suggestion of the authors of [22], and we have

developed a simplified calibration model using only one camera and adding the con-

straint that all the world points are in the same plane (see Fig. 2), usually called the

ground plane.

Tsai’s calibration algorithm has two variants: coplanar and non-coplanar data. For

coplanar data, Tsai’s algorithm requires the z component of the 3D coordinates to be

0. Since, we are interested on tracking the objects on the ground plane this require-

ment could be accomplished. Every visual sensor is calibrated using its own calibration

template. Therefore, we obtain the image-plane to ground-plane homography which

consist on the relation between the 3D (x, y, z) world coordinates of a feature point

and the corresponding coordinates (Xf , Yf ) (in pixels).

The constraint in planar motion is used to estimate a homographic correspondence

between views and avoid the use of more complex stereo-vision processes. In order to

obtain the global coordinates of the local tracks, surveillance-sensor agents compute the

inverse transformation of the middle-bottom point of the bounding box of the detected

objects in camera coordinates (see Fig. 4).

When spatial alignment is achieved, the next steps carried out by the data fusion

process are track-to-track association and vector combination, which are described in

the next section.
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Fig. 4 Local projection on the ground plane (white point) of the middle point of the detected
object.

3.3 Data Fusion Problem

In a VSN the information processed by each visual sensor should be integrated or fused

accordingly, providing a global picture of the scene which is being monitoring. Thus,

data fusion techniques became a key phase of a modern VSN system.

A feasible data fusion implementation in a VSN should take into account several re-

strictions. Firstly, sending the raw images acquired from each visual sensor to a central

processor is not feasible due to the high amount of bandwidth requirements. Secondly,

the system should be robust against highly noisy inputs or errors and autonomously

correct the errors.

In this paper we only use 2-dimensional tracking positions on the ground plane in

common global coordinates; however, different features could be used. Each feature is

derived from both a local tracking as well as a projection of the ground-plane positions

on the global coordinates.

The local processing task of each visual sensor agent could be formulated as fo-

llows. Let a sequence of n frames captured from a visual sensor by an agent Sj which

corresponds to n time instances 1 ≤ i ≤ n, we can define the set of m tracked fea-

tures expressed in global coordinates, from each detected object (Tk) in a frame Fi as:

X̂
Sj

Tk
(Fi) = {x̂

Sj

T1
(Fi), x̂

Sj

T2
(Fi) , ..., x̂

Sj

Tm
(Fi)}.

Notice that the number of detected objects in each frame could not be the same. We can

define a track Tr
Sj

Tk
(l) of an object Tk from a sensor Sj as a vector which resumes the

observations received until instant l. Since each feature is obtained it is time-stamped,

therefore we can align them by time.

In a distributed visual sensor network with overlapped fields of view, more con-

tinuity in the tracking process can be provided, as a result of the integration of the

information from different visual sensors. However, due to several types of errors (de-

tection errors, illumination changes, etc) a visual sensor could provide inconsistent

tracking information [23].

Regarding inconsistent tracking information, let us suppose a set of tracks of the

same object Tk from n sensors, Tr = {TrS1

Tk
, T rS2

Tk
, ..., T rSn

Tk
}. The fused track TrF

Tk
(l)

should provide the best estimation until instant l given the visual sensors observations.

So, we argue that when fusing tracking information of the same target from different

sensors, some tracking errors could be ruled out, with the aim of obtaining the best

estimation. In addition, as a loss of tracks usually occurs, a fusion process is justified



10

in order to avoid tracking discontinuity. This idea is the main objective of the data

fusion techniques, which receives noisy redundant information and generates a global

otuput.

4 Cooperative Sensor Agents. Architecture Details

In this section, the design and implementation approach of the development of a pro-

totype for Cooperative Sensor Agents (CSA) with the previously defined objectives is

described.

4.1 BDI Multi-agent Model

The BDI model provides a way to conceptualize the system and structure its design. It

is based on a philosophical model of human practical reasoning, originally developed

by M. Bratman [31] which reduces the explanation for complex human behavior to

a motivational stance [32]. Practical reasoning involves two important processes: (1)

deciding the goals to be achieved and (2) how to achieve them. The BDI model is

a type of agent architecture containing explicit representations of beliefs, desires and

intentions. Beliefs are the information an agent has about its environment, which may

be false. Desires are those concepts that the agent would like to see achieved and

intentions are those procedures the agent is committed to doing in order to achieve its

desires.

Martha Pollack [34] divides the work in BDI agents into three categories:

1. General models of practical reasoning based on BDI concepts.

2. Computational models based on the Intelligent Resource-Bounded Machine (IRMA)

architecture [45].

3. The computational model used in the Procedural Reasoning System (PRS) [35]

[36]. The PRS system was one of the first implemented systems to be based on

a BDI architecture. It was developed by the artificial intelligence center at SRI

International and implemented in LISP. It is widely used in practice and also im-

plemented in solutions like JACK [37], JAM [38], Agentis Adaptive Enterprise Suite

[39] and more recently in JADEX [40].

Although the BDI model has been well established, issues such as how committed

an agent should be to its intentions are still a research topic. It is clear that an agent

can abandon its intentions on some occasions, for several reasons: (1) the agent believes

that the intention will not be achievable, (2) the intention has been already achieved

or (3) the reason for achieving the intention is no longer present.

In CSA architecture, intentions are abandoned as the environment evolves, or if

the intention has been already achieved. For example, if the tracked objects disappear

from the field of view, the tracking intention will not be achievable.

The proposed CSA architecture in this article is based on the PRS systems compu-

tational model [35] [36], specifically on JADEX [40]. It is composed of three different

types of agents: (1) Surveillance-Sensor Agents, (2) Fusion Agents and (3) Interface

Agents.
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4.2 Surveillance-Sensor Agents

Images generated in every surveillance-sensor agent, with huge amounts of useless raw

data, must be processed with image and video analysis algorithms running in the local

processor associated to the camera. Each camera is attached to a local processor that

generates output information according to the representation used (tracks, positions,

sizes, etc.) and this information should be coherently adapted and fused to obtain a

global view of the situation.

This type of agent tracks all the objects and sends the data to a fusion agent. It

acquires environmental information through a camera and performs the local signal

processing task. The tasks carried out are: object detection, data association, state

estimation and communication with the fusion agent. These tasks are achieved entirely

using local data and pixel coordinates and cope with the largest amount of data that

can be captured from the video stream The vision algorithms are based on the OpenCv

[42] library and coded in C programming language, since the agent code is implemented

in Java it accesses them through Java Native Invocation (JNI) [43]. Each surveillance

agent can freely communicate with other agents by exchanging ACL messages to make

the surveillance process more effective.

The surveillance-sensor agent is a Java thread which runs inside a Jadex agent

container. This thread has an execution process which updates the information on

beliefs and chooses only those intentions which are needed in order to achieve the

desires. Meanwhile, tracking information is obtained through a C++ thread, as the

tracking algorithms are developed in C++. These algorithms are built in a dynamic

link library (dll) and are accessed in run time through JNI [43].

As explained before, the first step in the surveillance-sensor agent tracking algo-

rithms is the detection of blobs. This is a critical step which directly influences the

quality of the global tracking.

In a distributed multi-camera system, each camera has its own field of view. Consis-

tency across multiple camera views (either with shared or disjointed fields of view) can

only be maintained when spatial coherence is achieved. As we mentioned previously,

this spatial coherence is achieved by performing a ground-plane calibration based on

the pinhole camera model. Therefore, each surveillance-sensor agent knows the specific

calibration values which it must use.

Each surveillance-sensor agent processes the environmental information gathered

from its visual sensor. Previously, the internal clock of the machine where the surveillance-

sensor agent runs must be synchronized with the clocks of the other machines. In the

system, Network Time Protocol (NTP) [44] is used as an external clock to stabilize the

local clock of each machine. Every new detected object or updated object measurement

given by the tracking process are marked with a time-stamp as soon as possible. This

time-stamp allows time synchronization between all surveillance agents.

The previous processes are embedded into the BDI reasoning cycle. The surveillance-

sensor agent’s beliefs are continually updated as more environmental data is sensed.

Desires are determined by the objectives of the system and the utility (costs and re-

wards) of satisfying them. The intentions of a surveillance sensor agent determine the

course of action that is to be undertaken.

An agent’s beliefs correspond to the information the agent acquires from the envi-

ronment and the other agents. It represents the knowledge of the state of the world.

Surveillance-sensor agents have the following beliefs:
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1. Environment Knowledge: knowledge about the objects detected in their field of

view. This knowledge consist of the position of each detected object at each time

frame in the agent’s field of view. This information is stored internally in the agent’s

belief base.

2. Environment Updating Frequency (ms): an internal parameter which specifies the

frequency in milliseconds for update the detected objects in the environment. The

agent must have the necessary balance between the computational effort expended

in obtaining the visual information and the execution of other activities. This bal-

ance is achieved in the system by using an updating frequency belief value.

3. Communication Frequency (ms): this type of agent sends information to the fusion

agent periodically. This parameter is established in the system by using a specific

belief. Of course, there must be a balance in this parameter to avoid network

congestion and ensure communication.

4. Fusion Agent: each surveillance-sensor agent knows its respective fusion agent’s

name and address (FIPA agent name).

5. Foreground Algorithm: each agent knows the foreground algorithm used to detect

moving objects. This algorithm must provide a list of blobs which are found in a

frame as well as information about the position and size of each blob. It is possible

to use different foreground algorithms in each agent.

6. Tracking Algorithm: each agent knows the tracking algorithm used to tracking the

detected objects. Different agents could use different tracking algorithms, as for

example, a kalman filter, an extended kalman filter, an unscented kalman filter, a

particle filter, etc.

7. Camera Type: the knowledge about the type of camera, or video file which is being

used for obtaining the sequence of images.

Desires capture the motivation of the agents. A desire represents the state of affairs

that the agent would like to bring about. The surveillance-sensor agents have the

following desires:

1. Tracking: this desire regards the tracking intentions which are performed continu-

ously.

2. Looking: the looking desire allows the agent to observe the current tracks in the

environment.

3. Communication: This type of agent has communication desires. In this proposed

framework we communicate for each detected object an associated track vector of

features and an error covariance matrix. Therefore, the granularity of the exchanged

information is small, compared to the communication of higher level information

such as for example trajectory trends. A constant rate of communication feature

information, instead of trends, provides more realism when trying to achieve real

time performance.

Intentions are the basic steps chosen by the agent to achieve its Desires and repre-

sent the desires an agent has committed to achieve. Intentions constrain the reasoning

an agent is required to perform in order to select the action that has to be performed.

Surveillance-sensor agents have the following Intentions:

1. Tracking: Each surveillance-sensor agent Si acquires images I(x, y) at a certain

frame rate, Vi. The internal tracking process provides for each object XTj
, an asso-

ciated track vector of features X̂Si

Tj
[n], containing the numeric description of their
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features and state their location, speed, dimensions, etc. as well as the associated

error covariance matrix, P̂Si

Tj
[n].

2. To study the Environment: This intention observes the current objects in the en-

vironment at time t.

3. New Track Information: The intention of communicating the information about new

tracks in the environment to their respective fusion agent using ACL messages.

4. Update Track Information: All the surveillance-sensor agents can communicate

information about the new track features to their respective fusion agent using

ACL messages.

5. Delete Track Information: This intention allows the surveillance-sensor agent to

communicate information about a object that has disappeared using ACL messages.

The previous intentions are the basic steps that allow the architecture to obtain

continuity in the tracking along the field of view of the cameras involved in the dis-

tributed network.

4.3 Fusion Agents

The fusion agent is a key component of the VSN architecture, as we said before, data

fusion techniques provide two main benefits: (1) a continuity in the tracking process

and (2) to improve the tracking quality by discarding data of non reliable sensors. The

fusion process is carried inside this specific type of agent which receives the tracking

information of each surveillance agent. As other BDI agents, the fusion agent has

specific beliefs, desires and intentions.

The fusion agent beliefs are as follows:

1. Knowledge of surveillance-sensor agents: the fusion agent knows which surveillance

sensor agents it manages, so it can understand its environment.

2. Consistency Belief: indicates when a track must be discarded due to it is inconsis-

tency as regards the other tracks with a time-space analysis. This belief indicates

a spatial (in centimeters) and temporal (in milliseconds) threshold for discarding

local tracks.

3. Fusion Frequency (ms): a value in milliseconds which indicates the frequency on

performing the data fusion. On every Fusion Frequency the agent checks the data

input queues of each surveillance-sensor agent and using the information received

it performs the data fusion.

The desires of the fusion agent are defined as follows:

1. Fuse Data: the fusion agent has the desire to fuse the data received from several

surveillance-sensor agents.

2. Receive Data: the fusion agent has the desire to receive ACL messages from other

agents of the system.

3. Inform Data: the fusion agent may inform the interface agent using FIPA ACL

messages.

Finally, the fusion agent intentions are defined as follows:

1. New Track Information: The intention of receiving information on new tracks, which

would be received through an intranet using FIPA ACL messages.
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Fig. 5 Interface Agent.

2. Update Track Information: The intention of receiving FIPA ACL messages which

contain new information about detected objects.

3. Delete Track Information: Receive information in FIPA ACL messages about deleted

tracks.

4. Fuse Data: The fusion agent performs a technique to fuse the information received

from the surveillance-sensor agents, which is received in FIPA ACL messages and is

time stamped. The algorithm uses the most likely inference from each surveillance-

sensor agent.

5. Send Information: The intention of sending the fused data to the interface agent.

The fuse data intention allows the fusion agent to improve the quality tracking by

means of fusion techniques. The other intentions allow the fusion agent to obtain con-

tinuity in the tracking along the field of view of the cameras involved in the distributed

network.

The algorithm used for the fusion process is described on detail in [23] and [24].

The algorithm is based on checking the consistency of the tracks and then applying

a combination of each visual sensor values weighted according to its covariance. This

method provides smooth movements and discards measurements which are affected by

occlusions.

4.4 Interface Agents

This agent receives the fused data and shows it to the final user, which is also the

user interface of the surveillance application. In this graphical user interface (Fig. 5)

the fused tracking information is shown. The different areas of the building under

surveillance are specified in a xml configuration file, where each area has an image or

a bi-dimensional map which shows the current state of the zone under surveillance. At

this stage, the application shows the information in a two dimensional view as a point

in a map. However, further improvements of the interface agent includes a 3D visual

interface.
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5 Experiments

In this section we evaluate the suitability of the system in two different scenarios. The

first one, is given by an indoor tracking in our laboratory using a recorded video file

with 3 different cameras. The second one, is performed using the apidis dataset [46].

The apidis dataset is composed by 1500 frames of a basketball game acquired by seven

2-Mpixels cameras around and on top of a basket ball court.

In the first scenario we focus on evaluating the tracking continuity of the target ob-

tained using the fused values and the mean absolute error of the fused values against

manually anotated ground-truth values. In the second one, we evaluate the perfor-

mance of the system when more visual sensors are used. Also in this scenario, since

the monitored area is bigger, an evaluation of the calibration quality was performed.

The obtained values provide an idea of the quality of the information provided by each

visual sensor when the transformation to global coordinates on the ground plane are

applied.

To evaluate the calibration quality we applied the most common accuracy evalua-

tion methods:

1. Error of distorted pixel coordinates (Ed): is calculated by computing the difference

between estimated pixel coordinates (x̂pi, ŷpi) obtained from the measured world

coordinates by the camera model with lens distortions and the observed pixel co-

ordinates (which are usually obtained manually) (xpi, ypi):

Ed =
1

n

n
X

i=1

q

(x̂pi − xpi)2 + (ŷpi − ypi)2 (1)

where n is the number of input points to the calibration algorithm.

2. Error of undistorted pixel coordinates (Eu): is calculated similarly than Ed but

without using lens distortion in the estimated pixel coordinates and by removing

lens distortion from observed pixel coordinates:

Eu =
1

n

n
X

i=1

q

(x̂upi − xupi)2 + (ŷupi − yupi)2 (2)

3. The object space error or the distance with respect to the optical ray (Eo): is com-
puted between 3D points in camera coordinates (Xci, Yci, Zci) and the optical rays
back-projected from the undistorted image points on the image plane (xui, yui):

Eo =
1

n

n
X

i=1

q

(Xci − xui · t)2 + (Yci − yui · t)2 + (Zci − t)2, (3)

t = (Xcixui + Yciyui + Zci/(x2

ui
+ y2ui + 1)

4. Normalized calibration error (NCE): it is obtained by normalizing the discrepancy

between estimated and observed 3D points with respect to the area each pixel

covers at a given distance from the camera, as follows

NCE =
1

n

n
X

i=1

 

(X̂ci − Xci)
2 + (Ŷci − Yci)

2

Z2

ci(α
−2 + β−2)/12

!1/2

(4)
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Fig. 6 Example of input images (frames 75, 150, 225 and 300) for camera 1, 2 and 3 of the
first scenario. From top to bottom, camera 1, camera 2 and camera 3 images are shown. In the
first row we can see the input images of frame 75, the second row shows the images of frame
150, the third one shows the images of the frame 225 and the last one show the images from
frame 300.

The first three accuracy measurements (Ed, Eu, Eo) are sensitive to digital image

resolution, camera field of view and object to camera distance. The NCE metric pro-

posed by Weng et. al. [47] is insensitive to digital image resolution and provide less

biased accuracy results.

To evaluate the global accuracy, the fused results are compared against the ground-

truth values on the ground plane. The ground-truth values were obtained in the local

camera plane and then transformed to the global coordinates using the obtained cali-

bration projection.

5.1 First Scenario: An Indoor Tracking in Our Laboratory

An indoor evaluation of the proposed architecture was undertaken in our laboratory.

Three Sony EVI-100 Pan-Tilt-Zoom cameras were connected to a matrox morphis

frame grabber. Despite the pan and tilt capabilities of the cameras, in this experiment

they were used as static cameras. Fig. 7 illustrates the camera layout in this experi-

mental environment. The positions of the three cameras and the calibration origin (0,0)

can be observed in the axis reference. Each PTZ camera is controlled by a surveillance-

sensor agent which runs on a dedicated personal computer. There is also a fusion agent

which receives each surveillance-sensor agent’s tracking information. A record of 300

frames (with a resolution of 768x576 pixels) from one person randomly moving (in a

zone of 660cm x 880cm) is performed.

In Fig. 6 an example of the input images from frames 75, 150, 225 and 300 are

shown. In this experimental indoor scenario many occlusions occur (mainly caused by
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Fig. 7 Camera layout of the first scenario environment (660x880 centimeters).
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Fig. 8 Example of foreground images (frames 75, 150, 225 and 300) for camera 1, 2 and 3 of
the first scenario. From top to bottom, camera 1, camera 2 and camera 3 are shown. In the
first row we can see the input images of frame 75, the second row shows the images of frame
150, the third one shows the images of frame 225 and the last one shows the images from frame
300.

the tables and the printer machine) which affect the local tracking of each surveillance-

sensor agent.

The image sequences of each camera were analyzed by a surveillance-sensor agent.

The specific configuration was adjusted for the surveillance-sensor agent and the fusion

agent beliefs. Inside each surveillance-sensor agent, the perception process is triggered

every 10 milliseconds. Regarding the fusion agent, the fusion process was activated

every 10 milliseconds, with a spatial difference set to 140 centimeters and the temporal

difference set to 20 milliseconds. This means that the data fusion only fuse tracks with

less time-stamp difference than 20 milliseconds and less location difference than 140

centimeters. For each detected object the coordinates of the bounding box centroid was

obtained. This position was projected on the ground plane, and then the information

in terms of global coordinates (after the application of the calibration transformation)

was sent to the fusion agent. Because of the initialization of the tracking algorithms,

there were some initial frames where the person was not detected. For example, camera

1, detected the person in frame 25. As a loss of tracks usually occurs, a fusion process

between the overlapped cameras is justified in order to avoid a tracking discontinuity.

For illustrative purposes we present the output of the phase of blob detection

(foreground images) for the input images 75, 150, 225 and 300 in Fig. 8.

In Fig. 9 the tracking information obtained by the three surveillance-sensor agents

at frames 75, 150, 225 and 300 are shown. As we said before, the information sent to

the fusion agent were the calibrated (Xg , Yg) positions of the projection of the blob

centroid onto the ground plane. Positions are expressed in two dimensional coordinates,

being Xg the position of the horizontal tracking projection on the ground plane and Yg
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Fig. 9 Example of tracking images (frames 75, 150, 225 and 300) for camera 1, 2 and 3 of the
first scenario. From top to bottom, camera 1, camera 2 and camera 3 are shown. The first row
are the input images of frame 75, the second row shows the images of frame 150, the third one
shows the images in frame 225 and the last one shows the images from frame 300.
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Fig. 10 Camera 1, horizontal ground-truth positions vs horizontal tracked positions.
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Fig. 11 Camera 1, vertical ground-truth positions vs vertical tracked positions.

the vertical coordinate of the tracking projection on the ground plane (see Fig.7). Each

position is compared against manually annotated ground-truth values. In the process

of obtaining the ground-truth values, the (Xf , Yf ) local coordinates of the person’s

feet in those images that are completely visible were annotated and then projected

onto the global coordinates. Therefore the ground-truth values are expressed in global

or real world ground-plane coordinates using the same transformation values as in the

experiments.

In order to evaluate the accuracy of the system the tracking values were compared

against the manually annotated ground-truth values. The metric used to evaluate the

tracking accuracy is the mean absolute error of the tracked positions against the ground

truth values. Tracking positions obtained from each surveillance-sensor agent compared

to the ground-truth values are shown in Fig. 10 and Fig. 11 for camera 1, Fig. 12 and
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Fig. 12 Camera 2, horizontal ground-truth positions vs horizontal tracked positions.
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Fig. 13 Camera 2, vertical ground-truth positions vs vertical tracked positions.
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Fig. 14 Camera 3, horizontal ground-truth positions vs horizontal tracked positions.

Fig. 15 Camera 3, vertical ground-truth positions vs vertical tracked positions.
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Table 1 Mean absolute error between ground truth and tracked positions (centimeters).

Camera 1 Camera 2 Camera 3 Fusion Agent

Horizontal axes (X) 580.94 100.19 93.2 94.1
Vertical axes (Y) 111.2 140.9 208.23 122.3

Fig. 13 for camera 2, Fig. 14 and Fig. 15 for camera 3. The output fused positions

compared with the ground-truth are shown in Fig. 19 and Fig. 20. Finally, the data

fused values compared to each surveillance-sensor agent value are shown in Fig. 21 and

Fig. 22.

In table 1, we show the mean absolute error of the tracked positions against the

ground-truth values for each camera on the horizontal (X) and vertical (Y) axes and

the mean absolute error of the fused values against the ground-truth values. As we can

observe, the fused values provide a better result than that of each of the sensors taken

separately (except for camera 3 horizontal axes). Therefore, the fused values practically

achieve the best sensor accuracy for each coordinate. Most of the tracking errors are

produced by foreground/background segmentation errors. By segmentation errors we

mean the errors generated in those frames where the lower part of the blob is not

correctly detected. Therefore when the calibration projection is applied the obtained

values are incoherent, because only the ground plane is calibrated. This is the main

reason of the good horizontal values of the camera 3, since this camera have a good

view of the ground plane when the person is moving (see Fig. 6), because, without any

object hiding a person, the foreground/background segmentation relies in a good blob

detection stage (see Fig. 8).

5.2 Second Scenario: An Indoor Basketball Match (Apidis Dataset)

In this second scenario, results with the apidis dataset [46] using the previous VSN

architecture, are presented. Apidis dataset is composed of a basketball game acquired

by seven 2-Megapixels cameras around and on top of a basket ball court. The images

of all cameras were captured by a unique server, therefore acquired frames are pseudo

synchronized in time. Apidis dataset provides two different video files, one in the native

format (1600x1200 image size) and other one pseudo synchronized (800x600 image size).

For these experiments, the pseudo synchronized video files of all the cameras except the

top view ones (camera 3 and camera 5), recorded at 25 frames per second in 800x600

MPEG-4 resolution, was chosen. A screen-shot of the 5 different views of the apidis

dataset and the image of the ground-plane used for calibration purposes is shown in the

Fig. 16, the image shown the bounding-box of one specific player. In the next section,

the registration phase performed on the apidis dataset is explained.

5.2.1 Evaluation Of The Registration Error

Registration phase receives for each camera a set of points which relate the global 3D

(x, y, z) point with the image point (xpi, ypi) in pixel coordinates. The objective is to
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Table 2 Estimated values of the intrinsic parameters in the apidis dataset.

camera f (mm) kappa1 (1/mm2) Cx (pixels) Cy (pixels) Sx

camera 1 19.403642 9.913269e-04 407.30926 274.804934 1.0
camera 2 19.199602 8.873476e-04 473.95128 204.872783 1.0
camera 4 26.300296 -4.107186e-05 457.79424 -179.912847 1.0
camera 6 20.569473 7.014055e-04 395.10578 264.560713 1.0
camera 7 33.042031 3.644292e-04 182.35262 393.347814 1.0

Table 3 Estimated values of the extrinsic parameters in the apidis dataset.

camera Rx (deg) Ry (deg) Rz (deg) Tx (mm) Ty (mm) Tz (mm)

camera 1 -69.769 21.125 4.219 -3347.818 -1802.199 29096.422
camera 2 -48.16 -69.298 -42.391 -9505.713 2237.553 9324.672
camera 4 -105.49 -46.033 13.605 -10639.491 7367.315 18124.522
camera 6 -70.695 -20.103 -2.691 -22388.609 4.145 20168.512
camera 7 -62.928 23.431 5.752 1646.596 -4522.187 27700.724

obtain the intrinsic and extrinsic parameters for each camera. In this case, we employed

the provided basket court image which contain the global position of 69 points on the

ground plane (establishing z=0). The known global points in world coordinates are

manually matched with the points in image coordinates of each camera. For these

experiments, the top view cameras (camera 3 and camera 5) with the fish eye lenses

are rule out, therefore we have 5 different views of the scene. We performed a Tsai [25]

camera model calibration and the obtained intrinsic parameters are shown in table 2

while the extrinsic ones are shown in table 3. For evaluate the calibration quality we

applied the most common accuracy evaluation methods previously described.

The first three accuracy measurements (Ed, Eu, Eo) are shown in table 4 and the

obtained NCE values are shown in table 5. Results show that camera 2 and camera 4

have the worst camera calibration. If we have a look at Fig. 16, we notice that camera

2 and 4 (in fig. 16 the second and the third image from left to right) have a field of

view with high depth information, which makes more difficult to obtain an accurate

calibration which is coherent with the obtained values of calibration accuracy.

5.2.2 Evaluation of Accuracy

The dataset provides an xml file with a bounding box in pixel coordinates for each

detected player in each camera view. We employed the provided bounding box values

as the output information of each surveillance-sensor agent. So, this means that the

image processing tasks are not testing under these experiments, instead the bounding

box information of each player in pixel camera coordinates was used. Since each player

bounding box, provided in the dataset, also gives the frame number information, the

time-space alignment could be easily performed.

At each frame instant the surveillance-sensor agents obtain the projection on the

ground plane of the bounding box (see Fig 4), performs the tracking using a kalman

filter and then applied the calibration transformation in order to obtain the position in
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Table 4 Calibration accuracy measurements of the apidis dataset obtained values.

measurement camera1 camera2 camera4 camera6 camera7

Ed mean (pix) 1.188333 3.419681 3.022088 2.453974 1.980312
Ed stddev (pix) 0.587034 6.210263 3.150429 4.308640 2.133353
Ed max (pix) 2.692261 48.36222 18.59863 26.32054 11.40111
Ed sse (pix2) 64.65491 2826.343 714.287 891.1312 215.7424

Eu mean (pix) 1.237540 3.562748 2.985860 2.606630 2.034450
Eu stddev (pix) 0.606474 6.279122 3.099667 4.752018 2.131429
Eu max (pix) 2.757642 48.88498 18.285212 28.87088 11.40313
Eu sse (pix2) 69.90688 2931.443 694.277255 1064.337 221.1883

Eo mean (mm) 30.492083 88.80409 54.638430 58.28041 28.5351
Eo stddev (mm) 15.837112 225.7637 60.26738 100.9322 27.6851
Eo max (mm) 63.263249 1741.838 324.40383 616.1429 149.05
Eo sse (mm2) 43430.692 3303790.5 247833.45 492417.7 40332.18

Table 5 Normalized Calibration Error (NCE) of the apidis dataset obtained values.

camera1 camera2 camera4 camera6 camera7

NCE 3.031341 8.726915 7.313833 6.384913 4.983363

Fig. 16 A screen-shot of the 5 different views of the apidis dataset and the ground-plane used
to plot the fused results.
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Fig. 17 The process followed to obtain the ground-truth values for testing the robustness of
the system against errors in one visual sensor.

global coordinates. This information with the covariance matrix is send to the fusion

agent every frame. At the fusion agent, received messages are processed and information

is fused using the technique proposed in [23]. Figure 17 show the process followed to

obtain the fused values which are later used as the ground-truth information for the

experiments.

The objective of the performed experiments was to verify the improvement of the

system when more cameras were employed and also testing the robustness of the sys-

tem. The 5 different cameras were divided into three sets: (1) camera 1, camera 2 and

camera 4; (2) camera 1, camera 2, camera 4 and camera 6; (2) camera 1, camera 2,

camera 4, camera 6 and camera 7 (see Fig 18).

For simulating sensor and image processing problems in order to test the robustness

of the system, experiments with two different pseudo-randomly errors: one between

random errors equally distributed in the range of (1,500) millimeters and another one in

the range of (1,1500) millimeters; these random errors modify the tracking information

provided by camera 1 on global coordinates, after the calibration was performed. The

figure 18 shown the followed schema to obtain the fused values affected by these errors.

For each player and each set of cameras the mean absolute error (in millimeters)

and the root mean square error (in millimeters) of the fused positions with induced

errors against the fused positions without induced errors are obtained (ground-truth).

The obtained results are shown in table 6 and table 7 for the first interval and in table

8 and table 9 for the second interval; it is clearly observed in these tables how the

tracking errors are reduced when the number of cameras are increased. This results

shown the robustness and how the system behaves when the numbers of visual sensors

are increasing.
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Fig. 18 The process followed to obtain the error values for testing the robustness of the
system and the improvement when more visual sensors are used.

Table 6 Root Mean Square Error (RMSE) in millimeters of ground-truth fused values against
values with a random error of (1, 500) millimeters in camera 1.

player-team 3-cameras-x 3-cameras-y 4-cameras-x 4-cameras-y 5-cameras-x 5-cameras-y

p10-A 448.58 225.94 344.10 221.84 336.65 218.28
p14-A 275.05 157.54 196.49 152.30 189.75 144.81
p04-A 365.23 174.46 351.25 180.83 344.33 173.31
p05-A 290.29 243.68 249.46 234.84 235.70 216.33
p09-A 309.03 164.08 244.00 159.38 235.43 147.91
p15-B 422.37 187.25 313.60 185.29 295.92 173.72
p06-B 350.50 199.73 296.40 191.60 284.86 182.56
p04-B 344.03 144.69 329.23 165.37 319.62 162.53
p07-B 282.22 164.66 223.42 157.69 214.39 156.09
p09-B 298.62 191.51 280.64 193.72 276.27 190.03
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Table 7 Mean Absolute Error (MAE) in millimeters of ground-truth fused values against
values with a random error of (1, 500) millimeters in camera 1.

player-team 3-cameras-x 3-cameras-y 4-cameras-x 4-cameras-y 5-cameras-x 5-cameras-y

p10-A 298.80 168.66 228.86 168.54 220.21 164.45
p14-A 195.22 120.74 149.95 117.92 143.72 112.36
p04-A 209.22 135.21 202.04 134.42 191.48 125.78
p05-A 219.94 174.48 192.13 167.95 183.05 154.71
p09-A 208.93 128.18 181.60 125.77 175.06 115.27
p15-B 298.42 137.27 224.22 139.44 214.29 127.70
p06-B 257.56 154.48 227.01 150.72 217.46 143.99
p04-B 231.11 108.56 201.75 114.51 190.36 111.04
p07-B 200.29 125.92 165.89 119.55 159.97 116.94
p09-B 213.05 141.19 191.06 143.24 187.08 139.86

Table 8 Root Mean Square Error (RMSE) in millimeters of ground-truth fused values against
values with a random error of (1, 1500) millimeters in camera 1.

player-team 3-cameras-x 3-cameras-y 4-cameras-x 4-cameras-y 5-cameras-x 5-cameras-y

p10-A 498.89 307.81 409.53 301.11 377.49 272.81
p14-A 353.13 269.82 292.96 256.79 261.74 220.25
p04-A 425.88 279.34 416.71 284.34 381.44 238.30
p05-A 367.33 350.43 341.34 339.69 286.83 278.57
p09-A 371.71 268.86 319.48 262.99 284.15 216.04
p15-B 487.02 306.95 399.41 302.99 353.06 251.32
p06-B 444.75 315.39 399.54 314.05 337.66 240.68
p04-B 401.00 255.01 392.17 260.77 357.36 227.44
p07-B 348.42 260.88 303.32 244.69 270.89 220.18
p09-B 357.30 272.89 337.85 265.72 321.10 236.60

Table 9 Mean Absolute Error (MAE) in millimeters of ground-truth fused values against
values with a random error of (1, 1500) millimeters in camera 1.

player-team 3-cameras-x 3-cameras-y 4-cameras-x 4-cameras-y 5-cameras-x 5-cameras-y

p10-A 366.97 231.36 300.56 227.35 267.34 207.97
p14-A 278.81 206.01 229.23 195.29 205.03 169.57
p04-A 293.33 226.75 289.55 226.24 251.06 187.06
p05-A 285.49 256.12 260.66 248.40 228.52 211.35
p09-A 276.20 211.45 246.25 203.72 219.80 171.77
p15-B 369.31 213.08 297.47 218.13 267.08 185.07
p06-B 331.71 235.66 300.83 227.18 265.96 189.58
p04-B 297.58 186.15 267.94 186.05 236.99 160.06
p07-B 264.52 195.22 230.06 180.20 208.60 164.10
p09-B 261.00 196.76 236.12 190.71 220.63 173.18
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6 Conclusions and Future Works

In this article, a visual sensor network based on the BDI Multi-agent architecture

is presented. Using the proposed Multi-agent architecture, we have focused on how

to fuse a set of tracks from different agents which belong to the same object. This

fused information was used for two different purposes: (1) to obtain a continuity in the

tracking along the field of view of the cameras involved in the distributed network, (2)

to fuse only the information which provides an accurate tracking, by discarding those

visual sensors which have tracking errors.

The results of the first objective are shown experimentally, as the fused agent re-

ceives the tracking information of all the other agents involved in the surveillance

process. In order to achieve the second objective at every fuse instant the fusion agent

selects the more coherent tracking information which have a small variance. This as-

sumption is made taking into account that a person does not make a large movement

in a few milliseconds.

The details of the implementation of the proposed architecture were stated. In order

to evaluate them, experiments in two different scenarios were performed: (1) an indoor

experiment with three surveillance-sensor agents and one fusion agent and (2) using

the basketball data provided by the apidis dataset. The results of the first scenario

show an improvement in the tracking continuity along the overlapped field of view.

The errors obtained in the final tracking positions compared to the average ground-

truth positions was 94,19 centimeters in the horizontal plane and 122,03 centimeters in

the vertical plane. Results of the second scenario show how the system behaves when

the number of the visual sensors increase and how random errors are reduced.

In addition to these results, the use of a multi-agent architecture for visual sensor

tasks gives several advantages with respect to traditional systems. It allows us to easily

scale the system and to inter-operate with third party developments.

In future studies we are interested on how the system behaves in response to changes

in some of the parameter values. Furthermore, issues such as time-delay, communi-

cation/sensor noise and more specific models of uncertainty will also be taken into

account.
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30

Fig. 19 Data fused, horizontal ground-truth positions vs horizontal fused positions.

Fig. 20 Data fused, vertical ground-truth positions vs vertical fused positions.
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Fig. 21 Data fused, horizontal camera values positions vs horizontal fused positions.

Fig. 22 Data fused, vertical camera values positions vs vertical fused positions.



32

References
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