146 research outputs found

    HOPDM Modular Solver for LP Problems User's Guide to version 2.12

    Get PDF
    The paper provides a description of HOPDM, a library of routines for solving large scale linear programming problems and its implementation at IIASA. HOPDM stands for Higher Order Primal Dual Method. The algorithm implemented in HOPDM is a new variant of a primal-dual logarithmic barrier method that uses multiple correctors of centrality. The newest version of the library -- HOPDM 2.12 -- is a robust and efficient LP code that compares favorably with the up to date commercial solvers. The paper contains an outline of the algorithm implemented in HOPDM and information about results of tests done with large LP problems developed at IIASA. Finally, the paper provides with details of the implementation of HOPDM and its use at IIASA, as well as with information about availability of the portable version of the HOPDM library

    Advances in Interior Point Methods for Large-Scale Linear Programming

    Get PDF
    This research studies two computational techniques that improve the practical performance of existing implementations of interior point methods for linear programming. Both are based on the concept of symmetric neighbourhood as the driving tool for the analysis of the good performance of some practical algorithms. The symmetric neighbourhood adds explicit upper bounds on the complementarity pairs, besides the lower bound already present in the common N−1 neighbourhood. This allows the algorithm to keep under control the spread among complementarity pairs and reduce it with the barrier parameter μ. We show that a long-step feasible algorithm based on this neighbourhood is globally convergent and converges in O(nL) iterations. The use of the symmetric neighbourhood and the recent theoretical under- standing of the behaviour of Mehrotra’s corrector direction motivate the introduction of a weighting mechanism that can be applied to any corrector direction, whether originating from Mehrotra’s predictor–corrector algorithm or as part of the multiple centrality correctors technique. Such modification in the way a correction is applied aims to ensure that any computed search direction can positively contribute to a successful iteration by increasing the overall stepsize, thus avoid- ing the case that a corrector is rejected. The usefulness of the weighting strategy is documented through complete numerical experiments on various sets of publicly available test problems. The implementation within the hopdm interior point code shows remarkable time savings for large-scale linear programming problems. The second technique develops an efficient way of constructing a starting point for structured large-scale stochastic linear programs. We generate a computation- ally viable warm-start point by solving to low accuracy a stochastic problem of much smaller dimension. The reduced problem is the deterministic equivalent program corresponding to an event tree composed of a restricted number of scenarios. The solution to the reduced problem is then expanded to the size of the problem instance, and used to initialise the interior point algorithm. We present theoretical conditions that the warm-start iterate has to satisfy in order to be successful. We implemented this technique in both the hopdm and the oops frameworks, and its performance is verified through a series of tests on problem instances coming from various stochastic programming sources

    Quasi-Newton approaches to Interior Point Methods for quadratic problems

    Get PDF
    Interior Point Methods (IPM) rely on the Newton method for solving systems of nonlinear equations. Solving the linear systems which arise from this approach is the most computationally expensive task of an interior point iteration. If, due to problem's inner structure, there are special techniques for efficiently solving linear systems, IPMs enjoy fast convergence and are able to solve large scale optimization problems. It is tempting to try to replace the Newton method by quasi-Newton methods. Quasi-Newton approaches to IPMs either are built to approximate the Lagrangian function for nonlinear programming problems or provide an inexpensive preconditioner. In this work we study the impact of using quasi-Newton methods applied directly to the nonlinear system of equations for general quadratic programming problems. The cost of each iteration can be compared to the cost of computing correctors in a usual interior point iteration. Numerical experiments show that the new approach is able to reduce the overall number of matrix factorizations and is suitable for a matrix-free implementation

    Material-separating regularizer for multi-energy x-ray tomography

    Get PDF
    Dual-energy x-ray tomography is considered in a context where the target under imaging consists of two distinct materials. The materials are assumed to be possibly intertwined in space, but at any given location there is only one material present. Further, two x-ray energies are chosen so that there is a clear difference in the spectral dependence of the attenuation coefficients of the two materials. A novel regularizer is presented for the inverse problem of reconstructing separate tomographic images for the two materials. A combination of two things, (a) non-negativity constraint, and (b) penalty term containing the inner product between the two material images, promotes the presence of at most one material in a given pixel. A preconditioned interior point method is derived for the minimization of the regularization functional. Numerical tests with digital phantoms suggest that the new algorithm outperforms the baseline method, joint total variation regularization, in terms of correctly material-characterized pixels. While the method is tested only in a two-dimensional setting with two materials and two energies, the approach readily generalizes to three dimensions and more materials. The number of materials just needs to match the number of energies used in imaging.Peer reviewe

    Column-generation and interior point methods applied to the long-term electric power-planning problem

    Get PDF
    Aquesta tesi s'adreça al problema de planificació de la generació elèctrica a llarg termini per a una companyia específica (SGC) que participa en un mercat liberalitzat organitzat en un pool. Els objectius de la tesi són: modelitzar aquest problema, i desenvolupar i implementar tècniques apropiades i eficients que el resolguin. Un planificació òptima a llarg termini és important, per exemple, per a la confecció de pressupostos, o per a la gestió de compres/consum de combustibles. Una altra aplicació és la de guiar la planificació a curt termini perquè aquesta tingui en compte decisions preses sota una òptica de llarg termini. La nostra proposta per a fer la planificació de la generació és optimitzar la generació esperada de cada unitat (o la unió de diverses unitats de característiques semblants) del pool per a cada interval en que dividim el llarg termini. El model bàsic per la planificació de la generació a llarg termini (LTGP) maximitza el benefici de totes les unitats del pool. La constricció més important és la satisfacció de la demanda, ja que el sistema està sempre balancejat. Utilitzem la formulació de Bloom i Gallant, la qual modela la càrrega a través d'una monòtona de càrrega per cada interval i requereix un número exponencial de constriccions lineals de desigualtat, anomenades LMCs. Altres constriccions (lineals) incloses en el model són: garantia de potència, límits en la disponibilitat de combustibles, emissions màximes de CO2 o una quota de mercat mínima per a la SGC. Una extensió d'aquest model és la planificació conjunta de l'assignació de manteniments de les unitats tèrmiques d'una SGC amb la planificació de la generació. El model conjunt és un problema quadràtic amb variables binàries i contínues. Per resoldre aquest model es proposa un parell d'heurístiques i s'ha implementat un prototipus de branch and bound en AMPL.Aquesta tesi també proposa una manera per coordinar el model LTGP proposat amb una planificació a curt termini. Es desenvolupa un model de curt que inclou els resultats de llarg termini. Donat que el model de planificació a llarg termini s'ha de resoldre sovint (principalment per passar informació acurada al model de curt), les tècniques emprades per a resoldre'l han de donar resultats fiables en un espai de temps curt. Les tècniques aplicades han estat:· Donat que les constriccions de recobriment i les fites de no negativitat defineixen un políedre convex els vèrtexs del qual són fàcils de trobar el model es transforma i les variables esdevenen els coeficients convexos que defineixen un punt. Aquest nou problema es resolt amb l'algoritme de Murtagh i Saunders, que és un procediment òptim. Aquest algoritme s'aplica sota un esquema de generació de columnes donat que el número de vèrtexs del políedre és comparable al número de constriccions. L'avantatge d'aquest mètode és que els vèrtexs es van generant a mesura que es necessiten.· L'aplicació de mètodes directes és computacionalment costós donat el número exponencial de LMCs. De totes maneres, a l'òptim només un conjunt reduït de constriccions de recobriment seran actives. Hem desenvolupat una heurística, anomenada heurística GP, la qual genera un subconjunt de constriccions, entre les quals hi ha les LMCs que són actives a l'òptim. L'heurística resol una seqüència de problemes quadràtics, els quals incrementen el número de LMCs considerades a cada iteració. Els problemes es resolen amb mètodes de punt interior que s'inicialitzen amb tècniques de warm start per tal d'accelerar la convergència cap a la nova solució. Aquest procediment resulta ser molt més eficient que el de generació de columnes. La modelització i els casos de prova estan basats en dades d'un sistema de pool pur i de mercat com ha estat a Espanya fins el juliol de 2006.This thesis presents an approach to the long-term planning of power generation for a company (SGC) participating in a liberalized market organized as a pool. The goal of this thesis is two-fold: to model the problem and to develop and implement appropriate and efficient techniques for solving it.The optimization of the long-term generation planning is important for budgeting and planning fuel acquisitions, and to give a frame where to fit short-term generation planning.Our proposal for planning long-term generation is to optimize the expected generation of each unit (or the merger of several units of the same type) in the power pool over each interval into which the long-term horizon is split.The basic model for long-term generation planning (LTGP) maximizes the profit for all the units participating in the pool. The most important constraint is matching demand, since the market always clears. The Bloom and Gallant formulation is used, which models the load with a load-duration curve for each interval and requires an exponential number of linear inequality constraints, called herein LMCs. Other (linear) constraints included in the model are: minimum generation time, limits on the availability of fuel, maximum CO2 emission limits or the market share of the SGC. This thesis also proposes the way in which coordination between the LTGP model developed and a short-term plan should be considered and provides a model for short-term electrical power planning adapted to the LTGP proposed and which includes the long-term results.Another decision that needs to be taken from a long-term point of view is the joint scheduling of thermal unit maintenances with the generation planning of a particular SGC. The results of a prototype of a Branch and Bound implemented in AMPL are included in this thesis.Long-term planning needs to be considered before short-term planning and whenever the real situation deviates from the forecasted parameters, so the techniques implemented must be efficient so as to provide reliable solutions in a short time. Two methods for handling the LMCs are proposed and compared:● A decomposition technique exploits the fact that the LMCs plus the non-negativity bounds define a convex polyhedron for each interval whose vertices are easy to find. Thus, the problem is transformed and the variables become the coefficients of a convex combination of the vertices. The transformed problem is quadratic with linear constraints, making it suitable to be solved with the Murtagh & Saunders algorithm, which gives an optimal solution. A column-generation approach is used because the number of vertices of the polyhedron is comparable to the number of LMCs. The advantage of this method is that it does not require previous computation of all of the vertices, but rather computes them as the algorithm iterates.● The application of direct methods is computationally difficult because of the exponential number of inequality LMCs. However, only a reduced subset of LMCs will be active at the optimizer. A heuristic, named GP heuristic, has been devised which is able to find a reduced set of LMCs including those that are active at the optimizer. It solves a sequence of quadratic problems in which the set of LMCs considered is enlarged at each iteration. The quadratic problems are solved with an interior point method, and warm starts are employed to accelerate the solution of the successively enlarged quadratic problems. This procedure is more efficient than the column generation one.The modeling and tests of this thesis are based on the pure pool system and market data from the Spanish system up to July 2006

    A new stopping criterion for Krylov solvers applied in Interior Point Methods

    Full text link
    A surprising result is presented in this paper with possible far reaching consequences for any optimization technique which relies on Krylov subspace methods employed to solve the underlying linear equation systems. In this paper the advantages of the new technique are illustrated in the context of Interior Point Methods (IPMs). When an iterative method is applied to solve the linear equation system in IPMs, the attention is usually placed on accelerating their convergence by designing appropriate preconditioners, but the linear solver is applied as a black box solver with a standard termination criterion which asks for a sufficient reduction of the residual in the linear system. Such an approach often leads to an unnecessary 'oversolving' of linear equations. In this paper a new specialized termination criterion for Krylov methods used in IPMs is designed. It is derived from a deep understanding of IPM needs and is demonstrated to preserve the polynomial worst-case complexity of these methods. The new criterion has been adapted to the Conjugate Gradient (CG) and to the Minimum Residual method (MINRES) applied in the IPM context. The new criterion has been tested on a set of linear and quadratic optimization problems including compressed sensing, image processing and instances with partial differential equation constraints. Evidence gathered from these computational experiments shows that the new technique delivers significant improvements in terms of inner (linear) iterations and those translate into significant savings of the IPM solution time
    corecore