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Abstract
Dual-energy x-ray tomography is considered in a context where the target under
imaging consists of two distinct materials. The materials are assumed to be pos-
sibly intertwined in space, but at any given location there is only one material
present. Further, two x-ray energies are chosen so that there is a clear difference
in the spectral dependence of the attenuation coefficients of the two materials.
A novel regularizer is presented for the inverse problem of reconstructing sep-
arate tomographic images for the two materials. A combination of two things,
(a) non-negativity constraint, and (b) penalty term containing the inner product
between the two material images, promotes the presence of at most one material
in a given pixel. A preconditioned interior point method is derived for the mini-
mization of the regularization functional. Numerical tests with digital phantoms
suggest that the new algorithm outperforms the baseline method, joint total vari-
ation regularization, in terms of correctly material-characterized pixels. While
the method is tested only in a two-dimensional setting with two materials and
two energies, the approach readily generalizes to three dimensions and more
materials. The number of materials just needs to match the number of energies
used in imaging.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Consider a physical object consisting of two different materials. It might be a machine part
manufactured as a metal–plastic composite, or a fragile cultural heritage object unearthed at
an archaeological site, or a two-phase fluid flow inside a process industry pipeline at a given
time instant. We are interested in using x-ray tomography as a means of nondestructive testing
to find out how the two materials are intertwined. The material decomposition problem has been
studied before e.g. in [1–3, 16, 17], mostly with algorithms based on the discrete tomography
approach. The methodology we propose is quite different from them. We introduce a novel reg-
ularization method for dual-energy x-ray tomography for material decomposition and propose
a specialized interior point method (IPM) to solve the underlying optimization problem.

We restrict here to the intersection of the object with a two-dimensional square Ω ⊂ R
2.

The measured x-rays are thus assumed to travel in the plane determined by Ω; one can then
stack several 2D reconstructions to achieve a 3D reconstruction. This restriction is only for the
simplicity of the exposition and computation; our methods do generalize to higher dimensions.

We discretize Ω into N × N square-shaped pixels. There are two unknowns: non-negative
N × N matrices G(1) and G(2) modelling the distributions of material 1 and material 2, respec-
tively. The number G(�)

i, j � 0 represents the concentration of material � in pixel (i, j), where i is
row index and j is column index. In numerical computations we represent the elements of the
pair of material matrices (G(1), G(2)) ∈ (RN×N)2, as a vertical vector

g =

[
g(1)

g(2)

]
∈ R

2N2
.

We consider recording x-ray transmission data with two different energies, low and high,
resulting in two M-dimensional data vectors called mL and mH. The low-energy measurement
is given by

mL = c11ALg(1) + c12ALg(2), (1)

as both materials attenuate the low-energy x-rays with individual strengths described by the
constants c11 > 0 and c12 > 0. Note that empirical values of c11 and c12 can be found by mea-
suring pure samples of each of the two known materials. The M × N2 matrix AL encodes the
geometry of the tomographic measurement in a standard way [23, section 2.3.4]; it contains the
path lengths of x-rays traveling inside the pixels in Ω. We have M = r0P with P the number
of projection directions and r0 the amount of detector elements in the one-dimensional line
camera.

Analogously we get for the high-energy measurement

mH = c21AHg(1) + c22AHg(2), (2)

where the geometric system matrix AH is possibly different from AL. See figure 1 for examples
of imaging geometries. Again, c21 > 0 and c22 > 0 can be determined empirically.

Now we can combine both measurements in a unified linear system:

m =

[
mL

mH

]
=

[
c11AL c12AL

c21AH c22AH

] [
g(1)

g(2)

]
= Ag. (3)

The core idea in dual-energy x-ray tomography for material decomposition is to choose the
two energies so that the two materials respond to them differently. For example, one material
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Figure 1. Alternative imaging protocols. (a) Two projection images are recorded from
each source location: one with low (L) and another with high (H) energy. In this case,
we have AH = AL. (b) Only one projection image is recorded at every source location,
alternating between low and high energies. In this case, we have AH �= AL.

might be quite indifferent to the energy change while the other could attenuate very differently
according to energy. Then the solution of (3) is rather analogous to solving a system of two
linear equations for two variables.

We propose a novel variational regularization approach in the space g ∈ R
2N2

, including a
non-negativity constraint:

g̃α,β = arg min
g( j)�0

{
‖m −Ag‖2

2 + αR(g) + βS(g)
}

, (4)

where α, β > 0 are regularization parameters, g( j) � 0 means that the elements of the vector
are non-negative numbers and the regularizer R can be any of the standard choices such as the
Tikhonov penalty

R(g) = ‖g‖2
2. (5)

The novelty arises from the term that penalises the inner product (IP) of g(1) and g(2) ∈ R
N2

:

S(g) = S
([

g(1)

g(2)

])
:= 2〈g(1), g(2)〉 = 2

N2∑
i=1

g(1)
i g(2)

i . (6)

Together with the non-negativity constraint, S promotes the point-wise separation between the
two materials: at each pixel, at least one of the images, G(1) or G(2), needs to have a zero value
to make S minimal. Due to the presence of the IP, we denote this approach as the IP method.

The quadratic program resulting from the application of the novel variational regularization
is solved using an IPM [15, 32]; we develop an efficient preconditioner for the normal equations
which guarantees the spectrum of the preconditioned matrix to remain independent of the IPM
iteration. The numerical experience indicates that this approach allows us to solve the largest
problem (N = 512) in a matter of minutes on a standard laptop.

We demonstrate the feasibility of our new approach to material decomposition with com-
putational experiments. Our specific focus is in low-dose imaging, and therefore we consider
imaging with only 65 projection directions. This is roughly one order of magnitude less than in
standard tomographic scans. Also, we add simulated noise to the measurements for modelling
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low-dose exposures. As the baseline method for comparison of reconstruction quality we pick
the joint total variation regularization (JTV), which has been used for dual-energy x-ray CT in
[29].

We find that under traditional image quality measures, such as square norm error, structural
similarity index (SSIM) or Haar wavelet-based perceptual similarity index (HaarPSI), neither
of the two methods shows clear superiority over the other. However, when we look at the
number of pixels where the materials are correctly identified, our new method outperforms
JTV.

For simplicity, we restrict here to the case of two materials and two x-ray energies. How-
ever, the model readily generalizes to higher numbers of both, as long as there are at least as
many energies as there are materials. Moreover, we only consider a two-dimensional slice to
be imaged using a one-dimensional linear array x-ray detector. A similar problem could be
formulated for 3D objects imaged in cone-beam geometry with a planar x-ray camera; the
changes are mathematically straightforward but in an initial feasibility study like this we find
it better to stick with numerically straightforward 2D scenarios.

The paper is organized as follows. In section 2 we discuss the continuous theory behind
our discrete variational regularization method. Section 3 is devoted to presenting an efficient
numerical optimization method tailored for finding the minimizer of (4). In section 4 we
recall the formulation of the JTV regularization approach. In section 5 we describe the testing
environment and in section 6 we report numerical results of applying two methods: the new
proposed IP regularization and the standard JTV regularization used to analyze several test
images. Additionally, we briefly illustrate the behaviour of the preconditioned conjugate gra-
dient, the specialized linear solver applied by the IPM used to optimize the IP regularization
problem. Finally, we summarize our findings in section 7.

2. Continuous form of the new regularization functional

In many inverse problems, there is an accurate continuous model for the measurement pro-
cess. Regularized inversion methods can then be designed and analyzed in infinite-dimensional
function spaces [12, 23, 27].

Tomography is a prime example. Given a well-behaving function f : Ω→ R, the Radon
transform R f organizes the set of all possible line integrals of f :

R f (θ, s) =
∫

x·θ=s
f (x)dL,

where θ ∈ R
2 is a unit vector, s ∈ R, and dL stands for the one-dimensional Lebesgue measure

on the line x · θ = s. Homogenising the molecular scale, we can use a non-negative function f
as a model of x-ray attenuation inside a physical object. Further, a logarithmically transformed
pixel value in an x-ray camera approximates R f (θ, s) with θ and s determined by the path of
the ray hitting the pixel [23, 25].

In practical inverse problems, the unknown needs a finite representation to be used in com-
putational reconstruction. For example, in this work we pixelizeΩ, represent f computationally
as a function having a constant value on each pixel, and use a pencil-beam model to arrive at
the model (4).

Ideally, practical reconstructions can be seen as discrete approximations of the regularized
inversion results described by the continuous theory. This is a great situation as the theo-
rems concerning the continuous model cover all discrete resolutions in one go, providing
discretization-invariance for the inversion approach.

4
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However, the relationship between discrete and continuous inversion models is not always
straightforward. For example, in [21] two of the authors showed that the total variation prior
depends on the discretization in an unexpected and harmful way when used in Bayesian
inversion. A discretization-invariant theory was developed using wavelets in [20]. Also, the
usual assumption of discrete white noise in the practical data requires careful treatment at the
infinite-dimensional limit [19].

With those caveats in mind, we think that it is important to provide our new discrete
regularization method with a rigorous continuum limit.

Let L2
+(Ω) = {g ∈ L2(Ω) : g(x) � 0 a.e.} and g(x) = (g1(x), g2(x)) ∈ L2

+(Ω)2, H be a
Hilbert space and A : L2(Ω)2 →H be a bounded linear operator (such as the Radon transform).

We consider the minimization problem

g̃α,β = arg min
g∈L2

+(Ω)2

{
‖m − Ag‖2

H + αR(g) + βS(g)
}

, (7)

where α > β > 0 are regularization parameters, and

R(g) =
∫
Ω

(|g1(x)|2 + |g2(x)|2)dx (8)

and

S(g) =
∫
Ω

g1(x)g2(x) dx. (9)

Let U( j, N) ⊂ Ω, j = 1, 2, . . . , N be disjoint sets such that
⋃N

j=1U( j, N) = Ω and
diam(U( j, N)) → 0 as N →∞. Let 1U( j,N)(x) = 1 for x ∈ U( j, N) and 1U( j,N)(x) = 0 for x /∈
U( j, N). In the context of problem (4), the interior of each U( j, N) coincides with the interior
of one of the pixels in our discretization of Ω.

Then

φ j,N (x) = |U( j, N)|−1/21U( j,N)(x), j = 1, 2, . . . , N,

where | · | denotes Lebesgue measure, are orthogonal piecewise constant functions. Let PN ⊂
L2(Ω) be the span of the functions φ j,N(x), j = 1, 2, . . . , N and

PNu =

N∑
j=1

〈u,φ j,N〉L2(Ω)φ j,N

be the orthogonal projector in L2(Ω) onto PN . For g = (g1, g2) ∈ L2(Ω)2 we denote PNg =
(PNg1, PNg2).

When Ω ⊂ R
2 is the unit square and the interiors of U( j, N) coincide with the interiors of

our pixels, the minimizer g̃α,β defined in (4) corresponds to a piecewise constant function that
solves the minimization problem

min
g∈Y∩P2

N

F(g), F(g) = ‖m − Ag‖2
H + αR(g) + βS(g). (10)

As F : Y ∩ P2
N → R is a strictly convex function and P2

N is a finite dimensional vector space,
we see that F : Y ∩ P2

N → R has a unique minimizer.
To study an analogous continuous problem, let F : L2(Ω)2 → R ∪ {∞} be the function

F(g) = ‖m − Ag‖2
H + αR(g) + βS(g) + χL2

+(Ω)2 (g),

5
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where χL2
+(Ω)2 (g) = 0 if g ∈ L2

+(Ω)2 and χL2
+(Ω)2 (g) = ∞ if g /∈ L2

+(Ω)2.

To study the convergence of the discrete problems, we define also an auxiliary function
FN : L2(Ω)2 → R ∪ {∞},

FN(g) = ‖m − APNg‖2
H + αR(g) + βS(PNg) + χL2

+(Ω)2 (g).

Let Y = L2(Ω)2 and τY be the norm topology of Y and τw be the weak topology of Y .
Consider now a sequence yN ∈ Y that converges weakly in Y to y. As A : Y →H is bounded,
and thus A∗ : H→ Y is bounded, we see that AyN converges weakly in H to Ay. Thus, as the
norm of a Hilbert space, ‖ · ‖H, is a weakly lower-semicontinuous function, we see that F : Y →
R ∪ {∞} is lower-semicontinuous in (Y , τw).

As F : Y → R ∪ {∞} is a strictly convex lower-semicontinuous function in (Y, τw), it has
a unique minimizer. Similarly, FN : Y →R ∪ {∞} has a unique minimizer. Moreover, we see
that if g∗

N ∈ Y is a minimizer of FN : Y → R ∪ {∞}, then g∗
N ∈ P2

N . As FN(PNg) � FN(g), we
see that the minimizer of FN satisfies g∗

N ∈ P2
N .

Next, we recall the definition of the Γ-convergence. Let (Y, τ ) be a topological space and
{FN : Y → [−∞,∞], N > 0} be a one-parameter family of functionals on Y. For y ∈ Y let
N(x) denote the set of all open neighbourhoods U ⊂ Y of x, with respect to the topology τ . If

F (x) = sup
U∈N(x)

lim inf
N→∞

inf
y∈U

FN(y) = sup
U∈N(x)

lim sup
N→∞

inf
y∈U

FN(y),

we say that FN Γ-converges to F in Y with respect to topology τ as N →∞.

Theorem 2.1. Let α > β and g∗
N ∈ Y be the minimizers of functions FN and g∗ ∈ Y be the

minimizer of F. Then

lim
N→∞

‖g∗
N − g∗‖Y = 0. (11)

Proof. Let us first recall the reason why the projectors PN converge strongly to the identity
operator in Y as N →∞. Let g ∈ Y and ε > 0. Then there is a function g′ ∈ C1(Ω)2 such that
‖g − g′‖Y < ε/4. Then, ‖PN(g′ − g)‖Y � ‖g − g′‖Y < ε/4. Let M = ‖g′‖C1 . When N0 is so
large that for all N > N0 we have diam(U( j, N)) < ε/(2M), we see by considering averages of
g′ in the sets U( j, N) that ‖g′ − PNg′‖Y � ε/2. Thus, for N > N0 we have

‖g − PNg‖Y � ‖g − g′‖Y + ‖g′ − PNg′‖Y + ‖PNg′ − PNg‖Y < ε.

This shows that the projectors PN converge strongly to I in Y as N →∞.
Let H, HN : Y → R be the quadratic functions

H(g) = ‖m − Ag‖2
L2(Ω)2 + αR(g) + βS(g),

HN(g) = ‖m − APNg‖2
L2(Ω)2 + αR(g) + βS(Png).

and Q, QN : Y → R be the quadratic forms

Q(g) = ‖Ag‖2
L2(Ω)2 + αR(g) + βS(g),

QN(g) = ‖APNg‖2
L2(Ω)2 + αR(g) + βS(Png).

Observe that for all g ∈ Y the values HN(g) converge to H(g) as N →∞, that is, HN con-
verges to H pointwisely in Y. As HN are convex and uniformly bounded in balls of Y ,

6
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[8], proposition 5.12, implies that HN Γ-converges to H in (Y, τY ) as N →∞. Moreover,
HN converges to H both pointwisely and in the sense of Γ-convergence, and the mapping
g �→ χL2

+(Ω)2 (g) is lower-semicontinuous in (Y, τY ). Then [8, propositions 5.9 and 6.25] imply

that FN : Y → R ∪ {∞} Γ-converges to F in (Y, τY ) as N →∞.
As QN(g) � (α− β)‖g‖2

Y , we see that the family of functions FN : Y → R ∪ {∞}, N > 0,
is equicoersive in (Y, τ n) by [8], definition 7.6 and proposition 7.7. By [8], theorem 7.8, we
have

F(g∗) = min
g∈Y

F(b) = lim
N→∞

min
g∈Y

FN(b) = lim
N→∞

FN(g∗
N).

Observe that as g∗
N ∈ P2

N , we have FN(g∗
N) = F(g∗

N). As FN(g) � (α− β)‖g‖2
Y, we see that g∗

N

are uniformly bounded in Y.
To show that g∗

N converges weakly in Y to g∗ as N →∞, we next assume the opposite. Then,
by choosing a subsequence if necessary, we can assume that there is ε1 > 0 and y ∈ Y such
that

|〈g∗
N , y〉Y − 〈g∗, y〉Y | > ε1. (12)

By Banach–Alaoglu theorem, by choosing a subsequence if necessary, we can assume that g∗
N

converges weakly in Y to some g̃ ∈ Y. By (12), g̃ �= g∗.
As F is lower-semicontinuous in (Y, τw), we have that

F(g̃) � lim
N→∞

FN(g∗
N) = F(g∗) = min

g∈Y
F(g). (13)

Thus, F(g̃) = F(g∗) and g̃ is a minimizer of F : Y → R ∪ {∞}. As the minimizer of F is unique,
we have g̃ = g∗ which is not possible. This shows that g∗

N converges weakly in Y to g∗. This
weak convergence, limit (13) and the fact that g∗

N , g∗ ∈ L2
+(Ω)2 implies that

lim
N→∞

QN(g∗
N) = Q(g∗). (14)

Observe that Q : Y → R is a strongly positive quadratic form, that is, Q(g) � (α− β)‖g‖2
Y

and α− β > 0. Thus, by [22], definition 1.1 and property P5 (see also [18]), the quadratic
form Q : Y → R is a Legendre form and it has the property that if yN → y in the weak topology
of Y and Q(yN) → Q(y) as N →∞, then yN → y in the norm topology of Y . Above we have
seen that g∗

N converges weakly to g∗ in Y and the limit (14) holds. As Q is a Legendre form this
implies that g∗

N converges in the norm topology Y to g∗. �

The message of theorem 2.1 is that when we increase the resolution in problems of the
form (4), they converge towards a well-defined infinite-dimensional problem. This is a form of
discretization-invariance.

3. Optimization with preconditioned interior point method (IPM)

By combining the use of Tikhonov regularizer (5) and the IP regularizer (6), which promotes
the point-wise separation of two materials, we arrive at the constrained quadratic programming
task

arg min
g( j)�0

{
‖m −Ag‖2

2 + α‖g‖2
2 + βgTLg

}
, (15)

7
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where

L =

[
0 I
I 0

]
,

with four blocks of size N2 × N2 each.
The problem may be written as an explicit quadratic program with inequality (non-

negativity) constraints

arg min
g( j)�0

− mTAg +
1
2

gT(Q1 + Q2)g (16)

where

Q1 =

[
c2

11(AL)TAL + c2
21(AH)TAH c11c12(AL)TAL + c21c22(AH)TAH

c11c12(AL)TAL + c21c22(AH)TAH c2
12(AL)TAL + c2

22(AH)TAH

]
, (17)

Q2 =

[
αI βI
βI αI

]
. (18)

Notice that Q = Q1 + Q2 can be written as

Q =

[
c2

11 c11c12

c11c12 c2
12

]
⊗ (AL)TAL +

[
c2

21 c21c22

c21c22 c2
22

]
⊗ (AH)TAH

+

[
α β
β α

]
⊗ I, (19)

where ⊗ represents the Kronecker product.
Recall this important property of the Kronecker product:

Lemma 3.1. Given two square matrices T and Z, the eigenvalues of the Kronecker product
T ⊗ Z are given by t · z, where t is an eigenvalue of T and z is an eigenvalue of Z.

Lemma 3.2. If α � β, problem (16) is convex.

Proof. We just need to show that matrix Q in (19) is positive semi-definite. We know that
matrix [

α β
β α

]
is positive semi-definite if α � β; the other matrices in the right-hand side of (19) are always
positive semi-definite. Therefore, using lemma 3.1, Q is the sum of semi-definite matrices and
is then positive semi-definite. �

Therefore, in the following we will always assume that α � β.

3.1. Interior point method formulation

We decided to solve problem (16) using an IPM [15, 32]: these methods are among the most
efficient solvers for quadratic programs of large dimensions and can often outperform the more
common first order methods in terms of speed of convergence and accuracy. For this problem,
we aim at reaching large dimensions, and the FISTA method [4], already for moderate problem

8
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sizes (N = 128), was not able to match the results of the interior point solver; we thus decided
to consider only the latter in this work.

Since the problem (15) does not involve any linear equality constraints, we can obtain a
formulation that is simpler than the general one. In the following, e = (1, 1, . . . , 1)T and for
any vector v, we define a diagonal matrix V = diag(v). To apply an IPM to (15), we proceed
in the usual way and start from adding a logarithmic barrier to form the Lagrangian:

L(g,μ) =
1
2

gTQg − mTAg − μ
2N2∑
i=1

log gi. (20)

The coefficientμ is the centrality parameter, which guides the approximations along the central
path and which is driven to zero throughout the iterations. The gradient of (20) is

∇gL(g,μ) = Qg −ATm − μG−1e.

If we define variable s as μG−1e = Se, then the optimality conditions become⎧⎪⎪⎨⎪⎪⎩
Qg − s = ATm

GSe = μe

g, s > 0.

The Newton step (Δg,Δs) for the previous nonlinear system can be found solving[
Q −I
S G

] [
Δg
Δs

]
=

[
r1

r2

]
,

where r1 = ATm − Qg + s and r2 = σμe − GSe; σ is a coefficient that is responsible for the
reduction of the parameter μ [15].

If we form the normal equations, we obtain the final linear system that we need to solve:

(Q + G−1S)Δg = r1 + G−1r2. (21)

We can then retrieve Δs as

Δs = G−1(r2 − SΔg). (22)

Remark 1. Notice that we can use the normal equations without the need to compute the
inverse of Q. This would not be possible for a general quadratic program, but here it follows
from the fact that we do not have any linear equality constraint.

At every IPM iteration, we need to find the Newton step using (21) and (22) and calculate
the step sizes αg andαs, so that the new point (g + αgΔg, s + αsΔs) remains positive. Then we
update the centrality measure μ = gTs/2N2 and choose the coefficient σ for the next iteration.

In practice, a more sophisticated method is used, which involves predictors and correctors.
In particular the predictor, or affine-scaling direction, is computed solving (21) with σ = 0. A
sequence of correctors is then computed by solving (21) with r1 = 0 and r2 chosen in order
to improve the centrality of the approximation, by pushing the point towards a symmetric
neighbourhood

N = {(g, s)|g > 0, s > 0, γμ � g js j � μ/γ, ∀ j}. (23)

This technique, called multiple centrality correctors, has been analyzed in detail in [7, 14].
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Figure 2. (a) Magnitude of the elements of ATA for N = 32. (b) Magnitude of the mean
element along a specific diagonal against the distance from the main diagonal.

To stop the IPM iterations, we check the normalized dual residual and the complementarity
measure:

‖ATm − Qg + s‖
‖ATm‖ < tol, μ < tol, (24)

where tol is the IPM tolerance.
The matrix Q in (21) is not known explicitly; it is accessible only via matrix-vector products

performed using the Radon transform. Hence, to solve the linear system we need to use a matrix
free approach; this is done employing conjugate gradient with an appropriate preconditioner.

3.2. Preconditioner

The matrix of the system is Q1 + Q2 + G−1S, with Q1 given in (17) and Q2 given in (18).
G−1S is diagonal, Q2 has a 2 × 2 block structure with diagonal blocks, while the structure of
Q1 depends on matrices (AL)TAL and (AH)TAH.

Let us analyze an instance where AL = AH = A. Matrix ATA is dense in general, but almost
all its mass is concentrated in some of its diagonals. Indeed, this can be seen from figure 2(a),
which shows the magnitude of the elements for the case N = 32.

In particular, every N diagonals, there is one with larger elements; these elements are almost
constant along a specific diagonal, giving matrix ATA a Toeplitz-like structure. The further
away from the diagonal, the smaller the elements become, as can be seen from figure 2(b):
here, the mean of the elements along a specific diagonal is plotted against the distance from
the main diagonal.

These facts suggest that it may be possible to approximate matrix ATA considering only
some of the diagonals with large elements. The simplest choice is to use just the main diag-
onal, in a similar way to what is done in compressed sensing [13]. Thus, matrix Q1 can be
approximated using a 2 × 2 block matrix with diagonal blocks; adding matrix Q2 and G−1S
we get the preconditioner:

P =

[
(c2

11 + c2
21)ρI + αI + (G−1S)1 (c11c12 + c21c22)ρI + βI

(c11c12 + c21c22)ρI + βI (c2
12 + c2

22)ρI + αI + (G−1S)2

]
, (25)

10
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where we have split the entries of G−1S into the two blocks; ρ is an approximation of the
diagonal elements of ATA, obtained through random sampling of this matrix. We will denote
the diagonal blocks as D11, D12 and D22 according to their position. This preconditioner is easy
to invert: when we need to apply it, we have to solve[

D11 D12

D12 D22

] [
x1

x2

]
=

[
y1

y2

]
.

This system can be solved forming the Schur complement, which is diagonal:

(D22 − D2
12D−1

11 )x2 = y2 − D12D−1
11 y1

and retrieving x1 from x1 = D−1
11 (y1 − D12x2).

Notice that most of the terms involved in the preconditioner are constant, while some
vary through the IPM iterations, but are immediately available from vectors g and s. This
preconditioner is thus very cheap both to compute and apply.

Remark 2. Notice that, if AL �= AH, the same preconditioner can be used with a small mod-
ification: we just need to approximate both the diagonal of (AL)TAL and (AH)TAH with two
different coefficients ρL and ρH.

In order to use preconditioned conjugate gradient (PCG) with the proposed preconditioner,
we need to show that matrices Q1 + Q2 + G−1S and P are positive definite.

Lemma 3.3. If α � β, M = Q1 + Q2 + G−1S and P are symmetric positive definite.

Proof. From lemma 3.2 we know that if α � β, matrix Q is positive semi-definite. Matrix
G−1S is trivially strictly positive definite, hence M is positive definite.

For P, write it as

P =

[
c2

11 c11c12

c11c12 c2
12

]
⊗ ρLI +

[
c2

21 c21c22

c21c22 c2
22

]
⊗ ρHI +

[
α β
β α

]
⊗ I + G−1S

and proceed in the same way. �
Let us define the matrices

F =

[
f1 f2

f2 f3

]
K =

[
α β
β α

]
,

where f1 = c2
11 + c2

21, f2 = c11c12 + c21c22, f3 = c2
12 + c2

22. We can now analyze the spectrum
of the preconditioned matrix:

Lemma 3.4. The eigenvalues of the preconditioned matrix P−1M, where P is defined in
(25) and M = Q1 + Q2 + G−1S, when AL = AH = A satisfy

λ ∈
[

α− β

ρΛF + α+ β
,
σ2

max(A)ΛF + α+ β

ρλF + α− β

]
,

where ΛF � λF are the two eigenvalues of matrix F.

Proof. We want to study the generalized eigenvalue problem Mv = λPv, where

M = F ⊗ ATA + K ⊗ I + G−1S,

P = F ⊗ ρI + K ⊗ I + G−1S.

11
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Let us fix ‖v‖ = 1. The eigenvalues can be expressed as

λ =
vTMv
vTPv

=
vT(F ⊗ ATA)v + vT(K ⊗ I)v + vT(G−1S)v
vT(F ⊗ ρI)v + vT(K ⊗ I)v + vT(G−1S)v

.

Let us call the eigenvalues of matrix F as ΛF > λF � 0, where the last inequality follows from

f1 f3 − f 2
2 = (c2

11 + c2
21)(c2

12 + c2
22) − (c11c12 + c21c22)2

= c2
11c2

22 + c2
21c2

12 − 2(c11c22)(c12c21)

= (c11c22 − c12c21)2 � 0.

The eigenvalues of K are α± β and under the assumption α � β, we are sure that this matrix
is positive semidefinite.

Using lemma 3.1, we can say that:

vT(K ⊗ I)v ∈ [α− β,α+ β],

vT(F ⊗ ρI)v ∈ [ρλF, ρΛF],

vT(F ⊗ ATA)v ∈ [0,ΛFσ
2
max(A)].

Therefore

λ � σ2
max(A)ΛF + α+ β + vT(G−1S)v
ρλF + α− β + vT(G−1S)v

, (26)

λ � α− β + vT(G−1S)v
ρΛF + α+ β + vT(G−1S)v

. (27)

Recall the following result: if A, B, C > 0 then

A + C
B + C

� A
B

⇔ B � A.

It is clear that ρΛF + α+ β � α− β and that σ2
max(A)ΛF + α+ β � ρλF + α− β, since ρ is

the mean eigenvalue of ATA while σ2
max(A) the maximum. Thus

λ ∈
[

α− β

ρΛF + α+ β
,
σ2

max(A)ΛF + α+ β

ρλF + α− β

]
.

�

Remark 3. Both these bounds do not depend on the IPM iteration. The lower bound depends
only on α, β, the coefficients ci j and ρ, which do not depend on N; hence the lower bound does
not depend on N. The upper bound, instead, grows as N increases, since the term σ2

max(A)
depends on N. Thus, the spectral properties of the preconditioned matrix and the performance
of the PCG may deteriorate as N grows.

A similar result holds in the case AL �= AH:

Lemma 3.5. The eigenvalues of the preconditioned matrix P−1M, with AL �= AH, satisfy

λ ∈
[

α− β

Λρ + α+ β
,
σ2

max(AL)ΛFL + σ2
max(AH)ΛFH + α+ β

λρ + α− β

]
,

12
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where λρ, Λρ, ΛFL and ΛFH are defined below.

Proof. In this case, the eigenvalue satisfies

λ =
vT(FL ⊗ (AL)TAL)v + vT(FH ⊗ (AH)TAH)v + vT(K ⊗ I)v + vT(G−1S)v

vT((ρLFL + ρHFH) ⊗ I)v + vT(K ⊗ I)v + vT(G−1S)v
,

where

FL =

[
c2

11 c11c12

c11c12 c2
12

]
, FH =

[
c2

21 c21c22

c21c22 c2
22

]
.

As before, fix ‖v‖ = 1; we can say that

vT(FL ⊗ (AL)TAL)v ∈ [0,ΛFLσ
2
max(AL)],

vT(FH ⊗ (AH)TAH)v ∈ [0,ΛFHσ
2
max(AH)],

vT((ρLFL + ρHFH) ⊗ I)v ∈ [λρ,Λρ],

where we have defined

λρ = λmin(ρLFL + ρHFH), Λρ = λmax(ρLFL + ρHFH).

Therefore

λ � σ2
max(AL)ΛFL + σ2

max(AH)ΛFH + α+ β + vT(G−1S)v
λρ + α− β + vT(G−1S)v

,

λ � α− β + vT(G−1S)v
Λρ + α+ β + vT(G−1S)v

.

In the same way as before, the final bound becomes

λ ∈
[

α− β

Λρ + α+ β
,
σ2

max(AL)ΛFL + σ2
max(AH)ΛFH + α+ β

λρ + α− β

]
.

�

4. The comparison method: joint total variation (JTV)

We have chosen JTV as a benchmark method for our new IP regularization method. There
are plenty of other approaches one could choose as a baseline method, like discrete tomogra-
phy [30], Bayesian inversion [10], machine learning [24], projections onto convex sets [28],
wavelets [35] etc. In our view one comparison method is enough for this proof-of-concept
study and we chose JTV because variants of total variation regularization have become a kind
of industry standard in reconstruction studies.

JTV is a multi-channel joint reconstruction approach where all the unknown images are
reconstructed simultaneously by solving one combined inverse problem. Basic (non-joint) TV
as a regularizer favors piecewise constant images where the boundary curves separating differ-
ent constant areas are as short as possible. JTV also promotes piecewise-constantness in each
image channel, but additionally requiring that the jump curves in all channels coincide.

There are many slightly different formulations of the JTV functional in the literature; see
[5, 6, 9, 11, 33].
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Let us explain the JTV model used here.
Let f� be a N × N matrix, and denote its vertical vector form by f ∈ R

N2
. Define two N2 ×

N2 matrices: LH implementing horizontal differences and LV vertical differences. The matrix
LH is determined by the formula

(LHf)� = f�
k,m+1 − f�

k,m, 1 � � � N2, (28)

where the row index k and column index m are defined as follows. We write the integer �− 1
in the form

�− 1 = (m − 1)N + (k − 1),

where 0 � (m − 1) < N is the quotient and 0 � (k − 1) < N is the remainder. Also, we use
the convention that f�

k,N+1 = 0 for all 1 � k � N. The matrix LV is determined similarly by the
formula

(LVf)� = f�
k+1,m − f�

k,m (29)

with the convention that f�
N+1,m = 0 for all 1 � m � N.

We use JTV for vectors of the form

g =

[
g(1)

g(2)

]
,

including a non-negativity constraint:

g̃γ = arg min
g( j)�0

{
‖m −Ag‖2

2 + γR(g)
}

, (30)

where γ > 0 is the regularization parameter. The discrete JTV regularizer is

R(g) =
N2∑
�=1

(∣∣(LHg(1))�
∣∣+ ∣∣(LVg(1))�

∣∣+ ∣∣(LHg(2))�
∣∣+ ∣∣(LVg(2))�

∣∣) . (31)

In practice we deploy the classical trick of replacing the absolute values in (31) with a rounded
approximate absolute value function |x|κ =

√
x2 + κ with a small parameter κ > 0. This

makes the objective functional smooth, allowing straightforward gradient-based minimization.

5. Materials and methods

5.1. Computational parameters in the measurement model

There were several computational parameters we used in our numerical simulations for IP and
JTV methods. The size of reconstructed images was fixed to be 128 × 128 pixels. This quite
small resolution was selected for practical reasons: to save memory space and computation
time.

To simulate realistic data, we added random noise and modelling error to our measurement
model. The relative noise level in both simulations was selected to be 0.01 of the maximum
value of the simulated sinogram. There was no strong reason why the noise level was set to 1%
and other close values might certainly be considered as well, but we simply have followed the
example set in the paper [29]. Besides adding normally distributed random noise, we avoided
the inverse crime by rotating the object 45 degrees, so that the orientation of x-rays changes
and interpolation causes small (about 1%–2%) modelling error.
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Table 1. Attenuation coefficients selected for simulating the two different materials with
low and high tube energies.

Attenuation coefficient Simulated material Tube voltage

c11 1.491 PVC 30 kV
c12 8.561 Iodine 30 kV
c21 0.456 PVC 50 kV
c22 12.32 Iodine 50 kV

The number of angles in tomographic simulations was chosen to be sparse. Measurement
angles were selected between 0 and 180 degrees with constant intervals and measurement
geometry was like in A, figure 1. Parallel-beam geometry and 65 angles for tomographic
projections were used in the simulated measurements.

Attenuation coefficients for high and low energies where selected from NIST-database to
simulate the materials of polyvinyl chloride (PVC) and iodine when imaged with 30 kV or
50 kV. Selected values are c11: 1.491 (PVC low energy), c12: 8.561 (iodine low energy), c21:
0.456 (PVC high energy), c22: 12.32 (iodine high energy). See table 1 for clarity.

5.2. Phantoms

We used four different phantoms (figure 3) in all our simulations, assuming that the phantoms
consist of two materials with different, energy dependent attenuation coefficients (table 1). The
phantoms have been selected so that they pose various challenges to the reconstruction algo-
rithms. The first phantom is a fairly simple disc, having two letters hollowed in it. The second
has more details to rise the standard, it is a cross section image of a bone with bone marrow
channels. The third phantom represents a pattern resembling an ancient Egyptian document
written in hieroglyphs and the last one is an image of an electric circuit. This last phantom
has already many small structures, which are challenging for the algorithms to catch, espe-
cially because of the sparsely collected data. We call the phantoms from now on with the
corresponding names: HY, bone, Egypt and circuit.

5.3. Image fidelity measures

We need to find a way to assess the quality of our new method (introduction (4)). In the spirit of
applied inverse problems, we try to evaluate how well the end-users of the algorithm are getting
what they want. The main goal is to recover the location of the two different materials in the
target, assuming that the materials do not mix. We compare the outcome of our method with
the corresponding results from JTV approach to find out if we have reached any improvement.

The new IP method approaches the problem by explicitly representing the two materials
as two separate images g(1) and g(2) in (3), taking into account the energy-dependence of the
attenuation coefficients of the materials. The regularized reconstruction determined by (4) gives
correspondingly two material images

g̃α,β =

[
g̃(1)
α,β

g̃(2)
α,β

]
.

For a known test target, we can then check how well the images g̃(1)
α,β and g̃(2)

α,β match the true
locations of the materials. JTV gives us correspondingly two separate material images, which
makes comparison straightforward.
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Figure 3. Original phantoms. The four different phantoms which we used in our simu-
lations are shown here in the used resolution. First row shows material one and second
row shows material two, which do represent iodine and PVC in these simulations. These
images show the perfect separation of the materials into their own images, and serve us
as a ground truth, where the results of the other methods can be compared.

We will approximate the quality of our reconstruction method with the classical error mea-
sures and with a pixel error measure, which describes the separation of the materials. We
calculate the classical L2-error:

L2 − error =
norm(phantom(:) − reconstruction(:))

norm(phantom(:))
,

the SSIM [31] and HaarPSI [26] for both approaches, (JTV and IP) and for both of the materials
separately. We calculate these quality measures by comparing the original phantoms with the
resulting reconstructions. The same holds for calculating the pixel error. The error calculation
protocol needs the following two phases:

Phase 1. Choice of optimal regularization parameters. To allow for a fair compari-
son between JTV and IP, we need an objective methodology for choosing the regularization
parameters. For this simulation case, the regularization parameters γ and α were selected by
computing a series of reconstructions with varying γ > 0 (in JTV) and α > 0 (in IP). Then the
geometric mean of the relative L2-errors of the two material images, Emean =

√
E1E2, was com-

puted for each undefined reconstructed image pair, using the phantoms as reference images.
The α and γ corresponding to the least mean L2 error were selected for the test cases. The IP
method has also a second regularization parameter β (15), which we selected to be β = 0.8 · α.

Remark 4. There may exist interesting phenomena to be found by adjusting the parameters
α and β and their mutual proportion. The properties of the target (and the intentions of the
end-user) certainly play a role in the optimal choice of parameters. In this initial proof-of-
concept study, we decided not to explore parameter choices in great detail, especially out of
desire to not tailor our method excessively. We used JTV as well in its basic form, even though
probably a separate weight for the two material images would have improved it. We feel that it
is more fair to compare these two methods in as basic form as possible, which means that for
choosing beta we used a straightforward option (80 percent rule) that a practically motivated
computational scientist or applied mathematician would consider as the first thing to try.

Phase 2. Material characterization error. The final quality measure for both methods is
how well they identify the correct material in each pixel. We assume that we know a priori
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the relative amount of each of the two materials. In other words, we know how many pixels
should have value one in a material image; the rest of the pixels must be zero. We segment
the reconstruction images of both JTV and IP methods by choosing the threshold that yields a
binary image with the correct (or most correct) number of pixels with value one.

For example, with the HY phantom we have two separate material images, containing only
black or white pixels. We use resolution 128 × 128 and can calculate the relative amount of
white pixels in the material image 1:

white pixels =
nnz(material 1)

N · N
,

where nnz-function calculates the number of non-zero pixels. Now, when we know the propor-
tion of the white pixels, we can define a value of a threshold (tr), so that it sets correct amount
of white pixels:

segmented material 1(reconstruction 1 > tr) = 1;

and a correct amount of black pixels:

segmented material 1(reconstruction 1 < tr) = 0;

in our segmented material image.

Remark 5. We do realise that thresholding is a simple step and could be improved in several
ways. However, for the comparison of the two methods we believe it is a fair choice as it is
the same for both methods. Furthermore, simplicity can also be seen as a virtue; at least we
are not helping our new method with a tailor-made classification step. Of course, in practical
applications one might choose something more advanced.

6. Results

In this section, we show first reconstruction results and material decomposition results for our
IP method and for standard JTV approach for comparison. We estimate the quality of recon-
structions with classical error measures and with material characterization error (misclassified
pixels) as described in section 5. We have collected these numerical measures in table 2. We
also show numerical results for assessing the quality of the preconditioner of the IPM method.

6.1. Reconstruction results of the IP method

In IP method we apply Tikhonov regularization and use the IP (g(1))Tg(2). We have two regular-
ization parameters α and β in this method. The choice of regularization parameters has been
described in section 5. The stopping criterion for the method is to check the normalized dual
residual and the complementarity (duality) gap, see (24). In all our computations, the tolerance
was set to 10−8 (figures 4–9).

6.2. Reconstruction results with JTV

In JTV, we use standard Tikhonov regularization for the two image system. We implemented
the JTV method ourselves. We have only one adjustable regularization parameter, γ. The
parameter γ was chosen like we described in section 5 and the value of γ was 0.001. The
stopping criterion was based on observing the convergence of the minimisation algorithm
for several cases and thousands of iterations. There seemed to be a suitable stagnation in the
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Table 2. Error calculations for the four phantoms, including the JTV and IP regular-
izers. Regularization parameters have been adjusted manually to achieve the minimal
L2 error. Note that for L2 and misclassifications a smaller number means better quality,
whereas for SSIM and HPSI a greater number means better quality. For JTV, we used
γ = 0.001. For IP, we used α = 150 and β = 120. For each of the phantoms and fixed
quality measure, we have underlined the better result of the two.

Phantom Method L2 SSIM HPSI Misclassif.

HY 1 JTV 0.30 0.23 0.21 0.05
HY 1 IP 0.27 0.29 0.28 0.02

HY 2 JTV 0.27 0.75 0.56 0.01
HY 2 IP 0.28 0.60 0.53 0.01

Bone 1 JTV 0.55 0.24 0.15 0.14
Bone 1 IP 0.44 0.41 0.36 0.06

Bone 2 JTV 0.32 0.66 0.50 0.04
Bone 2 IP 0.29 0.71 0.50 0.03

Egypt 1 JTV 0.40 0.25 0.30 0.13
Egypt 1 IP 0.38 0.33 0.29 0.08

Egypt 2 JTV 0.62 0.69 0.56 0.06
Egypt 2 IP 0.61 0.69 0.56 0.06

Circuit 1 JTV 0.62 0.17 0.30 0.28
Circuit 1 IP 0.56 0.32 0.28 0.18

Circuit 2 JTV 0.59 0.59 0.50 0.16
Circuit 2 IP 0.59 0.62 0.50 0.16

objective function values around 400 iterations, so we decided to stop at that iteration count.
The following iterations did reduce the objective function further, but the reconstruction qual-
ity actually became worse. There would be many ways to improve the JTV implementation,
including a non-uniform weighting of the gradient penalties of the two material images, a more
advanced optimization algorithm, or more intelligent stopping criterion. However, we need the
JTV method here only as a baseline for comparison, so we settled for a reasonably standard and
simply stopped version of JTV. We do not claim that this is the best that JTV can do; we just
want to demonstrate the qualitative differences between the new method and a rather simple
implementation of a standard method such as JTV.

6.3. Material decomposition results

The final quality measure for IP and JTV methods is how well they manage to identify the
correct material in each pixel in the reconstructions. Because we work with simulations, we
can calculate how many pixels we should have representing material 1 and material 2. With
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Figure 4. Reconstruction results with JTV and IP regularizations for HY and bone phan-
toms. The first row represents material 1 and the second row represents material 2. First
column shows JTV reconstructions, second column shows IP-method reconstructions
and third column is the ground truth.

Figure 5. Reconstruction results with JTV and IP regularizations for Egypt phantom.
The first row represents material 1 and the second row represents material 2. First col-
umn shows JTV reconstructions, second column shows IP reconstructions and the third
column is the ground truth.

this a priori knowledge we can adjust the threshold so that it produces the correct number of
pixels representing each material.

The actual ratio of misclassified pixels (divided by the number of all pixels in the image) is
listed in the rightmost column of table 2. We have underlined the better result of the two in the
table to make it easier to compare the outcome of the methods.

We show the results of the thresholding also in the following colored segmentation images.
Material 1 is represented with yellow color and material 2 with blue color. We hope this makes
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Figure 6. Reconstruction results with JTV and IP regularizations for the electric circuit
phantom. The first row represents material 1 and the second row represents material 2.
First column shows JTV reconstructions, second column shows IP reconstructions and
the third column is the ground truth.

Figure 7. Segmentation results for HY and bone phantoms. The first row shows both
materials of the phantom together, the second row shows only material 1 and the third
row shows only material 2. The first column shows JTV segmentations, the second
column shows IP segmentations and the third column is the ground truth.

it easier to qualitatively compare how the methods performed in distinguishing the different
materials from each other.

We arranged the colored segmentation images as a grid, where a column represents the
method and row represents the outcome. The first row in the segmentation result shows both
materials in the same image. The second and third row show the materials separately in their
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Figure 8. Segmentation results for Egypt phantom. The first row shows both materials
of the phantom together, the second row shows only material 1 and the third row shows
only material 2. The first column shows JTV segmentations, the second column shows
IP segmentations and the third column is the ground truth.

own images: material 1 in the second row and material 2 in the third row. The columns in all
images have been organized so that JTV approach is in the first column, IP regularization is
in the second column and the actual ground truth is in the rightmost column. The ground truth
represents the ideal situation where the classification of the materials has succeeded perfectly.

6.4. Numerical effect of preconditioning

In this section, we present the results which provide an insight into the behaviour of the opti-
mization technique employed to solve the IP segmentation problem (15). We briefly discuss
the performance of the IPM applied to solve the underlying convex quadratic programming
problem and focus on illustrating the behaviour of the preconditioned conjugate gradient
algorithm applied to normal equation (21) arising in IPM.

We start by showing in figure 10 the eigenvalues of the normal equations, with and without
preconditioner (25), for the problem with N = 32. It is clear that the spectrum of the precondi-
tioned matrix is bounded independently of the IPM iteration, which is what we were expecting
according to lemma 3.4.

Next, we show in table 3 the results in terms of IPM iterations, PCG iterations and compu-
tational time, for various values of N. The IPM tolerance in (24) is set to 10−8; we employed
three centrality correctors with a symmetric neighbourhood (23) with parameter γ = 0.2. The
linear system (21) is solved using PCG with a variable tolerance, chosen in order to reduce the
number of inner iterations (see [34] for more details).
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Figure 9. Segmentation results for circuit phantom. The first row shows both materials
of the phantom together, the second row shows only material 1 and the third row shows
only material 2. The first column shows JTV segmentations, the second column shows
IP segmentations and the third column is the ground truth.

Figure 10. Eigenvalues of the normal equations with and without preconditioner for
N = 32, α = 500, β = 250.
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Table 3. Results with α = 500, β = 250.

N Dimension IPM iter PCG iter Time (s)

32 2048 19 1038 2.25
64 8192 24 1484 7.90
128 32 768 25 1986 32.69
256 131 072 28 2678 157.79
512 524 288 34 3772 881.90

Table 4. Number of small elements and average product of g(1) and g(2) for different
values of β; α = 500, N = 64.

β Small elements (g(1),Tg(2))/N2

50 1056 4.86 × 103

100 1091 4.07 × 103

150 1123 3.17 × 103

200 1161 2.36 × 103

250 1607 1.54 × 103

300 2075 1.23 × 103

350 2210 1.07 × 103

400 2412 0.93 × 103

450 2581 0.83 × 103

The numerical experiments reported in table 3 were performed using a sequential code
run in Matlab R2019a, on a computer with an i5-8350U quad-core processor @1.7 GHz and
16 GB of RAM.

As we were expecting from remark 3, we can see that the number of CG iterations per
IPM iteration grows slowly as N increases. However, considering the limited computational
resources and the simplified implementation used, we believe that the computational time in
the case N = 512 is acceptable for the practical applications considered.

6.4.1. Effect of the regularization. We also show some results that underline the effect of the
newly added penalty term (6). We expect from this regularizer to create a separation in the
vectors g(1) and g(2), i.e. we expect the scalar product g(1),Tg(2) to be pushed close to zero. We
performed some tests with different values of β and a fixed value α = 500, in the case N = 64.

Table 4 shows the number of elements of the component-wise products of g(1) and g(2) that
are smaller than 10−6, and the average value of the same product, i.e. (g(1),Tg(2))/N2. We can see
that as β is increased, the number of small elements grows and the average product decreases,
confirming the effect that we expected.

Figure 11 shows the elements of the component-wise products of g(1) and g(2), sorted accord-
ing to their magnitude, in the case β = 50 and β = 450. The number of small elements is
substantially larger in the latter case, confirming what we expected.

7. Discussion

When we compare the color segmentation results achieved with the two approaches JTV and
IP, we can easily see that IP delivers segmentation with fewer misclassified pixels. Hence the
IP method produces the more accurate separation of the materials. The actual ratio of mis-
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Figure 11. Magnitude of the elements of the component-wise products of g(1) and g(2).

classified pixels compared to all pixels is listed in table 2. This numerical evidence suggests
that IP is consistently better in the pixel misclassification quality measure which is a crucial
quality indicator for the application we have in mind. IP is also a frequent winner (although
less consistent) for the remaining quality measures. To be precise, JTV is better than IP only
in 1 case out of 8 on L2 measure, only in 1 case out of 8 on SSIM and in three cases out of 8
on HPSI.

Furthermore, it seems that JTV always produces the visibly worse reconstruction of material
1 image than that of material 2. This could probably be alleviated by a different weighting of
the gradient components. However, in the comparisons in this paper we used both methods in
their basic forms, as both can undoubtedly be improved by tweaking various parameters.

One such tweak would be a smarter thresholding, taking into account both material recon-
structions and the piece of a priori knowledge that each pixel contains exactly one type of
material.

However, one observation supported by the computational evidence is that our IP method
(without any special tailoring) leads to more uniform quality in correctly classified materials
than the baseline method.

The natural next step is to test the new method with two-dimensional x-ray images recorded
of a three-dimensional object, using voxels instead of pixels for computational discretization.
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