2,586 research outputs found

    A multi-modal event detection system for river and coastal marine monitoring applications

    Get PDF
    Abstract—This work is investigating the use of a multi-modal sensor network where visual sensors such as cameras and satellite imagers, along with context information can be used to complement and enhance the usefulness of a traditional in-situ sensor network in measuring and tracking some feature of a river or coastal location. This paper focuses on our work in relation to the use of an off the shelf camera as part of a multi-modal sensor network for monitoring a river environment. It outlines our results in relation to the estimation of water level using a visual sensor. It also outlines the benefits of a multi-modal sensor network for marine environmental monitoring and how this can lead to a smarter, more efficient sensing network

    Wireless Sensor Networks for Ecosystem Monitoring & Port Surveillance

    No full text
    International audienceProviding a wide variety of the most up - to - date innovations in sensor technology and sensor networks, our current project should achieve two major goals. The first goal covers various issues related to the public maritime transport safety and security, such as the coastal and port surveillance systems. While the second one w ill improve the capacity of public authorities to develop and implement smart environment policies by monitoring the shallow coastal water ecosystems. At this stage of our project, a surveillance platform has been already installed near the "MolĂšne Island" which is a small but the largest island of an archipelago of many islands located off the West coast of Brittany in North Western France. Our final objective is to add various sensors as well as to design, develop and implement new algorithms to extend th e capacity of the existing platform and reach the goals of our project. Finally, this manuscript introduces the identified approaches as well as t he second phase of the project which consists in analyzing living underwater micro - organisms (the population o f Marine Micro - Organisms, i.e. MMOs such as Phytoplankton and Zooplankton micro - zooplankton, but also heterotrophic bacterioplankton) in order to predict the health conditions of the macro - environment s . In addition, this communication discusses developed t echniques and concepts to deal with several practical problems related to our project. Some results are given and the whole system architecture is briefly described. This manuscript will also addresses the national benefit of such projects in the case of t hree different countries (Australia, France and KS

    Crowdsourcing Water Quality Data Using the iPhone Camera

    Get PDF
    The ubiquity and advanced computing power of smartphones make them a potential tool for environmental monitoring on a global scale. In an attempt to tap this resource, a water quality application (HydroColor) was developed. Hydro- Color uses the iPhone’s digital color camera as a primitive three-band radiometer. Using three images taken by the user, HydroColor calculates the remote sensing reflectance in the red, green, and blue color channels of the camera. The absolute or relative reflectance between channels can be used to obtain estimates of chlorophyll, turbidity, suspended particle material, and the backscattering coefficient. In the future, HydroColor will be linked to an online database where users can upload their measurements, thus crowdsourcing water quality data

    Remote sensing in the coastal and marine environment. Proceedings of the US North Atlantic Regional Workshop

    Get PDF
    Presentations were grouped in the following categories: (1) a technical orientation of Earth resources remote sensing including data sources and processing; (2) a review of the present status of remote sensing technology applicable to the coastal and marine environment; (3) a description of data and information needs of selected coastal and marine activities; and (4) an outline of plans for marine monitoring systems for the east coast and a concept for an east coast remote sensing facility. Also discussed were user needs and remote sensing potentials in the areas of coastal processes and management, commercial and recreational fisheries, and marine physical processes

    Earth resources. A continuing bibliography with indexes, issue 23

    Get PDF
    This bibliography lists 226 reports, articles, and other documents introduced into the NASA scientific and technical information system between July 1, 1979 and September 30, 1979. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis

    The HydroColor app: Above water measurements of remote sensing reflectance and turbidity using a smartphone camera

    Get PDF
    © 2018 by the authors. Licensee MDPI, Basel, Switzerland. HydroColor is a mobile application that utilizes a smartphone’s camera and auxiliary sensors to measure the remote sensing reflectance of natural water bodies. HydroColor uses the smartphone’s digital camera as a three-band radiometer. Users are directed by the application to collect a series of three images. These images are used to calculate the remote sensing reflectance in the red, green, and blue broad wavelength bands. As with satellite measurements, the reflectance can be inverted to estimate the concentration of absorbing and scattering substances in the water, which are predominately composed of suspended sediment, chlorophyll, and dissolved organic matter. This publication describes the measurement method and investigates the precision of HydroColor’s reflectance and turbidity estimates compared to commercial instruments. It is shown that HydroColor can measure the remote sensing reflectance to within 26% of a precision radiometer and turbidity within 24% of a portable turbidimeter. HydroColor distinguishes itself from other water quality camera methods in that its operation is based on radiometric measurements instead of image color. HydroColor is one of the few mobile applications to use a smartphone as a completely objective sensor, as opposed to subjective user observations or color matching using the human eye. This makes HydroColor a powerful tool for crowdsourcing of aquatic optical data

    Selected Papers from the 2018 IEEE International Workshop on Metrology for the Sea

    Get PDF
    This Special Issue is devoted to recent developments in instrumentation and measurement techniques applied to the marine field. ¶The sea is the medium that has allowed people to travel from one continent to another using vessels, even today despite the use of aircraft. It has also been acting as a great reservoir and source of food for all living beings. However, for many generations, it served as a landfill for depositing conventional and nuclear wastes, especially in its deep seabeds, and we are assisting in a race to exploit minerals and resources, different from foods, encompassed in it. Its health is a great challenge for the survival of all humanity since it is one of the most important environmental components targeted by global warming. ¶ As everyone may know, measuring is a step that generates substantial knowledge about a phenomenon or an asset, which is the basis for proposing correct solutions and making proper decisions. However, measurements in the sea environment pose unique difficulties and opportunities, which is made clear from the research results presented in this Special Issue

    Earth Resources: A continuing bibliography with indexes, issue 11, October 1976

    Get PDF
    This bibliography lists 714 reports, articles, and other documents introduced into the NASA scientific and technical information system between July 1976 and September 1976. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis

    Results from the National Aeronautics and Space Administration remote sensing experiments in the New York Bight, 7-17 April 1975

    Get PDF
    A cooperative operation was conducted in the New York Bight to evaluate the role of remote sensing technology to monitor ocean dumping. Six NASA remote sensing experiments were flown on the C-54, U-2, and C-130 NASA aircraft, while NOAA obtained concurrent sea truth information using helicopters and surface platforms. The experiments included: (1) a Radiometer/Scatterometer (RADSCAT), (2) an Ocean Color Scanner (OCS), (3) a Multichannel Ocean Color Sensor (MOCS), (4) four Hasselblad cameras, (5) an Ebert spectrometer; and (6) a Reconafax IV infrared scanner and a Precision Radiation Thermometer (PRT-5). The results of these experiments relative to the use of remote sensors to detect, quantify, and determine the dispersion of pollutants dumped into the New York Bight are presented

    Earth Resources. A continuing bibliography with indexes, issue 34, July 1982

    Get PDF
    This bibliography lists 567 reports, articles, and other documents introduced into the NASA Scientific and Technical Information System between April 1, and June 30, 1982. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis
    • 

    corecore