260,165 research outputs found

    A filter design approach to maximize ampacity of cables in nonsinusoidal power systems

    Get PDF
    This paper presents an optimal design of the C-type passive filters for the effective utilization of the power cables under nonsinusoidal conditions based on maximization of the harmonic derating factor (HDF) of a power cable, where maintaining the load true power factor at an acceptable range is desired. According to IEEE Standard 519, the total harmonic distortions of the voltage and current measured at the point of common coupling are taken into account as main constraints of the proposed approach. The presented numerical results show that the proposed approach provides higher current carrying capacity, or ampacity of the cables under nonsinusoidal conditions when compared to the traditional approaches based on minimization of the current total harmonic distortion and maximization of the true load power factor. A numerical case study is presented to demonstrate the proposed approach

    Actors, actions, and initiative in normative system specification

    Get PDF
    The logic of norms, called deontic logic, has been used to specify normative constraints for information systems. For example, one can specify in deontic logic the constraints that a book borrowed from a library should be returned within three weeks, and that if it is not returned, the library should send a reminder. Thus, the notion of obligation to perform an action arises naturally in system specification. Intuitively, deontic logic presupposes the concept of anactor who undertakes actions and is responsible for fulfilling obligations. However, the concept of an actor has not been formalized until now in deontic logic. We present a formalization in dynamic logic, which allows us to express the actor who initiates actions or choices. This is then combined with a formalization, presented earlier, of deontic logic in dynamic logic, which allows us to specify obligations, permissions, and prohibitions to perform an action. The addition of actors allows us to expresswho has the responsibility to perform an action. In addition to the application of the concept of an actor in deontic logic, we discuss two other applications of actors. First, we show how to generalize an approach taken up by De Nicola and Hennessy, who eliminate from CCS in favor of internal and external choice. We show that our generalization allows a more accurate specification of system behavior than is possible without it. Second, we show that actors can be used to resolve a long-standing paradox of deontic logic, called the paradox of free-choice permission. Towards the end of the paper, we discuss whether the concept of an actor can be combined with that of an object to formalize the concept of active objects

    Comparison of different optimization criteria for optimal sizing of hybrid active power filters parameters

    Get PDF
    Praise Worthy Prize granted a permission for Brunel University London to archive this article in BURA.Harmonic distortion in power systems has increased considerably due to the increasing use of nonlinear loads in industrial firms and elsewhere. This distortion can give rise to overheating in all sectors of the power system, leading to reduced efficiency, reliability, operational life and sometimes failure. This article seeks to propose a new methodology for the optimal sizing of hybrid active power filter (HPF) parameters in order to overcome the difficulties in hybrid power filters design when estimating the preliminary feasible values of the parameters. Sequential Quadratic Programming based on FORTRAN subroutines is used to find out the planned filter size in two different optimization criteria depending on design concerns. The first criterion is to minimize the total voltage harmonic distortion. The second one is to maximize the load power factor, while taking into account compliance with IEEE standard 519-1992 limits for the total voltage harmonic distortion and the power factor.The effectiveness of the proposed filter is discussed using four exemplary case

    Integrated optimal design and sensitivity analysis of a stand alone wind turbine system with storage for rural electrification

    Get PDF
    In this paper, the authors investigate a robust Integrated Optimal Design (IOD) devoted to a passive wind turbine system with electrochemical storage bank: this stand alone system is dedicated to rural electrification. The aim of the IOD is to find the optimal combination and sizing among a set of system components that fulfils system requirements with the lowest system Total Cost of Ownership (TCO). The passive wind system associated with the storage bank interacts with wind speed and load cycles. A set of passive wind turbines spread on a convenient power range (2 – 16 kW) are obtained through an IOD process at the device level detailed in previous papers. The system cost model is based on data sheets for the wind turbines and related to battery cycles for the storage bank. From the range of wind turbines, a “system level” optimization problem is stated and solved using an exhaustive search. The optimization results are finally exposed and discussed through a sensitivity analysis in order to extract the most robust solution versus environmental data variations among a set of good solutions

    A sunspot-based theory of unconventional monetary policy

    Get PDF
    This paper is about the effectiveness of qualitative easing, a form of unconventional monetary policy that changes the risk composition of the central bank balance sheet. We construct a general equilibrium model where agents have rational expectations, and there is a complete set of financial securities, but where some agents are unable to participate in financial markets. We show that a change in the risk composition of the central bank’s balance sheet affects equilibrium asset prices and economic activity. We prove that, in our model, a policy in which the central bank stabilizes non-fundamental fluctuations in the stock market is self-financing and leads to a Pareto efficient outcome

    Two-Stage Multi-Objective Meta-Heuristics for Environmental and Cost-Optimal Energy Refurbishment at District Level

    Get PDF
    Energy efficiency and environmental performance optimization at the district level are following an upward trend mostly triggered by minimizing the Global Warming Potential (GWP) to 20% by 2020 and 40% by 2030 settled by the European Union (EU) compared with 1990 levels. This paper advances over the state of the art by proposing two novel multi-objective algorithms, named Non-dominated Sorting Genetic Algorithm (NSGA-II) and Multi-Objective Harmony Search (MOHS), aimed at achieving cost-effective energy refurbishment scenarios and allowing at district level the decision-making procedure. This challenge is not trivial since the optimisation process must provide feasible solutions for a simultaneous environmental and economic assessment at district scale taking into consideration highly demanding real-based constraints regarding district and buildings’ specific requirements. Consequently, in this paper, a two-stage optimization methodology is proposed in order to reduce the energy demand and fossil fuel consumption with an affordable investment cost at building level and minimize the total payback time while minimizing the GWP at district level. Aimed at demonstrating the effectiveness of the proposed two-stage multi-objective approaches, this work presents simulation results at two real district case studies in Donostia-San Sebastian (Spain) for which up to a 30% of reduction of GWP at district level is obtained for a Payback Time (PT) of 2–3 years.Part of this work has been developed from results obtained during the H2020 “Optimised Energy Efficient Design Platform for Refurbishment at District Level” (OptEEmAL) project, Grant No. 680676

    Public Exposure: Architecture and Interpretation

    Get PDF
    How the interpretation of architecture differs from that of other artworks

    Ephemeral point-events: is there a last remnant of physical objectivity?

    Get PDF
    For the past two decades, Einstein's Hole Argument (which deals with the apparent indeterminateness of general relativity due to the general covariance of the field equations) and its resolution in terms of Leibniz equivalence (the statement that Riemannian geometries related by active diffeomorphisms represent the same physical solution) have been the starting point for a lively philosophical debate on the objectivity of the point-events of space-time. It seems that Leibniz equivalence makes it impossible to consider the points of the space-time manifold as physically individuated without recourse to dynamical individuating fields. Various authors have posited that the metric field itself can be used in this way, but nobody so far has considered the problem of explicitly distilling the metrical fingerprint of point-events from the gauge-dependent components of the metric field. Working in the Hamiltonian formulation of general relativity, and building on the results of Lusanna and Pauri (2002), we show how Bergmann and Komar's intrinsic pseudo-coordinates (based on the value of curvature invariants) can be used to provide a physical individuation of point-events in terms of the true degrees of freedom (the Dirac observables) of the gravitational field, and we suggest how this conceptual individuation could in principle be implemented with a well-defined empirical procedure. We argue from these results that point-events retain a significant kind of physical objectivity.Comment: LaTeX, natbib, 34 pages. Final journal versio

    Method for finding metabolic properties based on the general growth law. Liver examples. A General framework for biological modeling

    Full text link
    We propose a method for finding metabolic parameters of cells, organs and whole organisms, which is based on the earlier discovered general growth law. Based on the obtained results and analysis of available biological models, we propose a general framework for modeling biological phenomena and discuss how it can be used in Virtual Liver Network project. The foundational idea of the study is that growth of cells, organs, systems and whole organisms, besides biomolecular machinery, is influenced by biophysical mechanisms acting at different scale levels. In particular, the general growth law uniquely defines distribution of nutritional resources between maintenance needs and biomass synthesis at each phase of growth and at each scale level. We exemplify the approach considering metabolic properties of growing human and dog livers and liver transplants. A procedure for verification of obtained results has been introduced too. We found that two examined dogs have high metabolic rates consuming about 0.62 and 1 gram of nutrients per cubic centimeter of liver per day, and verified this using the proposed verification procedure. We also evaluated consumption rate of nutrients in human livers, determining it to be about 0.088 gram of nutrients per cubic centimeter of liver per day for males, and about 0.098 for females. This noticeable difference can be explained by evolutionary development, which required females to have greater liver processing capacity to support pregnancy. We also found how much nutrients go to biomass synthesis and maintenance at each phase of liver and liver transplant growth. Obtained results demonstrate that the proposed approach can be used for finding metabolic characteristics of cells, organs, and whole organisms, which can further serve as important inputs for many applications in biology (protein expression), biotechnology (synthesis of substances), and medicine.Comment: 20 pages, 6 figures, 4 table
    corecore