15 research outputs found

    Measure and integral with purely ordinal scales

    Get PDF
    We develop a purely ordinal model for aggregation functionals for lattice valued functions, comprising as special cases quantiles, the Ky Fan metric and the Sugeno integral. For modeling findings of psychological experiments like the reflection effect in decision behaviour under risk or uncertainty, we introduce reflection lattices. These are complete linear lattices endowed with an order reversing bijection like the reflection at 00 on the real interval [1,1][-1,1]. Mathematically we investigate the lattice of non-void intervals in a complete linear lattice, then the class of monotone interval-valued functions and

    The Möbius transform on symmetric ordered structures and its application to capacities on finite sets

    Get PDF
    Considering a linearly ordered set, we introduce its symmetric version, and endow it with two operations extending supremum and infimum, so as to obtain an algebraic structure close to a commutative ring. We show that imposing symmetry necessarily entails non associativity, hence computing rules are defined in order to deal with non associativity. We study in details computing rules, which we endow with a partial order. This permits to find solutions to the inversion formula underlying the Möbius transform. Then we apply these results to the case of capacities, a notion from decision theory which corresponds, in the language of ordered sets, to order preserving mappings, preserving also top and bottom. In this case, the solution of the inversion formula is called the Möbius transform of the capacity. Properties and examples of Möbius transform of sup-preserving and inf-preserving capacities are given.

    New Approaches in Automation and Robotics

    Get PDF
    The book New Approaches in Automation and Robotics offers in 22 chapters a collection of recent developments in automation, robotics as well as control theory. It is dedicated to researchers in science and industry, students, and practicing engineers, who wish to update and enhance their knowledge on modern methods and innovative applications. The authors and editor of this book wish to motivate people, especially under-graduate students, to get involved with the interesting field of robotics and mechatronics. We hope that the ideas and concepts presented in this book are useful for your own work and could contribute to problem solving in similar applications as well. It is clear, however, that the wide area of automation and robotics can only be highlighted at several spots but not completely covered by a single book

    Nonlinear Systems

    Get PDF
    Open Mathematics is a challenging notion for theoretical modeling, technical analysis, and numerical simulation in physics and mathematics, as well as in many other fields, as highly correlated nonlinear phenomena, evolving over a large range of time scales and length scales, control the underlying systems and processes in their spatiotemporal evolution. Indeed, available data, be they physical, biological, or financial, and technologically complex systems and stochastic systems, such as mechanical or electronic devices, can be managed from the same conceptual approach, both analytically and through computer simulation, using effective nonlinear dynamics methods. The aim of this Special Issue is to highlight papers that show the dynamics, control, optimization and applications of nonlinear systems. This has recently become an increasingly popular subject, with impressive growth concerning applications in engineering, economics, biology, and medicine, and can be considered a veritable contribution to the literature. Original papers relating to the objective presented above are especially welcome subjects. Potential topics include, but are not limited to: Stability analysis of discrete and continuous dynamical systems; Nonlinear dynamics in biological complex systems; Stability and stabilization of stochastic systems; Mathematical models in statistics and probability; Synchronization of oscillators and chaotic systems; Optimization methods of complex systems; Reliability modeling and system optimization; Computation and control over networked systems

    New Fundamental Technologies in Data Mining

    Get PDF
    The progress of data mining technology and large public popularity establish a need for a comprehensive text on the subject. The series of books entitled by "Data Mining" address the need by presenting in-depth description of novel mining algorithms and many useful applications. In addition to understanding each section deeply, the two books present useful hints and strategies to solving problems in the following chapters. The contributing authors have highlighted many future research directions that will foster multi-disciplinary collaborations and hence will lead to significant development in the field of data mining

    Deep Learning-Based Machinery Fault Diagnostics

    Get PDF
    This book offers a compilation for experts, scholars, and researchers to present the most recent advancements, from theoretical methods to the applications of sophisticated fault diagnosis techniques. The deep learning methods for analyzing and testing complex mechanical systems are of particular interest. Special attention is given to the representation and analysis of system information, operating condition monitoring, the establishment of technical standards, and scientific support of machinery fault diagnosis

    Uncertain Multi-Criteria Optimization Problems

    Get PDF
    Most real-world search and optimization problems naturally involve multiple criteria as objectives. Generally, symmetry, asymmetry, and anti-symmetry are basic characteristics of binary relationships used when modeling optimization problems. Moreover, the notion of symmetry has appeared in many articles about uncertainty theories that are employed in multi-criteria problems. Different solutions may produce trade-offs (conflicting scenarios) among different objectives. A better solution with respect to one objective may compromise other objectives. There are various factors that need to be considered to address the problems in multidisciplinary research, which is critical for the overall sustainability of human development and activity. In this regard, in recent decades, decision-making theory has been the subject of intense research activities due to its wide applications in different areas. The decision-making theory approach has become an important means to provide real-time solutions to uncertainty problems. Theories such as probability theory, fuzzy set theory, type-2 fuzzy set theory, rough set, and uncertainty theory, available in the existing literature, deal with such uncertainties. Nevertheless, the uncertain multi-criteria characteristics in such problems have not yet been explored in depth, and there is much left to be achieved in this direction. Hence, different mathematical models of real-life multi-criteria optimization problems can be developed in various uncertain frameworks with special emphasis on optimization problems

    Time Localization of Abrupt Changes in Cutting Process using Hilbert Huang Transform

    Get PDF
    Cutting process is extremely dynamical process influenced by different phenomena such as chip formation, dynamical responses and condition of machining system elements. Different phenomena in cutting zone have signatures in different frequency bands in signal acquired during process monitoring. The time localization of signal’s frequency content is very important. An emerging technique for simultaneous analysis of the signal in time and frequency domain that can be used for time localization of frequency is Hilbert Huang Transform (HHT). It is based on empirical mode decomposition (EMD) of the signal into intrinsic mode functions (IMFs) as simple oscillatory modes. IMFs obtained using EMD can be processed using Hilbert Transform and instantaneous frequency of the signal can be computed. This paper gives a methodology for time localization of cutting process stop during intermittent turning. Cutting process stop leads to abrupt changes in acquired signal correlated to certain frequency band. The frequency band related to abrupt changes is localized in time using HHT. The potentials and limitations of HHT application in machining process monitoring are shown

    Critical Thinking Skills Profile of High School Students In Learning Science-Physics

    Get PDF
    This study aims to describe Critical Thinking Skills high school students in the city of Makassar. To achieve this goal, the researchers conducted an analysis of student test results of 200 people scattered in six schools in the city of Makassar. The results of the quantitative descriptive analysis of the data found that the average value of students doing the interpretation, analysis, and inference in a row by 1.53, 1.15, and 1.52. This value is still very low when compared with the maximum value that may be obtained by students, that is equal to 10.00. This shows that the critical thinking skills of high school students are still very low. One fact Competency Standards science subjects-Physics is demonstrating the ability to think logically, critically, and creatively with the guidance of teachers and demonstrate the ability to solve simple problems in daily life. In fact, according to Michael Scriven stated that the main task of education is to train students and or students to think critically because of the demands of work in the global economy, the survival of a democratic and personal decisions and decisions in an increasingly complex society needs people who can think well and make judgments good. Therefore, the need for teachers in the learning device scenario such as: driving question or problem, authentic Investigation: Science Processes
    corecore