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Abstract

We develop a purely ordinal model for aggregation functionals for lat-
tice valued functions, comprising as special cases quantiles, the Ky Fan
metric and the Sugeno integral. For modeling findings of psychological
experiments like the reflection effect in decision behaviour under risk or
uncertainty, we introduce reflection lattices. These are complete linear
lattices endowed with an order reversing bijection like the reflection at 0
on the real interval [−1, 1]. Mathematically we investigate the lattice of
non-void intervals in a complete linear lattice, then the class of monotone
interval-valued functions and their inner product.

1 Motivation and survey

Measuring and aggregation or integration techniques have a very long tradition.
Here numbers play an important role. But how do humans perceive numbers?
The numbers, say the set R of reals, support two basic structures, the algebraic
structure defined by + and ×, and the ordinal structure given by ≤. There
are many situations where only order is relevant, cardinals being used merely
by tradition and convenience. During the last years the interest in ordinal
aggregation has increased, see e.g. [4, 5, 6, 14, 19, 20].

We are interested in the question if aggregation or integration can be done
in purely ordinal terms and what results can be obtained. Of course many
partial results are already available. Since often they are formulated in terms
of numbers, we ask what can be sustained if one ignores the algebraic structure
or what weaker additional structure has to be imposed on the linear ordinal
scale in order to formulate some well known important issues. It turns out that
enough structure is given by an order reversing bijection of the scale leaving
one point fixed. Thus the scale decomposes into two symmetric parts. This
can be interpreted as the first step to numbers. Since, repeating the procedure
with each resulting part of the scale infinitely often, one ends up with the
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binary representation of the numbers in the unit interval [0, 1] ⊂ R or some
superstructure.

There are several ordinal concepts for aggregating values with respect to a
measure. The oldest and best known selects a certain quantile, say the median,
of a sample as the aggregated value. Next Ky Fan’s [8] metric on the space
L0(µ) of µ-measurable functions is essentially ordinal. More recently and inde-
pendently Sugeno [23] developed his integral which employs the same idea as
Ky Fan. One aim of the present paper is to develop a common purely ordinal
model for these three examples. This is done with a complete linear lattice M
as scale, comprising the classical case M = [0, 1] ⊂ R. For the Sugeno integral
the scales used for functions and the measure are identical. But in general we
allow separate scales for the functions and the measure and the two scales are
related by a commensurability application, as we call it.

The structure of a linear lattice seems not to be sufficient to model elemen-
tary human behaviour in the presence of risk or uncertainty. There is some
empirical psychological evidence (cf. reflection effect, inverse S-shaped decision
weights, etc.) that in certain decision situations humans have a point O of ref-
erence (often the status quo) on their scale which allows to distinguish good
and bad or gains and losses, i.e. values above, respectively below, the reference
point [17, 18]. Then the attainable gains and the attainable losses are aggre-
gated separately and finally these two aggregated values are compared to reach
the final decision. In the cardinal models this behaviour can be modeled with
the symmetric Choquet integral. We define the symmetric Sugeno integral in
order to model the essentials of this behaviour in purely ordinal terms.

We also define the analogue of the asymmetric Choquet integral in our con-
text. This can be done in introducing two commensurability functions, one for
the positive part of the scale, the other one for the negative part.

Finally we comment on the new technical tools and the organisation of the
paper. In Section 2 we model the scale with neutral reference point as a com-
plete linear reflection lattice R corresponding to [−1, 1] ⊂ R. On R we use
the binary relations from [14] to get operations corresponding to addition and
multiplication in R.

In Section 3 we develop a theory of increasing interval valued functions and
their inverse. Introducing these tools is motivated as follows. Mathematically,
the idea of Fan and Sugeno for the aggregated value of a random variable is very
simple, just take the argument at which the decreasing distribution function
intersects a preselected increasing function, the identity function in their case.
As already the quantiles show, the aggregated values are intervals rather than
points on the linear scale L. So we look for a suitable ordering on the family
IL of nonempty intervals in L. The ordering which had been introduced by
Topkis (see [24]) on the family of nonempty sublattices of an arbitrary lattice
turns out to be the right one to handle monotonic functions (Proposition 3.1).
This ordering, restricted to IL, is only a partial one, but we show that IL is a
completely distributive lattice in our situation. This structure is needed for an
ordinal analogue of the inner product of vectors, which is introduced in Section
4. This product will, in Section 7, formalise the idea of Fan and Sugeno in our
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general context. Still in Section 4 the product provides a convenient tool to
fill the gaps in the domain of the inverse of a monotone function, we call this
saturation.

In close analogy to probability theory we introduce lattice valued measures
in Section 5 and, in Section 6, the distribution function and its saturated inverse,
the quantile function. In Section 7 we define an aggregated value of a function
f as the product of a preselected commensurability function with the quantile
function of f . To meet the empirical findings w.r.t. a neutral reference point
mentioned above, we generalise our model in Section 8 to functions having values
in a reflection lattice as introduced in Section 1.

In Section 9 we define the ordinal analogue of a metric induced by a Fan-
Sugeno functional and use this to define the ordinal Ky-Fan ’norm’ ‖ · ‖0 and
the ordinal supremum-norm ‖ · ‖∞.

2 The reflection lattice

The order structure of the real line allows for the order reversing reflection at
the null. This structure will be generalised in this section to be the range of the
functions to be integrated. That is, we apply isomorphic scales for gains and
for losses.

Throughout this section L will denote a complete distributive lattice with
bottom O and top I. We endow the set L− := {−a | a ∈ L} with the reversed
order from L, i.e. −a ≤ −b in L− iff a ≥ b in L. The bottom of L− is now −I
and the top −O. The disjoint union R of L and L−, with −O identified with
O,

O = −O ,

and setting a ≤ b for a ∈ L−, b ∈ L+, is called a reflection lattice and O the
neutral or reference point. If, in addition, R is totally ordered, we call it a
linear reflection lattice. R is again a (totally ordered) complete distributive
lattice and it has bottom −I and top I. For emphasising the symmetry we often
write L+ for L ⊂ R, hence L+ = {a ∈ R | a ≥ O}, L− = {a ∈ R | a ≤ O}. On
the reflection lattice R we have the reflection at O

refl : R → R , x 7→ −x ,

where −(−a) := a for a ∈ R. The reflection reverses the ordering of R,

a < b iff − a > −b ,

(−a) ∨ (−b) = −(a ∧ b) , (−a) ∧ (−b) = −(a ∨ b) .

We also define the absolute value

abs : R → L+ , x 7→ |x| :=

{
x if x ≥ O
−x if x < O
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and the sign function

sign : R → R , signx =





I for x > O
O for x = O
−I for x < O

.

Example 2.1 The standard example for a linear reflection lattice is R∪{−∞,∞}
with the usual ordering ≤ and inf, sup as lattice operations ∧, ∨. Here −I =
−∞, I = ∞ and O = 0. Any closed, reflection invariant subset R of this
reflection lattice containing 0 is again a reflection lattice with I = supx∈L x . 2

Two new operations ▽ and △ are defined on a reflection lattice R which
will play the roles of addition and multiplication for numbers (introduced in [11]
for linear reflection lattices). On L+ they coincide with the lattice operations
∨, ∧.

x▽ y :=





x ∨ y if x, y ∈ L+

x ∧ y if x, y ∈ L−

x if signx 6= sign y, |x| > |y|
y if signx 6= sign y, |x| < |y|
O if signx 6= sign y, |x| = |y| or |x|, |y| are incomparable.

1 Except for the last case, x▽ y equals the absolutely larger one of the two
elements x and y.

x△ y :=

{
|x| ∧ |y| if sign x = sign y

−(|x| ∧ |y|) else.

The absolute value of x△ y equals |x| ∧ |y| and x△ y < O iff the two elements
x and y have opposite signs.

Proposition 2.1 For a,b,c in a reflection lattice R = L+ ∪ L− we have

(i) ▽ and △ are commutative operations;

(ii) O is the unique neutral element of ▽ in R and I the unique neutral
element of △.

(iii) −(a▽ b) = (−a)▽ (−b) and −(a△ b) = (−a) △ b;

(iv) ▽ is associative on L+ and on L−, △ is associative on R;

(v) if a, b, c ∈ L+ or a, b, c ∈ L− then a△ (b▽ c) = (a△ b)▽ (a△ c) .

(vi) a ≤ b implies a▽ c ≤ b▽ c and a△ c ≤ b△ c.

1Quoting Rubos [22]: . . . the preorder on preferences is partial, and individuals stay with

the status quo when unable to make a comparison, we see that the definition of ▽ for incom-
parable |x|, |y| matches with experimental evidence as summarised by Rubos.

4



The straightforward proofs are omitted. Only the proof of (vi) is cumber-
some because of the many cases to be checked. ▽ is not associative since
I▽ (I▽ (−I)) = I 6= O = (I▽ I)▽ (−I). This happens already in the smallest
non-trivial reflection lattice which is a special case of Example 2.1.

Example 2.2 In R = {−1, 0, 1} ⊂ R the operation △ coincides with multipli-
cation in R (which is associative) and the operation ▽ is similar to addition
with the exception that sums greater than 1 are pulled down to 1 and sums
below −1 are replaced by −1. 2

Non-associativity of ▽ will not bother us in the present paper, since we have
only to combine two elements with ▽ . For a detailed study of associativity in
a linear reflection lattice see [11].

▽ playing the role of addition, we call a▽ (−b) the (pseudo) difference
of a and b in R. Then we define the distance of a and b in R by

dist(x, y) := |x▽ (−y)| =

{
O if x = y
|x| ∨ |y| else

.

This distance has the usual properties if + is replaced by ∨

dist(x, y) ≥ O and dist(x, y) = O iff x = y ,

dist(x, y) = dist(y, x) ,

dist(x, z) ≤ dist(x, y) ∨ dist(y, z) .

Also dist(x,O) = |x|.

3 Monotone interval-valued functions

A weakly monotone function is not invertible, but pseudo-inverses are often
used in probability theory. Likewise they are important in our purely ordinal
approach. As the pseudo inverse of a monotone function can be perceived as an
interval-valued function, we use the terminology of set-valued mappings, also
called correspondences. We give two equivalent definitions of isotonicity. For
one of them an ordering for intervals is introduced.

Let M and L be arbitrary sets. A correspondence ϕ from M to L is a
mapping M → 2L which assigns to x ∈ M a subset ϕ(x) ⊂ L. An ordinary
function is a correspondence with ϕ(x) being a singleton for all x ∈ M . Since
ϕ(x) may be empty for a correspondence ϕ, the domain of ϕ is defined as

dom (ϕ) := {x ∈M | ϕ(x) 6= ∅} .

There is a bijection between correspondences ϕ from M to L and subsets of
M × L assigning to ϕ its graph,

graph (ϕ) := {(x, y) ∈M × L | y ∈ ϕ(x)} .
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The inverse correspondence ϕ−1 : L→ 2M of a correspondence ϕ : M → 2L

is defined by

ϕ−1(y) := {x ∈M | (x, y) ∈ graph (ϕ)}, y ∈ L ,

i.e. ϕ and ϕ−1 have the same graph (modulo the natural bijection M × L →
L ×M). ϕ is called surjective if its image im (ϕ) := dom(ϕ−1) equals total
L.

For defining order preserving correspondences we suppose that M and L are
(partially) ordered sets. A subset I of L will be called a (preference) interval2

iff for any two points a, b ∈ I the closed interval

[a, b] := {x ∈ L | a ≤ x ≤ b}

also belongs to I. Notice that [a, b] = ∅ if a > b. The intersection of intervals
is again an interval and, if L is a linearly ordered lattice, also the union of two
intersecting intervals is an interval. We denote with IL the set of all nonempty
preference intervals in L.

A correspondence ϕ from M to L is called isotonic or increasing if for
all (x1, y2), (x2, y1) ∈ graph (ϕ) with x1 ≤ x2, y1 ≤ y2 the whole rectangle
[x1, x2] × [y1, y2] is contained in graph (ϕ). If all such rectangles in graph (ϕ)
are degenerate, i.e. x1 = x2 or y1 = y2, then ϕ is called sharply increasing.
Clearly an increasing correspondence ϕ from M to L is interval valued, so it
can be perceived as an application

ϕ : D → IL with D := dom (ϕ) ⊂M .

Our definition is symmetric in both coordinates of M ×L, so the inverse corre-
spondence ϕ−1 of an increasing correspondence ϕ is increasing, too. Especially
ϕ−1 is interval valued,

ϕ−1 : E → IM with E := dom (ϕ−1) = im (ϕ) ⊂ L . (1)

If the ordered set L is a lattice our definition can be formulated more nat-
urally in introducing an ordering on IL. Topkis (see [24]) deduces from the
ordering of L the relation ⊑ on 2L \ {∅} in defining

Y1 ⊑ Y2 iff y1 ∧ y2 ∈ Y1 and y1 ∨ y2 ∈ Y2 for all y1 ∈ Y1, y2 ∈ Y2 .

He shows ([24] Lemma 2.4.1) that the relation ⊑ is transitive and antisymmetric.
Furthermore it is reflexive, hence an ordering, if it is restricted to the set of
nonempty sublattices of L ([24] Theorem 2.4.1). We excluded the empty set
from IL in order to get an order relation on this set, provided L is linearly
ordered (recall that an open interval in a non-linear lattice is no sublattice in
general). IL does not inherit from L the linearity of the ordering. If L has
at least three elements y1 < y2 < y3 then the intervals [y2, y2] and [y1, y3] are
incomparable w.r.t. ⊑ in IL.

2This notion is due to [9], the usual definition of (closed, open or semiclosed) intervals,
which is common in order theory, is not sufficient in our context.
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Proposition 3.1 Let M be an ordered set and L a linearly ordered lattice.
ϕ : M → IL is increasing iff x1 ≤ x2 implies ϕ(x1) ⊑ ϕ(x2).

Proof Let us call the last condition ⊑-increasing. First suppose ϕ is increasing.
Let x1 ≤ x2 and y1 ∈ ϕ(x1), y2 ∈ ϕ(x2). We have to show y1 ∧ y2 ∈ ϕ(x1) and
y1 ∨ y2 ∈ ϕ(x2). This is obvious if y1 ≤ y2, hence we may suppose y1 > y2 since
L is totally ordered. Since (x1, y1), (x2, y2) ∈ graph (ϕ) and ϕ is increasing we
get [x1, x2]× [y2, y1] ⊂ graph (ϕ), especially y1∧y2 = y2 ∈ ϕ(x1), y1∨y2 = y1 ∈
ϕ(x2).

Now suppose that ϕ is ⊑-increasing. Consider (x1, y2), (x2, y1) ∈ graph (ϕ)
with x1 ≤ x2, y1 ≤ y2 and take (x, y) in the rectangle [x1, x2] × [y1, y2]. We
have to show (x, y) ∈ graph (ϕ). We know ϕ(x1) ⊑ ϕ(x) ⊑ ϕ(x2) since ϕ is
⊑-increasing. This entails y1 = y2∧y1 ∈ ϕ(x1) and similarly y2 ∈ ϕ(x2). Hence
y ∈ ϕ(x1), ϕ(x2) and, with an element y3 ∈ ϕ(x), y ∨ y3, y3 ∧ y ∈ ϕ(x), so
y ∈ ϕ(x). 2

A function, perceived as a correspondence, is increasing iff it is an increasing
function in the usual sense (for singletons ⊑ coincides with the ordering ≤ on L).
The results on increasing correspondences dualise in the obvious manner. So we
can use freely decreasing (or antitonic) correspondences with their respective
properties. As usual monotone means increasing or decreasing.

We investigate the lattice structure of the family IL.

Proposition 3.2 Let (L,≤) be a linearly ordered lattice. Then

(i) (IL,⊑) is a lattice, containing (L,≤) as the sublattice of singletons;

(ii) {O} is the bottom and {I} the top of (IL,⊑) if O is the bottom and I the
top of (L,≤);

(iii) if (L,≤) is complete, so is (IL,⊑);

(iv) (IL,⊑) is distributive. It is completely distributive if (L,≤) is complete.

Under the assumptions of Proposition 3.2 the lattice operations join and meet
in (IL,⊑) will be denoted by ⊔ and ⊓. The proof of (i) shows

I1 ⊔ I2 = {a1 ∨ a2 | ai ∈ Ii, i = 1, 2} , (2)

I1 ⊓ I2 = {a1 ∧ a2 | ai ∈ Ii, i = 1, 2} ,

and similarly for any number of ⊔ or ⊓ (see (3)). For closed (and similarly for
open) intervals these formulas look more familiar,

[a1, b1] ⊔ [a2, b2] = [a1 ∨ a2, b1 ∨ b2] , [a1, b1] ⊓ [a2, b2] = [a1 ∧ a2, b1 ∧ b2].

Recall for (iv) that a linearly ordered complete lattice is completely distributive
([1] V.5). Proposition 3.2 can be generalised to arbitrary (distributive) lattices
L if IL is replaced by the set of closed nonempty intervals (cf. [21] 2.2).
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Proof (i) Given I1, I2 ∈ IL, we have to show that a least upper bound (and
similarly a greatest lower bound) of I1 and I2 does exist in IL. Our candidate
is

J := {a1 ∨ a2 | ai ∈ Ii, i = 1, 2} .

First J is nonempty since the Ii are nonempty. Also J is a (preference) interval.
To see this we show that the closed interval defined by any two points of J , say
a1 ∨ a2 < b1 ∨ b2, is contained in J . Let a1 ∨ a2 < c < b1 ∨ b2, then for some i,
c < bi and, for this i, also ai < c. Hence c ∈ Ii. Let j be the complementary
index to i, i.e. {j} = {1, 2} \ {i}, then we get c = c ∨ aj ∈ J as desired.

We just verified that J ∈ IL and have to show now that J is the least upper
bound of I1 and I2, i.e. K ⊒ I1, I2, K ∈ IL imply K ⊒ J . For a1 ∨ a2 ∈ J
with ai ∈ Ii and c ∈ K we know (a1 ∨ a2) ∧ c = (a1 ∧ c) ∨ (a2 ∧ c) ∈ J and
(a1 ∨ a2) ∨ c = (a1 ∨ c) ∨ (a2 ∨ c) ∈ K. These are the conditions for K ⊒ J .

Finally a 7→ {a} = [a, a] defines an isomorphism of (L,≤) to the sublattice
of singletons in IL.

(ii) is obvious.
(iii) Let {Ii | i ∈ N} be an arbitrary subset of IL. Since L is complete we

know
∨
i∈N ai ∈ L for ai ∈ Ii, i ∈ N . Now one verifies like for (i) that

{
∨

i∈N

ai | ai ∈ Ii, i ∈ N} (3)

is the least upper bound of the Ii, i ∈ N , in IL. Compared to (i) we now need
complete distributivity of L, but this property holds for a complete linear lattice
as we remarked above. The proof for the greatest lower bound runs dually.

(iv) Denoting the least upper bound (3) with
⊔
i∈N Ii and also applying the

dual notation, we have to show

k∈K
(

⊔

i∈Nk

Ii,k) =
⊔

κ∈K

(
k∈K

Iκ(k),k)

(and the dual equation) for Ii ∈ IL first with a finite family K of finite index
sets Nk, k ∈ K, then with an arbitrary family of arbitrary index sets. Here K
denotes the set of functions κ : K →

⋃
k∈K Nk (the union being disjoint) with

κ(k) ∈ Nk. Using (2) and (3), this follows from (complete) distributivity of L,
∧

k∈K

(
∨

i∈Nk

ai,k) =
∨

κ∈K

(
∧

k∈K

aκ(k),k) for ai,k ∈ Ii,k .

2

Finally in this section we extend the ordering and lattice operations on IL
to IL-valued applications. For ϕ, ψ : M → IL we define ϕ ⊑ ψ iff ϕ(x) ⊑ ψ(x)
for all x ∈M . Similarly ϕ ⊔ ψ and ϕ ⊓ ψ are defined pointwise.

Proposition 3.3 Let ϕ, ψ : M → IL be decreasing surjective correspondences
from a complete linear lattice M to a complete linear lattice L. Then we have
ϕ−1, ψ−1 : L→ IM , these correspondences are decreasing and

ϕ ⊑ ψ iff ϕ−1 ⊑ ψ−1 .

8



Proof Since ϕ, ψ are surjective we know from (1) that ϕ−1, ψ−1 : L→ IM are
decreasing. Now it is sufficient to prove the ’only if’ part. Contrary to ϕ−1 ⊑
ψ−1 we assume that there is a point y ∈ L so that ϕ−1(y) 6⊑ ψ−1(y). Then either
the intervals ϕ−1(y), ψ−1(y) are incomparable in (IM ,⊑) or ϕ−1(y) ⊐ ψ−1(y).
In both cases there exists a point x ∈ ϕ−1(y) with {x} ⊐ ψ−1(y) or a point
x ∈ ψ−1(y) with {x} ⊏ ϕ−1(y). Both cases can be treated symmetrically,
so we take the first one. Since ψ−1 is decreasing and {x} ⊐ ψ−1(y) 6= ∅ we
know that graph (ψ) cannot intersect the rectangle [x, I] × [y, I]. Now, since
(x, y) ∈ graph (ϕ), it is impossible that ϕ(x) ⊑ ψ(x). But this contradicts
ϕ ⊑ ψ. 2

4 Inner product of interval-valued functions

For interval-valued functions we will construct an ordinal analogue to the inner
product of vectors. We investigate its properties mainly for monotone correspon-
dences, since this will serve us to define the aggregation functionals in Section
7. The product will here be applied to saturate monotone correspondences, i.e.
to fill the gaps in their domain.

Let L be a complete lattice and M a set. For ϕ, ψ : M → L we define the
(inner) product as

ϕ ∗M ψ :=
∨

x∈M

ϕ(x) ∧ ψ(x) ∈ L . (4)

We write ϕ ∗ ψ if there is no ambiguity about the common domain M of ϕ
and ψ. The name ’inner product’ originates from the following observation. If
L = R and M is finite, then the functions ϕ and ψ become vectors in R|M| and
the product (4) resembles the inner product of vectors with

∨
corresponding to∑

and ∧ to ordinary multiplication of numbers (see Section 2). With this inter-
pretation the product behaves ’linear’ in both factors as is shown by properties
(iv) and (v) below together with (i).

Proposition 4.1 Let L be a complete lattice and M a set. For ϕ,ϕ1, ϕ2, ψ :
M → L and a ∈ L

(i) ϕ ∗ ψ = ψ ∗ ϕ ;

(ii) the ’orthogonality’ condition ϕ ∗ ψ = O holds iff ϕ and ψ have disjoint
support;

(iii) ϕ1 ≤ ϕ2 implies ϕ1 ∗ ψ ≤ ϕ2 ∗ ψ ;

(iv) (ϕ1 ∨ ϕ2) ∗ ψ = (ϕ1 ∗ ψ) ∨ (ϕ2 ∗ ψ) if L is distributive;

(v) (a ∧ ϕ) ∗ ψ = a ∧ (ϕ ∗ ψ) if L is completely distributive.

Proof (i) The binary relation ∗ is commutative since ⊓ is.
(ii) and (iii) are obvious.
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(iv) Using distributivity of L we get (ϕ1 ∨ϕ2) ∗ψ =
∨
x∈M (ϕ1(x)∨ϕ2(x))∧

ψ(x) =
∨
x∈M (ϕ1(x) ∧ ψ(x)) ∨ (ϕ2(x) ∧ ψ(x)) = (ϕ1 ∗ ψ) ∨ (ϕ2 ∗ ψ) .

(v) (a∧ϕ)∗ψ =
∨
x∈M (a∧ϕ(x))∧ψ(x) =

∨
x∈M a∧(ϕ(x)∧ψ(x)) = a∧(ϕ∗ψ) .

For the last equality we applied complete distributivity of L. 2

Now we confine ourselves to monotone correspondences and suppose that L
is a complete linear lattice and that M is a linearly ordered set with bottom
O and top I. Then, by Proposition 3.2, IL has all the properties required in
Proposition 4.1 for L.

Example 4.1 For a ∈ M let ǫa denote the indicator function I[a,I] of the in-
terval [a, I] ⊂ M . Then ǫa ∗ ψ = ψ(a) for any decreasing correspondence
ψ : M → IL from M to L. Thus, for monotone functions and in the anal-
ogy with the inner product of vectors, ǫa plays the role of the unit vector for
’coordinate’ a. 2

In general, the domain D of a decreasing correspondence ψ : M → 2L from M
to L is a proper subset of M , D ( M . We define the saturation ψ̃ of ψ as

ψ̃(x) := ǫx ∗D ψ , x ∈M, where D = dom (ψ) .

ψ̃ has domain M , is interval-valued, i.e. ψ̃ : M → IL, and, by Example 4.1,
ψ̃|D = ψ.

Proposition 4.2 Let L be a complete linear lattice and M a linearly ordered
set with top and bottom. The saturation ψ̃ of a decreasing correspondence ψ
from M to L is decreasing, too.

Proof For x1 ≤ x2 we know ǫx1 ≥ ǫx2, hence by Proposition 4.1 (iii) ψ̃(x1) =

ǫx1 ∗D ψ ⊒ ǫx2 ∗D ψ = ψ̃(x2). Now apply Proposition 3.1. 2

If ψ is sharply decreasing, then ψ̃ is not sharply decreasing, in general. So we
define the sharp saturation of a decreasing correspondence ψ as

ψ̂(x) :=
∨

y∈ψ̃(x)

y for x ∈M \ dom (ψ)

and ψ̂(x) := ψ̃(x) = ψ(x) for x ∈ dom(ψ). Obviously, ψ̂ ⊒ ψ̃.

Proposition 4.3 Let L be a complete linear lattice and M a linearly ordered
set with top and bottom.

(i) The sharp saturation ψ̂ of a (sharply) decreasing correspondence ψ from
M to L is (sharply) decreasing, too.

(ii) Given decreasing functions ϕ, ψ : L→M then ϕ ≤ ψ implies ϕ̂−1 ⊑ ψ̂−1 .
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Simple examples show that (ii) does not hold for the saturations ϕ̃−1, ψ̃−1. We
supposed ϕ, ψ to be functions only for simplicity.
Proof (i) Let x1 ≤ x2. We have to show ψ̂(x1) ⊒ ψ̂(x2) and distinguish

two cases. If x2 ∈ dom (ψ) we know ψ̂(x1) ⊒ ψ̃(x1) ⊒ ψ̃(x2) = ψ̂(x2) from
Proposition 4.2. In the second case, x2 /∈ dom(ψ), we are done if also x1 /∈
dom(ψ). For the other case it is sufficient to prove y1 ≥ ȳ2 for all y1 ∈ ψ(x1)

where {ȳ2} = ψ̂(x2). Suppose the contrary, i.e. y1 < ȳ2 for some y1 ∈ ψ(x1).

Now the definition of ψ̃(x2) together with the expression (3) for an arbitrary join
of intervals imply the existence of an y3 ∈ ψ(x3) with x3 ∈ dom (ψ), x3 > x2

and y1 < y3 ≤ y2. But monotonicity of ψ would then imply that the rectangle
[x1, x3] × [y1, y3] is contained in graph (ψ), contradicting x2 /∈ dom (ψ).

If, in addition, ψ is sharply decreasing, i.e. graph (ψ) does not contain any

non-degenerate rectangle, then the same holds for ψ̂ since ψ̂(x) is a singleton
for any x /∈ dom(ψ).

(ii) Setting D := dom (ϕ−1), E := dom(ψ−1) we have, for y ∈M ,

ϕ̃−1(y) = ǫy ∗D ϕ
−1 =

⊔

y≤u∈D

ϕ−1(u) , ψ̃−1(y) = ǫy ∗E ψ
−1 =

⊔

y≤v∈E

ψ−1(v) .

For proving ϕ̂−1(y) ⊑ ψ̂−1(y) we have to distinguish the four cases that D or
E contains y or not.

If y /∈ D and y /∈ E the least upper bounds of the intervals ϕ̃−1(y), ψ̃−1(y)

have to be compared. It is sufficient for ϕ̂−1(y) ≤ ψ̂−1(y) to find for any point
u ∈ D, u ≥ y and any point x ∈ ϕ−1(u) a point v ∈ E, v ≥ y such that
x ∈ ψ−1(v). By assumption u ∈ ϕ(x) ≤ ψ(x). Then v = ψ(x) will do the job.

If y ∈ D and y /∈ E the same argument works since ψ̂−1(y) ⊒ ψ̃−1(y) is still
a singleton.

Next let y /∈ D and y ∈ E. Since ϕ̂−1(y) is a singleton it is sufficient for

ϕ̂−1(y) ⊑ ψ̂−1(y) to show ϕ̂−1(y) ≤ x for any x ∈ ψ̂−1(y) = ψ−1(y). Since
(x, y) /∈ graph (ϕ) we know y = ψ(x) > ϕ(x). ϕ being decreasing its graph

cannot intersect the rectangle ]x, I]×]ϕ(x), I]. Hence ϕ̃−1(y) ⊑ [O, x] and this

implies ϕ̂−1(y) ≤ x as requested.

Finally let y ∈ D and y ∈ E. For proving ϕ̂−1(y) ⊑ ψ̂−1(y) we apply Lemma

4.4. Like above for any x ∈ ϕ̂−1(y) = ϕ−1(y) there exists v ∈ E, v ≥ y such

that x ∈ ψ−1(v) = ψ̂−1(v). Since ψ−1 is decreasing ψ̂−1(v) ⊑ ψ̂−1(y) by (i),

hence there exists x′ ≥ x, x′ ∈ ψ̂−1(y). According to Lemma 4.4 it remains to

find for any x′ ∈ ψ̂−1(y) a point x ≤ x′, x ∈ ϕ̂−1(y). Since ϕ(x′) ≤ ψ(x′) = y
we may take x = x′ if ϕ(x′) = ψ(x′). If ϕ(x′) < ψ(x′) the graph of ϕ does not

intersect the rectangle ]x′, I]×]ϕ(x′), I], hence any point x ∈ ϕ−1(y) = ϕ̂−1(y)
will do the job. 2

Lemma 4.4 Let L be a linearly ordered lattice and I1, I2 ∈ IL. I1 ⊑ I2 holds
iff for each a1 ∈ I1 there exists a2 ∈ I2 such that a1 ≤ a2 and for each b2 ∈ I2
there exists b1 ∈ I1 such that b1 ≤ b2.
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Proof First suppose I1 ⊑ I2. Given a1 ∈ I1 take any a ∈ I2. Then a1 ∨ a ∈ I2
so that a2 := a1 ∨ a has the desired properties. The other condition derives
similarly. For sufficiency we have to show y1 ∧ y2 ∈ I1 and y1 ∨ y2 ∈ I2 for
arbitrary y1 ∈ I1, y2 ∈ I2. By assumption there exists b1 ∈ I1 such that
b1 ≤ y2. Then y1 ∧ b1 ≤ y1 ∧ y2 ≤ y1 and since I1 is an interval containing
y1∧ b1, y1 we conclude y1∧y2 ∈ I1. The other condition proves analogously. 2

For the sake of completeness we mention that a dual product can be defined
as ϕ ∗′ ψ := x∈M ϕ(x)⊔ψ(x) and that the two products are related as follows.

Proposition 4.5 Let M be a totally ordered set and L a complete linear lattice.
If ϕ : M → IL is increasing and ψ : M → IL decreasing, then

ϕ ∗ ψ ⊑ ϕ ∗′ ψ .

Proof We are done if we show

ϕ(x1) ⊓ ψ(x1) ⊑ ϕ(x2) ⊔ ψ(x2) for all x1, x2 ∈M. (5)

First suppose x1 ≤ x2. Using that ϕ is increasing we get ϕ(x1) ⊓ ψ(x1) ⊑
ϕ(x1) ⊑ ϕ(x2) ⊑ ϕ(x2) ⊔ ψ(x2) . Similarly for x1 ≥ x2 we get ϕ(x1) ⊓ ψ(x1) ⊑
ψ(x1) ⊑ ψ(x2) ⊑ ϕ(x2) ⊔ ψ(x2) . Since M is totally ordered, the inequality (5)
is proved for all x1, x2 ∈M . 2

5 Lattice-valued measures

Probability measures are monotone and assume only nonnegative values. We
maintain this view in our ordinal context. In the cardinal theory of monotone
measures there is a hierarchy of important subclasses: supermodular measures,
totally monotone measures (belief functions), lower chain measures, necessity
measures, (σ-)additive measures and the hierarchy of the respective dualisations.
In the purely ordinal context among these only the chain measures and necessity
(resp. possibility) measures survive. A continuity property will also be defined
in our ordinal environment.

Let M denote a complete linear lattice with bottom O and top I. M will
be the scale of the measure to be defined. Throughout the paper, Ω denotes a
nonempty set and S ⊂ 2Ω a family of subsets containing Ω and the empty set,
∅,Ω ∈ S. A M -valued set function,

µ : S →M

is called a measure, if µ(∅) = O, µ(Ω) = I and it is increasing, i.e.

A ⊂ B implies µ(A) ≤ µ(B) .

Example 5.1 The cardinal case M := [0, 1] ⊂ R has already been studied
extensively in many different contexts. So µ has many names in this case,
(Choquet) capacity, non-additive or monotone measure, fuzzy measure, just to
mention the most important ones. 2
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The inner extension of a measure µ is

µ∗(A) :=
∨

B∈S
B⊂A

µ(B) = µ ∗S ζ( · , A) , A ∈ 2Ω .

Here ζ denotes the zeta-function of the ordered set (2Ω,⊂),

ζ(B,A) :=

{
I if A ⊃ B
O else

, A ∈ 2Ω .

3 The outer extension is defined dually, µ∗ := µ∗′S ζ(A, · ) . Since µ is increasing,
so are µ∗ and µ∗. For any increasing extension ν of µ to 2Ω

µ∗ ≤ ν ≤ µ∗. (6)

A measure µ : S →M is called a lower chain measure, if there is a chain
w.r.t. set inclusion K ⊂ S with ∅,Ω ∈ K such that

µ = (µ|K)∗|S .

We refer to K as a (defining) chain for µ. For a lower chain measure µ on S,

µ(
⋂

A∈A

A) =
∧

A∈A

µ(A) (7)

for all finite set systems A ⊂ S such that
⋂
A∈AA ∈ S. The straightforward

proof can be found in [2] or use Proposition 4.1 (iii) together with the fact that
ζ has property (7) for the second variable.

If property (7) holds for arbitrary A ⊂ S and S is closed under arbitrary
intersection, then µ is called minitive or a necessity measure. Dually, one
defines upper chain measures and maxitive or possibility measures.

Example 5.2 Like in the cardinal theory we call uK := ζ(K, · ) the unanimity
game for ’coalition’ K ⊂ Ω. It is a lower chain measure with defining chain
K := {∅,K,Ω} and it is minitive. But it is not maxitive, in general. Since
uK(Kc) = O we get

uK(A) := (uK |{∅,Kc,Ω})∗(A) =

{
I if A ∩K 6= ∅
O if A ⊂ Kc , A ∈ 2Ω .

and this is an upper chain measure. The unanimity game u{ω} for the singleton
K = {ω}, often called Dirac measure at point ω, simultaneously is a lower and
upper chain measure. 2

Proposition 5.1 Any minitive measure is a lower chain measure. Also, any
maxitive measure is an upper chain measure.

3In analogy with the cardianl theory one could regard µ, extended with value O from S to
2Ω, as an ordinal Möbius transform of µ∗. It is not unique since also µ∗ is a Möbius transform
of µ∗ = (µ∗)∗. For details see [11].
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Proof Let K be the chain consisting of the sets Kx :=
⋂
{B | B ∈ S, µ(B) ≥

x}, x ∈ M and ∅, Ω. We have to prove (µ|K)∗|S ≥ µ since the reversed
inequality holds by (6). Let A ∈ S be arbitrary. With x = µ(A) we get
Kµ(A) ⊂ A and by minitivity

(µ|K)∗(A) =
∨

K∈S
K⊂A

µ(K)

≥ µ(Kµ(A)) =
∧

B∈S
µ(B)≥µ(A)

µ(B)

= µ(A) .

The proof for the maxitive measures runs similarly. 2

The converse of Proposition 5.1 does not hold since, in contrast to a chain mea-
sure, a minitive (maxitive) measure has some continuity property: A minitive
(maxitive) measure is continuous w.r.t. the lower (upper) topology of the com-
plete lattices 2Ω and M (see [15] III 1.2). But, of course, the class of minitive
(maxitive) measures coincides with the class of lower (upper) chain measures if
Ω is finite.

6 The quantile correspondence of a lattice-valued

function

Here we do the first steps for aggregating lattice valued functions f on Ω w.r.t.
a monotone lattice-valued measure in introducing the distribution function of f
and the saturation of its inverse, the quantile correspondence. All this is done
in close analogy to probability theory.

Let µ : 2Ω → M be a measure, M and L linear lattices and f : Ω → L a
function. Like in probability theory the upper level sets {f ≥ x} := {ω ∈ Ω |
f(ω) ≥ x} and {f > x} := {ω ∈ Ω | f(ω) > x} of f for level x ∈ L will play an
important role. Clearly the family of all upper level sets of f forms a chain. We
denote it with Kf ⊂ 2Ω. A family F ⊂ LΩ of functions is called comonotonic
if

⋃
f∈F Kf forms again a chain. For other characterisations of comonotonicity

see [3].
The distribution function Gµ,f : L→M of f is defined as

Gµ,f (x) := µ(f ≥ x) , x ∈ L .

Obviously,Gµ,f is a decreasing function. Since, in general, Gµ,f is not surjective,
the domain of G−1

µ,f can be a proper subset of M . We extend it by means of the

sharp saturation Ĝ−1
µ,f defined in Section 4.4 In analogy with probability theory,

4In many practical applications the scale L is finite. Then one can avoid the saturation
in replacing Gµ,f by the following sharply decreasing interval-valued correspondence, which
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we define for p ∈M the p-quantile of f w.r.t. µ as the interval

Qµ,f (p) := Ĝ−1
µ,f (p) ∈ IL .

The quantile correspondence Qµ,f is sharply decreasing in the variable p ∈
M (Proposition 4.3 (i)). If M has the additional structure of a reflection lattice
with fixed point p0 then Qµ,f(p0) is called the median of f w.r.t. µ (cf. Example
7.3 below).

Proposition 6.1 Let µ : 2Ω → M be a measure, M and L complete linear
lattices and f , g ∈ LΩ functions. Then

Gµ,f∨g ≥ Gµ,f ∨Gµ,g , Gµ,f∧g ≤ Gµ,f ∧Gµ,g

Qµ,f∨g ⊒ Qµ,f ⊔Qµ,g , Qµ,f∧g ⊑ Qµ,f ⊓Qµ,g

and equality holds if f , g are comonotonic. If µ is an upper (lower) chain
measure then equality holds, too, in the formula for f ∨ g (f ∧ g, respectively).

Proof We first get Gµ,f∨g(x) ≥ Gµ,f (x) ∨ Gµ,g(x) applying the monotone
measure µ on the sets

{f ∨ g ≥ x} = {f ≥ x or g ≥ x} = {f ≥ x} ∪ {g ≥ x} ⊃ {f ≥ x} , {g ≥ x} .

If f , g are comonotonic we have {f ≥ x} ⊃ {g ≥ x} or the converse so that we
get an equality. With an upper chain measure we can apply the dual of (7), so
that we get equality, too. The assertion with ∧ proves similarly.

The result for the distribution correspondences translates to the correspond-
ing result for the quantile correspondences by means of Proposition 4.3 (ii):

Gµ,f∨g ≥ Gµ,f implies Qµ,f∨g = Ĝ−1
µ,f∨g ⊒ Ĝ−1

µ,f = Qµ,f and similarly with g in
place of f on the right hand sides. Both relations together imply the result. 2

The partial order on the set of distribution functions or on the set of quan-
tile correspondences induces a partial order on LΩ, often called stochastic domi-
nance. In the next section we investigate extensions of this order to total orders.

7 Fan-Sugeno functionals

This is the main part of the article. The former results are applied to define
the class of Fan-Sugeno functionals for lattice valued functions w.r.t. a lattice
valued monotone measure and to derive the essential properties.

Here L and M are complete linear lattices. Let µ : 2Ω →M be an M -valued
measure on a set Ω and ℓ : M → L an increasing function. ℓ relates the scale
of the measure µ to the scale of the functions f ∈ LΩ, hence we call it the

is already surjective: x 7→]µ(f > x), µ(f ≥ x)] for x ∈ L \ {I} (here read ]a, a] = {a}) and
I 7→ [O, µ(f ≥ I)]. Similarly, in the classical context with L = R, M = [0, 1] ⊂ R and
µ continuous from above and below, one has to close the intervals above in order that the
distribution correspondence becomes surjective.

15



commensurability function. The interval-valued Fan-Sugeno functional
Sµ,ℓ : LΩ → IL is defined by means of the inner product ∗ of Section 4 as

Sµ,ℓ(f) := ℓ ∗Qµ,f .

Always Sµ,ℓ(f) is a nonempty interval. Often a single value is preferred, then
the least upper bound is the right one. We define

Sµ,ℓ(f) :=
∨

x∈Sµ,ℓ(f)

x .

If L = M and ℓ is the identity mapping idM on M , i.e. ℓ(p) = p, p ∈M , then we
write Sµ or Sµ for short. The name, we attribute to these functionals, deduces
from the following special cases.

Example 7.1 Let M = [0, 1] ⊂ R, L = [0,∞], ℓ(x) = x for x ∈ M and µ
a probability measure on a σ-algebra. Since we have defined the Fan-Sugeno
functional only for ordinal measures on the total power set 2Ω we first extend
µ, say to the inner extension µ∗. Now, for two real random variables f , g on
Ω, the number Sµ∗,ℓ(|f − g|) is the distance ‖f − g‖0 of f and g in the Ky Fan
metric of the space L0(µ) of measurable functions ([8], see also theorems 9.2.2
and 9.2.3 in [7]). Convergence in probability is convergence in this metric. 2

Example 7.2 Let L = M = [0, 1], µ a fuzzy measure on 2Ω (Example 5.1) and
f : Ω → [0, 1]. Then

Sµ(f) =
⊔

x∈[0,1]

{x} ⊓Qµ,f (x) , Sµ(f) =
∨

x∈[0,1]

x ∧Gµ,f (x) .

The functional Sµ(f) is the Sugeno integral of f w.r.t. µ ([23]). 2

Another special case of our general functional is even better and longer known
than the examples above.

Example 7.3 Let p ∈ M and ℓ := ǫp (see Example 4.1), then Sµ,ǫp(f) =
ǫp ∗ Qµ,f = Qµ,f (p), the p-quantile of f . The classical case is M = [0, 1] ⊂ R,
L = R, where Sµ,ǫp(f) is the (1 − p)-quantile of f in the usual terminology.
The difference to our present terminology results from the fact that we are
employing the decreasing distribution function whereas classically one employs
the increasing one. Of special importance is the case p = 1

2 , then Sµ,ǫp(f)
is the median of f , which, in applications of probability theory, is the second
important location parameter after the expected value. 2

Proposition 7.1 Let L, M be complete linear lattices. Let λ, µ : 2Ω → M be
M -valued measures on a set Ω and k, ℓ : M → L commensurability functions.
The Fan-Sugeno functional has the following properties where f, g ∈ LΩ, a ∈ L:

(i) ℓ(µ(A)) = Sµ,ℓ(IA) for A ⊂ Ω, especially µ can be reconstructed from Sµ;
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(ii) f ≤ g implies Sµ,ℓ(f) ⊑ Sµ,ℓ(g) ;

(iii) If ℓ(O) = O, then Sµ,ℓ(a ∧ f) = {a} ⊓ Sµ,ℓ(f) ;

(iv) Sµ,ℓ(f ∨ g) ⊒ Sµ,ℓ(f) ⊔ Sµ,ℓ(g)
and equality holds if µ is an upper chain measure;

(v) Comonotonic maxitivity: if f, g are comonotonic, then
Sµ,ℓ(f ∨ g) = Sµ,ℓ(f) ⊔ Sµ,ℓ(g) ;

(vi) λ ≤ µ and k ≤ ℓ imply Sλ,k(f) ⊑ Sµ,ℓ(f) .

Proof (i) Since Qµ,IA
(µ(A)) =]O, I] and Qµ,IA

(p) = O for p > µ(A) and I for
p < µ(A) we see that ℓ(µ(A)) is the top of ℓ ∗Qµ,IA

=
⊔
p∈M ℓ(p) ⊓Qµ,IA

(p).
(ii) From f ≤ g one easily derives Gµ,f ≤ Gµ,g. Then by Proposition 4.3 (ii)

Qµ,f ⊑ Qµ,g and by Proposition 4.1 (iii) the result follows.
(iii) We know Qµ,a∧f = Qµ,a ⊓ Qµ,f from Proposition 6.1 since a and f

are comonotonic. We have Qµ,a(p) = a, except for p = O and p = I, where
Qµ,a(O) =]a, I] and Qµ,a(I) = [O, a]. Now observe that ℓ(O) ⊓Qµ,a(O) = O =
ℓ(O)⊓ {a} since ℓ(O) = O, and Qµ,f (I) ⊓Qµ,a(I) = Qµ,f (I) ⊓ {a} since Qµ,f (I)
is an interval with bottom O. This proves that (Qµ,a⊓Qµ,f )∗ ℓ = (a⊓Qµ,f )∗ ℓ.
We obtain the desired result by applying Proposition 4.1 (v).

(iv) We know Qµ,f∨g ⊒ Qµ,f ⊔ Qµ,g (Proposition 6.1) and this relation is
maintained if we ∗-multiply with ℓ (Proposition 4.1 (iii)). Finally, the result
follows by distributivity of ∗ with ⊔ (Proposition 4.1 (iv)).

(v) The proof runs like in (iv).
(vi) From λ ≤ µ one easily derives Gλ,f ≤ Gµ,f . Then by Proposition 4.3

(ii) Qλ,f ⊑ Qµ,f and, applying Proposition 4.1 (iii) twice, the result follows. 2

We mention some further properties. The transformation rule proves like
for the Choquet integral (see [3]) and the Fan-Sugeno operators are compatible
with increasing transformations of L and M .

For better understanding some of these properties we again employ the anal-
ogy of ∨ or ⊔ with the sum of real numbers and of ∧ or ⊓ with the product.
Properties (iii) and (iv) tell us that the Fan-Sugeno functional is a ’linear’ op-
erator for upper chain measures. So, in the ordinal context, the upper chain
measures play the role of probability measures.

The dual of properties (iv) and (v) for f ∧g cannot be proved here since ∗ is
distributive with ⊔, but not with ⊓. These properties for f ∧ g can be obtained
with the dual functional, defined with the dual product ∗′ (see proposition 4.5).
In case of the Sugeno integral (Example 7.2) Sµ coincides with its dual (see e.g.
[20]). We illustrate this duality by an example.

Example 7.4 Let L = M = [0, 1], ℓ the identity mapping and µ, f so that

Gµ,f (x) =





1 for 0 ≤ x ≤ .2
.5 for .2 < x ≤ .6
0 for .6 < x ≤ 1

Then Sµ(f) =].2, .5], whereas the dual functional had the value [.5, .6]. 2
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For {0, 1}-valued measures our functional coincides with the Choquet inte-
gral. We demonstrate this fact for unanimity games and their conjugate in the
next example.

Example 7.5 Let M = {O, I}, ℓ(O) = O, ℓ(I) = I then Sµ,ℓ(f) = (O ⊓
Qµ,f(O)) ⊔ (I ⊓ Qµ,f (I)) = Qµ,f(I). Especially for µ = uK (Example 5.2) we
get SuK ,ℓ(f) =

∨
{x | {f ≥ x} ⊃ K} =

∨
{x |

∧
ω∈K f(ω) ≥ x} =

∧
ω∈K f(ω) .

Similarly SuK ,ℓ(f) =
∨
ω∈K f(ω) . 2

8 Fan-Sugeno functionals for R-valued functions

Now we consider functions, for which the range is not only a linear lattice but
has the structure of a linear reflection lattice as introduced in Section 2. Like
for the Choquet integral there are two ways to extend the functional of the last
section to functions, taking positive and negative values. One way results in a
functional that is symmetric w.r.t. the reflection at O, the other one will be an
asymmetric functional. Both functionals can be applied at least to situations
where the respective Choquet integrals can be applied.

Let R be a linear reflection lattice with positive part L = L+. For a function
f : Ω → R we define the positive part f+ and the negative part f− by

f+(ω) := f(ω) ∨ O , f− := (−f)+

and one easily sees that f is the difference of f+ and f−,

f = f+ ▽ (−f−) .

By means of this representation we define the symmetric extension of the Fan-
Sugeno functional Sµ,ℓ : LΩ → IL+ with a commensurability function ℓ : M →
L+ to the symmetric Fan-Sugeno functional SSµ,ℓ : RΩ → R as the pseudo-
difference

SSµ,ℓ(f) := Sµ,ℓ(f
+)▽ (−Sµ,ℓ(f

−)) . (8)

Here the pseudo-addition ▽ operates on intervals, not points of R, which
remains to be defined. Clearly the disjoint union R of IL−

and IL+ with
{−O} ∈ IL−

identified with {O} ∈ IL+ forms a non-linear reflection lattice so
that the pseudo-addition ▽ as defined in Section 2 applies to R. On IL+ the
operation ▽ coincides with ⊔. A noticeable property of SSµ,ℓ(f) is that its
value is O as soon as Sµ,ℓ(f

+) and Sµ,ℓ(f
−) are incomparable intervals in IL+

(see footnote 1).
Using (−f)+ = f−, (−f)− = f+ and a▽ (−b) = −(b▽ (−a)) (Proposition

2.1 (iii)) one easily checks the symmetry property

SSµ,ℓ(−f) = −SSµ,ℓ(f) .

It is easy to check that defining SSµ,ℓ by replacing in (8) Sµ,ℓ by Sµ,ℓ, then
the symmetry property still holds. Also properties (i) and (ii) of Proposition
7.1 still hold for SSµ,ℓ and SSµ,ℓ (see Proposition 2.1 (vi)).
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Human behaviour with respect to gains and losses seem not to be symmet-
ric (see e.g. [18]). So it might be useful to apply different commensurability
functions for the positive and negative parts. Let k, ℓ : M → L+ be increasing
functions. One may generalise (8) to SSµ,k,ℓ(f) := Sµ,ℓ(f

+)▽ (−Sµ,k(f−)) .
Now we need another pair of increasing commensurability functions, ℓ+ :

M → L+ and ℓ− : M → L− for defining the asymmetric Fan-Sugeno func-
tional ASµ,ℓ−,ℓ+ : RΩ → R,

ASµ,ℓ−,ℓ+(f) := Sµ,ℓ−(f)▽Sµ,ℓ+(f) .

Like before we have to check if the operation on the right hand side is well
defined. This is the case since ℓ− has values in L− so that Sµ,ℓ−(f) ∈ IL−

and
similar for the other term. Comparing with (8), here we have the same function
in the two expressions on the right hand side but different commensurability
functions. Also −ℓ− and ℓ+ cannot be compared without an additional structure
of their common domain L+ (to be a reflection lattice, for example) since −ℓ−
is decreasing and ℓ+ increasing.

The asymmetric Fan-Sugeno functional is asymmetric in the following sense:

ASµ,ℓ−,ℓ+(−f) = −AS∗
µ,−ℓ+,−ℓ−(f).

Here the upper ∗ denotes the conjugate5 Fan-Sugeno functional, which is
performed with the increasing distribution function and the decreasing commen-
surability correspondences −ℓ+, −ℓ−. We leave the details for further research.
For the moment we can say that properties (i), (ii) and (vi) of Proposition 7.1
still hold for ASµ,ℓ+,ℓ− .

9 Ordinal metrics and norms

In the spirit of the classical Example 7.1 we define the ordinal (µ, ℓ)-distance
of R-valued functions f , g. Since dist(f(ω), g(ω)) = |f(ω)▽ (−g(ω))| is an
L-valued function on Ω, L being the positive part L+ of R, we can define

distµ,ℓ(f, g) := Sµ,ℓ(|f ▽ (−g)|) , f, g ∈ RΩ .

Like at the end of Section 2 the usual properties of a distance hold with a
restriction for the triangle inequality,

distµ,ℓ(f, g) ≥ O and distµ,ℓ(f, g) = O if f = g ,

distµ,ℓ(f, g) = distµ,ℓ(g, f) ,

distµ,ℓ(f, h) ≤ distµ,ℓ(f, g) ∨ distµ,ℓ(g, h) if µ is an upper chain measure.

5If the scale M of µ had the additional structure of an order reversing bijection existing
on M , then the conjugate µ could be defined like for R-valued monotone measures and we
would get AS∗

µ,−ℓ+,−ℓ−
= ASµ,ℓ+,ℓ−

(see [5]).
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Let us prove the triangle inequality. Using the triangle inequality of dist, we
have for all ω ∈ Ω:

|f(ω)▽ (−h(ω))| ≤ |f(ω)▽ (−g(ω))| ∨ |g(ω)▽ (−h(ω))|

which entails for x ∈ L

{|f ▽ (−h)| ≥ x} ⊂ {|f ▽ (−g)| ≥ x} ∪ {|g▽ (−h)| ≥ x}.

By monotonicity of µ and the dual of (7) we get:

Gµ,|f▽ (−h)| ≤ Gµ,|f▽ (−g)| ∨Gµ,|g▽ (−h)|.

Then by Proposition 4.3 (ii) this relation translates to the corresponding quan-
tile correspondences and is maintained if we ∗-multiply with ℓ (Proposition 4.1
(iii)). Finally, the result follows by distributivity of ∗ with ⊔ (Proposition 4.1
(iv)).

We define the ordinal (µ, ℓ)-norm

‖f‖µ,ℓ := distµ,ℓ(f,O) .

It has (with ∧ interpreted as multiplication) the homogeneity property of usual
norms,

‖a ∧ f‖µ,ℓ = |a| ∧ ‖f‖µ,ℓ for a ∈ R ,

which proves with Proposition 7.1 (iii). One also derives the triangle inequality

‖f ▽ g‖µ,ℓ ≤ ‖f‖µ,ℓ ∨ ‖g‖µ,ℓ if µ is an upper chain measure.

Important special cases with L = M and ℓ = id are the ordinal Ky-Fan
norm w.r.t. µ

‖f‖O := ‖f‖µ,id

and the µ-essential supremum (cf. [3] Chapter 9)

‖f‖∞ := ‖f‖sign(µ),id .

f is called a µ-nullfunction if ‖f‖∞ = O.

References

[1] G. Birkhoff: Lattice Theory, American Mathematical Society, 1967, 3d
edition.
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