45 research outputs found

    Cough-Anal Reflex May Be the Expression of a Pre-Programmed Postural Action

    Get PDF
    When coughing, an involuntary contraction of the external anal sphincter occurs, in order to prevent unwanted leakages or sagging of the pelvis muscular wall. Literature originally described such cough-anal response as a reflex elicited by cough, therefore identifying a precise cause-effect relationship. However, recent studies report that the anal contraction actually precedes the rise in abdominal pressure during cough expiratory effort, so that the sphincter activity should be pre-programmed. In recent years, an important family of pre-programmed muscle activities has been well documented to precede voluntary movements: these anticipatory actions play a fundamental role in whole body and segmental postural control, hence they are referred to as anticipatory postural adjustments (APAs). On these basis, we searched in literature for similarities between APAs and the cough-anal response, observing that both follow the same predictive homeostatic principle, namely that anticipatory collateral actions are needed to prevent the unwanted mechanical consequences induced by the primary movement. We thus propose that the cough-anal response also belongs to the family of pre-programmed actions, as it may be interpreted as an APA acting on the abdominal-thoracic compartment; in other words, the cough-anal response may actually be an Anticipatory Sphincter Adjustment, the visceral counterpart of APAs

    Cough-Anal Reflex May Be the Expression of a Pre-Programmed Postural Action

    Get PDF
    When coughing, an involuntary contraction of the external anal sphincter occurs, in order to prevent unwanted leakages or sagging of the pelvis muscular wall. Literature originally described such cough-anal response as a reflex elicited by cough, therefore identifying a precise cause-effect relationship. However, recent studies report that the anal contraction actually precedes the rise in abdominal pressure during cough expiratory effort, so that the sphincter activity should be pre-programmed. In recent years, an important family of pre-programmed muscle activities has been well documented to precede voluntary movements: these anticipatory actions play a fundamental role in whole body and segmental postural control, hence they are referred to as anticipatory postural adjustments (APAs). On these basis, we searched in literature for similarities between APAs and the cough-anal response, observing that both follow the same predictive homeostatic principle, namely that anticipatory collateral actions are needed to prevent the unwanted mechanical consequences induced by the primary movement. We thus propose that the cough-anal response also belongs to the family of pre-programmed actions, as it may be interpreted as an APA acting on the abdominal-thoracic compartment; in other words, the cough-anal response may actually be an Anticipatory Sphincter Adjustment, the visceral counterpart of APAs

    A framework for understanding shared substrates of airway protection

    Get PDF
    Deficits of airway protection can have deleterious effects to health and quality of life. Effective airway protection requires a continuum of behaviors including swallowing and cough. Swallowing prevents material from entering the airway and coughing ejects endogenous material from the airway. There is significant overlap between the control mechanisms for swallowing and cough. In this review we will present the existing literature to support a novel framework for understanding shared substrates of airway protection. This framework was originally adapted from Eccles' model of cough28 (2009) by Hegland, et al.42 (2012). It will serve to provide a basis from which to develop future studies and test specific hypotheses that advance our field and ultimately improve outcomes for people with airway protective deficits

    Investigation of the neural control of cough and cough suppression in humans using functional brain imaging

    Get PDF
    Excessive coughing is one of the mostcommonreasons for seeking medical advice, yet the available therapies for treating cough disorders are inadequate. Humans can voluntarily cough, choose to suppress their cough, and are acutely aware of an irritation that is present in their airways. This indicates a significant level of behavioral and conscious control over the basic cough reflex pathway. However, very little is known about the neural basis for higher brain regulation of coughing. The aim of the present study was to use functional brain imaging in healthy humans to describe the supramedullary control of cough and cough suppression. Our data show that the brain circuitry activated during coughing in response to capsaicin-evoked airways irritation is not simply a function of voluntarily initiated coughing and the perception of airways irritation. Rather, activations in several brain regions, including the posterior insula and posterior cingulate cortex, define the unique attributes of an evoked cough. Furthermore, the active suppression of irritant-evoked coughing is also associated with a unique pattern of brain activity, including an involvement of the anterior insula, anterior mid-cingulate cortex, and inferior frontal gyrus. These data demonstrate for the first time that evoked cough is not solely a brainstem-mediated reflex response to irritation of the airways, but rather requires active facilitation by cortical regions, and is further regulated by distinct higher order inhibitory processes. Copyright © 2011 the authors

    Cortical Gating of Oropharyngeal Sensory Stimuli

    Get PDF
    Somatosensory evoked potentials provide a measure of cortical neuronal activation in response to various types of sensory stimuli. In order to prevent flooding of the cortex with redundant information various sensory stimuli are gated cortically such that response to stimulus 2 (S2) is significantly reduced in amplitude compared to stimulus 1 (S1). Upper airway protective mechanisms, such as swallowing and cough, are dependent on sensory input for triggering and modifying their motor output. Thus, it was hypothesized that central neural gating would be absent for paired-air puff stimuli applied to the oropharynx. Twenty-three healthy adults (18–35 years) served as research participants. Pharyngeal sensory evoked potentials (PSEPs) were measured via 32-electrode cap (10–20 system) connected to SynAmps2 Neuroscan EEG System. Paired-pulse air puffs were delivered with an inter-stimulus interval of 500 ms to the oropharynx using a thin polyethylene tube connected to a flexible laryngoscope. Data were analyzed using descriptive statistics and a repeated measures analysis of variance. There were no significant differences found for the amplitudes S1 and S2 for any of the four component PSEP peaks. Mean gating ratios were above 0.90 for each peak. Results supports our hypothesis that sensory central neural gating would be absent for component PSEP peaks with paired-pulse stimuli delivered to the oropharynx. This may be related to the need for constant sensory monitoring necessary for adequate airway protection associated with swallowing and coughing

    Perspective on the human cough reflex

    Get PDF
    This review dissects the complex human cough reflex and suggests hypotheses about the evolutionary basis for the reflex. A mechanosensory-induced cough reflex conveys through branches of myelinated AÎŽ nerve fibers is not chemically reactive (i.e., capsaicin, bradykinin); possibly, its evolution is to prevent the harmful effects of aspiration of gastric or particulate contents into the lungs. This became necessary as the larynx moves closer to the opening of the esophagus as human ancestors adapt phonation over olfaction beginning less than 10 million years ago. The second type of cough reflex, a chemosensory type, is carried by unmyelinated C fibers. Supposedly, its origin dates back when prehistoric humans began living in close proximity to each other and were at risk for infectious respiratory diseases or irritant-induced lung injury. The mechanism for the latter type of cough is analogous to induced pain after tissue injury; and, it is controlled by the identical transient receptor potential vanilloid cation channel (TRPV1). The airways do not normally manifest nociceptive pain from a stimulus but the only consistent response that capsaicin and lung inflammation provoke in healthy human airways is cough. TRPA1, another excitatory ion channel, has been referred to as the "irritant receptor" and its activation also induces cough. For both types of cough, the motor responses are identical and via coordinated, precisely-timed and sequential respiratory events orchestrated by complex neuromuscular networking of the diaphragm, chest and abdominal respiratory muscles, the glottis and parts of the brain

    Sounding the body: the role of the Valsalva mechanism in the emergence of the linguistic sign

    Get PDF
    The main aim of this study, conducted within STEELS, a gestural theory of the origins of speech, is to set out a proposal as to the possible role of the Valsalva mechanism in the emergence of the linguistic sign. STEELS posits that in the earliest forms of speech developed by Homo, vocomimetic laryngeal resonances of nonlinguistic origin were integrated into LV (laryngeal + vowel) protosyllables referring back to oro-naso-laryngeal (ONL) actions such as breathing, sneezing and coughing. It further posits that these protosyllables were conceptually mapped to non-ONL bodily actions making use of the Valsalva manoeuvre, such as lifting, birthing, and defecating. This claim, which stems from a submorphemic analysis of certain Proto-Indo-European “body-part” roots projected back, within a gestural framework, to the emergence of speech, suggests that the vocomimetic protosyllables posited would have become (self-)referential through a neurocognitive process of recurrent, somatotopically-driven pattern-extraction.Le but principal de cette Ă©tude, menĂ©e dans le cadre de la TSG, thĂ©orie gestuelle des origines du langage articulĂ©, est d’explorer les contours de l’éventuel rĂŽle qu’a pu jouer le mĂ©canisme de Valsalva dans l’émergence du signe linguistique. La TSG postule que dans les premiĂšres conformations du langage dĂ©veloppĂ©es par Homo, des rĂ©sonances laryngales Ă  caractĂšre vocomimĂ©tique d’origine non linguistique ont pu ĂȘtre incorporĂ©es dans des protosyllabes de type LV (laryngale + voyelle) renvoyant auto-rĂ©fĂ©rentiellement Ă  des actions bucco-naso-laryngales (BNL) telles que respirer, Ă©ternuer ou tousser. Elle postule Ă©galement que ces protosyllabes ont pu ĂȘtre projetĂ©es sur des actions corporelles autres que BNL faisant appel Ă  la manƓuvre de Valsalva, telles que soulever, enfanter ou dĂ©fĂ©quer. Cette affirmation, fondĂ©e sur une analyse submorphĂ©mique de certaines racines du proto-indo-europĂ©en renvoyant au corps, rĂ©troprojetĂ©e dans une perspective gestuelle jusqu’à l’émergence du langage articulĂ©, laisse penser que les protosyllabes vocomimĂ©tiques postulĂ©es seraient devenues (auto-)rĂ©fĂ©rentielles au moyen d’un processus neurocognitif impliquant l’extraction de schĂ©mas rĂ©currents de traits formels somatotopiquement mu

    A framework for understanding shared substrates of airway protection

    Get PDF
    Deficits of airway protection can have deleterious effects to health and quality of life. Effective airway protection requires a continuum of behaviors including swallowing and cough. Swallowing prevents material from entering the airway and coughing ejects endogenous material from the airway. There is significant overlap between the control mechanisms for swallowing and cough. In this review we will present the existing literature to support a novel framework for understanding shared substrates of airway protection. This framework was originally adapted from Eccles' model of cough28 (2009) by Hegland, et al.42 (2012). It will serve to provide a basis from which to develop future studies and test specific hypotheses that advance our field and ultimately improve outcomes for people with airway protective deficits

    How does human motor cortex regulate vocal pitch in singers?

    Get PDF
    Vocal pitch is used as an important communicative device by humans, as found in the melodic dimension of both speech and song. Vocal pitch is determined by the degree of tension in the vocal folds of the larynx, which itself is influenced by complex and nonlinear interactions among the laryngeal muscles. The relationship between these muscles and vocal pitch has been described by a mathematical model in the form of a set of ‘control rules’. We searched for the biological implementation of these control rules in the larynx motor cortex of the human brain. We scanned choral singers with functional magnetic resonance imaging as they produced discrete pitches at four different levels across their vocal range. While the locations of the larynx motor activations varied across singers, the activation peaks for the four pitch levels were highly consistent within each individual singer. This result was corroborated using multi-voxel pattern analysis, which demonstrated an absence of patterned activations differentiating any pairing of pitch levels. The complex and nonlinear relationships between the multiple laryngeal muscles that control vocal pitch may obscure the neural encoding of vocal pitch in the brain
    corecore