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When coughing, an involuntary contraction of the external anal sphincter occurs,
in order to prevent unwanted leakages or sagging of the pelvis muscular wall.
Literature originally described such cough-anal response as a reflex elicited by cough,
therefore identifying a precise cause-effect relationship. However, recent studies report
that the anal contraction actually precedes the rise in abdominal pressure during
cough expiratory effort, so that the sphincter activity should be pre-programmed.
In recent years, an important family of pre-programmed muscle activities has been
well documented to precede voluntary movements: these anticipatory actions play a
fundamental role in whole body and segmental postural control, hence they are referred
to as anticipatory postural adjustments (APAs). On these basis, we searched in literature
for similarities between APAs and the cough-anal response, observing that both follow
the same predictive homeostatic principle, namely that anticipatory collateral actions
are needed to prevent the unwanted mechanical consequences induced by the primary
movement. We thus propose that the cough-anal response also belongs to the family of
pre-programmed actions, as it may be interpreted as an APA acting on the abdominal-
thoracic compartment; in other words, the cough-anal response may actually be an
Anticipatory Sphincter Adjustment, the visceral counterpart of APAs.

Keywords: cough-anal reflex, intra-limb APAs, inter-limb APAs, common mechanism, cough, external anal
sphincter

INTRODUCTION

The cough-anal reflex has been described as the contraction of the external anal sphincter occurring
when coughing (Meagher et al., 1993). Literature is however unclear in discriminating whether the
action on the sphincter is a reflex response due to the abdominal and pelvic floor dynamics, or an
integral component of the cough itself. According to the past studies, any maneuver causing an
increase in abdominal pressure, like cough, Valsalva etc., determine a reflex contraction of perineal
muscles (Parks et al., 1962; Bors, 1966; Deindl et al., 1993; Bø and Stien, 1994). Some authors
even provided evidences that during voluntary cough the external anal sphincter is recruited after
intercostals and abdominal muscles, suggesting that this response is mediated by a polysynaptic
reflex (Chan et al., 2004). In both these hypotheses, a precise cause-effect relationship is identified,
in which the reflex contraction of the sphincters prevent unwanted leakages or sagging of the
muscular wall of the pelvis. On the contrary, recent literature reports that the sphincters contraction
actually precede the rise in abdominal pressure during cough expiratory effort (Constantinou and
Govan, 1982; Thind et al., 1990; Thind and Lose, 1992), also showing that the increase in anal
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or vaginal closing pressure precedes the cough motor act
(Sapsford and Hodges, 2001) and that the external anal sphincter
is recruited in advance of intercostals muscles (Deffieux et al.,
2006). Based on their findings, Sapsford and Hodges (2001)
and Deffieux et al. (2006) forwarded the alternative idea of a
pre-programmed central control of the external anal sphincter
activity for granting continence during cough.

From another perspective, if one examines the abdominal-
thoracic compartment, a forceful increase of the internal pressure
may be induced both by the respiratory muscles (diaphragm
relaxation and internal intercostal muscles contraction) which
promote the compression of the thoracic cavity, and/or by
the abdominal wall muscles (contraction of rectus abdominis,
transverse abdominis, external oblique muscle and internal
oblique muscle) which press the abdominal organs cranially,
reducing the volume of the thoracic cavity to help expel air,
vomit, urine and feces from the body (Iscoe, 1998).

A different temporal and spatial recruitment of the
wall muscles and of sphincters may thus lead to different
behavioral results: expulsion of the air during speaking,
singing, yelling or coughing (in this case perineal muscles
and perineal sphincters should contract in synergy);
vomit, when abdominal pressure increases and the lower
esophageal sphincter is relaxed; defecation and micturition,
when perineal muscles are contracted, to stiffen the pelvic
floor, while perineal sphincters are relaxed, to offer an
escape route to excretions. Not to mention the complex
mechanism of foetal delivery, to which cooperates the uterine
contraction.

Returning to the cough-anal reflex/response question, an
important family of pre-programmed muscle contractions has
been well documented when studying voluntary movements:
these anticipatory adjustments play a fundamental role in whole
body and segmental postural control (Bouisset and Do, 2008;
Cavallari et al., 2016), so that they are referred to as anticipatory
postural adjustments (APAs). By analogy, we propose that also
the sphincter control may belong to the family of the pre-
programmed actions, and in this view, the cough-anal reflex
may be interpreted as an APA on the thoraco-abdominal
compartment.

ANTICIPATORY POSTURAL
ADJUSTMENTS AND VOLUNTARY
MOVEMENTS

In humans, there are several examples of pre-programmed,
anticipatory actions which accompany a willed movement.
Indeed, APAs are usually described as unconscious muscular
activities preceding the primary movement and aim to
counterbalance the perturbation caused by it (for a review,
see Massion, 1992; Bouisset and Do, 2008). APAs are so
intimately linked to the motor program that the involuntary
neural command to postural muscles is shared with the voluntary
command to prime mover muscles (Bruttini et al., 2014). The
importance of APAs is apparent when considering motion of
one single limb (e.g., Belen’kii et al., 1967 for the upper limb;

Alexeief and Naidel, 1972 for the lower limb), in this context,
the main goal of APAs is to minimize the changes in the body
center of mass, to keep its projection within the support area,
and to counteract the self-initiated postural perturbation. APAs
also contribute to initiate the displacement of the body center
of mass when starting gait (Brenière et al., 1987) or whole
body reaching movements (Stapley et al., 1998, 1999). These
activities, called inter-limb APAs, set one or more fixation chains
spreading over several muscles of different limbs. APAs may
also precede movements of tiny masses, like a brisk flexion of
the index-finger when performed in a seated position (Caronni
and Cavallari, 2009). In this case, they are named intra-limb
APAs as the fixation chain is limited to muscles acting on
proximal joints (Cavallari et al., 2016). Taking into account
the small mass of the moving segments, and the fact that this
movement cannot affect the whole-body balance, the role of
intra-limb APA has been attributed to the precision of the final
movement (Bruttini et al., 2016). Note also that despite the
different aim, inter- and intra-limb APAs share many behavioral
properties: they are distributed to muscles of the same limb in
which the movement occurs, precede the onset of the voluntary
movement, are polarized according to the task direction in space,
are scaled to the amplitude of the perturbation and adapt to
changes in the postural requirement of the task (Cavallari et al.,
2016).

COUGH-ANAL REFLEX

Cough
Cough is a defensive reflex, triggered by sensory inputs
arising from the airways, that generates a high velocity air
flow so as to free the respiratory tract from whichever
obstruction (for a review, see Ando et al., 2014). It consists
of a modified respiratory act which starts with a profound
preparatory inspiration phase, followed by a brief compressive
phase, in which an expiratory effort is exerted against the
closed glottis, and finally by an expulsive phase in which
a sudden opening of the glottis is coupled to a quick and
strong expiratory muscles contraction (Fontana and Lavorini,
2006).

Cough reflex, is aimed at protecting the respiratory tract
from irritation agents, foreign bodies andmicroorganisms, either
inhaled or in loco produced (Bolser and Davenport, 2002; Bessac
and Jordt, 2010), such action escapes any voluntary control and
its processing seems to be entirely based on brainstem structures
(Baekey et al., 2001; Canning and Mori, 2010). Nevertheless,
more andmore literature reports that not only sensory andmotor
but also cognitive and affective mechanisms may play a role
in controlling cough, being able either to promote or inhibit it
(Widdicombe, 1995; Fong et al., 2004; Mazzone et al., 2007, 2011;
Davenport, 2009). Cough, like most respiratory maneuvers, can
be also initiated at will, indeed cough or cough-like maneuvers
are quite common in non-verbal communication, e.g., to require
attention or express disagreement, to pretend to be ill or
underline the symptoms of a real disease.

Reflex and voluntary cough present important differences in
several aspects. Apart from the fact that the former is triggered
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by a precipitating sensory stimulus while the latter is not, both
types of cough require similar muscle groups, but voluntary
coughing recruit such muscles according to a precise sequential
order (Lasserson et al., 2006; for review see Magni et al., 2011).
Moreover, the peak intra-abdominal pressure reached during
reflex cough is higher than that reached during voluntary cough
(Addington et al., 2008).

Several studies aimed at identifying the CNS structures that
govern coughing and their neural interconnections. Although
an extensive list of candidate structures have been proposed,
detailed studies about the role of each structure are still
missing, so that specific aspects such as the relative inter-
structure connections and the temporal organization are not
yet fully determined. Some recent insight has been provided by
McGovern et al. (2012a,b), who used neurotropic viruses to map
the interconnections between neuronal networks.

The sensory fibers of the vagal nerve than stem from the
airways project to the trigeminal sensory and solitary tract nuclei.
In turn, these nuclei project to the hypothalamus and to the
parabrachial nuclei, to the thalamus and to subthalamic nuclei,
as well as to the amygdala and up to several cortical areas,
which include the somatosensory cortices as well as the cingulate,
insular and orbital cortices (McGovern et al., 2012a). These data
allowed Mazzone et al. (2013) to propose that two ascending
pathways originate from the airways: the first that projects to
the ventral and basal portion of the thalamus and then up to the
somatosensory cortices, while the second crosses the medial and
dorsal thalamus, reaching the insula, as well as the orbital and
cingulated cortices.

Important results about the brainstem circuitry governing
reflex cough have been obtained by employing pharmacological
and electrophysiological techniques on deeply anesthetized or
even decerebrate animals. Indeed, such experiments showed
that the afferent inputs to the pontine and medullary nuclei
are able to trigger a reconfiguration of the respiratory central
pattern generator, changing its activity from the classical motor
pattern that produce breathing to the specific pattern driving
cough (Baekey et al., 2001, 2003; Canning et al., 2004; McGovern
et al., 2012a). However, an in depth description of the brainstem
mechanisms that control cough in the human being is still
lacking.

In the human being, urge-driven cough may be not
exclusively governed by brainstem reflex circuitries, as
other hierarchically higher brain areas, such as the insular,
cingulate and somatosensory cortices, may provide an important
contribution (Mazzone et al., 2011). Even if the exact role of
these cortical areas is still unclear, it may be conceived that
they take part in controlling the accessory muscles in cough,
as well as in arranging the voluntary control of cough. In
support of such a proposal, Shima et al. (1991) reported that
in monkeys the stimulation of the posterior insular cortex
is able to induce contractions in the contralateral muscles.
Similarly, the mid-cingulate cortex has been reported to be
active when voluntarily coughing, and also during a voluntary
sniff or breath (Simonyan et al., 2007; Mazzone et al., 2011).
Finally, it is noteworthy that cough-like actions may be
elicited in the anesthetized cat by stimulating the amygdala

or the suprasylvian gyrus with electrical pulses, and that the
reflex-cough, triggered by stimulating the superior laryngeal
nerves (afferent components), is inhibited if a simultaneous
stimulus is applied to the orbital or cingulate gyri (Kito et al.,
1977; Kasé et al., 1984).

Pelvic Floor Muscles
Pelvic floor muscles are involved in the function of the lower
urinary tract and lower digestive tract, as well as in sexual
functions. Thus, their neural control, which is somatic in
origin, must consider their involvement in visceral activity. A
coordination with the autonomic motor nervous systems should
then be previewed.

The function of pelvic floor/sphincter lower motor neurons
is organized differently from other groups of motor neurons. In
contrast with the reciprocal innervations, commonly observed
in limb muscles, the neurons innervating each side of the pelvic
floor must work in harmony and synchronously, as a functional
unit. As an example, in continent women bilateral pubococcygei
muscles contract simultaneously and so do both halves of the
sphincter muscle (Deindl et al., 1993). But flexible activation
patterns could be possible, due to the unilateral innervation of
these muscles. Indeed, Kenton and Brubaker (2002) reported
that levator ani and urethral sphincter may show differences in
activation patterns. On voiding, the external urethral sphincter
should relax, preceding the detrusor contraction, while the anal
sphincter is tonically active; on the contrary, both sphincters
relax when defecating (Read and Sun, 1990). It is also known that
a voluntary inhibition of the urethral sphincter may be achieved
even without actually voiding (Sundin and Petersén, 1975).

Reflex activity may be triggered by an increase of intra-
abdominal pressure or by a distension of pelvic organs, but
it cannot be excluded that long-loop pathways activated by
noxious stimuli may contribute as well (McMahon et al.,
1982). It has been also reported that reflex activity may
be modulated by inhibitory descending pathways from the
brainstem and the motor cortex (Mackel, 1979). In particular,
the descending inhibitory projections from pontine tegmentum,
via the commissural nucleus, seem to be crucial for a correct
timing of the sphincter relaxation during voiding (Blok and
Holstege, 1998). Importantly, the complexmotor sequence which
drives bladder and sphincter activity is also accompanied by
coordinated postural changes (Stafford et al., 2012).

In addition, pelvic floor muscles have been shown to
contribute to both postural and respiratory functions (Hodges
et al., 2007). These authors indeed demonstrated that during
voluntary arm movements the activation of Anterior Deltoid is
preceded by EMG activity in pelvic floor muscles; these muscles
are activated before the intra-abdominal pressure increases, also
contributing to stiffen the sacroiliac joints, therefore such activity
should actually be an APA. Hodges et al. (2007) also recorded
pelvic floor muscles activity during quiet breathing and under
increased dead-space condition, reporting that such activity
was tailored according to the respiration phase, increasing
together with abdominal muscles activity; a finding that suggests
the presence of visceral APAs when breathing. Finally, it is
important to note that when discussing the above results, these
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authors concluded for a pre-programmed control, in view of
the observation (Constantinou and Govan, 1982) that during a
cough the increase in urethral pressure precedes by ∼200 ms the
increase in bladder pressure.

Cough and Pelvic Floor Muscles Activity
According to the past literature, cough, Valsalva maneuver,
and more generally, abdominal distension, determine a reflex
contraction of perineal muscles (Parks et al., 1962; Bors, 1966;
Deindl et al., 1993; Bø and Stien, 1994). In fact, cough determines
an increase in abdominal pressure and subsequently an increase
in pressure in the bladder and the rectum. But every increase
in bladder or rectum pressure requires a simultaneous increase
of contraction of the sphincters to prevent leakages or the
sagging of the muscular wall of the pelvis. Thus, a contraction
of striated urethral muscle or striated anal sphincter is required.
Many electrophysiological studies have described these actions
(Parks et al., 1962; Deindl et al., 1993; Meagher et al., 1993;
Bø and Stien, 1994), defining them as reflex responses. In this
regard, Chan et al. (2004) showed that the external anal sphincter
is recruited after intercostals and rectus abdominis muscles,
both during voluntary cough and sniff. Moreover, the latency
between rectus abdominis and external anal sphincter activation
decreased as the cough effort increased. These authors concluded
for a polysynaptic origin of the cough-anal reflex, but also
reported that the afferent pathway for such late external anal
sphincter response does not involve sensory input from the
anal mucosa. Therefore they suggested that the reflex afferent
pathway could come from muscle spindles or other sensory
receptors in pelvic floor muscles, ligaments and fascia, as well
as from the viscera or bladder. Unfortunately, Chan et al.
(2004) did not recorded intra-abdominal pressure, which is
the most probable cause of excitation for all such sensory
receptors.

On the contrary, during voluntary cough, an increase in intra-
urethral pressure precedes (by 100–240 ms) the rise in bladder
pressure in healthy volunteers (Constantinou and Govan, 1982;
Thind et al., 1990; Thind and Lose, 1992) and electromyographic
(EMG) activity of the urethral sphincter occurs before cough in
women suffering stress incontinence (Roskar et al., 1981; Heidler
et al., 1987; Thüroff et al., 1987). These results fits with the
hypothesis forwarded by van der Kooi et al. (1984) that the
increase in abdominal pressure should follow the contraction of
pelvic floor muscles.

More recently, Sapsford and Hodges (2001) reported that
cough, which induce a rise in gastric pressure, is preceded by a
rise in anal or vaginal pressure. These authors also underlined
that this response should thus be pre-programmed. Moreover,
Deffieux et al. (2006) reported that, during voluntary cough in
continent women, external anal sphincter activity increased not
only before intra-abdominal pressure but also before intercostal
muscle activity (latency ranging from 40 ms to 800 ms), a
result in apparent contrast with that of Chan et al. (2004).
Deffieux et al. (2006) actually provided a detailed critic of
those results, underlining that Chan’s group analyzed just one
subject, did not record intra-abdominal pressure and used needle
electrodes for EMG recording, which just record activity from

small areas of muscles, while surface electrodes are better adapted
to obtain accurate measurements of whole muscle activity.
Therefore, also these authors concluded for a pre-programmed
central control of the external anal sphincter activity aiming to
maintain continence. In addition, it has been demonstrated that
pelvic floor muscle contraction not only anticipates, but is also
proportional to the rise in intra-abdominal pressure caused by
the cough effort (Amarenco et al., 2005), a finding that replicates
a well known behavior of the APAs.

Finally, although many authors suggest that anticipatory
activity in pelvic floor muscles cannot be a reflex response
to the afferent input generated by the stretch of the thoracic
or abdominal muscles, since it precedes both voluntary and
involuntary abdominal muscles recruitments, nobody explicitly
states that the anticipatory pelvic floor response during cough
may be an anticipatory component of the cough itself involving
higher integrative centers. In this regard, it is interesting to note
that the correlation between the rectus abdominis to external anal
sphincter latency and the cough effort reported by Chan et al.
(2004) is also consistent with the correlation between the APAs
to prime mover latency and movement speed demonstrated by
Horak et al. (1984).

ONTOGENESIS OF POSTURAL AND
SPHINCTER ANTICIPATORY
ADJUSTMENTS

The control of body position in space develops with different
intensity during life span (Assaiante et al., 2005; Soberaa
et al., 2011). As an example, Zaino and McCoy (2008) showed
that young healthy children (6–8 years old) exhibit much
higher variability of posture control than older healthy children
(10–12 years old). It is also reported that the age 7–9 years is an
important period of their life in which children master postural
control (Massion, 1998). Moreover, Schmitz et al. (1999) showed
that children 3–4 years old develop APA, although they show
coexistence of both adult-like and immature patterns, concluding
that this anticipatory activities are being set up and that children
are progressively mastering them.

It is also well known that all children have wetting and/or
soiling accidents at one time or another. Achievement of
urinary continence is an important developmental step that
most children attain with the assistance of their parents and
caregivers, however literature reports that about 15%–20%
of children become partially toilet trained but continue to
have wetting accidents even after the age 5 (Issenman et al.,
1999). The first awareness of bladder and rectal functions
usually occur between one and two years of age. The neural
mechanisms involved in the storage and periodic elimination of
urine undergo marked changes during prenatal and postnatal
development (de Groat, 2002; Jansson et al., 2005). In the
first years of life, voiding is controlled by a primitive spinal
reflex pathway. Voluntary control over striated muscle sphincter
usually occurs by the age of 3 years (Sillén, 2004). As the human
CNS matures, higher brain centers contribute in modulating
reflex voiding (see Figure 7 of Fowler et al., 2008). In adults,
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injury or disease of the nervous system can lead to the
re-emergence of primitive reflexes Geirsson et al., 1993; Jiang
et al., 2002).

Changes in brain structure are continuous throughout life
(Chugani et al., 1987; Giedd et al., 1996). By the age 2,
the brain has reached 75% of its adult weight (Carmichael,
1990) and the processes of synaptic pruning and cell death
are most active during these early years (Huttenlocher, 1979;
Huttenlocher et al., 1982). During the school-age years,
strong signs of brain maturation are appreciable, especially
in its connectivity (Lebel et al., 2008). MRI measures of
the structure in fibers tracts correlate with behavioral indices
that also change in this period (Schmithorst and Yuan, 2010;
Tamnes et al., 2010a,b). Later changes involve the associative
neocortex, which continues to develop well into the third decade
(Yakovlev and Lecours, 1967), and the corpus callosum, which
connects all major subdivisions of the cerebrum (Pujol et al.,
1993).

Thus, before school-age all kinds of anticipatory actions,
preceding primary movements, seems to be immature, either
because the whole system is not still developed or because
a part of it is not properly functioning. The achievement of
a complete action (anticipatory and willed; postural or non-
postural), therefore requires repetition learning (Draganski et al.,
2004) and memory (Takeuchi et al., 2010).

SIMILARITIES BETWEEN APAs AND
COUGH-ANAL RESPONSE

As shown above, APAs and cough-anal response share many
common features: they are both anticipatory with respect
to the primary movement, so that they cannot be reflex
responses but must be pre-programmed; they both prevent
unwanted mechanical consequences (postural perturbation or
sphincter leaking); they are both scaled to the amplitude of
the perturbation; and finally, they seem to follow the same
ontogenetic steps.

Indeed, a conceptual similarity may be envisaged among
inter-limb APAs, intra-limb APAs and the anal response. In
fact, in all cases a single predictive homeostatic principle (Moore-
Ede, 1986; Freddolino and Tavazoie, 2012) seems to be followed,
namely that anticipatory collateral actions are needed to correctly
perform the primary movement.

In the case of inter-limb APAs, that minimize the changes of
the body center of mass and that counteract the self-initiated
postural perturbation, this principle provides the maintenance
of stability (equilibrium) of the whole body during an action
(Massion, 1992; Bouisset and Do, 2008). These APAs spread over
several muscles of different limbs, creating one or more long
fixation chains.

In the case of intra-limb APAs, that maintain the stability of
the different segments of a single limb, it means to successfully
carry through a precise and coordinatedmovement (Caronni and
Cavallari, 2009; Caronni et al., 2013; Bruttini et al., 2016; Cavallari
et al., 2016). These APAs spread over several muscles of the same
limbs, creating short fixation chains.

In the case of the anal or urinary responses, the anticipatory
contraction of the sphincter permits to prevent fecal or urinary
leakage during an increase of abdominal pressure, due to a
sudden action. A behavior that should be defined anticipatory
adjustment as well.

A final comment deserves the possible neural networks that
may be involved in the control of postural and sphincter muscles.
Indeed, some analogies may be directly outlined, while other
may be actually tested. First, as mentioned in the ‘‘Cough’’
section, animal experiments showed that the afferent inputs
to the pontine and medullary nuclei are able to trigger a
reconfiguration of the respiratory central pattern generator,
changing its breathing activity into a cough pattern (Baekey et al.,
2001, 2003; Canning et al., 2004; McGovern et al., 2012a). In
parallel, it has been shown that the automatic gait pattern of
the locomotion central pattern generator may be influenced by
pontine neurons (for a review, see Takakusaki, 2017). However,
the advanced pre-programmed control of posture required for
skilled and goal-directed movements involve many cortical
areas, as well as basal ganglia and cerebellum (see Takakusaki,
2017). In this regard, the involvement of supplementary motor
area and cerebellum in APAs control has been experimentally
demonstrated by Bolzoni et al. (2015) and Bruttini et al.
(2015). It would then be interesting to test if magnetic or
DC stimulation of these structures would produce comparable
effects on the anticipatory recruitment of postural muscles and
of external sphincters, during both voluntary movements and
respiratory/cough tasks.

CONCLUSION

On these basis, it is proposed that a common pre-programmed
(i.e., feed-forward) mechanism may govern several kinds of
anticipatory actions. In fact, in all cases the brain seems to control
in the same way the general predictive homeostasis of the body,
accomplishing movements either voluntary- or urge-driven.
Thus, Anticipatory Sphincter Adjustments are likely the visceral
counterpart of APAs. Of course, this speculative conclusion is
just an hypothesis, which needs further experimental testing.
Indeed, it could be interesting to investigate the EMG activity
of visceral muscles, such as pelvic floor muscles, during other
movements like hiccupping or chest vs. diaphragmatic breathing,
so as to ascertain if such activities are actually anticipatory
also in these conditions. Other evidences may come from
testing if stimulation of the supplementary motor area or the
cerebellum would affect in parallel the activation of both postural
muscles and external sphincters. Indeed such finding would
strengthen the analogy between the cough-anal response and
the APAs.
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