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Vocal pitch is used as an important communicative device by

humans, as found in the melodic dimension of both speech

and song. Vocal pitch is determined by the degree of tension

in the vocal folds of the larynx, which itself is influenced by

complex and nonlinear interactions among the laryngeal

muscles. The relationship between these muscles and vocal

pitch has been described by a mathematical model in the

form of a set of ‘control rules’. We searched for the biological

implementation of these control rules in the larynx motor

cortex of the human brain. We scanned choral singers with

functional magnetic resonance imaging as they produced

discrete pitches at four different levels across their vocal

range. While the locations of the larynx motor activations

varied across singers, the activation peaks for the four pitch

levels were highly consistent within each individual singer.

This result was corroborated using multi-voxel pattern

analysis, which demonstrated an absence of patterned

activations differentiating any pairing of pitch levels. The

complex and nonlinear relationships between the multiple

laryngeal muscles that control vocal pitch may obscure the

neural encoding of vocal pitch in the brain.

provided by Edge Hill University Research Information R
1. Introduction
The modulation of vocal pitch in humans is central to the

communication of meaning through both speech prosody and

musical melody [1–6]. This includes both the discrete pitch

movements found in much of music and the more-continuous

pitch transitions that are found in speech and the expression of

emotion. Such modulations of pitch are mediated by the brain’s

control over the muscles of the larynx. Although there is a

growing body of research on the vocal motor system of the
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(a) dorsal view of thyroarytenoid muscle (b) anterior view of cricothyroid muscle 

Figure 1. The thyroarytenoid muscle (TA; a) and cricothyroid muscle (CT; b) are the primary controllers of vocal pitch. The CT rocks
the thyroid cartilage forward, thereby stretching the vocal folds and raising vocal pitch. The TA lies within the vocal folds themselves
and causes them to become shorter and stiffer, and has a nonlinear influence on vocal pitch. Other laryngeal muscles (depicted in
grey) serve to adduct and abduct the vocal folds, effectively turning voicing on or off, or to raise and lower the entire larynx within
the airway. These latter muscles have only a minor influence on vocal pitch. Drawings are modified from Gray [8].
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human brain, relatively little is known about the representation of pitch within this system, not least

compared to the well-established spatial representation of frequency in the auditory system.

Vocalization—also known as phonation or voicing—is produced by the vibration of two fibrous

elastic membranes inside the larynx. These vocal folds vibrate passively as air is forced through the

vocal tract, where the fundamental frequency (F0) of this vibration is determined by an adjustable set

of physical properties of the vocal folds [7]. These physical parameters are controlled primarily by

two major intrinsic laryngeal muscles, namely the cricothyroid (CT) and thyroarytenoid (TA) muscles

(figure 1). Contraction of the CT muscle stretches and increases the tension of the vocal folds, causing

them to vibrate at a higher F0 and raising the pitch of the voice [9–13]. The TA muscle lies within the

body of the vocal folds themselves. Contraction of this muscle may either shorten the vocal folds to

lower vocal pitch or stiffen them to raise vocal pitch. The net influence of the TA muscle depends

strongly on interactions with the CT muscle, the range of frequencies being produced and the

amplitude of vocalization [14,15].

The dynamics of vocal pitch have been described by a mathematical model of ‘control rules’ mapping

combinations of laryngeal-muscle movements onto their influence over vocal pitch [7]. This model

predicts the oscillations of the vocal folds as a function of a low-dimensional set of parameters

describing the configuration of the vocal folds, such as their compressional stiffness, length, thickness

and depth. In turn, it predicts the configuration of the vocal folds from the degree of contraction of

certain laryngeal muscles, most notably the CT and TA muscles. The control rules map combinations

of CT and TA contraction onto vocal pitch modulations. How these control rules are implemented in

the central nervous system to regulate vocal pitch during speech, song and expressions of emotion is

presently unknown.

The lower motor neurons that innervate the intrinsic laryngeal muscles are found in the nucleus

ambiguus in the medulla. In rat models of vocalization, this nucleus contains separate somatotopic

divisions for the lower motor neurons that innervate the CT and TA muscles, respectively [16].

In monkeys, the cortical larynx area also contains separate representations of the CT, TA and other

intrinsic laryngeal muscles [17]. However, the cytoarchitecture and function of the larynx area in

humans differ markedly from those in all other apes [17–22], highlighting the need for human

research in this area. Several transcranial magnetic stimulation (TMS) studies in humans have

http://rsos.royalsocietypublishing.org/
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observed electromyographic activity in the cricothyroid muscle following magnetic stimulation of the

ventral primary motor cortex [23–26]. One study in humans observed considerable spatial separation

between two scalp locations that preferentially activated the CT and TA muscles, respectively [27],

although another study that recorded from the same muscles observed a single shared cortical locus [28].

Neuroimaging studies using functional magnetic resonance imaging (fMRI) have successfully

distinguished between the larynx motor cortex (LMC) and adjacent orofacial somatotopic modules in

primary motor cortex (M1) that control movement of the lips and tongue [29–31]. Few studies have

attempted to discern how the LMC performs its primary function in controlling vocal pitch. Peck et al.
[32] had participants phonate at three pitch levels in their vocal range, Howell et al. [33] examined the

production of rising and falling tones in Mandarin, and Kryshtopava et al. [34] examined phonation at

both comfortable and high pitch levels, when compared with silent expiration. None of these

experiments observed differences in the locations of activations in the LMC as a function of vocal

pitch. Possible reasons for the inability of these studies to detect pitch-dependent modulation of the

LMC include: (i) the tendency of untrained singers to couple pitch modulation with vertical

movements of the larynx that engage a complex of extrinsic laryngeal muscles, which may obscure

activity related to the muscles with the strongest influence on vocal pitch, (ii) the insensitivity of

standard general linear model (GLM) analyses of fMRI data to distinguish adjacent or overlapping

activations, (iii) the nonlinear relationship between the profile of activation of the intrinsic laryngeal

muscles (CT and TA) and vocal pitch, and (iv) the neural representations of the various laryngeal

muscles in the human brain might be more overlapping than predicted from animal models.

We report an fMRI study in which chorally trained singers vocalized discrete pitches at four different

levels within their pitch range. We examined singers who were able to decouple vocal-pitch production

from vertical movements of the larynx. In addition to running standard GLM analyses to assess gross

brain activation, we extracted the coordinates of the peak activations from each participant to test for

small-scale differences in the location of LMC activations at each pitch level. Finally, we applied

multi-voxel pattern analysis (MVPA) to leverage the sensitivity of machine-learning methods to spatial

patterns that may not be observable with standard univariate analyses. We hypothesized that if the

CT and TA muscles are controlled by separate cortical loci, vocal-pitch levels that differentially engage

these two muscles would preferentially activate different cortical subregions or produce different

patterns of activation within the LMC.
2. Methods
2.1. Participants
Twelve participants (seven males, five females), with a mean age of 27.0 years (ranging from 16 to

48 years), participated in the study after giving their informed consent. Each individual was without

neurological or psychiatric illness. Participants were all fluent English speakers (11 native speakers of

English, one of Japanese). One male participant was left-handed. All participants were chorally

trained singers, with 4–18 years of choral singing experience (mean ¼ 9.5, s.d. ¼ 4.7).
2.2. Procedure
During a training session on a day prior to fMRI scanning, we collected vocal recordings of each

participant in order to obtain their habitual speaking pitch and effective vocal range. We had each

participant sing a stable and comfortable pitch using the neutral vowel schwa, then sweep down to

the lowest pitch that they could comfortably produce without altering the quality of their voice (e.g.

without producing creaky voice or vocal fry). The same procedure was repeated with an upward

sweep to estimate the highest pitch that each participant could comfortably produce. Each

participant’s lowest reliably produced pitch became their ‘low’ pitch. Three additional pitch levels

were selected by determining the musical interval that is a perfect fifth above the preceding pitch.

This is equivalent to taking a 3 : 2 frequency ratio. For example, if the low pitch of a participant was

100 Hz, then the three remaining pitches would be 150 Hz, 225 Hz and 337.5 Hz, respectively. We

chose to use an increment of a perfect fifth in order to cover a large part of the vocal range without

forcing participants to transition into the falsetto register. The three pitch levels above ‘low’ are

hereafter referred to as ‘comfort’, ‘mid’ and ‘high’, respectively. The second pitch level tended to

http://rsos.royalsocietypublishing.org/
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approximate each participant’s comfortable or habitual pitch, and the final pitch was near the upper limit

of the chest-voice range for most participants.

We instructed the participants to perform phonation as soft hums during the first half of a relaxed

breath phrase, hence roughly the first 3 s of a 6 s breath phrase, followed by a gentle and controlled

nasal inspiration. All phonation was done nasally, rather than orally, in order to match the vocal-tract

configuration of the quiet breathing that constituted the baseline condition of ‘rest’ (see below).

During training, we synthesized voice-like complex waves at each pitch level in order to provide

participants with an auditory template of the sound to be produced. Visual inspection of a

participant’s thyroid prominence confirmed that the larynx did not move vertically within the airway

during the production of any pitch level. The training session was recorded using Adobe Audition

CC (v. 9.2.1.19), which provided an online display of the recorded waveform. This display was

provided as biofeedback to train participants to produce each pitch level at an equal and soft

amplitude. Training continued until participants were able to reliably produce each pitch level as

instructed with no observable head movement.

Vocalization tasks have been observed to produce activation artefacts in fMRI experiments [35]. Tissue

movement near the limit of the MRI’s field of view can induce changes in the magnetic field gradients that

encode spatial locations within the scanner. Of principal concern are articulatory movements of the tongue

and vertical movements of the larynx. Our task design mitigated concerns over tongue movement by

having participants vocalize with the same neutral vowel (schwa) across conditions to keep the position

of the tongue constant. Our participant-recruitment strategy mitigated concern over vertical laryngeal

movements. Untrained singers tend to recruit the extrinsic laryngeal muscles to raise or lower the larynx

as a whole when they modulate vocal pitch, despite the modest influence of these muscles on F0 [13,36],

but trained singers can suppress these movements [37–39]. We verified that all participants were able to

sing across the stimulus range without moving the larynx vertically within the airway.

In the scanner, the tasks were performed according to a block design, alternating between 20 s of

phonation and 20 s of rest. Given that a breath phrase for production was roughly 6 s, participants

typically made three such breath phrases of the same pitch during each 20 s task epoch. During each

task epoch, a visual text-cue indicating which of the four pitch levels the participant should sing was

projected from an LCD projector onto a screen mounted at the head of the MRI table with an angled

mirror on the head coil that reflected text from the screen into the participant’s field of view. At the

beginning of each phonation block, an auditory cue played over MR-compatible headphones provided

a participant-specific template for the pitch level to be phonated during that block. During the rest

periods, the word ‘Rest’ was projected onto the screen. Participants were instructed to keep their eyes

on a crosshair in the centre of their field of view at all times. All stimuli were presented using the

Presentationw software (v. 14.4, www.neurobs.com). Each participant completed four runs of

16 blocks. Every run contained four blocks of each pitch level, occurring in pseudorandom order.

2.3. Magnetic resonance imaging
Magnetic resonance images were acquired with a General Electric Achieva 3-Tesla MRI at the Imaging

Research Centre at St. Joseph’s Hospital in Hamilton, Ontario. The participant’s head was firmly

secured using foam pillows. Earplugs were used to help block out scanner noise. The imaging

parameters were 2500 ms TR, 35 ms TE, 90o flip angle, 30 slices, 3 mm slice thickness, 0 mm gap,

2.25 � 2.25 mm in plane resolution, 64 � 64 matrix and 192 mm field of view. A total of 260 volumes

were acquired. Four dummy volumes were discarded, leaving 256 volumes over 1004000 of scan time,

corresponding with 16 alternations between 20 s epochs of task and 20 s epochs of rest. T1-weighted

anatomical images were collected for image registration with the parameters 7.47 ms TR, 2.1 ms TE,

164 slices, 2 mm slice thickness, 0.4688 � 0.4688 mm in plane resolution, 512 � 512 matrix and

240 mm field of view.

2.4. Image analysis
MRI data were processed with SPM12 (Wellcome Trust Centre for Neuroimaging, London, UK). All

images were realigned to the first echoplanar image. Functional runs were co-registered to the T1-

weighted images for each individual participant, and spatially normalized into Montreal Neurological

Institute (MNI) standard stereotactic space using a transformation matrix generated during tissue class

segmentation [40]. No spatial smoothing was performed in order to avoid a loss of effective spatial

resolution.

http://www.neurobs.com
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2.5. Whole-brain general linear model
Statistical parametric maps were computed in order to contrast phonation versus rest (combining the

four pitch levels), in addition to each individual pitch level versus rest. We tested for gross changes in

the location of LMC activations as a function of pitch at the group level. The BOLD (blood oxygen

level-dependent) response was modelled using boxcar predictors for phonation (with all pitch levels

combined) and for the low, comfort, mid and high pitches separately. First-level fixed-effects analyses

were conducted for each participant, and parameter estimates were forwarded to a random-effects

analysis to assess significance at the level of the group. The group-level map was generated with

a cluster-forming threshold of p , 0.01 and corrected for multiple comparisons with cluster thresholds

computed by permutation test (cluster-wise p , 0.05) [41,42] as implemented in the Statistical

Non-Parametric Mapping toolbox (SnPM13, http://warwick.ac.uk/snpm, retrieved 1 May 2018).

2.6. Centroid analysis
We compared the coordinates of maximal activation among the four pitch levels. Separate statistical

maps were computed for each participant at each pitch level. Coordinates of maximal activation

within the primary motor cortex were extracted from fixed-effects analyses that were computed

separately for each participant. We extracted separate peak-activation coordinates from the fundus and

wall of the central sulcus by identifying the activation peaks nearest to these sites.

Linear mixed effects (LME) models were used to test the hypothesis that the coordinates of any pitch

level differed from any other pitch level using the lme4 package in R (v. 3.4.1) [43,44]. We constructed

LME models to predict coordinate values for activation peaks in either hemisphere from the fixed

factors (i) pitch level (low, comfort, mid and high) and (ii) cardinal direction (x, y and z), with a

random intercept of participant. If the locations of activation peaks varied by pitch level, we expected

a significant interaction between pitch level and one or more of the cardinal directions.

2.7. Multivariate pattern classification
After preprocessing, the fMRI time series of all voxels was extracted from the functional images. These

raw signals were temporally high-pass filtered with a 300 s cut-off to remove signals unrelated to the

neural activity (e.g. linear drift) and were standardized across the four runs to adjust intensity

differences among the runs. Intensity vectors were obtained within the range around the peak of HRF

(haemodynamic response function) based on the boxcar model of the block design. These vectors

were then submitted to the Gaussian Naive Bayes (GNB) linear classifier [45] in the Matlab 2013a

statistics toolbox (Mathworks Inc., Natick, MA, USA). Using the whole-brain searchlight analysis [46],

we performed four-way classification at every local searchlight sphere, which comprises a centre voxel

and its neighbouring voxels within a three-voxel radius. The classifier was initially trained by data in

three runs in order to build a model that set the boundary among the neural vectors associated with

each of the four pitch conditions. The model was then applied to the data in the one remaining run,

in which the accuracy was computed by summing the number of correct classifications of each of the

four labels (chance level ¼ 25%). This procedure was repeated four times, such that each combination

of the four runs served as a training set (i.e. fourfold cross-validation). The classification accuracy for

each searchlight sphere was averaged across the fourfold cross-validation and written in each of the

centre voxels in the searchlight output image. The individual searchlight output map was then

submitted to random effects analysis after the chance level was adjusted from 0.25 to 0 for a one-

sample t-test in SPM12. The group-level map was generated with a threshold of p (voxel-wise

uncorrected) less than 0.001 with corrected cluster size ( p , 0.05) using the family-wise rate correction

method [41,42].
3. Results
3.1. Whole-brain voxel-wise general linear model
Group-level activations are summarized by the contrast of phonation versus rest across pitch levels. This

contrast revealed significant activations bilaterally in the primary motor cortex (M1) and supplementary

motor area (SMA; table 1 and figure 2).

http://warwick.ac.uk/snpm
http://warwick.ac.uk/snpm
http://rsos.royalsocietypublishing.org/


Table 1. MNI coordinates (x, y, z) of activation peaks from significant clusters for the group-level analysis of the contrast of
phonation versus rest; t indicates the test statistic and k indicates the cluster extent in voxels. A cluster-size threshold of k , 47
was computed by a permutation test. M1, primary motor cortex; SMA, supplementary motor area.

task x y z t k

M1 243 218 46 4.09 126

M1 48 213 42 3.4 55

SMA 6 22 63 4.32 176

SMA 2 7 62 3.38 —

SMA 2 23 70 2.98 —

SMA 23 23 61 4.04 99

x = 48

L R

x = 6

x = –3

x = –43

M1

SMA

SMA

M1

M1

M1

(a) (b)

Figure 2. Activations from random-effects analyses for phonation. (a) Sagittal slices showing all activations from the contrast
phonation versus rest. (b) The cut-out shows axial slices at the level of z ¼ 45 and 41, in the left and right hemisphere,
respectively. M1, primary motor cortex; SMA, supplementary motor area.
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Group-level analyses for each of the four pitch levels yielded highly overlapping pericentral

activations (coordinates are presented in table 2). For the mid- and high-pitch conditions, separate

activation clusters were observed along the wall and fundus of the central sulcus, respectively. The

SMA and precuneus were also more active during phonation at certain pitch levels compared to rest,

presumably due to non-pitch-related experimental demands, such as initiating vocalization and

reading the visual text-cues.
3.2. Individual centroid analysis
In two-thirds of the participants, pericentral activations were observed in the expected range of the LMC

at the fundus of the central sulcus in both hemispheres. All participants also exhibited additional

activation peaks along the wall of the central sulcus. In most participants, the two peaks occurred

within a single cluster spanning both areas, although in a minority of participants these peaks were

found in separate non-contiguous clusters.

Centroid coordinates varied considerably across individuals, but were highly consistent among pitch

levels within each individual (figure 3). In 57% of the hemispheres in which the LMC was detected, we

observed identical loci of peak activation for at least two different pitch levels. In the remainder of cases,

activation peaks for different pitch levels were found in adjacent voxels. Linear mixed models detected

no evidence of differences between centroid locations in either hemisphere for the fundus or along the

wall of the central sulcus (all F-values , 1, all p-values . 0.4). Table 3 lists the mean and standard

deviation for the coordinates of peak activation at both sites in both hemispheres. The same results

were obtained after excluding the one participant who was left-handed.

http://rsos.royalsocietypublishing.org/


Table 2. MNI coordinates (x, y, z) of activation peaks from significant clusters for the group-level analysis for individual pitch
levels versus rest; t indicates the test statistic and k indicates the cluster extent in voxels. Cluster-size thresholds of k . 39, k .

42, k . 47 and k . 42 were computed by a permutation test for the low-, comfort-, mid- and high-pitch levels, respectively.
M1, primary motor cortex; SMA, supplementary motor area.

low x y z t k

M1-wall 243 218 44 4.4 88

SMA 6 2 64 5.31 251

SMA 24 23 61 4.48 128

SMA 18 2 64 5.07 69

comfort x y z t k

M1-wall 242 219 47 3.38 84

M1-wall 48 214 41 4.25 66

SMA 6 22 64 3.76 59

middle x y z t k

M1-wall 247 217 43 4.64 130

M1-wall 47 215 40 3.78 131

M1-fundus 40 216 35 2.56 —

SMA 27 24 61 4.59 73

SMA 2 23 70 3.23 72

high x y z t k

M1-fundus 40 215 35 3.05 61

M1-wall 242 218 46 4.46 174

M1-wall 52 213 48 2.82 137

M1-wall 47 214 41 2.77 —

SMA 25 22 61 3.09 127

SMA 3 6 63 2.67 —

precuneus 26 273 25 6.52 72
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3.3. Magnitudes of activation
Beta values extracted from regions-of-interest for the fundus and wall that were identified in the group

analysis did not vary as a function of phonated pitch level (figure 4, all F-values , 1.1, all p-values . 0.3).

The same result was obtained after excluding the one participant who was left-handed.
3.4. Multivariate pattern classification
Consistent with the individual centroid and magnitude-of-activation analyses, the four-way searchlight

analysis did not yield any peak voxels in the LMC. However, secondary findings were observed in the

cuneus, precuneus, middle occipital gyrus, posterior cingulate cortex, anterior cingulate cortex, superior

frontal gyrus and putamen, as well as in non-LMC areas of the motor cortex associated with

representations of the respiratory and articulatory muscles, but not in that part of the primary motor

cortex that was identified by the GLM. The same result was obtained after excluding the one

participant who was left-handed.
4. Discussion
We had participants hum at different pitch levels across their vocal range during fMRI scanning in order

to search for the biological implementation of control rules that govern the coordination of the laryngeal

muscles that modulate vocal pitch, which is central to the production of both speech and song in humans.

http://rsos.royalsocietypublishing.org/
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Figure 3. Contour plots of activation peaks by pitch level. The density of activation peaks extracted from individual participants is
projected onto a coronal slice ( y ¼ 214) that intersects both the fundus and wall pericentral clusters. Density distributions for the
fundus peaks are displayed in (a), and peaks for the wall are displayed in (b). Density distributions reflect the local prevalence of
activation peaks at each point in stereotaxic space. Each successive ring of the contour plot outlines regions of successively lower
density, such that the bulk of the peak activations are observed near the central ring and fewer peaks are observed near the
peripheral rings. Within each region-of-interest, the density distributions for the different pitch levels are highly overlapping.

Table 3. Mean and standard deviation of the MNI coordinates (x, y, z) in the primary motor cortex.

left right

x y z x y z

wall of central sulcus

high 244.8 (4.3) 218.3 (4.2) 44.3 (2.7) high 50.7 (4.2) 28 (3.5) 44.3 (2.1)

middle 246.2 (3.3) 217.4 (3.5) 45.8 (2.3) middle 52.7 (5.5) 27.9 (4.1) 44.6 (3.0)

comfort 244.1 (5.0) 218.3 (3.5) 43.7 (3.1) comfort 52.2 (6.0) 29.5 (2.0) 44.2 (2.3)

low 243.5 (4.5) 218.4 (4.0) 44.1 (2.7) low 49.6 (4.1) 210 (4.4) 43.5 (1.5)

fundus of central sulcus

high 241.5 (5.2) 219.8 (3.0) 35.7 (1.5) high 43.6 (5.2) 214 (3.9) 37.2 (1.7)

middle 241.7 (4.6) 217.7 (4.0) 36.2 (1.5) middle 45.1 (6.2) 213.5 (5.6) 37.25 (1.6)

comfort 242.2 (5.5) 220 (3.8) 36.2 (1.5) comfort 44.7 (6.5) 213 (8.6) 36.7 (2.7)

low 239.8 (3.3) 219 (4.5) 36.5 (1.0) low 44.3 (5.8) 214.1 (4.6) 37.6 (0.8)
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Compared to previous fMRI studies that have looked at the vocalization of different pitch levels [32–34],

we used trained singers for this study so as to ensure comparable amplitudes of production across

different vocal registers, as well as to reduce the tendency of novice singers to raise their larynx with

rising vocal pitch, thereby activating the extrinsic laryngeal musculature. The results showed that,

while individual participants differed among themselves in the locations of peak activation in the

LMC, these locations were similar across pitch levels within all participants. Consistent with this

finding, MVPA in the LMC did not distinguish between pitch levels, despite the high sensitivity of this

method [46,47]. We observed no evidence that phonated pitches are encoded by either coarse-grained

spatial locations or fine-grained spatial patterns in the primary motor cortex.

4.1. Activation in the fundus and wall of the central sulcus
We observed two sets of activation peaks within the primary motor cortex. The most prominent peak was

observed along the wall of the central sulcus, and a second peak was observed more ventrally and

http://rsos.royalsocietypublishing.org/
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medially at the fundus of the central sulcus. The latter is consistent with the expected location of the LMC

from previous neuroimaging studies [29,48–53], although activation spanning both sites have also been

reported [31,48,54,55]. In the light of the observation that the magnitudes of activation did not change

across pitch levels either in the fundus or along the wall of the central sulcus, it is unlikely that these

two sites reflect a separation between the CT and TA muscles.

4.2. The encoding of pitch in the larynx motor cortex remains elusive
We report the most direct, sensitive and controlled experiment to date to examine the neural encoding of

vocal pitch in the human primary motor cortex using a cohort of trained singers. Peck et al. [32] observed

a single locus of activation in the LMC across pitch levels, but possible differences were found in other

parts of the vocal-motor network, including the inferior frontal gyrus (IFG), cerebellum and putamen.

Howell et al. [33] likewise observed a single locus in the LMC across pitch levels, but found

differences elsewhere, including the cerebellum and anterior insula. Although both of these studies

observed differences in a similar region of the cerebellum, Peck et al. observed that the cerebellum

was associated with producing a high pitch, while Howell et al. observed that it was associated with

lowering pitch. Kryshtopava et al. [34] observed few differences even between vocalization and

exhalation, and these were located in auditory association areas and the brainstem, rather than in the

primary motor cortex. That the pattern of findings outside of the primary motor cortex is idiosyncratic

suggests that they are related to the differing task demands of these experiments, rather than to pitch

control per se. The LMC is still the most plausible candidate region for vocal pitch control, although

the biological implementation of the control rules for vocal pitch remains elusive.

4.3. Small-scale organization of small muscles in motor cortex
The elusiveness of the biological implementation of the control rules for vocal pitch may be a symptom of

the broader uncertainty in the organization of the primary motor cortex on the spatial scale of small and

adjacent muscles. Although the gross separation of M1 into leg, arm and face divisions is uncontroversial

[20,56–60], there remains some debate about the degree to which each of these areas can be subdivided
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into smaller units of muscular anatomy and whether they represent individual muscles or combinations

of synergistic muscles that together produce a movement [61]. Smaller units of anatomy appear to have

separable but overlapping representations in M1. Several researchers have observed partial overlap

between adjacent muscles of the arm and hand using both centroid [62–65] and MVPA-based

analyses [66]. This pattern appears to hold even for the distribution of individual upper motor

neurons in the primary motor cortex [67]. Similarly, the orofacial division of the primary motor cortex

contains separable, but possibly overlapping, representations of at least the larynx, lips, tongue and

jaw, as suggested by both fMRI [29,30,50,68] and electrophysiological experiments with neurosurgical

patients [18,20,21,57]. Although observable limb movements can be decoded from fMRI data

using machine-learning techniques, such as MVPA [69,70], we were unable to decode pitch levels

in the LMC, which are the most readily observable outcomes of the actions of the intrinsic

laryngeal muscles.

4.4. The one-to-many and many-to-one problems in larynx motor control
The difficulty in searching for representations of the CT and TA muscles may be compounded by the

integrative role of the human LMC in coordinating respiration with a complex of laryngeal muscles,

only some of which have a strong influence on vocal pitch. Likewise, the relationship between the

laryngeal muscles and vocal pitch is complex and nonlinear, which is problematic for using vocal

pitch as an indirect assessment of these muscles.

4.4.1. One-to-many: the human larynx motor cortex controls a multitude of muscles

The LMC controls not only the CT and TA muscles that are the primary drivers of vocal pitch [18,21], but

also muscles that adduct and abduct the vocal folds to cycle between voiced and voiceless sound

production [29,71], the extrinsic laryngeal muscles that raise and lower the larynx within the airway

[72], as well as the muscles of expiration [52,53]. We have previously predicted that the LMC, in

addition to its projections to the larynx motor neurons in the nucleus ambiguus of the brainstem

[73,74], may also have novel projections to the respiratory motor neurons of the nucleus

retroambiguus to support this broad muscular profile [75]. The diverse set of muscles affected by the

LMC may obscure the relationship between this brain region and vocal pitch.

It is also possible that the control of vocal pitch may be distributed between the two cerebral

hemispheres, because muscles on either side of the larynx probably receive simultaneous inputs from

the right and left LMCs. The larynx is a midline structure, and the two vocal folds operate

symmetrically and synchronously as a coordinated pair during normal functioning. The LMC projects

to lower motor neurons bilaterally, such that both sides of the larynx receive input from both cerebral

hemispheres [73,76,77].

4.4.2. Many-to-one: a multitude of muscles affect the larynx

The problem of motor equivalence may further obscure the relationship between the LMC and vocal

pitch. A given pitch level can be reached by multiple configurations of the CT and TA muscles

[14,15]. Likewise, factors that exert an external force on the laryngeal frame may affect vocal pitch,

such as the engagement of the extrinsic laryngeal muscles that raise or lower the larynx, the position

of the tongue and jaw, and the state of the diaphragm during vocalization [37,78]. Hence, although

flexibility across physical contexts is one of the hallmarks of M1 [79], the muscles of vocalization are

subject to a large degree of nonlinear interaction, both with muscles that are controlled by the LMC

and with those that are not. Further studies seeking to address this question may require invasive

electromyography recordings of the laryngeal muscles combined with brain imaging, or the greater

spatial and temporal resolution of neuro-navigated TMS [26,80].

4.5. Limitations
The necessity of indirectly assessing laryngeal motor output through vocal acoustics, rather than by

direct observation of muscular contractions or their resulting movements, may obscure the

relationship between cortical activity and vocal pitch. A further possibility is that the integrative

nature of the LMC—coordinating the actions of the intrinsic laryngeal muscles, extrinsic laryngeal

muscles and respiratory muscles—may lead the neural profiles of phonation at different pitch levels to
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be more similar than different. The degrees of freedom of the movements that modulate vocal pitch are

large, and the combinations of movements that lead to a particular pitch outcome on any given trial may

not be readily observable within the MRI environment. The spatial resolution of the functional images

may have been too coarse to decode meaningful patterns in the LMC.

We recruited experienced singers for their high degree of control over the laryngeal musculature so as

to isolate the CT and TA muscles and mitigate vocal tract movement-related imaging artefacts. However,

experience-dependent cortical plasticity may have led this population of participants to have enlarged

representations of the laryngeal muscles [81,82]. In addition, participants were heterogeneous with

respect to sex, handedness and native language, which may have increased inter-individual variability

in the LMC. However, even within individual participants, there was little variation in neural

activation as a function of vocal pitch.
R.Soc.open
sci.5:172208
5. Conclusion
The modulation of vocal pitch is critical to human communication processes, including speech and song.

Pitch control by the brain is one of the unanswered questions in the neuroscience of human vocal

communication. How the brain controls the complex set of rules that coordinate the laryngeal muscles

to modulate vocal pitch in speech, song and emotional expression remains elusive. Despite applying

the most sensitive statistical tools available, we were unable to observe any relationship between brain

activation in the LMC and modulations of vocal pitch. The primary motor cortex remains the most

promising candidate for the locus of these control rules, although further methodological

developments may be required to advance this line of inquiry.
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