575 research outputs found

    Adaptive non linear system identification and channel equalization usinf functional link artificial neural network

    Get PDF
    In system theory, characterization and identification are fundamental problems. When the plant behavior is completely unknown, it may be characterized using certain model and then, its identification may be carried out with some artificial neural networks(ANN) like multilayer perceptron(MLP) or functional link artificial neural network(FLANN) using some learning rules such as back propagation (BP) algorithm. They offer flexibility, adaptability and versatility, so that a variety of approaches may be used to meet a specific goal, depending upon the circumstances and the requirements of the design specifications. The primary aim of the present thesis is to provide a framework for the systematic design of adaptation laws for nonlinear system identification and channel equalization. While constructing an artificial neural network the designer is often faced with the problem of choosing a network of the right size for the task. The advantages of using a smaller neural network are cheaper cost of computation and better generalization ability. However, a network which is too small may never solve the problem, while a larger network may even have the advantage of a faster learning rate. Thus it makes sense to start with a large network and then reduce its size. For this reason a Genetic Algorithm (GA) based pruning strategy is reported. GA is based upon the process of natural selection and does not require error gradient statistics. As a consequence, a GA is able to find a global error minimum. Transmission bandwidth is one of the most precious resources in digital communication systems. Communication channels are usually modeled as band-limited linear finite impulse response (FIR) filters with low pass frequency response. When the amplitude and the envelope delay response are not constant within the bandwidth of the filter, the channel distorts the transmitted signal causing intersymbol interference (ISI). The addition of noise during propagation also degrades the quality of the received signal. All the signal processing methods used at the receiver's end to compensate the introduced channel distortion and recover the transmitted symbols are referred as channel equalization techniques.When the nonlinearity associated with the system or the channel is more the number of branches in FLANN increases even some cases give poor performance. To decrease the number of branches and increase the performance a two stage FLANN called cascaded FLANN (CFLANN) is proposed.This thesis presents a comprehensive study covering artificial neural network (ANN) implementation for nonlinear system identification and channel equalization. Three ANN structures, MLP, FLANN, CFLANN and their conventional gradient-descent training methods are extensively studied. Simulation results demonstrate that FLANN and CFLANN methods are directly applicable for a large class of nonlinear control systems and communication problems

    Functional Multi-Layer Perceptron: a Nonlinear Tool for Functional Data Analysis

    Get PDF
    In this paper, we study a natural extension of Multi-Layer Perceptrons (MLP) to functional inputs. We show that fundamental results for classical MLP can be extended to functional MLP. We obtain universal approximation results that show the expressive power of functional MLP is comparable to that of numerical MLP. We obtain consistency results which imply that the estimation of optimal parameters for functional MLP is statistically well defined. We finally show on simulated and real world data that the proposed model performs in a very satisfactory way.Comment: http://www.sciencedirect.com/science/journal/0893608

    A neural network based model for mass non-residential real estate price evaluation of Lisbon, Portugal

    Get PDF
    Dissertation presented as the partial requirement for obtaining a Master's degree in Statistics and Information Management, specialization in Information Analysis and ManagementAn accurate estimation of the real estate value became very important to make correct purchase and sale transaction, calculate taxes, mortgages for loans. Mass appraisal systems that use modern methodology based on artificial intelligence significantly help to deal with these issues. Objectives of this article are: using artificial neural networks (AANs) build mass appraisal model to evaluate market price of non-residential real estate of Lisbon, Portugal; evaluate performance of AANs and compare it with results generated by other models based on different methodologies and prove AANs superiority in issues connected with real estate apprising

    Application of Wilcoxon Norm for increased Outlier Insensitivity in Function Approximation Problems

    Get PDF
    In system theory, characterization and identification are fundamental problems. When the plant behavior is completely unknown, it may be characterized using certain model and then, its identification may be carried out with some artificial neural networks(ANN) (like multilayer perceptron(MLP) or functional link artificial neural network(FLANN) ) or Radial Basis Functions(RBF) using some learning rules such as the back propagation (BP) algorithm. They offer flexibility, adaptability and versatility, for the use of a variety of approaches to meet a specific goal, depending upon the circumstances and the requirements of the design specifications. The first aim of the present thesis is to provide a framework for the systematic design of adaptation laws for nonlinear system identification and channel equalization. While constructing an artificial neural network or a radial basis function neural network, the designer is often faced with the problem of choosing a network of the right size for the task. Using a smaller neural network decreases the cost of computation and increases generalization ability. However, a network which is too small may never solve the problem, while a larger network might be able to. Transmission bandwidth being one of the most precious resources in digital communication, Communication channels are usually modeled as band-limited linear finite impulse response (FIR) filters with low pass frequency response

    Role of biases in neural network models

    Get PDF

    Personalized Health Monitoring Using Evolvable Block-based Neural Networks

    Get PDF
    This dissertation presents personalized health monitoring using evolvable block-based neural networks. Personalized health monitoring plays an increasingly important role in modern society as the population enjoys longer life. Personalization in health monitoring considers physiological variations brought by temporal, personal or environmental differences, and demands solutions capable to reconfigure and adapt to specific requirements. Block-based neural networks (BbNNs) consist of 2-D arrays of modular basic blocks that can be easily implemented using reconfigurable digital hardware such as field programmable gate arrays (FPGAs) that allow on-line partial reorganization. The modular structure of BbNNs enables easy expansion in size by adding more blocks. A computationally efficient evolutionary algorithm is developed that simultaneously optimizes structure and weights of BbNNs. This evolutionary algorithm increases optimization speed by integrating a local search operator. An adaptive rate update scheme removing manual tuning of operator rates enhances the fitness trend compared to pre-determined fixed rates. A fitness scaling with generalized disruptive pressure reduces the possibility of premature convergence. The BbNN platform promises an evolvable solution that changes structures and parameters for personalized health monitoring. A BbNN evolved with the proposed evolutionary algorithm using the Hermite transform coefficients and a time interval between two neighboring R peaks of ECG signal, provides a patient-specific ECG heartbeat classification system. Experimental results using the MIT-BIH Arrhythmia database demonstrate a potential for significant performance enhancements over other major techniques

    Evaluating classification accuracy for modern learning approaches

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/149333/1/sim8103_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/149333/2/sim8103.pd

    Recognition of Japanese handwritten characters with Machine learning techniques

    Get PDF
    The recognition of Japanese handwritten characters has always been a challenge for researchers. A large number of classes, their graphic complexity, and the existence of three different writing systems make this problem particularly difficult compared to Western writing. For decades, attempts have been made to address the problem using traditional OCR (Optical Character Recognition) techniques, with mixed results. With the recent popularization of machine learning techniques through neural networks, this research has been revitalized, bringing new approaches to the problem. These new results achieve performance levels comparable to human recognition. Furthermore, these new techniques have allowed collaboration with very different disciplines, such as the Humanities or East Asian studies, achieving advances in them that would not have been possible without this interdisciplinary work. In this thesis, these techniques are explored until reaching a sufficient level of understanding that allows us to carry out our own experiments, training neural network models with public datasets of Japanese characters. However, the scarcity of public datasets makes the task of researchers remarkably difficult. Our proposal to minimize this problem is the development of a web application that allows researchers to easily collect samples of Japanese characters through the collaboration of any user. Once the application is fully operational, the examples collected until that point will be used to create a new dataset in a specific format. Finally, we can use the new data to carry out comparative experiments with the previous neural network models

    Radial Basis Function Neural Networks : A Review

    Get PDF
    Radial Basis Function neural networks (RBFNNs) represent an attractive alternative to other neural network models. One reason is that they form a unifying link between function approximation, regularization, noisy interpolation, classification and density estimation. It is also the case that training RBF neural networks is faster than training multi-layer perceptron networks. RBFNN learning is usually split into an unsupervised part, where center and widths of the Gaussian basis functions are set, and a linear supervised part for weight computation. This paper reviews various learning methods for determining centers, widths, and synaptic weights of RBFNN. In addition, we will point to some applications of RBFNN in various fields. In the end, we name software that can be used for implementing RBFNNs
    corecore