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Abstract 

 
    In system theory, characterization and identification are fundamental problems. When the 

plant behavior is completely unknown, it may be characterized using certain model and then, 

its identification may be carried out with some artificial neural networks(ANN) like 

multilayer perceptron(MLP) or functional link artificial neural network(FLANN) using some 

learning rules such as back propagation (BP) algorithm. They offer flexibility, adaptability 

and versatility, so that a variety of approaches may be used to meet a specific goal, depending 

upon the circumstances and the requirements of the design specifications. The primary aim of 

the present thesis is to provide a framework for the systematic design of adaptation laws for 

nonlinear system identification and channel equalization. While constructing an artificial 

neural network the designer is often faced with the problem of choosing a network of the 

right size for the task. The advantages of using a smaller neural network are cheaper cost of 

computation and better generalization ability. However, a network which is too small may 

never solve the problem, while a larger network may even have the advantage of a faster 

learning rate. Thus it makes sense to start with a large network and then reduce its size. For 

this reason a Genetic Algorithm (GA) based pruning strategy is reported. GA is based upon 

the process of natural selection and does not require error gradient statistics. As a 

consequence, a GA is able to find a global error minimum.  

 

    Transmission bandwidth is one of the most precious resources in digital communication 

systems. Communication channels are usually modeled as band-limited linear finite impulse 

response (FIR) filters with low pass frequency response. When the amplitude and the 

envelope delay response are not constant within the bandwidth of the filter, the channel 

distorts the transmitted signal causing intersymbol interference (ISI). The addition of noise 

during propagation also degrades the quality of the received signal. All the signal processing 

methods used at the receiver's end to compensate the introduced channel distortion and 

recover the transmitted symbols are referred as channel equalization techniques. 

 

    When the nonlinearity associated with the system or the channel is more the number of 

branches in FLANN increases even some cases give poor performance. To decrease the 

number of branches and increase the performance a two stage FLANN called cascaded 

FLANN (CFLANN) is proposed. 

 i



     

    This thesis presents a comprehensive study covering artificial neural network (ANN) 

implementation for nonlinear system identification and channel equalization. Three ANN 

structures, MLP, FLANN, CFLANN and their conventional gradient-descent training 

methods are extensively studied.  

 

    Simulation results demonstrate that FLANN and CFLANN methods are directly applicable 

for a large class of nonlinear control systems and communication problems. 
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1. INTRODUCTION 
 

1.1. INTRODUCTION.  

    System identification is one of the most important areas in engineering because of its 

applicability to a wide range of problems.Mathmatical system theory, which has in the past 

few decades evolved into a powerful scientific discipline of wide applicability, deals with 

analysis and synthesis of systems. The best developed theory for systems defined by linear 

operators using well established techniques based on linear algebra, complex variable theory 

and theory of ordinary linear differential equations. Design techniques for dynamical systems 

are closely related to their stability properties. Necessary and sufficient conditions for 

stability of linear time-invariant systems have been generated over past century, well-known 

design methods have been established for such systems. In contrast to this, the stability of 

nonlinear systems can be established for the most part only on a system-by-system basis. 

    In the past few decades major advances have been made in adaptive identification and 

control for identifying and controlling linear time-invariant plants with unknown parameters. 

The choice of the identifier and the controller structures based on well established results in 

linear systems theory. Stable adaptive laws for the adjustment of parameters in these which 

assures the global stability of the relevant overall systems are also based on properties of 

linear systems as well as stability results that are well known for such systems [1.1]. 

    In recent years, with the growth of internet technologies, high speed and efficient data 

transmission over communication channels has gained significant importance. The rapidly 

increasing computer communication has necessitated higher speed data transmission over 

wide spread network of voice bandwidth channels. In digital communications the symbols are 

sent through linearly dispersive mediums such as telephone, cable and wireless. In band 

width efficient data transmission systems, the effect of each symbol transmitted over such 

time-dispersive channel extends to the neighboring symbol intervals. This distortion caused 

by the resulting overlap of received data is called intersymbol interference (ISI) [1.2].   

 

1.2. MOTIVATION 

    Adaptive filtering has proven to be useful in many contexts such as linear prediction, 

channel equalization, noise cancellation, and system identification. The adaptive filter 

attempts to iteratively determine an optimal model for the unknown system, or “plant”, based 

on some function of the error between the output of the adaptive filter and the output of the 
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 plant.  The optimal model or solution is attained when this function of the error is 

minimized.  The adequacy of the resulting model depends on the structure of the adaptive 

filter, the algorithm used to update the adaptive filter parameters, and the characteristics of 

the input signal. 

   When the parameters of a physical system are not available or time dependent it is difficult 

to obtain the mathematical model of the system. In such situations, the system parameters 

should be obtained using a system identification procedure. The purpose of system 

identification is to construct a mathematical model of a physical system from input-output. 

Studies on linear system identification have been carried out for more than three decades 

[1.3]. However, identification of nonlinear systems is a promising research area. Nonlinear 

characteristics such as saturation, dead-zone, etc. are inherent in many real systems. In order 

to analyze and control such systems, identification of nonlinear system is necessary. Hence, 

adaptive nonlinear system identification has become more challenging and received much 

attention in recent years [1.4]. 

    High speed data transmission over communication channels is subject to intersymbol 

interference (ISI) and noise. The intersymbol interference is usually the result of the restricted 

bandwidth allocated to the channel and/or the presence of multipath distortion in the medium 

through which the information is transmitted. Equalization is the process which reconstructs 

the transmitted data jointly combating the ISI and the noise in the communication link. The 

simplest architecture in the class of equalizers making decisions in a symbol–by–symbol 

basis is the linear transversal filter. The field of digital data communications has experienced 

an explosive growth in recent years and its demand reaches at the peak as additional services 

are being added to existing infrastructure. The telephone networks were originally designed 

for voice communication but, in recent times, the advances in digital communications using 

Integrated Service Digital Network (ISDN), data communications with computers, fax, video 

conferencing etc. have pushed the use of these facilities far beyond the scope of their original 

intended use. Similarly, introduction of digital cellular radio (DCR) and wireless local area 

networks (LAN’s) have stretched the limited available radio spectrum capacity to the limits it 

can offer. These advances in digital communications have been made possible by the 

effective use of the existing communication channels with aid of signal processing 

techniques. Nevertheless these advances on the existing infrastructure have introduced a host 

of new unanticipated problems. The conventional LMS algorithm [1.5] fails in case of 

nonlinear channels. Hence non-linear channel estimation is a key problem in communication  
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system.  Several approaches based on Artificial Neural Network (ANN) have been discussed 

recently for estimation of nonlinear channels.  

 

1.3. THESIS LAYOUT 

    In Chapter 2, adaptive modeling and system identification problem is defined for linear and 

nonlinear plants. The conventional LMS algorithm and other gradient based algorithm for 

FIR system are derived. Nonlinearity problems are discussed briefly and various methods are 

proposed for its solution. 

    In Chapter 3, the theory, structure and algorithms of various artificial neural networks are 

discussed. We focus on Multilayer Perceptron (MLP), Functional Link ANN (FLANN) and 

Cascaded Functional Link ANN (CFLANN). We discuss the learning rule in each of the 

methods. Simulation results are carried out for comparisons of ANN technique with 

conventional LMS method under different nonlinear condition and noise.  

    Chapter 4 gives an introduction to evolutionary computing technique and discusses in 

details about genetic algorithm and its operators. It also discusses various selection schemes 

for population and crossover. In this chapter Genetic Algorithm is used for simultaneous 

pruning and weight updation for efficient nonlinear system identification.  

   In Chapter 5, the adaptive channel equalization is defined for and nonlinear channels. 

Different kinds of communication channel and inter symbol interference is discussed. The 

performance of conventional LMS algorithm based equalizer and other ANN structures such 

as FLANN and CFLANN equalizer are compared. 

    Chapter 6 summarizes the work done in this thesis work and points to possible directions 

for future work. 
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2. ADAPTIVE MODELING AND SYSTEM IDENTIFICATION 
 

 2.1. INTRODUCTION 

     Modeling and system identification is a very broad subject, of great importance in the 

fields of control system, communications, and signal processing. Modeling is also important 

outside the traditional engineering discipline such as social systems, economic systems, or 

biological systems. An adaptive filter can be used in modeling that is, imitating the behavior 

of physical systems which may be regarded as unknown “black boxes” having one or more 

inputs and one or more outputs. 
    The essential and principal property of an adaptive system is its time-varying, self-

adjusting performance. System identification [2.1, 2.2] is the experimental approach to 

process modeling. System identification includes the following steps  
• Experiment design   Its purpose is to obtain good experimental data and it includes 

the choice of   the measured variables and of the character of the input signals.                          

• Selection of model structure A suitable model structure is chosen using prior 

knowledge and trial and error.  

• Choice of the criterion to fit: A suitable cost function is chosen, which reflects how 

well the model fits the experimental data.  

• Parameter estimation An optimization problem is solved to obtain the numerical 

values of the model parameters.  

• Model validation: The model is tested in order to reveal any inadequacies.  

 The adaptive systems have following characteristics 

1) They can automatically adapt (self-optimize) in the face of changing (non-

stationary) environments and changing system requirements. 

2) They can be trained to perform specific filtering and decision making tasks. 

3) They can extrapolate a model of behavior to deal with new situations after 

trained on a finite and often small number of training signals and patterns. 

4) They can repair themselves to a limited extent. 

5) They can be described as nonlinear systems with time varying parameters.  

 

The adaptation is of two types 

(i)  open-loop adaptation   

    The open-loop adaptive process is shown in Fig.2.1.(a). It involves making measurements  
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of input or environment characteristics, applying this information to a formula or to a 

computational algorithm, and using the results to set the adjustments of the adaptive system. 

The adaptation of   process parameters don’t depend upon the output signal.  

 

 

 

 

 

 

 

 

 

                    

 

 Processor 

 Input  
 signal 

 Output     
  signal 

    
Other  
 data 

Adaptive 
algorithm 

(a) 

Processor 

 Input  
 signal 

 Output     
  signal 

    
Other  
 data 

Adaptive 
algorithm 

Performance    
  calculation 

(b) 

Fig.2.1. Type of adaptations (a) Open-loop adaptation and (b) Closed-loop adaptation 

(ii)  closed-loop adaptation   

  Close-loop adaptation, as shown in Fig. 2.1.(b),on the other hand  involves the automatic 

experimentation with these adjustments and knowledge of their outcome in order to optimize 

a measured system performance. The latter process may be called adaptation by 

“performance feedback”. The adaptation of   process parameters depends upon the input as 

well as output signal. 

 

2.2. ADAPTIVE FILTER  

    An adaptive filter [2.3, 2.4] is a computational device that attempts to model the 

relationship between two signals in real time in an iterative manner. Adaptive filters are 

often realized either as a set of program instructions running on an arithmetical 

processing device such as a microprocessor or digital signal processing (DSP) chip, or 

as a set of logic operations implemented in a field-programmable gate array (FPGA). 

However, ignoring any errors introduced by numerical precision effects in these 

implementations, the fundamental operation of an adaptive filter can be characterized 

independently of the specific physical realization that it takes. For this reason, we 
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shall focus on the mathematical forms of adaptive filters as opposed to their specific 

realizations in software or hardware. An adaptive filter is defined by four aspects: 

1. The signals being processed by the filter. 

2. The structure that defines how the output signal of the filter is computed from its 

input signal 

3. The parameters within this structure that can be iteratively changed to alter the 

filter's input-output relationship 

4. The adaptive algorithm that describes how the parameters are adjusted from one 

time instant to the next. 

    By choosing a particular adaptive filter structure, one specifies the number and type 

of parameters that can be adjusted. The adaptive algorithm used to update the 

parameter values of the system can take on an infinite number of forms and is often 

derived as a form of optimization procedure that minimizes an error. 

 

                                   

       

 

   

 
  Adaptive Filter 

d(n) x(n) 
Σ

y (n) 

e(n) 

+

Fig.2.2. General Adaptive Filtering  

    

    Fig.2.2. shows a block diagram in which a sample from a digital input signal x(n) is 

fed into a device, called an adaptive filter, that computes a corresponding output 

signal sample y(n) at time n. For the moment, the structure of the adaptive filter is 

not important, except for the fact that it contains adjustable parameters whose 

values affect how y(n) is computed. The output signal is compared to a second signal 

d(n), called the desired response signal, by subtracting the two samples at time n. This 

difference signal, given by 

( ) ( ) ( )e n d n y n= −                                                                                                                 (2.1) 

is known as the error signal. The error signal is fed into a procedure which alters or  
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adapts the parameters of the filter from time n to time (n + 1) in a well-defined 

manner. As the time index n is incremented, it is hoped that the output of the adaptive 

filter becomes a better and better match to the desired response signal through this 

adaptation process, such that the magnitude of  decreases over time. In the ( )e n

adaptive filtering task, adaptation refers to the method by which the parameters of the 

system are changed from time index n to time index (n +1). The number and types of 

parameters within this system depend on the computational structure chosen for the 

system. We now discuss different filter structures that have been proven useful for 

adaptive filtering tasks. 

 

2.3. FILTER STRUCTURES  

    In general, any system with a finite number of parameters that affect how y(n) is computed 

from x(n) could be used for the adaptive filter in Fig. 2.2.. Define the parameter or 

coefficient vector W(n)  

                                                                                                                     0 1 -1( )  [ ( ) ( ) . . .  ( )]T
LW n w n w n w n= (2.2) 

where {wi (n)}, 0 < i < L - 1 are the L parameters of the system at time n. With this definition, 

we could define a general input-output relationship for the adaptive filter as 

( ) ( ( ), ( - ), ( - 2),  ...,  ( - ), ( ), ( - ),..., ( - ))y n f W n y n l y n y n N x n x n l x n M l= +                         (2.3) 

where f  ( ) represents any well-defined linear or nonlinear function and M and N are positive 

integers. Implicit in this definition is the fact that the filter is causal, such that future values of 

( )x n are not needed to compute. While non-causal filters can be handled in practice by suitably 

buffering or storing the input signal samples, we do not consider this possibility. 

    Although Equation (2.3) is the most general description of an adaptive filter structure, we 

are interested in determining the best linear relationship between the input and desired 

response signals for many problems. This relationship typically takes the form of a finite-

impulse-response (FIR) or infinite-impulse-response (IIR) filter. Figure2.3. shows the structure 

of a direct-form FIR filter, also known as a tapped-delay-line or transversal filter, where z-1 

denotes the unit delay element and each wi (n) is a multiplicative gain within the system. In 

this case, the parameters in W(n) correspond to the impulse response values of the filter at 

time n. We can write the output signal y(n) as 

1

0

( ) ( ) ( )
L

i
i

y n w n x n i
−

=

= ∑ −                                                                                              (2.4)        
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                                                                                                          (2.5) ( ) ( )TW n X n=

   where ( )  [ ( ) (  -  1)  (  -    )]TX n x n x n x n L l= "" + denotes the input signal vector and -T 

denotes vector transpose. Note that this system requires L multiplies and L - 1 adds to 

implement and these computations are easily performed by a processor or circuit so long as L 

is not too large and the sampling period for the signals is not too short. It also requires a total 

of 2L memory locations to store the L input signal samples and the L coefficient values, 

respectively. 

 

 

 

 

 

 

 

  2.4.  APPLICATION OF ADAPTIVE FILTERS. 

    Perhaps the most important driving forces behind the developments in adaptive filters 

throughout their history have been the wide range of applications in which such systems can be 

used. We now discuss the forms of these applications in terms of more-general problem classes 

that describe the assumed relationship between d(n) and x(n). Our discussion illustrates the 

key issues in selecting an adaptive filter for a particular task.  

 

2.4.1. Direct Modeling (System Identification) 
    In this type of modeling the adaptive model is kept parallel with the unknown plant. 

Modeling a single-input, single-output system is illustrated in Fig.2.4..Both the unknown system 

and adaptive filter are driven by the same input. The adaptive filter adjusts itself in such a way 

that its output is match with that of the unknown system. Upon convergence, the structure and 

parameter values of the adaptive system may or may not resemble those of unknown systems, but 

the input-output response relationship will match. In this sense, the adaptive system becomes a 

model of the unknown plant 

 

wL-1(n) 

z-1z-1x(n) z-1

. . . . . .

. . . . . . 

. . . . . . 

 
∑ 

 
∑

 
∑ 

w0(n) w1(n) w2(n) 

 

y(n) 

Fig. 2.3. Structure of an FIR Filter 

x(n-2) x(n-1) x(n-L+1) 

 8



 

 

 

 

 

 

 Unknown plant d(n) 

x(n) 
Σ

y (n) 

e(n) +

Adaptive model 

Fig.2.4. Direct Modelling  

    Let d(n) and y(n) represent the output of the unknown system and adaptive model  with 

x(n) as its input. 

    Here, the task of the adaptive filter is to accurately represent the signal d(n) at its output. If 

y(n) = d (n), then the adaptive filter has accurately modeled or identified the portion of the 

unknown system that is driven by x(n). 

    Since the model typically chosen for the adaptive filter is a linear filter, the practical goal of 

the adaptive filter is to determine the best linear model that describes the input-output 

relationship of the unknown system. Such a procedure makes the most sense when the 

unknown system is also a linear model of the same structure as the adaptive filter, as it is 

possible that y(n) = d(n) for some set of adaptive filter parameters. For ease of discussion, let 

the unknown system and the adaptive filter both be FIR filters, such that 

( ) ( ) ( )T
OPTd n W n X n=                                                                                                              (2.6) 

where WOPT(n) is an optimum set of filter coefficients for the unknown system at time n.  In 

this problem formulation, the ideal adaptation procedure would adjust W(n) such that W(n) = 

WOPT (n) as n . In practice, the adaptive filter can only adjust W(n) such that y(n) closely ∞→

approximates d(n) over time. 

    The system identification task is at the heart of numerous adaptive filtering applications. We 

list several of these applications here[2.3] 

• Plant Identification   

• Echo Cancellation for Long-Distance Transmission 

• Acoustic Echo Cancellation                                       

• Adaptive Noise Canceling 
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2.4.2. Inverse Modeling 

    We now consider the general problem of inverse modeling, as shown in Fig.2.5. In this 

diagram, a source signals s(n) is fed into a plant that produces the input signal x(n) for the 

adaptive filter. The output of the adaptive filter is subtracted from a desired response signal that 

is a delayed version of the source signal, such that 

( )  (  -   )d n s n= Δ                                                                                                       (2.7) 

 where ∆ is a positive integer value. The goal of the adaptive filter is to adjust its 

characteristics such that the output signal is an accurate representation of the delayed source 

signal. 

 

 

 

 

 

 

  
   plant 

d(n) 
s(n) 

Σ 
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 2.5. GRADIENT BASED ADAPTIVE ALGORITHM 

   An adaptive algorithm is a procedure for adjusting the parameters of an adaptive 

filter to minimize a cost function chosen for the task at hand. In this section, we 

describe the general form of many adaptive FIR filtering algorithms and present a 

simple derivation of the LMS adaptive algorithm. In our discussion, we only consider 

an adaptive FIR filter structure, such that the output signal y(n) is given by (2.5). Such 

systems are currently more popular than adaptive IIR filters because 

    (1) The input-output stability of the FIR filter structure is guaranteed for any set   

          of fixed coefficients, and  

    (2) The algorithms for adjusting the coefficients of FIR filters are simpler in general  

           than those for adjusting the coefficients of IIR filters.  
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2.5.1. General Form of Adaptive FIR Algorithm 

    The general form of an adaptive FIR filtering algorithm is 

     ))(),(),(()()()1( nnXneGnnWnW φμ+=+                                                                     (2.8) 

    where G(-) is a particular vector-valued nonlinear function, μ(n) is a step size 

parameter, e(n) and X(n) are the error signal and input signal vector, respectively, and 

( )nφ  is a vector of states that store pertinent information about the characteristics of 

the input and error signals and/or the coefficients at previous time instants. In the 

simplest algorithms, ( )nφ  is not used, and the only information needed to adjust the 

coefficients at time n are the error signal, input signal vector, and step size. 

    The step size is so called because it determines the magnitude of the change or 

"step" that is taken by the algorithm in iteratively determining a useful coefficient 

vector. Much research effort has been spent characterizing the role that ( )nμ  plays in 

the performance of adaptive filters in terms of the statistical or frequency 

characteristics of the input and desired response signals. Often, success or failure of 

an adaptive filtering application depends on how the value of μ(n) is chosen or 

calculated to obtain the best performance from the adaptive filter.  

 

2.5.2. The Mean-Squared Error Cost Function 

The form of G(-) in (2.8) depends on the cost function chosen for the given 

adaptive filtering task. We now consider one particular cost function that yields a 

popular adaptive algorithm. Define the mean-squared error (MSE) cost function as 

∫
∞

∞−

= )())(()(
2
1)( 2 ndenepnenJ nMSE                                                                                         (2.9) 

             )}({
2
1 2 neE=                                                                                                          (2.10) 

where pn(e(n)) represents the probability density function of the error at time n and   

E{-} is shorthand for the expectation integral on the right-hand side of (2.10). The MSE 

cost function is useful for adaptive FIR filters because 

• JMSE (n) has a well-defined minimum with respect to the parameters in W(n); 
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• the coefficient values obtained at this minimum are the ones that minimize the power in 

the error signal e(n), indicating that y(n) has approached d{n); and  

• JMSE is a smooth function of each of the parameters in W(n), such that it is 

differentiable with respect to each of the parameters in W(n). 

   The third point is important in that it enables us to determine both the optimum 

coefficient values given knowledge of the statistics of d(n) and x(n) as well as a simple 

iterative procedure for adjusting the parameters of an FIR filter. 

 

2.5.3. The Wiener Solution. 

     For the FIR filter structure, the coefficient values in W(n) that minimize JMSE (n) are 

well-defined if the statistics of the input and desired response signals are known. The 

formulation of this problem for continuous-time signals and the resulting solution was 

first derived by Wiener [2.5]. Hence, this optimum coefficient vector WMSE (n) is often 

called the Wiener solution to the adaptive filtering problem. The extension of 

Wiener's analysis to the discrete-time case is attributed to Levinson [2.6]. To 

determine WMSE (n) we note that the function JMSE(n) in (2.10) is quadratic in the 

parameters {wi(n)}, and the function is also differentiable. Thus, we can use a result 

from optimization theory that states that the derivatives of a smooth cost function with 

respect to each of the parameters is zero at a minimizing point on the cost function 

error surface. Thus, WMSE (n) can be found from the solution to the system of 

equations  

0
)(
)(
=

∂
∂

nw
nJ

i

MSE ,                                                                                      (2.11) 10 −≤≤ Li

Taking derivatives of JMSE (n) in (2.10) we obtain 

          }
)(
)()({

)(
)(

nw
neneE

nw
nJ

ii

MSE

∂
∂

=
∂
∂                                                                                       (2.12) 

                           }
)(
)()({

nw
nyneE

i∂
∂

−=                                                                                    (2.13) 

                                                                                                             (2.14) )}()({ inxneE −−=
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-1

0
 - ( { ( ) ( - )} -  { ( - ) ( - )} ( ))

L

j
j

E d n x n i E x n i x n j w n
=

= ∑                               (2.15) 

where we have used the definitions of e(n) and of y(n) for the FIR filter structure in 

(2.1) and (2.5), respectively, to expand the last result in (2.15). By defining the matrix 

RXX(n)(autocorrelation matrix) and vector Pdx(n)(cross correlation matrix) as 

            
{ ( ) ( )}

( ) { ( ). ( )}

T
XX

dx

R E X n X n
and
P n E d n X n

=

=
                                                                                     (2.16) 

respectively, we can combine (2.11) and (2.15) to obtain the system of equations in 

vector form as 

                                                                                               (2.17) 0)()()( =− nPnWnR dxMSEXX

where 0 is the zero vector.  Thus, so long as the matrix RXX(n) is invertible, the 

optimum Wiener solution vector for this problem is 

)()()( 1 nPnRnW dxXXMSE
−=                                                                       (2.18) 

2.5.4. The Method of Steepest Descent 

    The method of steepest descent is a celebrated optimization procedure for 

minimizing the value of a cost function J(n) with respect to a set of adjustable 

parameters W(n). This procedure adjusts each parameter of the system according to 

)(
)()()()1(

nw
nJnnwnw

i
ii ∂

∂
−=+ μ                                                                               (2.19) 

    In other words, the ith parameter of the system is altered according to the 

derivative of the cost function with respect to the ith parameter. Collecting these 

equations in vector form, we have 

)(
)()()()1(

nW
nJnnWnW

∂
∂

−=+ μ                                                                               (2.20) 

where ∂J(n)/∂W(n) is a vector of derivatives dJ(n)/dwi(n). 

Substituting these results into (2.19) yields the update equation for W(n) as 

))()()()(()()1( nWnRnPnnWnW XXdx −+=+ μ                                                       (2.21) 
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    However, this steepest descent procedure depends on the statistical quantities 

E{d(n)x(n-i)} and E{x(n-i)x(n-j)} contained in Pdx(n) and Rxx(n), respectively. In 

practice, we only have measurements of both d(n) and x(n) to be used within the 

adaptation procedure. While suitable estimates of the statistical quantities needed for 

(2.21) could be determined from the signals x(n) and d{n), we instead develop an 

approximate version of the method of steepest descent that depends on the signal 

values themselves. This procedure is known as the LMS(least mean square) 

algorithm. 

 

2.6. LMS ALGORITHM 

    The cost function J(n) chosen for the steepest descent algorithm of (2.19) determines 

the coefficient solution obtained by the adaptive filter. If the MSE cost function in 

(2.10) is chosen, the resulting algorithm depends on the statistics of x(n) and d(n) 

because of the expectation operation that defines this cost function. Since we 

typically only have measurements of d(n) and of x(n) available to us, we substitute 

an alternative cost function that depends only on these measurements. One such cost 

function is the least-squares cost function given by 

                                                                              (2.22) ∑
=

−=
n

k

T
LS kXnWkdknJ

0

2))()()()(()( α

   where α(n) is a suitable weighting sequence for the terms within the summation. 

This cost function, however, is complicated by the fact that it requires numerous 

computations to calculate its value as well as its derivatives with respect to each 

W(n), although efficient recursive methods for its minimization can be developed. 

Alternatively, we can propose the simplified cost function JLMS(n)given by 

)(
2
1)( 2 nenJLMS =                                                                                                    (2.23) 

    This cost function can be thought of as an instantaneous estimate of the MSE cost 

function, as JMSE(n)  =  E{JLMS(n)}.   Although it might not appear to be useful, the 

resulting algorithm obtained when JLMS(n) is used for J(n) in (2.19) is extremely 

useful for practical applications. Taking derivatives of JLMS(n) with respect to the 

elements of W(n) and substituting the result into (2.19), we obtain the LMS adaptive 

algorithm given by 
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           )()()()()1( nXnennWnW μ+=+                                                                           (2.24)                         

  Equation (2.24) requires only multiplications and additions to implement. In fact, 

the number and type of operations needed for the LMS algorithm is nearly the same 

as that of the FIR filter structure with fixed coefficient values, which is one of the 

reasons for the algorithm's popularity. 

    The behavior of the LMS algorithm has been widely studied, and numerous results 

concerning its adaptation characteristics under different situations have been 

developed. For now, we indicate its useful behavior by noting that the solution 

obtained by the LMS algorithm near its convergent point is related to the Wiener 

solution. In fact, analysis of the LMS algorithm under certain statistical assumptions 

about the input and desired response signals show that 

{ ( )} ( )lim MSE
n

E W n W n
→∞

=                                                                                         (2.25) 

when the Wiener solution WMSE (n) is a fixed vector. Moreover, the average behavior 

of the LMS algorithm is quite similar to that of the steepest descent algorithm in (2.21) 

that depends explicitly on the statistics of the input and desired response signals. In 

effect, the iterative nature of the LMS coefficient updates is a form of time-averaging 

that smoothes the errors in the instantaneous gradient calculations to obtain a more 

reasonable estimate of the true gradient. 

    The problem is that gradient descent is a local optimization technique, which is limited 

because it is unable to converge to the global optimum on a multimodal error surface if the 

algorithm is not initialized in the basin of attraction of the global optimum. 

    Several modifications exist for gradient based algorithms in attempt to enable them to 

overcome local optima. One approach is to simply add a momentum term [2.3] to the 

gradient computation of the gradient descent algorithm to enable it to be more likely to 

escape from a local minimum. This approach is only likely to be successful when the 

error surface is relatively smooth with minor local minima, or some information can be 

inferred about the topology of the surface such that the additional gradient parameters can 

be assigned accordingly. Other approaches attempt to transform the error surface to 

eliminate or diminish the presence of local minima [2.16], which would ideally result in a 

unimodal error surface. The problem with these approaches is that the resulting minimum 

transformed error used to update the adaptive filter can be biased from the true minimum 

output error and the algorithm may not be able to converge to the desired minimum error 
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condition. These algorithms also tend to be complex, slow to converge, and may not be 

guaranteed to emerge from a local minimum. Some work has been done with regard to 

removing the bias of equation error LMS [2.7][2.8] and Steiglitz-McBride [2.9] adaptive IIR 

filters, which add further complexity with varying degrees of success. 

      Another approach [2.10], attempts to locate the global optimum by running several LMS 

algorithms in parallel, initialized with different initial coefficients. The notion is that a 

larger, concurrent sampling of the error surface will increase the likelihood that one process 

will be initialized in the global optimum valley. This technique does have potential, but it 

is inefficient and may still suffer the fate of a standard gradient technique in that it will be 

unable to locate the global optimum. By using a similar congregational scheme, but one in 

which information is collectively exchanged between estimates and intelligent randomization 

is introduced, structured stochastic algorithms are able to hill-climb out of local minima. 

This enables the algorithms to achieve better, more consistent results using a fewer 

number of total estimate. 

 

2.7. SYSTEM IDENTIFICATION 

    System identification concerns with the determination of a system, on the basis of input 

output data samples. The identification task is to determine a suitable estimate of finite 

dimensional parameters which completely characterize the plant. The selection of the 

estimate is based on comparison between the actual output sample and a predicted value on 

the basis of input data up to that instant. An adaptive automaton is a system whose structure 

is alterable or adjustable in such a way that its behavior or performance improves through 

contact with its environment.  

  Depending upon input-output relation, the identification of systems can have two groups 

A. Static System Identification 

   In this type of identification the output at any instant depends upon the input at that instant. 

These systems are described by the algebraic equations. The system is essentially a 

memoryless one and mathematically it is represented as   y(n) = f [x(n)] where y(n) is the 

output at the nth instant corresponding to the input x(n). 

B. Dynamic System Identification 

    In this type of identification the output at any instant depends upon the input at that instant 

as well as the past inputs and outputs. Dynamic systems are described by the difference or 

differential equations. These systems have memory to store past values and mathematically  
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represented as y(n)=f [x(n), x(n-1),x(n-2)………..y(n-1),y(n-2),……] where y(n) is the output at 

the nth instant corresponding to the input x(n). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     A system identification structure is shown in Fig.2.6. The model is placed parallel to the 

nonlinear plant and same input is given to the plant as well as the model. The impulse 

response of the linear segment of the plant is represented by h(n) which is followed by 

nonlinearity(NL) associated with it. White Gaussian noise q(n) is added with nonlinear output  

accounts for measurement noise. The desired output d(n) is compared with the estimated 

output  y(n) of the  identifier to generate the error e(n)  which is used by some adaptive 

algorithm for updating the weights of the model. The training of the filter weights is 

continued until the error becomes minimum and does not decrease further. At this stage the 

correlation between input signal and error signal is minimum. Then the training is stopped 

and the weights are stored for testing. For testing purpose new samples are passed through 

both the plant and the model and their responses are compared.  

 

2.8. SIMULATION RESULTS 

   The performance of LMS algorithm is tested for both linear and nonlinear systems. For 

identification purpose a tap delay filter with three taps is used. The parameter of the linear  

∑ 
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algorithm 

 
Model 
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d(n) 
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e(n) 

a(n) b(n) 
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Fig.2.6. Block diagram of system identification  
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part of the plant is h(n)= [0.26 0.93 0.26].The different type of nonlinearity considered here 

are  

 

    (I)                                                               ( ) tanh( ( ))b n a n=

    (II)                                                                2( ) ( ) 0.2 ( ) 0.1 ( )b n a n a n a n= + − 3

    (III)  3( ) ( ) 0.9 ( )b n a n a n= −

    (IV)                                                  (2.26) 2 3( ) ( ) 0.2 ( ) 0.1 ( ) 0.5cos( ( ))b n a n a n a n a nπ= + − +

  

    For the simulation the initial parameters of the model taken as zeros. Gaussian noise of 

signal to noise ratio (SNR) 30dB was added which accounts for measurement noise. The 

input to the plant was taken from a uniformly distributed random signal over the interval       

[-0.5, 0.5] .The adaptation is continued for 2000 iterations which is ensembled over 50 

iterations. After training filter weights remain fixed. For testing new 20 samples are 

generated and pass through the plant as well as model. The mean square error (MSE) and 

responses are plotted for the linear and nonlinear systems.  

 

(i)For linear system: 
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Fig. 2.7. (a)  MSE plot ,(b)response plot 
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(ii)For nonlinearity (I) 
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Fig. 2.8. (a)  MSE plot ,(b)response plot 

 

 

 

(iii)For nonlinearity (II) 
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 Fig. 2.9. (a)  MSE plot ,(b)response plot 
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(iv)For nonlinearity (III) 
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Fig. 2.10. (a)  MSE plot ,(b)response plot 

 

 

 

(v)For nonlinearity (IV) 
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Fig. 2.11. (a)  MSE plot ,(b)response plot  
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2.9. SUMMARY 

    Application of adaptive filter and two types of modeling is described in this chapter. 

System identification deals with direct modeling. The LMS algorithm is used for system 

identification purpose because of its simplicity. From Fig (2.7) to (2.11) it is observed that for 

linear system LMS algorithm based model gives best result. As the nonlinearity associated 

with the system goes on increasing the LMS based model response deviates from the actual 

response. Taking different types of nonlinearity the MSE and responses are plotted. From 

Fig.2.11 it is seen that the actual response and the LMS based model response do not match 

anywhere. From this we conclude that LMS based models are best for linear systems.   
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3.  SYSTEM IDENTIFICATION USING ANN 
 

 3.1. INTRODUCTION 

    Because of nonlinear signal processing and learning capability, Artificial Neural Networks 

(ANN’s) have become a powerful tool for many complex applications including functional 

approximation, nonlinear system identification and control, pattern recognition and 

classification, and optimization. The ANN’s are capable of generating complex mapping 

between the input and the output space and thus, arbitrarily complex nonlinear decision 

boundaries can be formed by these networks. An artificial neuron basically consists of a 

computing element that performs the weighted sum of the input signal and the connecting 

weight. The sum is added with the bias or threshold and the resultant signal is then passed 

through a non-linear element of tanh(.) type. Each neuron is associated with three parameters 

whose learning can be adjusted; these are the connecting weights, the bias and the slope of 

the non-linear function. For the structural point of view a neural network(NN) may be single 

layer or it may be multi-layer. In multi-layer structure, there is one or many artificial neurons 

in each layer and for a practical case there may be a number of layers. Each neuron of the one 

layer is connected to each and every neuron of the next layer. 

    A neural network is a massively parallel distributed processor made up of simple 

processing unit, which has a natural propensity for storing experimental knowledge and 

making it available for use. It resembles the brain in two types  

1. Knowledge is acquired by the network from its environment through a learning 

process.    

2. Interneuron connection strengths, known as synaptic weights, are used to store the 

acquired knowledge.  

   Artificial Neural Networks (ANN) has emerged as a powerful learning technique to 

perform complex tasks in highly nonlinear dynamic environments. Some of the prime 

advantages of using ANN models are their ability to learn based on optimization of an 

appropriate error function and their excellent performance for approximation of nonlinear 

function [3.1]. At present, most of the work on system identification using neural networks 

are based on multilayer feed forward neural networks with back propagation learning or more 

efficient variations of this algorithm [3.2] ,[3.3].On the otherhand the Functional link 

ANN(FLANN)  originally proposed by Pao[3.4] is a single layer structure with functionally 

mapped inputs. The performance of FLANN for system identification of nonlinear systems  
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has been reported [3.5] in the literature. Patra and Kot [3.6] have used Chebyschev 

expansions for nonlinear system identification and have shown that the identification 

performance is better than that offered by the multilayer ANN (MLANN) model. Wang and 

Chen [3.7] have presented a fully automated recurrent neural network (FARNN) that is 

capable of self-structuring its network in a minimal representation with satisfactory 

performance for unknown dynamic system identification and control.  

 

3.2. SINGLE NEURON STRUCTURE  

    In 1958, Rosenblatt demonstrated some practical applications using the perceptron [3.8]. 

The perceptron is a single level connection of McCulloch-Pitts neurons sometimes called 

single-layer feed forward networks. The network is capable of linearly separating the input 

vectors into pattern of classes by a hyper plane. A linear associative memory is an example of 

a single-layer neural network. In such an application, the network associates an output pattern 

(vector) with an input pattern (vector), and information is stored in the network by virtue of 

modifications made to the synaptic weights of the network. 

 

 

 

 

 

 

 

 

 

   The structure of a single neuron is presented in Fig. 3.1.An artificial neuron involves the 

computation of the weighted sum of inputs and threshold [3.9, 3.10]. The resultant signal is 

then passed through a non-linear activation function. The output of the neuron may be 

represented as, 

                                                                           (3.1) ( ) ( ) ( )
1

( )
N

j j
j

y n f w n x n b n
=

⎡ ⎤
= ⎢

⎣ ⎦
∑

∑ f(.) 

• •
 • 

x1

x2 

xN 

 
b(n) 

y(n) 

 

Fig. 3.1. A single Neuron 

w2

w1

wN

+ ⎥

Where b(n) = threshold to the neuron is called as bias.  

wj(n) = weight associated with the jth input, and N = no. of inputs to the neuron. 
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3.2.1. Activation Functions and Bias. 

    The perceptron internal sum of the inputs is passed through an activation function, which 

can be any monotonic function. Linear functions can be used but these will not contribute to a 

non-linear transformation within a layered structure, which defeats the purpose of using a 

neural filter implementation. A function that limits the amplitude range and limits the output 

strength of each perceptron of a layered network to a defined range in a non-linear manner 

will contribute to a nonlinear transformation. There are many forms of activation functions, 

which are selected according to the specific problem. All the neural network architectures 

employ the activation function [3.1, 3.8] which defines as the output of a neuron in terms of 

the activity level at its input (ranges from -1 to 1 or 0 to 1). Table 3.1 summarizes the basic 

types of activation functions. The most practical activation functions are the sigmoid and the 

hyperbolic tangent functions. This is because they are differentiable. 

    The bias gives the network an extra variable and the networks with bias are more powerful 

than those of without bias. The neuron without a bias always gives a net input of zero to the 

activation function when the network inputs are zero. This may not be desirable and can be 

avoided by the use of a bias.    

 

Table 3.1 COMMON ACTIVATION FUNCTIONS 

 
Name      Definition 

Linear    ( )f x kx=  

Step  
( ) ,
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f x if x
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= ≥
= <

 

Sigmoid    1( ) , 0
1 xf x

e α α−= >
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Hyperbolic Tangent 1( ) tanh( ) , 0
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Gaussian 
2
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= −⎢ ⎥

⎣ ⎦
 

 
  

 3.2.2 Learning Processes 

    The property that is of primary significance for a neural network is that the ability of the 

network to learn from its environment, and to improve its performance through learning. The 

improvement in performance takes place over time in accordance with some prescribed  
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measure. A neural network learns about its environment through an interactive process of 

adjustments applied to its synaptic weights and bias levels. Ideally, the network becomes 

more knowledgeable about its environment after each iteration of learning process. Hence we 

define learning as: 

 “It is a process by which the free parameters of a neural network are adapted through a 

process of stimulation by the environment in which the network is embedded.”  

          The processes used are classified into two categories as described in [3.1]: 

(A) Supervised Learning (Learning With a Teacher) 

(B) Unsupervised Learning (Learning Without a Teacher) 

 

(A) Supervised Learning: 

    We may think of the teacher as having knowledge of the environment, with that knowledge 

being represented by a set of input-output examples. The environment is, however unknown 

to neural network of interest. Suppose now the teacher and the neural network are both 

exposed to a training vector, by virtue of built-in knowledge, the teacher is able to provide the 

neural network with a desired response for that training vector. Hence the desired response 

represents the optimum action to be performed by the neural network. The network 

parameters such as the weights and the thresholds are chosen arbitrarily and are updated 

during the training procedure to minimize the difference between the desired and the 

estimated signal. This updation is carried out iteratively in a step-by-step procedure with the 

aim of eventually making the neural network emulate the teacher. In this way knowledge of 

the environment available to the teacher is transferred to the neural network. When this 

condition is reached, we may then dispense with the teacher and let the neural network deal 

with the environment completely by itself. This is the form of supervised learning. 

 The update equations for weights are derived as LMS [3.11]:  

( )1 ( ) (j jw n w n w nμ+ = + Δ )j                                                              (3.2) 

( )jw nΔ  is the change in wj in nth iteration. 

(B)  Unsupervised Learning:  

     In unsupervised learning or self-supervised learning there is no teacher to over-see the 

learning process, rather provision is made for a task independent measure of the quantity of 

representation that the network is required to learn, and the free parameters of the network are 

optimized with respect to that measure. Once the network has become turned to the statistical 

regularities of the input data, it develops the ability to form the internal representations for  

 25



encoding features of the input and thereby to create new classes automatically. In this 

learning the weights and biases are updated in response to network input only. There are no 

desired outputs available. Most of these algorithms perform some kind of clustering 

operation. They learn to categorize the input patterns into some classes. 

 

3.3. MULTILAYER PERCEPTRON  

    In the multilayer neural network or multilayer perceptron (MLP), the input signal 

propagates through the network in a forward direction, on a layer-by-layer basis. This 

network has been applied successfully to solve some difficult and diverse problems by 

training in a supervised manner with a highly popular algorithm known as the error back-

propagation algorithm [3.1,3.9]. The scheme of MLP using four layers is shown in Fig.3.2. 

( )ix n  represent the input to the network, jf  and kf  represent the output of the two hidden 

layers and ( )ly n  represents the output of the final layer of the neural network. The 

connecting weights between the input to the first hidden layer, first to second hidden layer 

and the second hidden layer to the output layers are represented by  

respectively. 

,  and ij jk klw w w

 

Fig. 3.2 Structure of multilayer perceptron  
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If P1 is the number of neurons in the first hidden layer, each element of the output vector of 

first hidden layer may be calculated as, 

( )
1

j j ij i j
i

N

f w x n bϕ
=

⎡ ⎤
= +⎢ ⎥

⎣ ⎦
∑ 11, 2,3,... , 1, 2,3,...i N j= = P                                                         (3.3)  

 26



where jb  is the threshold to the neurons of the first hidden layer, N is the no. of inputs and 

( ).ϕ  is the nonlinear activation function in the first hidden layer chosen from the Table 3.1. 

The time index n has been dropped to make the equations simpler. Let P2 be the number of 

neurons in the second hidden layer. The output of this layer is represented as, kf and may be 

written as 

1

1
k k jk j k

j

P

f w f bϕ
=

⎡ ⎤
= ⎢

⎣ ⎦
∑ + ⎥

P

l+ ⎥

, k=1, 2, 3, …, P2                                                                                                                  (3.4)                  

 where,  is the threshold to the neurons of the second hidden layer. The output of the final 

output layer can be calculated as 

kb

( )
2

1
l l kl k

k
y n w f bϕ

=

⎡ ⎤
= ⎢

⎣ ⎦
∑ , l=1, 2, 3, … , P3                                                                        (3.5)                  

 where, lα is the threshold to the neuron of the final layer and P3 is the no. of neurons in the 

output layer. The output of the MLP may be expressed as 

( ) ( )
2 1

1 1 1

N

l n kl k jk j ij i j k
k j i

y n w w w x n b b bϕ ϕ ϕ
= = =

⎡ ⎤⎛ ⎞⎧ ⎫
= ⎢ ⎥⎨ ⎬⎜

⎩ ⎭⎢ ⎥⎝ ⎠⎣ ⎦
∑ ∑ ∑
P P

l+ + +⎟                                              (3.6) 

 

3.3.1. Backpropagation Algorithm. 

 

Fig. 3.3 Neural network using BP algorithm 
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 An MLP network with 2-3-2-1 neurons (2, 3, 2 and 1 denote the number of neurons in the 

input layer, the first hidden layer, the second hidden layer and the output layer respectively) 

with the back-propagation (BP) learning algorithm, is depicted in Fig.3.3. The parameters of 
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the neural network can be updated in both sequential and batch mode of operation. In BP 

algorithm, initially the weights and the thresholds are initialized as very small random values. 

The intermediate and the final outputs of the MLP are calculated by using (3.3), (3.4.), and 

(3.5.) respectively.  

(   The final output )ly n  at the output of neuron l , is compared with the desired 

output and the resulting error signal ( )d n ( )

l

le n is obtained as 

                                                                                                                                                                   ( ) ( ) ( )le n d n y n= − (3.7) 

The instantaneous value of the total error energy is obtained by summing all error signals 

over all neurons in the output layer, that is 

                          ( ) ( )
3

2

1

1
2 l

l

n eξ
=

= ∑
P

n                                                                                                                                                (3.8) 

where P3 is the no. of neurons in the output layer.  

 This error signal is used to update the weights and thresholds of the hidden layers as well as 

the output layer. The reflected error components at each of the hidden layers is computed 

using the errors of the last layer and the connecting weights between the hidden and the last 

layer and error obtained at this stage is used to update the weights between the input and the 

hidden layer. The thresholds are also updated in a similar manner as that of the corresponding 

connecting weights. The weights and the thresholds are updated in an iterative method until 

the error signal becomes minimum. For measuring the degree of matching, the Mean Square 

Error (MSE) is taken as a performance measurement. 

The updated weights are, 

                       ( ) ( ) ( )1+ = +Δkl kl klw n w n w n                                                                        (3.9)              

                       ( ) ( ) ( )1+ = + Δjk jk jkw n w n w n                                                                      (3.10)              

                        ( ) ( ) ( )1+ = + Δij ij ijw n w n w n                                                                        (3.11)              

   where, ( ) ( ) ( ),  and Δ Δ Δkl jk ijw n w n w n  are the change in weights of the second hidden 

layer-to-output layer, first hidden layer-to-second hidden layer and input layer-to-first hidden 

layer respectively. That is, 
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( ) ( )

( ) ( ) ( )
( )

( )
2

1

2 l
kl

kl kl

P

l kl k l
k

d n dy n
w n e n

dw n dw n

e n w f f

ξ
μ μ

μ ϕ α
=

Δ = − =

⎡ ⎤
′= +⎢ ⎥
⎣ ⎦
∑ k

                                                      (3.12)    

Where, μ  is the convergence coefficient ( 0 1μ≤ ≤ ). Similarly the  can 

be computed [3.1]. 

( ) ( )

( ) ( ) ( )l

( ) ( ) ( )k

j

( ) ( ) ( )

( )

 and Δ Δjk ijw n w n

The thresholds of each layer can be updated in a similar manner, i.e. 

                                                                                                   (3.13) 1l lb n b n b n+ = + Δ

                                                                                                 (3.14) 1k kb n b n b n+ = + Δ

                                                                                                 (3.15) ( ) ( ) ( )1j jb n b n b n+ = + Δ

where,  are the change in thresholds of the output, hidden and 

input layer respectively. The change in threshold is represented as, 

,  and l k jb n b n b nΔ Δ Δ

( ) ( ) ( ) ( )
( )

( )
2

1

2 l
l

l

P

l kl k l
k

d n dy n
b n e n

db n db n

e n w f b

ξ
μ μ

μ ϕ
=

Δ = − =

⎡ ⎤
′= +⎢ ⎥
⎣ ⎦
∑

l                                                                                 (3.16) 

3.4. FUNCTIONAL LINK ANN 

    Pao originally proposed FLANN and it is a novel single layer ANN structure capable of 

forming arbitrarily complex decision regions by generating nonlinear decision boundaries 

[3.4]. Here, the initial representation of a pattern is enhanced by using nonlinear function and 

thus the pattern dimension space is increased. The functional link acts on an element of a 

pattern or entire pattern itself by generating a set of linearly independent function and then 

evaluates these functions with the pattern as the argument. Hence separation of the patterns 

becomes possible in the enhanced space. The use of FLANN not only increases the learning 

rate but also has less computational complexity [3.13]. Pao et al [3.12] have investigated the 

learning and generalization characteristics of a random vector FLANN and compared with 

those attainable with MLP structure trained with back propagation algorithm by taking few 

functional approximation problems. A FLANN structure with two inputs is shown in Fig. 3.4. 
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3.4.1. Learning Algorithm. 

    Let X is the input vector of size N×1 which represents N number of elements; the kth 

element is given by: 

                                                                                                         (3.17) 

Each element undergoes nonlinear expansion to form M elements such that the resultant 

matrix has the dimension of N×M. 

( ) ,1kk x k N= ≤ ≤X

 The functional expansion of the element kx by power series expansion is carried out using 

the equation given in (3.18) 

              k
i l

k

x
s

x
⎧

= ⎨
⎩

for 1                  
for 2,3, 4, ,

i
i M
=
= …

                                                                               (3.18) 

where . 1, 2, ,l M= "

For trigonometric expansion, the 

                                                                                (3.19) ( )
( )

sin

cos

k

i k

k

x

s l x
for 1                   
for 2,4, ,     
for 3,5, , +1

i
i M
i M

=
=
=

…
…l x

π

π

⎧
⎪⎪= ⎨
⎪
⎪⎩

Where 1,2, , 2l = " M . In matrix notation the expanded elements of the input vector E, is 

denoted by S of size N×(M+1).  

  The bias input is unity. So an extra unity value is padded with the S matrix and the 

dimension of the S matrix becomes N×Q, where ( )2Q M= + . 

 

Fig.3.4 Structure of the FLANN model 
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 Let the weight vector is represented as W having Q elements. The output is given as y

                                                                                                                         (3.20) 
1

Q

i i
i

y s
=

= ∑ w

In matrix notation the output can be, 

                                                                                                                         (3. 21) T= ⋅Y S W

At nth iteration the error signal ( )e n   can be computed as  

                                                                                                            (3.22) ( ) ( ) ( )e n d n y n= −

Let   denotes the cost function at iteration k and is given by ( )nξ

                 ( ) ( )2

1

1
2

P

j
j

n eξ
=

= ∑ n                                                                                              (3.23) 

where P is the number of nodes at the output layer.The weight vector can be updated by least 

mean square (LMS) algorithm, as 

                 ˆ( 1) ( ) (
2

w k w k k)μ
+ = − ∇                                                                                    (3.24) 

where is an instantaneous estimate of the gradient of ˆ ( )n∇ ( )nξ  with respect to the weight 

vector  Now ( )w n

           
( ) [ ( ) ( )]ˆ ( ) 2 ( ) 2 ( )

2 ( ) ( )

y n w n s nn e n e n
w w w
e n s n

∇ = = − = −
∂ ∂ ∂

= −

ξ∂ ∂ ∂

ˆ

( ) ( )

                                                   (3.25)                    

Substituting the values of  in (3.24) we get ( )n∇

( ) ( )1w n w n e n s nμ+ = +                                                                                             (3.26) 

where μ denotes the step-size , which controls the convergence speed of the LMS 

algorithm. 

(0 μ≤ ≤ )1

   The functions used for Functional Expansion is linearly independent and this may be 

achieved by the use of suitable orthogonal polynomials for functional expansion. The 

examples of which include Legendre, Chebyshev and trigonometric polynomials. Some of 

the advantages of using trigonometric polynomials for use in the functional expansion are 

explained below. Of all the polynomials of Nth order with respect to an orthonormal system 
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{ } 1
( ) N

i i
uφ

=
 the best approximation in the metric space  is given by the Nth partial sum of its 

Fourier series with respect this system Thus, the trigonometric polynomial basis functions 

given by {

2L

}1,cos( ),sin( ),cos(2 ),sin(2 ),...cos( ),sin( )u u u u N u N uπ π π π π π  provides a compact 

representation of the function in the mean square sense. However, when the outer product 

terms were used along with the trigonometric polynomials for functional expansion, better 

results were obtained in the case of learning of a two-variable function . 

 

3.5. CASCADED FUNCTIONAL LINK ANN (CFLANN) 

    For the identification of highly nonlinear systems the number of branches in the FLANN 

increases. Even some cases give poor performance. To decrease the number of branches and 

increase the performance a two-stage FLANN is proposed. Here the output of the first stage 

again undergoes functional expansion. The weights of cascaded FLANN are updated by 

using BP algorithm. 

 

3.5.1. Learning Algorithm. 

    A two stage CFLANN structure is shown in Fig.(3.5). x(n-1) and x(n-2) are the one unit 

time delay and two unit time delay of input signal x(n).Here each term is expanded into three 

terms in the first stage.y2(n) which is the output of first stage is again expanded into three 

terms. The number of expansion depends upon the nonlinearity associated with the system. 

For highly nonlinear system the number of expansion is more. For mathematical simplicity 

here we have considered that each term is expanded into three terms. This can be extended 

into any number of terms. 

   In the Fig.3.5.   are the weights of the first stage. )(...).........(),(,)( 9221 nwnwnwnw

)(),(,)( 321 nhnhnh  are the weights of the second stage. 

))]2(cos())2(sin()2(
))1(cos())1(sin()1())(cos())(sin()([))((

−−−
−−−=

nxnxnx
nxnxnxnxnxnxnx

ππ
ππππφ

 (3.27)           

                                                                (3.28) )](......).........()()([)( 9221 nwnwnwnwnW =

                                                            (3.29)   ))](cos())(sin()([))(( 2222 nynynyny ππψ =

)]()()([)( 321 nhnhnhnH =                                                                                                 (3.30) 

Here f1(.) and   f2(.) are taken as tanh(.). 

    The reason why we choose the hyperbolic tangent function in the output is twofold. First, 

the function has to be differentiable when using a BP algorithm to train the network. This  

 32



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

f 2(
 ) 

d(
n)

 
∑

 

y 4
(n

) 

w
1

x(
n)

 

co
s(
πx

(n
))

 

(n
) 

w
3(

n)
 

w
2(

n)
 

si
n(
πx

(n
))

 

z-1
 

z-1
 

∑
 

+1
 

x(
n)

 

x(
n-

2)
 

si
n(
πx

(n
-2

))
 

co
s(
πx

(n
-2

))
 w

7(
n)

 

w
9(

n)
 

w
8(

n)
 

x(
n-

2)
 

x(
n-

1)
 

si
n(
πx

(n
-1

))
 

co
s(
πx

(n
-1

))
 w

4(
n)

 

w
6(

n)
 

w
5(

n)
 

x(
n-

1)
 

x(
n)

 

∑
 

y 1
(n

) 
f 1(

 ) 
y 2

(n
) 

y 2
(n

) 

co
s(
πy

2(
n)

) 

si
n(
πy

2(
n)

) 

h 3
(n

) 

h 2
(n

) 

h 1
(n

) 
b 2

(n
) 

+1
 

y 3
(n

) 

B
ac

kp
ra

ga
tio

n 
A

lg
or

ith
m

 

b 1
(n

) 

e(
n)

 

+
-

Fi
rs

t S
ta

ge
 

Se
co

nd
 S

ta
ge

 

Fi
g.

 3
.5

. S
tru

ct
ur

e 
of

 C
FL

A
N

N
 

 33



ensures the possibility of calculating the gradients of the error functions (also called the  

Performance function). And secondly, one wants to choose a nonlinear function that is close 

to a binary-valued one to increase the speed of convergence. It turns out that tanh( .) is  good 

choice. 

 

Weight updation in the second stage 

))(tanh()( 34 nyny =                                                                                                           (3.31) 

))](cos()())(sin()()()([)( 2322213 nynhnynhnynhny ππ ++=                                            (3.32) 

error are nth iteration                                                                         (3.33)  )()()( 4 nyndne −=

where is the desired response.    ( )d n

  Cost function  )(
2
1)( 2 nen =ξ                                                                                          (3.34)                          

We will drop the time index (n) for simplicity  

The change in weight  is proportional to 1h
1h∂

∂ξ  

   
1

11 h
hh

∂
∂

−=
ξη                                                                                                                 (3.35) 

The use of minus sign in equation accounts for gradient descent in weight space  

By using chain rule we can write 

34

1 4 3

yye
h e y y h1

ξ ξ ∂∂∂ ∂ ∂
=

∂ ∂ ∂ ∂ ∂
                                                                                                         (3.36)         

From equation (3.34)   e
e
ξ∂
=

∂
                                                                                          (3.37) 

From equation (3.33)  
4

1e
y
∂

= −
∂

                                                                                        (3.38) 

From equation (3.31)  24
4

3

1y y
y
∂

= −
∂

                                                                                   (3.39) 

From equation (3.32)   3
2

1

y y
h
∂

=
∂

                                                                                        (3.40) 

Now equation (3.36) becomes  2
4 2

1

(1 )e y y
h
ξ∂
= − −

∂
                                                           (3.41) 

From equation (3.35) and (3.41)                                                                                            

                                                                                                        (3.42) 2
2
411 )1( yyehh −+= η
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Similarly proceeding as above we can get  

                                                                                              (3.43) )sin()1( 2
2
422 yyehh πη −+=

                                                                                              (3.44) )cos()1( 2
2
433 yyehh πη −+=

In general  

                                                                                            (3.45) TTT yyeHH )()1( 2
2
4 ψη −+=

 

Weight updation in the first stage 

)tanh( 12 yy =                                                                                                                      (3.46) 

)]cos(........).........cos()sin([ 391312111 xwxwxwxwy πππ +++=                                        (3.47)                     

The change in weight  is proportional to 1w
1w∂

∂ξ  

  
1

11 w
ww

∂
∂

−=
ξη                                                                                                                (3.48) 

The use of minus sign in equation accounts for gradient descent in weight space 

 By using chain rule we can write 

34 2

1 4 3 2 1 1

yy ye
w e y y y y w

1yξ ξ ∂∂ ∂ ∂∂ ∂ ∂
=

∂ ∂ ∂ ∂ ∂ ∂ ∂
                                                                                            (3.49) 

From equation (3.32)  )sin()cos( 23221
2

3 yhyhh
y
y

ππππ −+=
∂
∂

                                          (3.50) 

From equation (3.46)  )1( 2
2

1

2 y
y
y

−=
∂
∂

                                                                                (3.51) 

From equation (3.47)  1
1

1 x
w
y

=
∂
∂

                                                                                         (3.52) 

Now equation (3.49) becomes 

1
2
223221

2
4

1

)1))(sin()cos()(1( xyyhyhhye
w

−−+−−=
∂
∂ ππππξ                                             (3.53) 

From equation (3.48) and (3.53) 

1
2
223221

2
411 )1))(sin()cos()(1( xyyhyhhyeww −−+−+= ππππη                                        (3.54) 

Let  )sin()cos( 23221 yhyhhbp ππππ −+=  

1
2
2

2
411 )1()1( xybpyeww −−+= η                                                                                         (3.55) 

Similarly proceeding as above we can get 

)sin()1()1( 1
2
2

2
422 xybpyeww πη −−+=  
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      . 

      .     

      . 

)cos()1()1( 3
2
2

2
499 xybpyeww πη −−+=  

TTT xybpyeWW )()1()1( 2
2

2
4 φη −−+=                                                                               (3.56) 

 In the similar way by taking different functions for f1(.) and   f2(.) and taking different 

number of expansions the weight updation algorithm can be derived. 

 

3.6. SIMULATION RESULTS 

  In this section different types of ANN models and systems are considered for comparison of 

their performances. 

(A)Comparison between MLP and FLANN 

    Example 1:Here, different nonlinear systems are chosen to examine the approximation 

capabilities of the MLP and the FLANN. The structure considered for simulation purpose is 

shown in Fig.2.4.The unknown plant is described by some nonlinear function given in 

equation (3.57).The adaptive system is either MLP or FLANN. A three-layer MLP structure 

with 20 and 10 nodes (excluding the threshold unit) in the first and second layers respectively 

and one input node and one output node was chosen for the purpose of identification.. Where 

as, the FLANN structure has 14 number of input nodes. Thus, it has only 15 weights 

including the threshold unit, which are to be updated in one iteration. 

 
3 2

1

2
3 2

3 5 4 3 2

3
4 3

( ) ( ) 0.3 0.4 ,
( ) ( ) 0.6sin( ) 0.3sin(3 ) 0.1sin(5 ),

4 1.2 1.2( ) ( ) ,
0.4 0.8 1.2 0.2 3

2( ) ( ) 0.5sin ( ) 0.1cos(4 ) 1.125
2

a f u u u u
b f u u u u

u uc f u
u u u u

d f u u u
u

π π π

π π

= + −
= + +

− +
=

+ − + −

= − − +
+

                                                    (3.57) 

The input pattern was expanded by using trigonometric polynomials, i.e., by using cos( )n uπ  

and sin( )n uπ , for n = 0,1,2; ….. .In some cases, the cross product terms were also included 

in the functional expansion. The nonlinearity used in a node of the MLP and the FLANN is 

the function. The BP algorithm was used to adapt the weights of both the ANN 

structures. The input u was a random signal drawn from a uniform distribution in the interval 

[-1, 1]. Both the convergence parameter and the momentum term were set to 0.1. Both the  

()tahh
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MLP and the FLANN were trained for 30000 iterations, after which the weights of the ANN 

were stored for testing. For testing the input signal is an uniform distribution in the interval   

[-1 1]. The response is given in Fig.3.6. to 3.8. 

(i)For nonlinearity (3.57(a)) 
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Fig.3.6. Output plot (Example 1) (a) f1 using MLP (b) f1 using FLANN 
 
 

(ii) For nonlinearity (3.57(b)) 
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Fig.3.7. Output plot (Example 1) (a) f2 using MLP (b) f2 using FLANN 
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(iii) For nonlinearity (3.57(c)) 
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Fig.3.8. Output plot (Example 1) (a) f3  using MLP (b) f3 using FLANN 
 
 
Example 2: The plant is assumed to be of second order and is described by the following difference 

equation. 

                                                                                    (3.58) ( 1) 0.3 ( ) 0.6 ( 1) [ ( )]y n y n y n g u n+ = + − +

The unknown function g was taken from the nonlinear functions of (3.57). 

 
To identify the plant a model was considered which is governed by the difference equation  

ˆ( 1) 0.3 ( ) 0.6 ( 1) [ ( )]y n y n y n N u n+ = + − +                                                                                    (3.59)        

  The MLP and FLANN structure are same as Example1.N [u(n)] in equation (3.59)  represents the 

neural network if the input is u(n)  . The input to the plant was taken from an uniformly distributed 

random signal over the interval [-1,1]. The adaptation continues for 30000 iterations during which 

the series-parallel scheme of identification was used. Then, the adaptation was stopped and the 

network was used for testing for identification using the parallel scheme. The testing of the 

network models was undertaken by presenting a sinusoidal input to the identified model given by 

     

2sin 250
250

( )
2 20.8sin 0.2sin 250
250 25

n for n
u n

n n for n

π

π π

⎧ ⎛ ⎞ ≤⎜ ⎟⎪⎪ ⎝ ⎠= ⎨
⎛ ⎞ ⎛ ⎞⎪ + >⎜ ⎟ ⎜ ⎟⎪ ⎝ ⎠ ⎝ ⎠⎩

                                                          (3.60) 

The results of identification (3.58) with nonlinear function 3f  and 4f  of (3.57) are shown in 

Fig.3.9 and Fig.3.10 respectively. 
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(i) For nonlinearity (3.57(c)) 
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i) For nonlinearity (3.57(d)) 

ple 2) (a) f4  using MLP (b) f4 using FLANN 
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Fig.3.9. Output plot (Example 2) (a) f3 using MLP (b) f3 using FLANN 
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Fig.3.10. Output plot (Exam
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(B)Comparison between FLANN and CFLANN 

    Extensive simulation studies were carried out with several examples of nonlinear systems. 

We have compared the performance of the CFLANN (two stages) structure with that of 

single layer FLANN structure and LMS based identifiers. The input to the system was taken 

from a uniformly distributed random signals over interval [-0.5, 0.5].White Gaussian noise 

was added to the output of the nonlinear system. The convergence factor is chosen as 

0.03.The adaptation continues for 5000 iterations during parallel scheme of identification was 

used. The adaptation is then stopped and the network is used for identification purpose. The 

testing of the network model was done by applying new random samples to the input. 

 
Example 3: We consider a system described by transfer function 

The nonlinearity used is 

  For the identification the structure considered is given in Fig.2.6.The adaptive models 

considered here are FIR filter, FLANN and CFLANN.  In FLANN structure each branch is 

expanded into nine branches out of which one is direct input and other eight are trigonometric 

expansions such as sin(πx),cos(πx),sin(2πx),cos(2πx)………… sin(4πx),cos(4πx) ,if x is the 

input to the identifier. The total number of weights used in this case is 28(including a bias 

term) . A white Gaussian noise of -30dB is added to the output of the nonlinear system. 

  In case of CFLANN in the first stage each branch is expanded into five branches by using 

trigonometric expansions. The output of the first stage is again expanded into three branches. 

The total number of weights used is 20(including two bias term, one at each stage).The mean 

square error (MSE) and output responses are compared in Fig.3.11.It is clear from the graphs 

the performance of CFLANN is better than that of FLANN and LMS based systems. 

 
Example 4: The system is described by 

The nonlinearity used is .All other conditions are same as example 1. 

The mean square error (MSE) and output responses are compared in Fig.3.12. 

 
 
 
 

1 2( ) 0.26 0.93 0.26H z z z− −= + +  

2 3( ) ( ) 0.2 ( ) 0.1 ( ) 0.5cos( ( ))b n a n a n a n a nπ= + − +  

1 2( ) 0.26 0.93 0.26H z z z− −= + +  

 3( ) ( ) 0.9 ( )b n a n a n= −
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.7. SUMMARY 

   Different types of ANN structures and thei

chapter. For identification purpose three ANN st

used. In FLANN, the input pattern is expanded 

the input vector. The functional expansion ma

processing of signals in the hidden layer of an

dimensionality of the input pattern and thus, cre

multidimensional space and identification of c

with this network. From Fig.3.6 to Fig.3.10 it 

FLANN structure is better than that of MLP.Since,

the computational complexity is less and thus, th arning is faster in comparison to an MLP. 

. From the response and MSE plot it can be observed that for 

near system the performance of CFLANN model is considerably better than that 

f FLANN and LMS based models. The CFLANN model exhibits two advantages. The first 

ne is that it involves less number of expansions. Secondly it provides better learning and 

response matching performance for nonlinear system in identification.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

3

r learning algorithms are discussed in this 

ructures (MLP, FLANN and CFLANN) are 

using trigonometric or polynomials terms of 

y be thought of analogous to the nonlinear 

 MLP. This functional expansion increases the 

ation of nonlinear decision boundaries in the 

omplex nonlinear functions become simple 

is evident that system identification with the 

 the hidden layer is absent in this structure, 

e le

Therefore, this structure may be implemented for on-line applications. 

    From Fig. 3.11 and 3.12, it is observed that the CFLANN model is better than that of 

FLANN and LMS based models

highly nonli

o

o
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PRUNING USING GA 

 
 



 
4. PRUNING USING GA 

 
4.1. INTRODUCTION 

   System identification is a pre-requisite to analysis of a dynamic system and design of an 

appropriate controller for improving its performance. The more accurate the mathematical 

model identified for a system, the more effective will be the controller designed for it. In 

many identification processes, however, the obtainable model using available techniques is 

generally crude and approximate. 

     In conventional identification methods, a model structure is selected and the parameters of 

that model are calculated by optimizing an objective function. The methods typically used for 

optimization of the objective function are based on gradient descent techniques. On-line 

   Gradient-descent training algorithms are the most common form of training algorithms in 

gnal processing today because they have a solid mathematical foundation and have been 

roven over the last five decades to work in many environments. Gradient-descent training, 

owever leads to suboptimal performance under nonlinear conditions. Genetic Algorithm 

A)[4.1] has been widely used in many applications to produce a global optimal solution. 

his approach is a probabilistically guided optimization process which simulates the genetic 

volution. The algorithm cannot be trapped in local minima as it employs a random mutation 

rocedure. In contrast to classical optimization algorithm, genetic algorithms are not guided 

 their search process by local derivatives. Through coding the variables population with 

ronger fitness are identified and maintained while population with weaker fitness are 

moved. This process ensures that better offsprings are produced from their parents. This 

arch process is stable and robust and can identify global optimal parameters of a system. 

he underlying principles of GA’s were first published by Holland in 1962[4.2].GA’ has 

een used in many diverse areas such as function optimization [4.3],image processing [4.4], 

the traveling salesman problem [4.5] ,[4.6] and system identification [4.7]-[4.11].                           

 

system identification used to date are based on recursive implementation of off-line methods 

such as least squares, maximum likely-hood or instrumental variable. Those recursive 

schemes are in essence local search techniques. They go from one point in the search point to 

another at every sampling instant, as a new input-output pair becomes available. This process 

usually requires a large set of input/output data from the system which is not always 

available. In addition the obtained parameters may be locally optimal. 
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    In this thesis GA is used for simultaneously pruning and weight updation.While 

constructing an artificial n  faced with the problem of 

choosing a network of the right size for the task to be carried out. The advantage of using a 

less costly and faster in operation. However, a much reduced 

hich do not contribute to estimate output. Jearanaitanakij 

             

ptimization methods is that GA uses a population of points at one time in contrast to the  

eural network the designer is often

reduced neural network is 

network cannot solve the required problem while a fully ANN may lead to accurate solution. 

Choosing an appropriate ANN architecture of a learning task is then an important issue in 

training neural networks. Giles and Omlin [4.12] have applied the pruning strategy for 

recurrent networks. Markel has employed [4.13] the pruning technique to FFT algorithm. He 

has eliminated those operations w

and Pinngern [4.14] have analyzed on the minimum number of hidden units that is required to 

recognize English capital letters of the ANN. Thus to achieve the cost and speed advantage, 

appropriate pruning of ANN structure is required. In this chapter we have considered an 

adequately expanded FLANN model for the identification of nonlinear plant and then used 

Genetic Algorithm (GA) to train the filter weights as well to obtain the pruned input paths 

based on their contributions. Procedure for simultaneous pruning and training of weights 

have been carried out in subsequent sections to obtain a low complexity reduced structure. 

 

4.2. GENETIC ALGORITHM 

   In the case of deterministic search, algorithm methods such as steepest gradient methods 

are employed (using gradient concept), where as in stochastic approach, random variables are 

introduced. Whether the search is deterministic or stochastic, it is possible to improve the 

reliability of the results. GA’s are stochastic search mechanisms that utilize a Darwinian 

criterion of population evolution. The GA has robustness that allows its structural 

functionality to be applied to many different search problems [4.17]. This effectively 

means that once the search variables are encoded into a suitable format, the GA scheme can 

be applied in many environments. The process of natural selection, described by Darwin, 

is used to raise the effectiveness of a group of possible solutions to meet an 

environmental optimum [4.16]. 

   Genetic algorithms are very different from most of the traditional optimization methods. 

Genetic algorithms need design space to be converted into genetic space. So genetic  

algorithms work with coding variables. The advantages of working with a coding variable 

space is that coding discretizes the search space even though the function may be continuous. 

A more striking difference between genetic algorithms and most of the traditional 

o
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single point approach by traditional optimization methods. This means that GA processes a 

number of designs at the same time.   

 

4.2.1. GA Operations 

    The GA operates on the basis that a population of possible solutions, called 

chromosomes, is used to assess the cost surface of the problem. The GA evolutionary 

process can be thought of as solution breeding in that it creates a new generation of 

solutions by crossing two chromosomes. The solution variables or genes that provide a 

positive contribution to the population will multiply and be passed through each 

subsequent generation until an optimal combination is obtained. 

    The population is updated after each learning cycle through three evolutionary 

processes: selection, crossover and mutation. These create the new generation of solution 

variables. From the population a pool of individuals is randomly selected, some of these 

survive into the next iterations population. A mating pool is randomly created and each 

individual is paired off. These pairs undergo evolutionary operators to produce two new 

individuals that are added to the new population. 

    The selection function creates a mating pool of parent solution strings based upon the 

rom the mating pool the crossover operator exchanges “survival of the fittest” criterion. F

gene information. This essentially crosses the more productive genes from within the 

solution population to create an improved, more productive, generation. Mutation randomly 

alters selected genes, which helps prevent premature convergence by pulling the population 

into unexplored areas of the solution surface and add new gene information into the 

population. 

        

 
 

 

 

 
 
 
 
 
 
 
 

Fig.4.1. A GA Iteration Cycle 
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 4.2.2. Population Variable 

 A chromosome consists of the problem variables, where these can be arranged in a vector or a 

ssover process, corresponding genes are crossed so that there is no 

ber is used in the genetic 

                                                         (4.1) 

osome selection. 

election process is used to weed out the weaker chromosomes from the population so 

at the more

hromosome finesses are used to rank the population with each individual assigned it own 

f 

matrix. In the gene cro

inter-variable crossing and therefore each chromosome uses the same fixed structure. An 

initial population that contains a diverse gene pool offers a better picture of the cost surface 

where each chromosome within the population is initialized independently by the same 

random process. 

   In the case of binary-genes each bit is generated randomly and the resulting bit-words 

are decoded into their real value equivalent .The binary num

search process and the real value is used in the problem evaluation. This type of 

initialization results in a normally distributed population of variables across a specific range. 

This type of results in a normally distributed population of variables across a specific range. 

  A GA population, P, consists of a set of N chromosomes {Cj... CN} and N fitness values 

{f1……fN}, where the fitness is some function of the error matrix. 

    1 1 2 2 3 3{( , ) ( , ) ( , ) ( , )}N NP C f C f C f C f= "               

 The GA is an iterative update algorithm and each chromosome requires its fitness to be 

evaluated individually. Therefore, N separate solutions need to be assessed upon the same 

training set in each training iteration. This is a large evaluation overhead where population 

sizes can range between twenty and a hundred, but the GA is seen to have learning rates that 

evens this overhead out over the training convergence. 

 

4.2.3. Chrom

The s

th  productive genes may be used in the production of the next generation. The 

c

fitness value, 

2

1

1( ) ( )
M

i j
j

E in e n
M =

= ∑                                                                                                       (4.2) 

he solution cost value Et of the f chromosome in the population is calculated from a training-

lock of M training signals and from this cost an associated fitness is assigned: 

T

b

1( )
(1 ( ))i

i

f n
E n

=
+

                                                                                                              (4.3) 
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The fitness can be considered to be the inverse

easons, i.e. E n

 of the cost but the fitness function in Equation 

(4.3) is preferred for stability r  ( ) 0=i  

osomes are selected randomly for the two pools but biased 

 of the finesses 

are used to normalize these values, fmm=2.08. 

4.2 shows a roulette wheel that has been

When the fitness of each chromosome in the population has been evaluated, two pools are 

generated, a survival pool and a mating pool. The chromosomes from the mating pool 

will be used to create a new set of chromosomes through the evolutional processes of 

natural selection and the survival pool allows a number of chromosomes to pass onto the 

next generation. The chrom

towards the fittest. Each chromosome may be chosen more than once and the fitter 

chromosomes are more likely to be chosen so that they will have a greater influence in 

the new generation of solutions. 

  The selection procedure can be described using a biased roulette wheel with the buckets of 

the wheel sized according to the individual fitness relative to the population's total fitness 

[4.17]. Consider an example population often chromosomes that have the fitness assessment 

of f = {0.16, 0.16, 0.48, 0.08, 0.16, 0.24, 0.32, 0.08, 0.24, 0.16} and the sum

   Figure  split into ten segments and each segment is 

in proportion to the population chromosomes relative fitness. The third segment therefore 

fills nearly a quarter of the roulette wheels area. The random selector points to a chosen 

chromosome, which is then copied into the mating pool because the third individual controls 

a greater proportion of the wheel, it has a greater probability of being selected. 

 

 
Chromosome segments          Population roulette wheel 

Fig.4.2. Biased roulette-wheel that is used in the selection of the  mating pool 
                                          

perator where 

a string is selected from the mating pool with a probability proportional to the fitness. Thus 

ith string in the population is selected with a probability proportional to fi  where fi  is the 

fitness value of that string. Since the  population size is usually kept fixed in a simple GA,  

 

   The commonly used reproduction operator is the proportionate reproductive o
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the sum of probabilities of each string being selected for the mating pool must be one. The 

probability of ith selected string is  

       

1

i
i n

j
j

fp
f

=

=

∑
                                                                                                                     (4.4) 

Where ‘n’ is the population size. 

    Using the fitness value fi of all strings, the probability of selecting a string pi can be 

calculated. There after, cumulative probability Pi of each string can be calculated by adding 

the individual probabilities from the top of the list. Thus the bottom most string in the 

population should have a cumulative probability of 1.The roulette wheel concept can be 
th

robability range(calculate from fitness value) 

4.2.4. Gene Crossover 

The crossover operator exchanges gene information between two selected chromosomes, (Cq, 

Cr), where this operation aims to improve the diversity of the solution vectors. The pair of 

chromosomes, taken from the mating pool, becomes the parents of two offspring 

chromosomes for the new generation. 

   In the case of a binary crossover operation the least significant bits are exchanged between 

correspond  

along the bit sequence is chosen and then all of the bits right of the crossover point are 

xchanged. In Fig.4.3 (a), which shows a single point crossover, the fifth crossover position 

  

simulated by realizing that the i  string in the population represents the cumulative 

probability from  Pi-1 to Pi.Thus the first string represents the cumulative values from 0 to P1.

 Hence cumulative probability of any string lies between 0-1. In order to choose n strings, n 

random numbers between zero and one is created at random. Thus the string that represents 

the chosen random number in the cumulative p

for the string, is copied from to the mating pool. This way the string with a higher fitness 

value will represent a larger range in the cumulative probability values and therefore, has a 

higher probability of being copied into the mating pool. On the other hand  string with a 

smaller fitness value will represent a smaller range in the cumulative probability values and 

therefore, has a lesser probability of being copied into the mating pool. 

 

ing genes within the two parents. For each gene-crossover a random position

e

is randomly chosen, where the first position corresponds to the left side. The bits from the 

right of the fourth bit will be   exchanged.  Fig.4.3 (b) shows a two point crossover in which 

two points are randomly chosen and the bits in between them are exchanged. Fig.4.3. shows a 

basic genetic crossover with the same crossover point chosen for both offspring genes. At the
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start of the learning process the extent of crossing over the whole population can be decided 

allowing the evolutionary process to randomly select the individual genes. The probability of 

within each parent. P(crossing)≤1 allows all the gene values to be crossed and P(crossing)=0 

leaves the parents unchanged, where a random gene selection value, ω Є {1,0}, is governed 

 

 

ited to this simple operation. The crossover operator 

for mutation with a probability that some of its genes will be mutated after the crossover 

a gene crossing, P(crossing), provides a percentage estimate of the genes that will be affected 

by this probability of crossing. 

 
 
 
 
 
 
 
 

Before crossover 

After crossover 

 

1  0  1  0  0  1  0  1 

0  0  1  0  1  1  1  0 

 

1  0  1  0  1  1  1  0     

0  0  1  0  0  1  0  1  
 

(a) 
 
 
 
 
 
 
 
 
 

Before crossover 

After crossover 

 

1  0  1  0  0  1  0  1 

0  0  1  0  1  1  1  0 

 

1  0  1  0  1  1  0  1     

0  0  1  0  0  1  1  0 
 

(b) 
                                                 
Fig.4.3. Gene crossover (a) Single point crossover (b) Double point crossover 
. 

    The crossover does not have to be lim

can be applied to each chromosome independently, taking different random crossing points in 

each gene. This operation would be more like grafting parts of the original genes onto each 

other to create the new gene pair. All of a chromosome's genes are not altered within a single 

crossover. A probability of gene-crossover is used to randomly select a percentage of the 

genes and those genes that are not crossed remain the same as one of the parents. 

 

4.2.5 Chromosome Mutation 

  The last operator within the breeding process is mutation. Each chromosome is considered 
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operation. A random number is generated for each gene, if this value is within the specified 

mutation selection probability, P(mutation), the gene will be mutated. The probability of 

mutation occurring tends to be low with around one percent of the population genes being 

affected in a single generation. In the case of a binary mutation operator, the state of the 

randomly selected gene-bits is changed, from zero to one or vice-versa. 

 

 

 

 
 
 
 

Fig.4.4 Mutation operation in GA 
 
A simple genetic algorithm treats the mutation as a secondary operator with the role of 

storing lost genetic materials. Suppose, for example, all the string in a population have 

onveyed to to a zero at osition, 

en crossover cannot regenerate a one at that position while a mutation can. It helps the 

arch algorithm to escape from local minima’s traps since the modification is not related to 

ny previous genetic structure of the population. The mutation is also used to maintain 

iversity in the population .For example, consider the following population having four 

ight-bit strings. 

                                                                 0110 1011 

                                                                   0011 1101 

                 0001 0110 

result these 

arameters should be chosen properly. 

obability. 

re

c  a given position and the optimal solution has a one at that p

th

se

a

d

e

  

                                                  

                                                                   0111 1100 

  All the four strings have a zero in the left most bit position. If the true optimum solution 

requires a one in that position, then neither reproduction nor crossover operator will be able 

to create a one in that position. Only mutation operation can change that zero to one.   

 

4.3. PARAMETERS OF GA. 

    There are some parameter values required for GA. To get the desired 

p

  (a) Crossover and Mutation Pr

  There are two basic parameters of GA - crossover probability and mutation probability.  

                                    Selected bit for mutation    
                                      
          1    0    1    1    0    0    1    0 
 
          1    0    1    1    1    0    1    0 
 

Before mutation 

After  mutation 
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Crossover probability:  This probability controls the frequency at which the crossover occurs 

for every chromosome in the search process. This is a number between (0,l) which is 

determined according to the sensitivity of the variables of the search process. The    crossover 

probability is chosen small for systems with sensitive variables. If there is crossover, 

ffspring are made from parts of both parent's chromosome. Crossover is made in hope that 

ew chrom ore the new 

hromosomes will be better. However, it is good to leave some part of old population 

rvives to next generation.  

  Mutation probability: This parameter decides how often parts of chromosome will be 

utated. If there is no muta ediately after crossover (or 

so some other parameters in GA. One important parameter is population 

 population in one generation. If there 

to perform crossover and only a small 

f there are too many chromosomes, GA 

is proposed. Such a choice has led to effective pruning 

runing strategy is based on the idea of successive 

om 

the FLANN architecture. As a result, many branches (functional expansions) are pruned and  

o

n osomes will contain good parts of old chromosomes and theref

c

su

 

  

m tion, offspring are generated imm

directly copied) without any change. If mutation is performed, one or more parts of a 

chromosome are changed. If mutation probability is 100%, whole chromosome is changed, if 

it is 0%, nothing is changed. Mutation generally prevents the GA from falling into local 

extremes. Mutation should not occur very often, because then GA will in fact change to 

random search.  

 

 (b) Other Parameters. 

        There are al

size. 

     Population size: How many chromosomes are in

are too few chromosomes, GA has few possibilities 

part of search space is explored. On the other hand, i

slows down. Research shows that after some limit (which depends mainly on encoding and 

the problem) it is not useful to use very large populations because it does not solve the 

problem faster than moderate sized populations.  

 

 4.4. PRUNING USING GA. 

    In this Section a new algorithm for simultaneous training and pruning of weights using 

binary coded genetic algorithm (BGA) 

of branch and updating of weights. The p

elimination of less productive paths (functional expansions) and elimination of weights fr
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the overall architecture of the FLANN based model is reduced which in turn reduces the 

e FLANN model. Again (T – 1) represents the order the filter 

nd E represents the number of expansions specified for each input to the filter. Thus each 

ining L bits. 

nput training data: 

s are generated to identify the static and feed forward dynamic plants. 

n strength, there by producing k number of 

esired signals. Thus the training data are produced to train the network. 

corresponding computational cost associated with the proposed model without sacrificing the 

performance. Various steps involved in this algorithm are dealt in this section. 

 

Step 1- Initialization in GA: 

    A population of M chromosomes is selected in GA in which each chromosome constitutes 

(T×E+1)×L number of random binary bits where the first L number of bits are called Pruning 

bits (P) and the remaining bits represent the weights associated with various branches 

(functional expansions) of th

a

chromosome can be schematically represented as shown in the Fig. 4.6. 

      A pruning bit (p) from the set P indicates the presence or absence of expansion branch 

which ultimately signifies the usefulness of a feature extracted from the time series. In other 

words a binary 1 will indicate that the corresponding branch contributes and thus establishes 

a physical connection where as a 0-bit indicates that the effect of that path is insignificant and 

hence can be neglected. The remaining (T.E.L) bits represent the (T.E) weight values of the 

model each conta

 

Step 2- Generation of i

K (≥500) number of signal samples is generated. In the present case two different types of 

signal

(i) To identify a feed forward dynamic plant, a zero mean signal which is uniformly 

distributed between ±0.5 is generated. 

(ii) To identify a static system, a uniformly distributed signal is generated within ±1.  

Each of the input samples are passed through the unknown plant (static and feed forward 

dynamic plant) and K such outputs are obtained. The plant output is then added with the 

measurement noise (white uniform noise) of know

d

 

Step 3- Decoding: 

Each chromosome in GA constitutes random binary bits. So these chromosomes need to be 

converted to decimal values lying between some ranges to compute the fitness function. The 

equation that converts the binary coded chromosome in to real numbers is given by 
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RV R DV
⎧ ⎫⎛ ⎞

= + ×⎜ ⎟⎨ ⎬⎜ ⎟−⎪ ⎪⎝ ⎠⎩ ⎭
                                                                        (4.5)        

here Rmin, Rmax, RV and DV represent the minimum range, maximum range, decimal and 

e representation. The first L number of bits is not 

ce they represent pruning bits. 

 

- To compute the estimated output: 

t nth instant the estimated output of the neuron can be computed as  

n W n P n b nφ
= =

= × × +∑∑                                                                          (4.6)  

here φij (n) represents jth expansion of the ith signal sample at the nth instant. Wij
m (n) and 

ij
m (n) represent the jth expansion weight and jth pruning weight of the ith signal sample for 

th chromosome at kth instant. Again bm(n) corresponds to the bias value fed to the neuron 

th chromosome at nth instant.  

- Calculation of cost function: 

pared with corresponding estimated output and K errors are 

he Mean-square-error (MSE) corresponding to mth chromosome is determined by 

: 

−⎪ ⎪

 

W

decoded value of an L bit coding schem

decoded sin

 

 .   .   .  
L bits L bits L bits L bits 

Pruning bits (P) V=T×E×L bits 

V=T×E. nos. of weight bits (L) 

 

 

 

 
 Fig.4.6. Bit allocation scheme for pruning and weight updating 
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Step 5

Each of the desired output is com

produced. T

using the relation
2

1
( )

K
k

k

eMSE m K
=

= ∑                                                                                                                (4.7)                   

epeated for M times (i.e. for all the possible solutions). This is r
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Step 6- Operations of GA: 

Here the GA is used to minimize the MSE

ect the best M individuals which will be treated as parents in 

ing procedure will be ceased when the MSE settles to a desirable level. At this 

moment all the chromosomes attain the same genes. Then each gene in the chromosome 

repres

.5. SIMULATION RESULTS 

xtensive simulation studies are carried out with several examples from static as well as feed 

rward dynamic systems. For updating the weights of the FLANN we will follow the 

arning algorithm given in section 3.4.  The performance of the proposed Pruned FLANN 

N structure. 

(A) Static Systems 

Here different nonlinear static systems are

. The crossover, mutation and selection operators 

are carried out sequentially to sel

the next generation. 

 

Step 7- Stopping Criteria: 

The train

ents an estimated weight. 

 

4

E

fo

le

model is compared with that of basic FLAN

 

 chosen to examine the approximation capabilities 

of the basic FLANN and proposed Pruned FLANN models. In all the simulation studies 

reported in this Section a single layer FLANN structure having one input node and one 

neuron is considered. Each input pattern is expanded using trigonometric polynomials i.e. by 

using cos( )n uπ and sin( )n uπ , for n = 0,1,2,…6. In addition a bias is also fed to the output. In 

e simulation work the data used are K = 500, M = 40, N = 15, L = 30, probability of 

utation = 0.1. Besides that the Rmax and Rmin values are 

Example-1:  

th

crossover = 0.7 and probability of m

judiciously chosen to attain satisfactory results. Three nonlinear static plants considered for 

this study are as follows: 

 
3 2

1( ) 0.3 0.4f u u u u= + −                                                                             (4.8) 
 
Example-2:  2 ( ) 0.6sin( ) 0.3sin(3 ) 0.1sin(5 )f u u u uπ π π= + +                                         (4.9) 

Example-3:  

 
3 2

3 5 4 3 2

4 1.2 1.2( )
0.4 0.8 1.2 0.2 3

u uf u
u u u u

− +
=

+ − + −
                                                 (4.10) 



 
At any nth instant, the output of the ANN model y (n) and the output of the system d (n) is 

compared to produce error e(n) which is then utilized to update the weights of the model. The 

LMS algorithm is used to adapt the weights of basic FLANN model where as a proposed GA 

ased algorithm is employed for simultaneous adaptation of weights and pruning of the 

N model is trained for 30000 iterations where as the pruned 

 (a), (b), (c). The comparison of computational complexity 

etween FLANN and pruned FLANN is given in Table.4.1. 

 
TABLE. 4.1 

help of several examples. In each example, one particular model of 

e unknown system is considered. In this simulation a single layer FLANN structure having 

one input node and one neuron is consid

input as well as the trigonometric polynomials i.e. by using 

b

branches. The basic FLAN

FLANN model is trained for only 60 generations. Finally the weights of the ANN are stored 

for testing purpose. The responses of both the networks are compared during testing 

operation and shown in Figs.4.7

b

COMPARISON   OF COMPUTATIONAL COMPLEXITIES BETWEEN A BASIC 
FLANN AND A PRUNED FLANN MODEL 

 
Number of operations 

  

 
 

Additions Multiplications 
Number of weights 

 
 
 

Ex. 
No.  

N 
Pruned 
FLANN 

 
FLANN 

Pruned 
FLANN 

 
FLANN 

Pruned 
FLANN FLAN

 
     
 
B. Dynamic Systems 

    In the following the simulation studies of nonlinear dynamic feed forward systems has 

been carried out with the 

 
Ex-1 
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Ex-2 
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15 
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Ex-3 
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14 
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15 

 
6 

th

ered. Each input pattern is expanded using the direct 

, for n = ,sin( ) cos( )u n u and n uπ π

1. In this case the bias is removed.  In the simulation work we have considered K = 500,   M 

= 40, N = 9, L = 20, probability of crossover = 0.7 

Besides that the Rmax and Rmin values are judiciously chosen to attain satisfactory results. The 

three nonlinear dynamic feed forward plants considered for this study are as follows: 

and probability of mutation = 0.03. 
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Example-4: 

(a) Parameter of the linear system of 410 , 0.8760 , 0.3410] 

(

    The basic FLANN m e proposed FLANN is 

trained or only 60 genera  white uniform noise of strength -30dB is 

added to actual system response to assess the performance of two nder 

noisy condition. T he AN sting. Finally the te he 

networks mo dert pre  ze wh  signal to the 

identified model. Performance comparison between the FLANN and pruned FLANN 

structure in term ated output of

responses of both the networks are compared during testing operation and shown in Figs.4.7  

(d), (e)   The comparison f computational complexity between FLANN and pruned 

LAN  given able.4.2. 

(a) Parameter of the linear system of the plant [ 0.2600 , 0.9300 , 0.2600 ] 

(b) Nonlinearity associated with the plant yn(k) = yk + 0.2 yk
2 – 0.1 yk

3, 

 

 

Example-5: 

(a) Parameter of the linear system of the plant [0.3040,0.9029,0.3040] 

(b) Nonlinearity associated with the plant yn(k) = tanh(yk), 

 

Example-6: 

 the plant [0.3

b) Nonlinearity associated with the plant yn(k) = yk – 0.9 yk
3. 

odel is trained for 2000 iterations where as th

 f tions. While training, a

 different models u

hen the weights of t

aken by 

N are stored for te

ro mean 

sting of t

del is un senting a ite random

s of estim  the unknown plant has been carried out. The 

, (f).  o

F N is in T
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Fig.4.7. Output plot for static and dynamic systems (a) output plot for Example 1. (b) Output 

plot for Example 2. (c) output plot for Example 3. (d) output plot for Example 4.(e)output 

plot for Example 5. (f) output plot for Example 6. 
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TABLE. 4.2 
COMPARISON   OF COMPUTATIONAL COMPLEXITIES BETWEEN A BASIC 

FLANN AND A PRUNED FLANN MODEL 

 

 

 

4.6. SUMMARY 

    Simultaneous weight updating and pruning of FLANN identification models using GA is 

presented. The pruning strategy is based on idea of successive elimination of less productive 

path. For each weight a separate pruning bit reserved in this process. Computer simulation 

studies on static and dynamic nonlinear plants demonstrate that there is more than 50% active 

paths are pruned keeping response matching almost identical with those obtaining from 

conventional FLANN identification models.  
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Chapter 5 

 
 
 
 
 

 
 

CHANNEL EQUALIZATION 

 
 



5. CHANNEL EQUALIZATION 
 

5.1. INTRODUCTIO

    Recently, there has been substantial increase of demand for high speed digital data 

transmis ion effectively v ion channel. C els are 

usuall deled as ed linear fi onse (FIR) filters with low pass 

frequency response. When litud e en elay e ar nstant 

within e bandw  the filter, the channel disto ts the transmitted signal causing 

inters  interf nce (ISI) ecause of this linear d tion, the mitted symbols are 

spread and overlapped over successive tim tervals. In addition to the linear di rtion, the 

transmitted symbols are subjec to other im ments such as therm pulse noise, 

nd n ear di ortion aris g from the modulation/demodulation process, cross-talk 

terference, the use of amplifiers and converters, and the nature of the channel itself. All the 

gnal processing methods used at the receiver's end to compensate the introduced channel 

ver the transmitted symbols are referred as channel equalization 

h going on to introduce new algorithms to train 

lizer. 
daptive channel equalization was first proposed and analyzed by Lucky in 1965[5.11].  

daptive channel equalizer employing a multilayer perceptron (MLP) structure has been 

 of the MLP structure is the long training 

e required for generalization and thus, this network has very poor convergence speed 

hich is primarily due to its multilayer architecture. A single layer polynomial perceptron 

N) has been utilized for the purpose of channel equalization [5.3] in which the 

xpanded using polynomials and cross-product terms of the pattern 

r the equalization problem. Superior performance 

ork over a linear equalizer has been reported. An alternative ANN structure called 

LANN) originally proposed by Pao [5.8] is a novel single layer ANN 

ing arbitrarily complex decision regions. In this network, the initial  

N 

s o er physical communicat ommunication chann

y mo  band-limit nite impulse resp

 the amp e a d thn velope d  re onssp e not co

th idth of r

ymbol ere . B istor trans

e in sto

t pair al noise, im

a onlin st in

in

si

distortion and reco

techniques. High speed communications channels are often impaired by channel inter symbol 

interference (ISI) and additive noise. Adaptive equalizers are required in these 

communication systems to obtain reliable data transmission. In adaptive equalizers the main 

constraint is training the equalizer. Many algorithms have been applied to train the equalizer, 

each having their own advantages and disadvantages. More over the importance of the 

channel equalization always keeps the researc

the equa

   A

A

reported [5.2], [5.7]. One of the major drawback

tim

w

network (PP

original input pattern is e

and then, this expanded pattern is utilized fo

of this netw

functional link ANN (F

capable of form
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representation of a patt ns resulting in higher 

imensional pat tern and hence, the separability of the patterns becomes possible. The PPN, 

 for the expansion of the input pattern, in fact, is a subset of the 

y

. 

t  

ern is enhanced by the use of nonlinear functio

d

which uses the polynomials

broader FLANN famil . Applications of the FLANN have been reported for functional 

approximation [5.8] and for channel equalization [5.l], [5.4]. It has been shown [5.9] that in 

the case of 2-ary PAM signal, BER and MSE performance of the FLANN-based equalizer is 

superior than two other ANN structures such as MLP and PPN. 

  

5.2. BASEBAND COMMUNICATION SYSTEM 

  In an ideal communication channel, the received information is identical to that transmitted. 

However, this is not the case for real communication channels, where signal distortions take 

place. A channel can interfere with the transmitted data through three types of distorting 

effects: power degradation and fades, multi-path time dispersions and background thermal 

noise. Equalization is the process of recovering the data sequence from the corrupted channel 

samples. A typical base band transmission system is depicted in Fig.5.1., where an equalizer 

is incorporated within the receiver. 

      
 

 

 

 
 
 

OutpuTransmitter   
    Filter 

Equalizer   Receiver    
    Filter 

Channel 
Medium +

  

Noise  

put 

 
 
 
 

    The equalization approaches investigated in this thesis are applied to a BPSK (binary phase 

shift keying) base band communication system. Each of the transmitted data belongs to a 

binary and 180° out of phase alphabet {-1, +1}. 

 

5.3. CHANNEL INTERFERENCE 

In a communication system data signals can either be transmitted sequentially or in parallel 

across a channel medium in a manner that can be recovered at the receiver. To increase the 

data rate within a fixed bandwidth, data compression in space and/or time is required

 In

Fig.5.1. A baseband Communication System 
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5.3.1. Multipath Propagation. 

    Within telecommunication channels multiple paths of propagation commonly occur. In 

practical terms this is equivalent to transmitting the same signal through a number of separate 

channels, each having a different attenuation and delay [5.13]. Consider an open-air radio 

transmission channel that has three propagation paths, as illustrated in Fig.5.2 [14].These 

could be direct, earth bound and sky bound. 

    Fig.5.2 (b) describes how a receiver picks up the transmitted data. The direct signal is 

received first whilst the earth and sky bound are delayed. All three of the signals are 

attenuated with the sky path suffering the most. 

    Multipath interference between consecutively transmitted signals will take place if one 

signal is received whilst the previous signal is still being detected [5.13]. In Fig.5.2. this 

would occur if the symbol transmission rate is greater than1/τ . Because bandwidth 

efficiency leads to high data rates, multi-path interference commonly occurs. 

         

 
                        Multiple Transmission Paths   
 

 Sky Bound 
    Transmitter           

           Receiver 
 

Direct 
      

Earth Bound 
 
 
 
 

(a) 
   Signal Strength  

  at Receiver      Earth Bound 
 

   
       Direct           Sky Bound   

 

                                                      τ  
 
 

            
    Receiver Samples 

(b) 
 

Fig.5.2. Impulse Response of a transmitted signal in a channel which has 3 modes of 

propagation, (a) The signal transmitted paths, (b) The received samples. 

 

Channel models are used to describe the channel distorting effects and are given as a  
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summation of weighted time delayed channel inputs ( )d n i− . 

 phase channel is convergent, illustrated by 

1 2

0
( ) ( ) ( ) ( 1) ( 2) ......

m
i

i

H z d n i z d n d n z d n z− − −

=

= − = + − + − +∑                                              (5.1) 

The transfer function of a multi-path channel is given in Equation 5.1. The model coefficients 

( )d n i−  describe the strength of each multipath signal. 

 

5.4. MINIMUM AND NONMINIMUM PHASE CHANNELS 

When all the roots of the model z-transform lie within the unit circle, the channel is termed 

minimum phase [5.15] The inverse of a minimum

Equation(5.2): 
1

1

( ) 1.0 0.5
1 1
( ) 1.0 0.5

H z z

H z z

−

−

= +

=
+

                                                            

0

1
2

i
i

i
z

∞
−

=

⎛ ⎞= −⎜ ⎟
⎝ ⎠

∑
(5.2) 

nels are not convergent, as shown in 

Equation (5.3) 

1 2 31 0.5 0.25 0.125z z z− − −= − + − +"

ase chanwhere as the inverse of non-minimum ph

1

0 2i=

2 3.5 0.25 0 5z z z ⎤+ −

( ) 0.5 1.0
1
( ) 1.0 0.5

1.

. 1 0 .12

i
i

H z z
z

H z z

z z

z

−

∞
−

= +

=
+

⎡ ⎤⎛ ⎞= −⎢ ⎥⎜ ⎟
⎝ ⎠

⎡= −⎣ ⎦

∑
                                                                 (5.3) 

    Since equalizers are de  inve e c annel istortio

model the channel inverse. The minimum phase hannel has a linear inverse model therefore 

a linear equalization solution exists. However, limiting the inverse model to m-dimensions 

will that non-linear solutions can provide a 

perior inverse model in the same dimension. 

 phase model, where 

nger delays are necessary to provide a reasonable equalizer. Equation (5.4) describes a non-

e. The 

latter of these is the more suitable form for a linear filter. 

⎢ ⎥⎣ ⎦

 signed to rt th h d n process they will in effect 

c

 approximate the solution and it has been shown 

su

    A linear inverse of a non-minimum phase channel does not exist without incorporating 

time delays. A time delay creates a convergent series for a non-minimum

lo

minimum phase channel with a single delay inverse and a four sample delay invers
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1( ) 0.5 1.0H z z−= +

1 2 31 1 1 0.5 0.25 0.125 (
( ) 1 0.5

z z z z non ca
H z z

− = = − + − +
+

"

 

.5. INTERSYMBOL INTERFERENCE 

 overlapping of the 

imensionality of the channel output vector helps characterize the multipath 

propagation. This has the effect of not only increasing the number of symbols but also 

increases the Euclidean distance between the output classes. 

   When additive Gaussian noise

)usal                       5.4) 

4 3 2 11 0.5 0.25 0.125 ( )
( )

z z z z z truncated and causal
H z

− − − −= − + − +"

5

    Inter-symbol interference (ISI) has already been described as the

transmitted data. It is difficult to recover the original data from one channel sample 

dimension because there is no statistical information about the multipath propagation. 

Increasing the d

, η , is pre  

Gaussian clusters around the symbol centers. These symbol clusters can be characterized by a 

probability density function (pdf) with a noise variance

sent within the channel, the input sample will form

2
ησ , where the noise can cause the 

f the input samples. Error control coding schemes can be employed in such 

cases but these often require extra bandwidth. 

 

5.5.1. Symbol Overlap. 

    The expected number of errors can be calculated by considering the amount of symbol 

interaction, assuming Gaussian noise. Taking any two neighboring symbols, the cumulative 

distribution function (CDF) can be used to describe the overlap between the two noise 

symbol clusters to interfere. Once this occurs, equalization filtering will become inadequate 

to classify all o

characteristics. The overlap is directly related to the probability of error between the two 

symbols and if these two symbols belong to opposing classes, a class error will occur. 

    Figure 2.3 shows two Gaussian functions that could represent two symbol noise 

distributions. The Euclidean distance, L, between symbol canters and the noise variance, 2σ , 

can be used in the cumulative distribution function of Equation (5.5) to calculate the area of 

overlap between the two symbol noise distributions and therefore the probability of error, as 

in Equation (5.6) 
2

2

1( ) exp
22

x xCDF x dx
σπσ−∞

⎡ ⎤
= −⎢ ⎥

⎣ ⎦
   ∫                                                                                      (5.5)   
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Area of overlap = 
Probability of error  

 
 
 
 

 

 

                     Fig.5.3. Interaction between two neighboring symbols. 

( ) 2
2
LP e CDF ⎛ ⎞= ⎜ ⎟

⎝ ⎠
                                                                                                                (5.6) 

Since each channel symbol is equally likely to occur, the probability of unrecoverable errors 

occurring in the equalization space can be calculated using the sum of all the CDF overlap 

between each opposing class symbol. The probability of error is more commonly described 

as the BER. Equation(5.7)describes the BER based upon the Gaussian noise overlap, where 

spN is the number of symbols in the positive class, mN  is the number of  number of symbols 

in the negative class and iΔ , is the distance between the thi positive symbol and its closest 

neighboring symbol in the negative class. 

 

1

2( ) log
2

i
n

isp m n

BER CDF
N N

σ
σ=

= ⎢ ⎥
spN ⎤⎛ ⎞Δ⎡

⎜ ⎟+⎢ ⎥⎝ ⎠

ymbol 

ai

eeps the research going on to introduce new algorithms to train 

the equalizer. 
    The optimal BER equalization 

sequence estimator (MLSE) on the entire transmitted data sequence [5.18].A more practical  

⎣ ⎦
∑                                                                          (5.7) 

  

5.6. CHANNEL EQUALIZATION 

    High speed communications channels are often impaired by channel inter s

interference (ISI) and additive noise. Adaptive equalizers are required in these 

communication systems to obtain reliable data transmission. In adaptive equalizers the m n 

constraint is training the equalizer. Many algorithms have been applied to train the equalizer, 

each having their own advantages and disadvantages. More over the importance of the 

channel equalization always k

performance is obtained using a maximum likelihood 
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MLSE would operate on smaller data sequences but these can still be computationally 

xpensive, they also have problems tracking time-varying channels and can only produce 

quences of outputs with a significant time delay. Another equalization approach 

plements a symbol-by-symbol detection procedure and is based upon adaptive filters. The 

mbol-by-symbol approach to equalization applies the channel decision 

lassifier that separates the symbol into their respective classes. Two types of symbol-by-

mbol equalizers are examined in this thesis, the transvers  decision feedback 

q  linear filters, LTE 

nd LDFE, with a simple FIR structure. The ideal equalizer will model the inverse of the 

hannel model but this does not take into account the effect of noise within the channel. 
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c

sy al (TE) and

e ualizer (DFE). Traditionally these equalizers have been designed using
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    A basic block diagram of channel equalization is shown in Fig. 5.4.The transmitted signal 

X(n) pass through the channel .The block N.L accounts for the nonlinearity associated with 

the channel. q(n) is the Gaussian noise added through the channel. The equalizer is placed at 

the receiver end. The output of the equalizer is compared with the delayed version of the 

transmitted signal to calculate the error signal e(n),which is used by the update algorithm to 

update the equalization coefficient such that the error becomes minimum.  

∑ 

  Channel 

Update 
Algorithm 

+  N.L.

+ 

y (n) 

d(n) 

_ 

X(n) 

e(n) 

  Equalizer 

a(n) b(n) 

r(n) 

q(n) 

    Delay 

    N.L. =Nonlinearity 

  Fig.5.4. Block diagram of Channel Equalization 
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5.6.1. Transversal Filter 

    The transversal equalizer uses a time-delay vector, ( )Y n (Equation (5.8)), of channel 

output samples to determine the symbol class. The {m} TE notation used to represent the 

transversal equalizer specifies m inputs. 

( ) [ ( ), ( 1), .... , ( ( 1))]Y n y n y n y n m= − − −                                                                        (5.8) 

The equalizer filter output will be classified through a threshold activation device (Fig. 5.5) 

so that the equalizer decision will belong to one of the BPSK states i.e. 1 or -1. 

 

 
 

 z-1  z-1 z-1 z-1y(n) y(n-2) y(n-3) y(n-1) y(n-4) 
 
 
 w2(n) w3(n) w4(n) w1(n) w5(n)  
 
 
 
   Adder 

d(n) 

Fig.5.5. Linear Transversal Filter 

y(n)= Received samples 

d(n)=Equalized output 

 
 
 
 
 
 
 

 

 
1( ) 1.0 0.5H z z−= +Considering the inverse of the channel  that was given in Equation (5.3), 

is is an infinitely long convergent linear series: 
0

1 1
( ) 2

i
i

i

z
H z

∞
−

=

⎛ ⎞= −⎜ ⎟
⎝ ⎠

∑th  . Each coefficient of 

 

 

this inverse model can be used in a linear equalizer as a FIR tap-weight. Each tap-dimension 

will improve the accuracy; however, high input dimensions leave the equalizer susceptible to 

noisy samples. If a noisy sample is received, this will remain within the filter affecting the 

output from each equalizer tap. Rather than designing a linear equalizer, a non-linear filter 

can be used to provide the desired performance that has a shorter input dimension; this will 

reduce the sensitivity to noise. 
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5.7. SIMULATION RESULTS 

BP algorithm and a linear FIR equalizer with LMS 

algorithm as discussed in section 2.6.. Th

e simulations 

e assign the same input signals to the two neural-network based equalizer structures 

onsidered. To the channel output a zero mean white Gaussian noise of SNR 30dB was 

dded. Th ei s is  to s  the SNR equal to the 

c ocal of noise varian t of the equ

  Fo NN th zer h  branch  each s expanded to five branches 

sing trigonometric functions. The output of the FLANN contains a tanh(.) function. Total 

umber of weights used for FLANN is 31 (including one bias term).In case of CFLANN in 

e first stage each branch is expanded into five branches. The output of first s gain 

xpanded into three terms. The number of weights used in the first stage is 19 (including one 

ias term). The number of weights used in the second stage is 4 (including one bias term). 

otal number of weights used for FLANN is 23. At each stage CFLANN contains tanh(.)  

nction.   The l as 0.03 for both the structure.  To study the BER 

erformance, each of the equalizer structures was trained with 5000 iterations for optimal 

eight solution. After comple qualizer was carried out. The 

ER was calculated 105 data samples. 

   The channel considered here has the normalized transfer function given in z-transform 

 the nonlinearity is plotted in Fig.5.6.From the BER plot it is 

bserved that the performance of CFLANN equalizer is better than those of FLANN and 

MS based equalizers. 

   Extensive simulation studies have been carried out for channel equalization problem as 

described in Fig 5.4. using the two discussed ANN structures (FLANN and CFLANN), as 

discussed in section 3.4. and 3.5., with 

e digital message was with binary phase shift 

keying (BPSK) signal constellation and in the form [-1 1] in which each symbol was 

obtained from a random distribution. To obtain meaningful comparisons from th

w

c

a e rec ved ignal power  normalized  unity so a to make

re ipr ce at the inpu alizer.  

  r FLA e equali ave six es and branch i

u

n

th tage is a

e

b

T

fu earning rate  is chosen 

p

w tion of the training, testing of the e

B

 

form: 
1 2( ) 0.26 0.93 0.26H z z z− −= + +                                                                                            (5.9) 

The following types of nonlinearity were introduced in the channel. 

   (1)   2 3( ) ( ) 0.2 ( ) 0.1 ( )b n a n a n a n= + −                                                                              (5.10) 

   (2)  2 3( ) ( ) 0.2 ( ) 0.1 ( ) 0.5cos( ( ))b n a n a n a n a nπ= + − +                                                    (5.11) 

 
 The BER performance for both

o

L
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5.8. SUMMARY 

To compensate the effect of ISI and other type noises on the bits, when transmitted through 

the channel, an equalizer is placed at the receiver end. For the equalization of highly 

nonlinear systems the number of branches in the FLANN increases. Even some cases give 

poor performance. To decrease the number of branches and increase the performance a two-

stage FLANN is described in this chapter. Here the output of the first stage again undergoes 

functional expansion. From the BER plots it can be observed that for nonlinear channels the 

performance of CFLANN equalizer is considerably better than those of FLANN and LMS 

based equalizers.  
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6. CONCLUSIONS  

ctures, MLP, FLANN and CFLANN, are discussed. Due to multilayer 

ructure of the MLP, its convergence is slow. On the otherhand FLANN is a single layer 

ructure with functionally mapped inputs. Here, the initial representation of a pattern is 

nhanced by using nonlinear function and thus the pattern dimension space is increased. The 

nctional link acts on an element of a pattern or entire pattern itself by generating a set of 

nearly independent function and then evaluates these functions with the pattern as the 

rgument. Hence separation of the patterns becomes possible in the enhanced space. While 

onstructing an artificial neural network the designer is often faced with the problem of 

hoosing a network of the right size for the task to be carried out. To overcome this problem 

 GA based pruning strategy and weight updation algorithm is used.  

      Transmission bandwidth is one of the precious resources in digital communication 

stems. To achieve better use of this resource, signals are commonly transmitted through 

and-limited channels. So the received signals inevitably affected by inter symbol 

terference(ISI). A channel equalizer is used to recover the transmitted data from the 

ceived signals. If the nonlinearity associated with the system or channel is high the number 

f branches in the FLANN increases. Even some cases give poor performance. To decrease 

e number of branches and increase the performance CFLANN is used. 

.2. SCOPE FOR FUTURE WORK 

  In this thesis CFLANN is used for only FIR system and channels. This can be extended to 

finite impulse response (IIR) systems and channels. 

  In pruning technique GA is used which is a very slow process and has a very high 

omputational complexity. Hence research can be done to find out a faster method for 

runing. 

 
 

6.1. CONCLUSIONS  

   The aim of this thesis is to find a proper artificial neural network (ANN) model for adaptive 

nonlinear system identification and channel equalization. The prime advantages of using 

ANN models are their ability to learn based on optimization of an appropriate error function 

and their excellent performance for approximation of nonlinear functions. .  
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