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Abstract 

This dissertation presents personalized health monitoring using evolvable block-based 

neural networks. Personalized health monitoring plays an increasingly important role 

in modern society as the population enjoys longer life. Personalization in health 

monitoring considers physiological variations brought by temporal, personal or 

environmental differences, and demands solutions capable to reconfigure and adapt to 

specific requirements. Block-based neural networks (BbNNs) consist of 2-D arrays of 

modular basic blocks that can be easily implemented using reconfigurable digital 

hardware such as field programmable gate arrays (FPGAs) that allow on-line partial 

reorganization. The modular structure of BbNNs enables easy expansion in size by 

adding more blocks. A computationally efficient evolutionary algorithm is developed 

that simultaneously optimizes structure and weights of BbNNs. This evolutionary 

algorithm increases optimization speed by integrating a local search operator. An 

adaptive rate update scheme removing manual tuning of operator rates enhances the 

fitness trend compared to pre-determined fixed rates. A fitness scaling with 

generalized disruptive pressure reduces the possibility of premature convergence. The 

BbNN platform promises an evolvable solution that changes structures and 

parameters for personalized health monitoring. A BbNN evolved with the proposed 

evolutionary algorithm using the Hermite transform coefficients and a time interval 

between two neighboring R peaks of ECG signal, provides a patient-specific ECG 

heartbeat classification system. Experimental results using the MIT-BIH Arrhythmia 

database demonstrate a potential for significant performance enhancements over other 

major techniques.  
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Chapter 1  INTRODUCTION 

1.1 Motivation and Research Goals 

With the world population enjoying longer life, personalized health monitoring for 

old people capable of early detection of abnormal conditions becomes increasingly 

important. Also, people working in dangerous environments (e.g. military personnel, 

firefighters, and over-sized vehicle drivers) benefit from continuous monitoring of 

health conditions for prediction of various dangerous states such as losing 

consciousness and heart infarct. Personalization is essential in health monitoring 

applications in the means that patient-specific situation such as history, gender and 

age usually need to be considered in making medical decisions. In addition, 

physiological variations exist due to temporal or environmental differences. 

Personalized health monitoring considers the variations among patients or patient 

groups and demands solutions that can reconfigure and adapt to specific needs. 

Various measurements can be utilized in providing health monitoring including ECG, 

EKG, respiration rate, blood pressure and so on.  

Electrocardiogram (ECG) has become an important routine clinic practice to 

monitoring heart activities. According to American Heart Association, cardiovascular 

disease (CVD) caused deaths account for 38% of the total deaths in United States in 

2003 [1]. Since 1900, every year CVD caused more deaths than other forms of 

sources including cancer and accidents except 1918. Continuous monitoring of heart 

conditions provides quick alarms for emergency rescue and thereby helps reduce the 

risk of sudden cardiac death. Heart monitoring is especially important for older 

people or patients who have survived cardiac arrest, ventricular tachycardia, or 

cardiac syncope.  

A unique property of ECG signals lies in its big variation among different 

situations. ECG signals show great difference for different individuals. Even for the 



 2

same individual, heartbeat patterns significantly change with time of the day and 

under different situations. While normal sinus rhythm originates from the sinus node 

of heart, arrhythmias have various origins and indicate a wide variety of heart 

problems. Under different situations, same symptoms of arrhythmia produce different 

morphologies due to their origins such as premature ventricular contraction (PVC) 

[2][3]. 

A possible solution to tackle the big variations in ECG signals is to use a huge 

set of dataset that include as much as possible representative heartbeat samples, to 

train a classifier and then use the trained classifier to classify the unseen data. 

However, a classifier trained for a large set of training data will inevitably need a very 

large size in order to consider numerous exceptions brought by the large size of the 

training data. It is also difficult to train and generalize a classifier with a large size 

using a large set of training data. 

Block-based neural networks (BbNNs) [4] consist of a two-dimensional (2-D) 

array of modular basic blocks. BbNNs have structures that can be easily implemented 

using reconfigurable digital hardware such as field programmable gate arrays 

(FPGAs) that allow on-line partial reorganization of internal structures due to 

modular characteristics of BbNN architecture and simultaneous optimization of 

structure and weights. The modular structure of BbNNs enables easy expansion in 

size by adding more blocks.  

Evolvable classifiers based on block-based neural networks change the 

structure and configurations as well as internal parameters to cope with the heartbeat 

variations due to personal or temporal differences, and have demonstrated a potential 

for performance improvement over conventional techniques for ECG signal 

classification [5][6][7][8]. 

The main objective of this dissertation is to demonstrate the unique capabilities 

of the BbNN platform in personalized health monitoring where the dynamic nature of 

the problem needs an evolvable solution to tackle the changes in operating 

environments. Example of target applications includes personalized ECG heartbeat 

classification. 
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Another goal in this dissertation is to design an evolutionary algorithm to 

optimize simultaneously the structure and weights of block-based neural networks. 

The previous evolutionary algorithm provides an effective optimization technique in 

finding optimal structure and weights for block-based neural networks, but the 

convergence speed is often too slow as well as it is limited to binary representation of 

internal weights.  

1.2 Contributions 

In this dissertation, we work on development of optimization algorithms for BbNN 

configuration and demonstration of the capabilities of the BbNN approach in various 

dynamic environments. Contributions in finishing this dissertation are summarized in 

the following. 

Computationally efficient optimization of block-based neural networks. 

We describe a computationally efficient evolutionary algorithm that simultaneously 

optimizes structure and weights of BbNNs (Chapter 3, pp. 33-64). Fitness scaling and 

local search techniques are developed to circumvent the deficiencies of inefficient 

and slow optimization frequently encountered in previous evolution scheme. 

Feedforward implementation of BbNNs is considered to facilitate hardware 

implementation and enables the use of local search (Section 3.1, pp. 33-39). 

Evolutionary operators are designed to work directly on the phenotype of BbNN 

individuals that eliminates the encoding/decoding procedure between BbNN 

phenotype and genotype as in conventional evolutionary algorithms (Section 3.2.3, 

pp. 43-51). To speed up the optimization, a local search operator based on gradient 

descent is integrated with the evolutionary algorithm (Section 3.2.3.3, pp. 48-51). A 

fitness scaling with generalized disruptive pressure that favors individuals at two 

extreme ends makes an effective approach for searching in mountainous function 

landscape of BbNNs (Section 3.2.2, pp. 41-43). An adaptation scheme that rewards or 

penalizes an operator based on its past performance automatically updates the 
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parameters during evolution without manual adjustment of operator rates (Section 

3.2.4, pp. 51-53).  

Personalized ECG heartbeat classification. A personalized ECG heartbeat 

classification scheme is implemented based on the BbNN platform. (Chapter 4, pp. 

65-99). The structure and weights of a selected BbNN are evolved for a patient using 

training data consisting of both common and patient-specific heartbeat patterns. The 

Hermite transform coefficients and a time interval between the two neighboring R 

peaks of ECG signal are used as the input to the network. The evolved BbNN 

provides a personalized monitoring system that classifies each heartbeat into one of 

five classes recommended by Association for the Advancement of Medical 

Instrumentation (AAMI). Simulation results using the MIT-BIH Arrhythmia 

Database demonstrate a high accuracy of 98.1% and 96.6% on average for the 

detection of ventricular ectopic beats (VEBs) and supraventricular ectopic beats 

(SVEBs), respectively. These results are significant improvements over previously 

published results for ECG heartbeat classification. The fault tolerance ability of 

BbNNs on ECG signal classification is studied under two types of fault modes: 

Global Gaussian noise and local impulse noise. Experiment results demonstrate the 

fault tolerance of BbNNs by showing that the level of performance degradation is 

proportional to the severity of noise. 

Accelerated local search using blockwise least squares learning. Observing 

the slow optimization speed of gradient descent search operator (GDS), I use a 

blockwise least squares learning method (BLS) as an alternative to the GDS for 

applications where highly accurate results are desired such as nonlinear function 

approximation (Chapter 5, pp. 100-118). Two examples are studied including 

Mackey-Glass time series prediction and a practical heater exchanger nonlinear 

system identification problem. Computer simulations demonstrate that BLS 

converges faster with orders of magnitude than the gradient-based search. 
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1.3 Dissertation Outline 

This dissertation is organized as in the following: 

Chapter 2 introduces background knowledge for this dissertation. This chapter 

briefly reviews the development of artificial neural networks and evolvable hardware. 

The introduction of block-based neural network model focuses on discussions about 

the structure of BbNN, the previous optimization scheme, issues in hardware 

implementation using reconfigurable computing platform and comparison with the 

Cellular Neural Networks (CNN) model. 

Chapter 3 describes an evolutionary optimization method for block-based 

neural networks that simultaneously optimizes the structure and weights of the 

network. This algorithm uses a generalized fitness scaling that can adjust disruptive 

pressure depending on applications. The section of evolutionary operators discusses 

in detail crossover, mutation and the gradient descent search operator. An adaptive 

rate update scheme proposed to replace manual tuning follows. In the end of this 

chapter, implementation platform is discussed that is followed by an illustrative 

example showing the effect of various parameters in the algorithm. 

Chapter 4 proposes personalized ECG signal classification based on the BbNN 

model. An evolvable hardware platform is described. Details on the challenges of 

ECG signal classification, the experimental ECG data, feature extraction and other 

issues are discussed. The later part of this chapter compares the performance of the 

proposed method with other techniques and studies the issue of fault tolerance of 

BbNNs in ECG signal classification. 

Chapter 5 introduces an accelerated local search method that uses the least 

squares principle. This local search method is compared to gradient descent search in 

terms of convergence speed. The performance of the EA algorithm with the enhanced 

local search operator is demonstrated by two dynamic system approximation 

problems. 

Chapter 6 concludes this dissertation with future research directions suggested.  
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Chapter 2 BACKGROUND 

2.1 Introduction 

This dissertation finds its foundation in the general theory of artificial neural 

networks (ANNs). An introduction of ANNs is first presented with focus on 

multilayer perceptrons, cellular neural networks and the neural network learning 

methods. Then, brief reviews of evolvable hardware and block-based neural networks 

are given.  

2.2 Artificial Neural Networks 

Artificial neural networks were inspired by Man’s desire to produce systems that are 

capable of performing complex tasks excelled by the human brain. The field of 

artificial neural networks covers a vast number of theories and applications and 

reflects a number of interdisciplinary research efforts. A detailed review of ANN 

theory is beyond the scope of this document. This section provides only a brief 

review of ANN theory that is closely related to the main work of this dissertation.  

2.2.1 The Biological Neural Network  

It is helpful to gain some knowledge about biological neural network as ANNs draw 

much of its inspiration from the biological nervous system. Human brains are made 

up of thousands of thousand of neurons of many varieties connected with each other 

via a vast number of interconnections. The simplified model of a typical biological 

neuron is shown in Figure 1, which reveals only important computational features and 

ignores the details that differentiate neurons of different types. The dendrites are input 
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Figure 1: Model of a biological neuron.  

Source: http://www.mines.edu/Academic/courses/math_cs/macs570/node11.html. 
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channels for the neuron. The cell body is the primary processing unit and the axon 

hillock sums input signals that are transmitted from neighboring neural cells. The 

axon has many branches connected to other cells forming output channels.  

Each neuron receives signals, processes them and sends the outputs to other 

neurons. Specifically, all the inputs to the cell are summed up. The sum is then 

processed by a threshold function producing an output signal that propagates down 

the axon to other connected neurons through branches of the axon. Those branches 

are connected to the dendrites of other neurons through junctions called synapses. 

Output signals from one neuron modified at synapses become the input signals to the 

connected neuron. During this modification process, the activation potential from the 

pre-synaptic neuron is either lowered or raised, which can be interpreted as a 

weighting operation of the input signals.  

Each neuron can be considered as a basic signal processing element. Billions of 

neurons are connected to form complex neural networks, each of which can learn to 

perform a certain task. It is true that the functional capability of a single neuron is 

limited; however, the neural networks formed with a large number of basic neurons 

can learn to perform very complex tasks.  

2.2.2 ANNs: History and Applications 

The desire to emulating the working mechanisms of human brains motivates the 

development of ANNs. The emulation has been limited to some behavior 

characteristics of brains mainly due to our limited knowledge about human brain. A 

lot of joint effort from interdisciplinary researchers has been devoted to ANN 

research with many exciting work resulted. 

The first advance in modern neural network came in 1943 when Warren 

McCulloch and Walter Pitts wrote a paper [10] on how neurons might work in which 

they modeled the arithmetic and logical functionality of a simple neural network. In 

the following, Donald Hebb proposed a learning mechanism in biological neurons 

[11]. In 1959, Bernard Widrow and Marcian Hoff at Stanford University introduced 
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the neural network model [12] called ADALINE that is trained using least mean 

square (LMS) algorithm. ADALINE was the first neural network model applied in 

real world applications. The development of Perceptron proposed by Rosenblatt in 

1958 demonstrates the promise of neural networks in computation [13]. A single-

layer perceptron was able to classify continuous valued inputs into one of two classes. 

Unfortunately, Minsky and Papert later showed in their famous 1969 book [14] that 

Perceptron is limited only to linearly separable problems. They proved that 

perceptron neural network cannot solve problems that are not linearly separable. The 

publication of their book has generated a great impact on neural network research and 

brought dark to the promises of ANNs. That illusion was not changed until the well-

known error back-propagation algorithm was proposed by Rumelhart et al. [15][16]. 

Other major neural network models include self-organizing maps by Kohonen [17] 

and Hopfield models by Hopfield [18]. 

Artificial neural networks have drawn a lot of interest from many fields. ANNs 

have been successfully used in a wide variety of application domains such as system 

identification, time series prediction, classification, expert systems, etc.  Some 

examples of the applications include speech recognition, face recognition, adaptive 

signal processing, financial prediction, bioinformatics, control system design, optimal 

scheduling of task assignments, and electronic circuit layout design. 

2.2.3 Multilayer Perceptrons 

Let us first look at Rosenblatt’s perceptron model shown in Figure 2.  Perceptron 

model consists of a linear combiner and a hard limiter. The linear combiner sums the 

linear combination of the inputs applied to the synapses of the neuron. A bias is 

usually applied to the linear combiner too. The sum from the combiner is then subject 

to a hard limiter to produce an output. The output is +1 or -1 depending on the input 

to the hard limiter is positive or negative. Mathematically, a neuron computes the 

output according to the following equation: 
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Figure 2: Rosenblatt’s Perceptron model. 
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where xi is an externally applied stimuli and wi denotes the synaptic weights of the 

perceptron. The bias to the neuron is denoted by b. 

The perceptron described is able to classify the set of inputs x1, x2, …, xm into 

one of two classes, C1 and C2. The decision boundary given by the perceptron is 

simply a hyperplane defined by: 
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The decision rule is to assign a point in the m-dimensional input space to C1 if the 
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output from the perceptron is positive; otherwise, the point is assigned to C2. 

This two-layered architecture was found to be able to implement simple logic 

functions. However, due to a lack of usable training algorithm, perceptron model is 

limited to have only two layers, which severely limits the capability of perceptrons. 

As pointed out by Minsky and Papert in their book entitled, Perceptrons: An 

Introduction to Computational Geometry [14], the two-layered perceptron cannot 

solve the problem even as simple as the XOR classification.  

The book by Minsky and Papert reveals the severe limit of two-layered 

perceptron model and suggests adding hidden layers in order to extend the capability 

of Perceptrons. However, the addition of hidden layers requires new learning 

algorithm that is capable of training perceptrons with more than two layers. Such an 

algorithm did not appear until the advent of back-propagation (BP) algorithm 

proposed by Rumelhart et al. in 1986. BP algorithm provides a computationally 

efficient approach to training multilayer perceptrons. BP algorithm lifts the 

limitations of two-layered perceptrons and enables the perceptrons to solve complex 

practical problems. Since its publication, BP algorithm has gained popularity in 

neural network field due to its simplicity and effectiveness in solving practical 

problems. In the following, the idea of BP algorithm is briefly visited. 

Figure 3 shows the architecture of a multilayer perceptron. The network is 

composed of an input layer, one or more hidden layers and an output layer. Each 

neuron in a layer is connected to any neuron in the next layer. Signals progress in the 

network in a forward direction, from input layer to hidden layer and to output layer. 

BP algorithm consists of two passes: forward pass of input signal and backward 

pass of error signal. In the forward pass, input signals xi (i = 1, 2, …, m) propagate 

from the inputs layer through the hidden layer to output layer producing network 

outputs yk (k = 1, 2, …, n).  
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Figure 3: Feedforward multilayer perceptrons. 
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where f(·) is the activation function and zj is output from the jth node in the hidden 

layer: 

1

I

j ji i j
i

z f w x b
=

⎛ ⎞= +⎜ ⎟
⎝ ⎠
∑                                                 (5) 

In a backward pass, error signals generated at output nodes are back propagated 

from output layer to previous layers. In order to derive the BP learning procedure, let 

us define in the following equation an error criterion that the algorithm wants to 

minimize. 

( ) ( )2

1

1
2

K

k k
k

w t yε
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= −∑                                              (6)      

where tk and yk are the target and actual output at the kth node of output layer. 

Beginning with an initial guess, successive weight vectors are generated such that the 

error is reduced at each iteration. The simple gradient steepest descent updates the 

weights according to the following equation [19]: 

 w
w
εη∆ = −
∂
∂

                                                         (7) 

where η is the learning rate.  

For the weights kjw  that connects hidden node to output node, we can compute 

the gradient using chain rule: 
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and 
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So by using Eq. (9) and Eq. (10), Eq. (8) can be rewritten as in the following 

( ) ( )'
k k k j

kj
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w
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= − −
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                                         (11) 

The update equation for kjw is therefore given in the following equation: 
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For the weights jiw  that connects input node to hidden node, we can again use 

the chain rule to compute the gradient: 

j
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Since the following equation holds 
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Let us use the following notations 

             ( ) ( )'
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Then Eq. (13) can be formulated as in the following equation using Eqs. (14)-(16) 
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The update equation for jiw is therefore given in the following equation: 
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From above derivation, it is clear that the activation function needs to be 

differentiable in order to apply the back-propagation learning algorithm. Examples of 

popular choices are log sigmoidal and tangent sigmoidal function that are shown in 

Figure 4. 

 

 

 

Figure 4: Examples of popularly used activation functions.  
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2.2.4 Cellular Neural Networks (CNNs) 

CNNs are a class of artificial neural networks that feature a regular array of 

component cells and local interconnections among the cells. The CNN model was 

invented by Chua and Yang in their seminal papers published in 1988 [20][21]. 

Unlike digital computers, CNNs process signals in continuous-time space due to the 

use of analog elements in constructing the cells. Unlike digital computers that execute 

instructions sequentially, the cells in a CNN process signal in parallel. A CNN is 

suited for VLSI implementation because of its local interconnections.  

A cellular neural network is composed of N-dimensional array of basic circuit 

elements called cells. A cell is connected only to its neighbor cells. Adjacent cells 

interact with each other directly through connection weights. Cells not directly 

connected may affect each other through propagation effect. A two-dimensional CNN 

with a size of 3×5 is shown in Figure 5, in which any cell is connected to its 1-

neighborhood cells. The links connecting two cells indicate interactions between 

them. In general, a cell can be connected to its r-neighborhood cells. The r-

neighborhood of a cell located at the ith row and the jth column in a CNN, denoted by 

C(i,j) is defined as: 

 ( ) ( ) { }{ }, , max , ,1 ,1rN i j C k l k i l j r k M l N= − − ≤ ≤ ≤ ≤ ≤             (19) 

where M and N denote the rows and columns of the network, respectively. 

The basic elements in a cell include linear capacitors, linear resistors, linear 

and nonlinear controlled sources and independent sources. The controlled sources can 

be implemented using operational amplifiers. All cells in a CNN share the same 

circuit structure and element values. A cell C(i,j) has direct connections to its 

neighbors through two kinds of weights: the feedback weights arranged in the 

Feedback Template and the control weights arranged in the Control Template. A 

block diagram of the cell is shown in Figure 6. The state equation of the cell C(i,j) is 

given in the following: 
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Figure 5: A two-dimensional cellular neural network with a size of 3×5. 

 

 

 

 

Figure 6: The block diagram of a cell of CNNs. Source: [22]. 
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where C and R denote the capacitor and resistor in the circuit, respectively. 

Coefficients ak and bk are the weights in the Feedback and Control Template. Index 

k denotes a specified neighborhood of the cell C(i,j). Variables xij, uk and yk 

correspond to the state, input and output of the cell. The output of cell is given as in 

the following piece-wise linear equation: 

( )1 1 1
2ij ij ijy x x= + − −                                           (21) 

Cellular neural networks find applications in high speed parallel signal 

processing such as image processing and pattern recognition [23]. By choosing 

appropriate coefficients in the Control and Feedback Templates, CNNs are able to 

perform such image processing tasks as noise removal, edge detection and 

character recognition. The CNN model is found to be orders-of-magnitude faster 

than a PC-based solution in a task involving in processing an image of size 

128×128 [23]. 

2.2.5 Neural Network Learning Methods 

Artificial neural networks offer a distribution-free approach to universal function 

approximation and pattern classification. ANNs have become an important and 

commonly used computation model in a wide range of application areas. The power 

of neural networks lies in their general applicable capability.  

A neural network can be used only after its internal weights are properly trained 

for the target problem. A training procedure involves in applying a set of training 

patterns to the network, computing the errors at output node and adjusting the weights 

to minimize the errors. The back-propagation algorithm described in preceding 

section has become a commonly used training protocol since it is proposed in 1986 

[15][16]. Despite of the successful application of the standard BP algorithm in 
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solving many problems, it suffers from several drawbacks. The major drawback is the 

extreme slow rate at which the algorithm converges to a satisfactory solution. The 

training time also increases greatly as the complexity of the problem goes up.  

The effort for improving the standard BP algorithm has never stopped with 

constant appearance of new training methods. A number of improved algorithms were 

proposed in literature [24][25][27][28][29][30]. Scalero and Tepedelenlioglu [24] 

proposed an algorithm that tries to minimize the mean squared error between the 

actual and desired summation outputs from a neuron. A set of linear equations is 

constructed for a neuron from which the associated weights are solved using Kalman 

filter technique. The desired summation output to a node in hidden layers is however 

estimated in a way similar to the error back-propagation procedure as in the BP 

algorithm.   

König and Bärmann [25] proposed the Least Squares Back Propagation 

algorithm (LSB) for training feedforward neural networks based on linear least 

squares and layer-by-layer optimization. For each layer, the weight optimization is 

formulated as a linear least squares problem that minimizes the mean squared error 

between the actual and desired linear neuron outputs. Solving the linear least squares 

problem at output layer (layer L) produces an optimal set of weights for the layer. The 

desired output vector for the layer preceding the output layer (i.e. layer L-1) is 

determined by solving another linear least squares problem based on the optimal 

weights of output layer just obtained. The acquired output vector is then transformed 

by a matrix to bring its bounds into range of the activation function. Then the optimal 

weights for layer L-1 is obtained by the solution of linear squares. This procedure is 

repeated for other layers. Although LSB is superior to the standard BP algorithm in 

terms of convergence speed, it suffers from the “stalling” problem and instability due 

to fluctuating initial weight solution of output layer. It also needs to transform the 

estimated target output into the range of the activation function utilized. 

Ergezinger and Thomsen [27] proposed to optimize the FNN layer by layer. 

The network to be optimized is assumed to have one hidden layer that uses sigmoidal 

activation function. The output layer uses a linear activation function. The algorithm 
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first optimizes the weights of the output layer and then the weights of the hidden 

layer. This procedure is performed iteratively. The weights of output layer are 

obtained by solving a set of linear equations to minimize the mean squared error 

between desired and actual outputs. For the weights of hidden layer, the nonlinear 

part (due to the sigmoidal activation function) is first approximated using first order 

Taylor series. A cost function is then constructed as a combination of the mean 

squared error and the quality of the linear approximation. Minimizing this cost 

function gives the optimal solution of the weights of the hidden layer. Comparing to 

[25], this method optimizes the weights of the output layer in a similar way, but it is 

different in optimizing the weights of the hidden layer. 

Wang and Chen [28] proposed a layer-by-layer optimization method. First, the 

weights and net inputs to the output layer are solved using matrix inversion 

simultaneously. Second, the weights of the hidden layer are optimized with matrix 

inversion. This procedure is repeated until stop criterion is met. For efficient matrix 

inversion, recursive least-square parameter estimation and recursive least parameter 

estimation with dynamic forgetting factor (from a reference) are utilized. (cf. 

Scalero’s paper where Kalman filter is used for recursive least square filtering.) The 

problem of this approach is that the desired output of the hidden layer obtained via 

matrix inversion may go beyond its allowed range (defined by the sigmoid activation 

function). 

Yam and Chow [29] combined the linear squares method and BP method. The 

weights of the output layer are obtained by solving a least squares problem. The 

weights of hidden layers are updated using BP algorithm with momentum. Both 

learning rates and momentum constant are adaptively adjusted to improve 

convergence speed and stability. 

Abid et al. [30] proposed a new form of error criterion, which is the summation 

of the standard BP criterion and a weighted error term based on the desired and target 

linear output of the output layer. The gradient descent rule of BP algorithm is adopted 

for the new error function. The authors gave a proof that shows the gradient descent 
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using the new error functions converges faster than that using the standard error 

function. 

In the other hand, the design of suitable ANN architecture has relied heavily on 

human experts who have sufficient knowledge on the neural network model used and 

the problem domain. Commonly, a trial-and-error procedure is performed in finding a 

suitable structure for a particular problem. As the complexity of the problem domain 

increases, manual design becomes more difficult and unmanageable. Autonomous 

determination of network structure and connection weights is an important issue in 

automated design of ANNs. 

Evolutionary algorithms (EAs) [31][32], inspired by the mechanism of natural 

selection and evolution, seeks a global optimum from a vast search space. EAs utilize 

a selection scheme that implements the survival-of-the-fittest principle, and various 

evolutionary operators that emulate the process of natural evolution. Evolutionary 

learning provides an optimal solution for non-convex optimization problems, where 

popular gradient-based learning algorithms fail [33][34]. Evolutionary search 

procedures have been successful in solving diverse optimization problems [35], and 

designing neural networks [36]. 

Evolvable artificial neural networks [36] use the evolutionary algorithms as an 

essential form of adaptation or learning to find network architecture and the 

corresponding parameters for a given problem without human intervention. There 

have been different approaches to EA-based neural network optimization: structure 

optimization only [37], weight optimization with fixed network structure 

[38][39][40], and simultaneous optimization of both structure and weights 

[41][42][43][44]. Hybrid algorithms have been proposed to combine the global search 

ability of the EA and fine-tuning of local search methods [36]: EA-based structure 

optimization with gradient-based weight learning [45], weight optimization for a 

fixed structure network using both EA and back-propagation [46][47][48].  
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2.3 Evolvable Hardware 

2.3.1 Reconfigurable Computing (RC) 

The concept of reconfigurable computing dates back to around 1960 when Gerald 

Estrin in a paper [53] proposed a hybrid computing system that is composed of a 

standard microprocessor and reconfigurable hardware resource. While the main 

microprocessor controls the behavior of the reconfigurable hardware, the latter can 

reconfigure its internal connections to perform specific tasks at a speed of dedicated 

hardware. Typical RC platforms are circuit boards that house reconfigurable digital 

hardware such as FPGAs and other related hardware resources. 

FPGAs consist of an array of Configurable Logic Blocks (CLBs) and 

configurable interconnections between them. The functional CLBs are often 

implemented as look-up tables (LUTs) and can be configured to implement various 

Boolean functions. Each LUT can implement a specific Boolean function by loading 

appropriate bit patterns into it. These CLBs are connected using configurable 

interconnections. A complex digital logic circuit can be formed by routing the input 

signals to CLBs of various functions and output signal to output pins.  

A number of companies have built a wide variety of RC boards. These boards 

differ in the number of on-board FPGAs, capacity of the FPGAs, and other on-board 

hardware resources. An example of the system, Amirix AP100 board from Amirix 

Systems, is shown in Figure 7. This particular FPGA board features a Xilinx Virtex-II 

Pro FPGA – XC2VP30, two on-chip PowerPC 405 processors, on-chip block RAMs 

and multiplier blocks. The RC boards are typically connected to a host 

microprocessor. A host program is usually utilized to control the reconfiguration and 

initialization of the FPGA and handle communication between the host processor and 

the board. 
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Figure 7: Amirix AP100 Board (Copyright of Amirix Systems). 
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2.3.2 Evolvable Hardware Using FPGA 

Evolvable hardware refers to using evolutionary algorithms to designing electronic 

circuits automatically. The most widely used hardware is FPGA, although other types 

of hardware are also used like Field Programmable Analog Arrays. The hardware can 

be evolved in one of two ways: extrinsic or intrinsic according to DeGaris [54]. In 

extrinsic evolution, offline evolution is performed on a software model of the 

hardware system. Intrinsic evolution of hardware evolves the hardware online in 

which the hardware is directly changed by the evolutionary algorithm and the I/O 

measured from the hardware affects the search process of the evolutionary algorithm.  

DeGaris divided the evolvable hardware into two categories based on whether 

the hardware is in the loop of online evolution. In the author’s opinion, there exists 

another distinction among various evolvable hardware approaches based on at what 

level the hardware is actually evolved. The hardware can be evolved at different 

levels, for example, at gate level [55][56], at function level [57][58] or at neural 

network level [59][60]. In gate level evolution, configuration bits of FGPA cell logic 

function and interconnections are evolved. The evolution is based on primitive gates 

such as AND and OR. Example of gate level evolution is the groundbreaking work 

reported in 1996 by Adrian Thompson at the University of Sussex [55]. In his 

research, Thompson used the evolutionary algorithm to evolve a tone discriminator 

using an FPGA from Xilinx. The task involves in using 100 FGPA logic cells to 

evolve a circuit that could discriminate between square waves of 1kHz and 10kHz, 

without the use of clock signal. This task is not easy due to the lack of clock signal 

and the fact that the input periods are much longer than the propagation delay of the 

logic cell. However, the evolutionary algorithm was able to find a solution that 

discriminates the two tones successfully after 3,500 generations of evolution. The 

importance of Thompson’s work lies in that it is the first demonstration of successful 

online hardware evolution and it opens the door for future research in this exciting 

area.  
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Despite the success, there are several limitations coming with gate level 

evolution. In Thompson’s work, it is found that the evolved circuit is sensitive to 

physical location of the circuit in the device and the temperature. It also lacks the 

flexibility of porting to other FOGA devices other than the one used during evolution. 

Another major drawback of gate level evolution is the scalability problem that refers 

to the greatly increased difficulty in evolving an FPGA with larger gates (that result 

in genotypes with larger sizes).  

Later on, function-level evolution was proposed [57][58] to tackle scalability. 

In function-level evolution, the evolution is based on higher-level functions such as 

adder, sin, multipliers instead of the primitive gates. Although the function-level 

approach was able to evolve circuits for relatively complex task, it requires human 

selection of functions for specific applications. A recent effort tackling scalability 

utilizes a decomposition strategy in the evolution of large combinational circuits [56]. 

A latest trend in evolvable hardware aims at evolving circuits at neural network 

level, or designing ANNs using FGPA [59][60]. In 2003, a research group at Ecole 

Polytechnique Federale de Lausanne (EPFL) implemented an evolvable hardware 

system using spiking neural networks in an effort to build an intelligent processor for 

robot navigation [59]. In their design, an Altera FPGA with 200,000 gates was used 

to build a spiking neural network with run-time reconfigurability of the network 

connectivity. Evolving network connectivity has been done via software simulation 

and the suitable chromosome is then downloaded to the FPGA. This approach is 

extrinsic in nature because the hardware is not in the loop of the evolutionary 

procedure.  

In 2004, Dennis Earl at the University of Tennessee attacked the neural network 

level evolution using unconstrained artificial neural network [60]. In this design, the 

connectivity among neurons is not constrained that is compared to the work in [59] 

where only a subset of all the possible connections is allowed. Two strategies are 

implemented. In the first strategy, the evolutionary algorithm runs in software, but 

every candidate network is realized in a hardware description language, compiled, 

synthesized, and downloaded into the FPGA. The performance of this network in the 
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FPGA is measured and fed back to the evolutionary algorithm. The target problem is 

frequency recognition that requires the circuit responding linearly to square waves of 

increased frequency from 10Hz to 70 Hz. After 300 generations of evolution, an 

ANN network is identified that could approximate the desired response closely. 

Because every network has to go through a procedure of compilation, synthesize and 

downloading before it can be realized in FPGA, the evolutionary process is very slow. 

In fact, a single generation took 4.8 hours and 300 generations would take 2 months. 

This design demonstrates an intrinsic evolvable hardware system; however, the 

extreme slow speed makes it impractical in real-world applications. The other 

strategy implements a flexible structure for ANNs in FPGA that avoid the need of 

hardware reconfiguration for each network structure. However, this strategy puts a 

limitation on the maximum size of the network that can be implemented in FPGA due 

to the extra resources used in implementing the flexible structure. The reconfiguration 

speed is also affected by the data transfer rate between FPGA and the host. Overall, 

the latter strategy reduces the time per generation to 1.2 hours compared to 4.8 hours 

of the first strategy. 

2.4 Block-based Neural Networks 

Block-based neural networks (BbNNs) model [4] provides a unified approach to the 

two fundamental problems of artificial neural network design: simultaneous 

optimization of structures and weights and implementation using reconfigurable 

digital hardware. An integrated representation of network structure and connection 

weights of BbNNs offers simultaneous optimization by use of the evolutionary 

algorithm. Block-based neural networks have a suitable structure for implementation 

using re-configurable hardware. The network can be easily expanded in size by 

adding more blocks. BbNNs can be implemented by use of reconfigurable digital 

hardware such as FPGAs that can modify (reconfigure) its internal structure 

dynamically in response to the operating environments [49]. Such characteristics 

enable BbNNs to fine-tune the structure and weights “on the fly” to cope with 
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changing environments. BbNNs have been applied to various practical problems such 

as mobile robot navigation [4], pattern recognition [50], time series prediction 

[51][52] and ECG signal classification [5][6][7][8]. 

2.4.1 Network Structure 

A BbNN can be represented by a 2-D array of blocks. Each block is a basic 

processing element that corresponds to a feedforward neural network with four 

variable input/output nodes. A block is connected to its four neighboring blocks with 

signal flow represented by an arrow between the blocks. Leftmost and rightmost 

blocks are laterally interconnected. Signal flow uniquely specifies the internal 

configurations of a block as well as the overall network structure. Figure 8 illustrates 

the network structure of an m×n BbNN with m rows and n columns of blocks labeled 

as Bij. The first row of blocks B11, B12, ..., B1n is an input layer and the blocks Bm1, 

Bm2, ..., Bmn form an output layer. BbNNs with n columns can have up to n inputs and 

n outputs. Redundant input nodes take a constant input value and the output nodes not 

used are ignored. Due to its modular characteristics, a BbNN can be easily expanded 

to build a larger-scale network. The BbNN can have a multiple number of middle 

layers (m ≥ 1). The size of a BbNN is only limited by the capacity of a reconfigurable 

hardware. 

2.4.2 Optimization of BbNNs 

Optimization of BbNN includes both structure and weight learning. Structure learning 

refers to determination of internal configuration of blocks and weight optimization 

determines weights of internal configurations for given training data. The structure 

and weights of block-based neural networks are optimized using a genetic algorithm 

(GA). 

Network structure and connection weights of an individual BbNN are encoded 
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Figure 8: Structure of block-based neural networks. 
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to form a chromosome for optimization using the GA. The overall structure of a 

BbNN can be effectively encoded with binary directions of signal flow. Signal flow 

provides an integrated representation of BbNN structure and internal configurations. 

The signal flow determines the structure and the internal configuration of a BbNN 

using a sequence of binary numbers. Any connection between the blocks is 

represented with either 0 or 1. Bit 0 denotes down (↓) and left (←), and bit 1 indicates 

up (↑) and right (→) signal flows. Figure 9(a) shows the encoding scheme for a basic 

block of BbNN in which white boxes denote connection weights and colored boxes 

are structure bits. The weights are represented with 4-bit binary numbers. The signal 

flow bits associated with the blocks in the input and output stages are all zeros and 

therefore are not included in structure encoding. Figure 9(b) shows the chromosome 

representation of a 2×2 BbNN with each of its four blocks encoded with the scheme 

illustrated in Figure 9(a). Neighboring blocks share signal flows and the common 

structure bits are therefore the same. 

 

 

 
(a) 

 
(b) 

Figure 9: Chromosome representation of BbNN, (a) block encoding, (b) network 
encoding. 
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 An initial population of BbNN chromosomes is generated that represents a set 

of individual BbNNs as candidate solutions for the given problem. Each generation of 

the genetic algorithm involves three main components: fitness evaluation, selection, 

and genetic operation. The current population of BbNNs are evaluated and ranked in 

terms of fitness value. The population goes through the selection and the genetic 

operation until the maximum fitness reaches the desired value. The genetic algorithm 

for BbNN optimization proceeds as in the following: 

 

1) An initial population of BbNN chromosomes is randomly generated. 

 

2) Each chromosome in the population is mapped into the corresponding individual 

BbNN network. The quality of the BbNN networks in the current population is 

measured in terms of a pre-defined fitness function. The fitness function is defined 

such that a BbNN network with higher fitness value corresponds to a better solution 

to the target problem. 

 

3) A new population of chromosomes is generated based on current population. Fitter 

individuals with higher fitness values are selected using a selection method and their 

corresponding chromosomes undergo a set of genetic operations to producing 

offspring. The genetic operators used include crossover, mutation, copy and 

inversion. Each operator is applied with a pre-selected probability. The new 

population consisting of newly produced offspring replaces the current population. 

The best individual in current population is included in the new population to 

implement the elitism strategy.  

 

4) Steps 2) and 3) are repeated until a satisfactory solution is found. 
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2.4.3 BbNNs on FPGA 

The flexible and modular architecture of BbNNs facilitates the implementation of 

BbNNs on RC platforms. Block-based neural networks can be implemented using 

reconfigurable digital hardware such as FPGAs that can modify and fine-tune its 

internal structure “on the fly” during the evolutionary optimization procedure. A 

library-based approach [49] creates a library of VHDL modules of the BbNN basic 

blocks and pieces together these basic modules to form a custom BbNN network, 

which is then synthesized, placed and routed, and downloaded to an FPGA. This 

initial approach gains some flexibility in that some parameters like block internal 

weights are software configurable, but it suffers from the major problem that any 

change in the network structure would require a new hardware design and FPGA 

reconfiguration.  

A recent effort [56] implements a “smart block” that can be software 

reconfigured to work as any one of the basic blocks. Therefore, the structure of the 

network can be reconfigured via software removing the need of hardware redesign 

and FPGA reconfiguration. The design was implemented on Amirix AP130 board 

shown in Figure 7. This approach implements a complete System-on-Chip (SoC) 

design with the evolutionary algorithm running on PowerPC and the reconfigurable 

BbNN network implemented in FPGA. Research work has been carried out to 

implement a complete evolutionary algorithm on FPGAs that results in performance 

improvement over software implementation [62][63]. 

2.4.4 A Comparison between BbNN and CNN 

There are similarities shared by the CNN and BbNN model. To some extent, the two 

models resemble each other by adopting a regular array of basic units and local 

interconnections among those units.  

However, there are clear distinctions between the two models. In a BbNN, blocks 

are arranged in layers with the first and last row being the input and output layer. 
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Information flows from the input layer, through middle layer(s) and at last reach the 

output layer. Each block in a BbNN is only connected to its four immediate 

neighboring blocks. On the contrary, in a CNN, cells are locally interconnected with 

each cell being a separate dynamic system. Each cell in a CNN is connected to the 

cells within its r-neighborhood. In the extreme case, each is connected to all the other 

cells in the network. Also, the basic unit in the two models functions differently. The 

function of a block in a BbNN can be described using a set of linear summations and 

nonlinear activation functions, while the dynamics of a cell is governed by a set of 

partial differential equations. The output from the output neuron in a BbNN has a 

range determined by the activation function. In the CNN case, the output from a cell 

was proven to converge to a value of either +1 or -1. Moreover, while both the 

structure and internal weights in a BbNN are optimized using an evolutionary 

algorithm, the CNN template coefficients are selected initially using cut-and-try 

techniques and later with a variety of methods including Genetic Algorithm, fuzzy 

design technique, and even neural network techniques. Last, while the BbNN model 

targets at applications where the dynamic nature of the problem needs an evolvable 

solution, CNNs are found to be advantageous in applications as high speed visual 

computing. 
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Chapter 3 EVOLUTIONARY OPTIMIZATION OF 

BBNN  

Block-based neural network model has modular structures of two-dimensional basic 

blocks suited for implementation using reconfigurable digital electronic hardware 

such as FPGAs that allow on-line partial reorganization of internal structures. The 

structure and internal weights of BbNNs are simultaneously optimized with an 

evolutionary algorithm. The evolutionary algorithm provides an effective 

optimization technique in finding optimal structure and weights for block-based 

neural networks, but the convergence speed of evolutionary algorithm-based learning 

is often too slow. This chapter introduces an evolutionary algorithm that utilizes local 

search operator to increase the convergence speed of optimization of BbNNs. 

3.1 Block-based Neural Network Model 

Figure 10 shows the structure of feedforward implementation of an m×n BbNN with 

m rows and n columns of blocks labeled as Bij. A block is connected to its four 

neighboring blocks with signal flow represented by an incoming or outgoing arrow 

between the blocks. The vertical signal flows are all considered downward. A 

feedforward implementation facilitates hardware implementation of block-based 

neural networks and enables the use of gradient-based local search. Artificial neural 

networks implemented using digital hardware such as FPGAs have been confined to 

feedforward architectures [64][65]. Implementation of feedback BbNN architecture in 

digital hardware can cause unstable network output. Moreover, a long propagation 

delay and the use of extra hardware resources to store the network states are 

unavoidable in feedback implementation. The feedforward implementation also 

enables the usage of gradient-based local search that combined with global search can 
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Figure 10: Feedforward implementation of block-based neural networks. 
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 potentially increase the optimization speed significantly [36]. In the following, a 

theorem regarding the number of possible structure combinations in a BbNN is 

presented, following by a corollary for the case of feedforward implementation of 

BbNNs. 

 

THEOREM 1: The number of all the possible structures of the block-based neural 

network of the size m×n is nm )12(2 − . 

 

Proof: A BbNN of the size m×n has m rows and n columns of basic blocks. The 

number of horizontal connections (signal flows) between the blocks in a stage equals 

the number of columns (n). Since there are m rows of blocks, the total number of 

horizontal signal flows is 

mnNh =                                                         (22) 

The number of vertical connections of a column is (m+1). However, all the blocks in 

the input and output stages have fixed signal flows (0), which are not responsible for 

a difference combination of the BbNN structure. Therefore, the total number of 

vertical connections that affects the structure becomes  

nmNv )1( −=                                                    (23) 

Then the total number of all the signal flow bit settings of the m×n BbNN is  

nmNNN vh )12( −=+=                                           (24) 

The number of all the possible BbNN structures equals the number of all the 

combinations of signal flows. So the number of all the possible structures equals 

nmN )12(22 −= .                                                                                  □ 
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Corollary: The number of all the possible structures of the feedforward 

implementation of the block-based neural network of the size m×n is 2mn . 

 

Proof: From Theorem 1, the total number of horizontal signal flows is 

mnNh =                                                         (25) 

In the feedforward implementation, the vertical signal flows of all the blocks are fixed 

downward. Therefore, the total number of all the signal flow bit settings of the m×n 

BbNN is equal to the total number of horizontal signal flows. The number of all the 

possible BbNN structures equals the number of all the combinations of signal flows. 

So the number of all the possible structures is equal to 2 2hN mn= .                         

□ 
 

Thus, the number of possible structure combinations for a given BbNN is 

determined by the number of rows and columns. For a BbNN with a size of 2×7, the 

number of all the possible structures will be 2,097,152. The feedforward 

implementation of the same size network will have 16,384 possible structures.  

Internal configuration of a BbNN is characterized by the input-output 

connections of the nodes. A node can be an input or an output according to the 

internal configuration determined by the signal flow. An incoming arrow to a block 

specifies the node as an input, and output nodes are associated with outgoing arrows. 

Generalization capability emerges through various internal configurations of a block. 

A block can be represented by one of the three different types of internal 

configurations. Figure 11(a) shows a block with one input and three outputs (1/3). A 

block in Figure 11(b) has three inputs and an output (3/1). Figure 11(c) corresponds 

to the type of two inputs and two outputs (2/2).  

The four nodes inside a block are connected with each other with the weights. 

The signal ui denotes the input and vj indicates the output of the block, in which the 

subscripts indicate the node positions. The top, bottom, left and right node has indices 
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1, 2, 3, and 4, respectively. A weight wij therefore denotes a connection from node i to 

node j. A block can have up to six connection weights including the bias. For the case 

of two inputs and two outputs (2/2), there are four weights and two biases. The 1/3 

case has three weights and three biases, and the 3/1 three weights and one bias.  

The overall signal flows determine the input-output computation path, along 

which an input signal x = (x1, x2, …, xn) propagates through the blocks from top to 

bottom and generates a network output y = (y1, y2,  …, yn). A block Bij has four 

horizontal and vertical neighbors. Let us denote this set of neighbors of Bij by N(Bij) 

given by: 

( ) { }1, 1, , 1 , 1, , ,ij i j i j i j i jN B B B B B+ − + −=                                     (26) 

The block Bij is connected with its four neighbors by either incoming or outgoing 

arrow depending on the signal flow. We further use I(Bij) to denote the subset of 

N(Bij) that are connected to block Bij with outgoing arrows. The computation stage of 

block Bij is computed according to the following equation: 

( ) ( )max 1,k
ij

k
s s k I B= + ∈                                          (27) 

I(Bij) may include 0, 1, 2, or 3 neighbors of block Bij depending on its block 

configuration. When a block Bij is in the input layer and I(Bij) is a null set, its 

computation stage equals one. 

For a block Bij in the network, its output node produces an output qv  for the 

activation with an activation function h(⋅): 

( ) ,q qv h q Dg= ∈                                                   (28) 

The net activation to the node is computed according to the following equation: 

,q pq p q
p C

g q Dw u b
∈

= ∈+∑                                          (29) 
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Figure 11: Three possible internal configuration types of a block. (a) One input and 
three outputs (1/3), (b) Three inputs and one output (3/1), (c) Two inputs and two 

outputs (2/2). 
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where u is the input to the block. C and D are the respective index sets of input nodes 

and output nodes in the block. For the type 1/3 basic block shown in Figure 11(a), C 

= {1} and D = {2, 3, 4}. For blocks of the type 3/1, C = {1, 3, 4} and D = {2}. The 

type 2/2 blocks have C = {1, 4} and D = {2, 3}. The term bq is the bias term to the qth 

node.  

The computation stage associated with a block represents its priority, according 

to which the outputs of the block are computed. The blocks in lower stages are 

calculated earlier than those in higher stages. The blocks in the first calculation stage 

have the highest priority for output calculation. The input signal x = (x1, x2, …, xn) is 

passed through the network from the blocks in lower stages to those in higher stages 

generating the output y = (y1, y2,  …, yn). 

3.2 Evolutionary Optimization of BbNN 

3.2.1 Overview 

Evolutionary optimization of BbNN involves three main procedures: selection, 

variation operation and reinsertion. A parent individual (or a pair of parent 

individuals for crossover) is selected using tournament selection, varied with a 

selected operator, and reinserted into the population replacing a chosen inferior 

individual. Before parent selection, the fitness is rescaled with a generalized 

disruptive pressure that favors both good and bad individuals. An operator rate update 

scheme adaptively adjusts rate parameters considering an operator’s effectiveness in 

improving fitness and the current fitness trend. 

A pseudo-code description of the evolutionary algorithm is shown in Figure 12. 

After the random generation of initial population, the algorithm enters into the 

evolution loop. The current population is first evaluated to update individual fitness 

values. The fitness rescaling by disruptive pressure ensures the selection of some 

individuals with low fitness. The algorithm then starts the variation operation stage.  
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Figure 12: The evolutionary algorithm for BbNN optimization. 

 

 

 

 

 

 

 

 

 

Generate randomly an initial population of BbNNs; 
k = 0; 
do{ 
   Evaluate fitness values; 
   if( desired maximum fitness is achieved ) 
      break; 
   else{ 

 k = k + 1; 
      Fitness rescaling by the disruptive pressure; 
      Parent selection; 
      Variation operation; 
      Reinsertion; 
   } 

   if ((k % T) equals zero )  

      Update operator rates; 

 }while( maximum number of iteration not reached )   

Save the best individual produced; 
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An operator is selected based on a uniform probability distribution. Applying this 

operator to the parent(s) chosen with tournament selection produces a new offspring. 

This offspring is reinserted into the population replacing an individual chosen with a 

tournament selection. This evolution process runs for a fixed number of T 

generations. After each T generations of evolution, the operators’ rates are updated 

based on their past performance and current fitness trend. The evolution algorithm is 

terminated either by finding a satisfactory solution or after a certain number of 

generations.  

It is clear that two neighboring populations differ by a single individual in this 

incremental evolutionary algorithm [66][67]. In the generational EA model, a new 

population is produced and it replaces the old population. An incremental EA is 

preferred over the generational model in order to reduce the computational and 

memory requirements at each generation. 

3.2.2 Fitness Scaling and Selection 

The search space in many problems can be rather multi-peaked or mountainous. The 

search space of block-based neural networks resembles a mountainous characteristic 

due to two reasons. Firstly, each of the possible structures will lead to a local 

optimum if the weights are properly optimized. Secondly, for a given structure, the 

weight space can also contain many peaks. In a “Needle-in-a-Haystack” problem, the 

global optimum is surrounded by poor solutions and isolated from other good regions. 

The proportional selection that favors good individuals was criticized for its 

inefficiency in finding the global optimum in such problems [68][69]. A selection 

scheme with disruptive pressure devotes more trials to both superior and inferior 

individuals and helps improve search performance as one of the solutions for such 

problems [68]. A popular disruptive pressure method modifies the fitness by taking 

an absolute difference of the fitness with the average fitness [69]: 

avgd fff −=                 (30) 
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where f denotes the actual fitness, favg is the average fitness, and fd is the fitness 

function rescaled with disruptive pressure.  

In this study, a modified fitness scaling function with generalized disruptive 

pressure is used [8].  

( )min mind avgf f f f fω= − − −    (31) 

where fmin denotes the minimum fitness value. The scaling function adjusts the degree 

of being selected of an individual whose fitness is near the minimum by controlling 

the parameter ω that adjusts the degree of disruptive pressure in the range of 0 ≤ ω ≤ 

1. For ω = 0, the scaling function becomes a linear function with no disruptive 

pressure. When ω = 1, the fitness function becomes the usual disruptive pressure that 

centers at favg as in Eq. (30). In this paper, ω = 0.6 was used. Figure 13 shows the 

relationship between the fitness f and the new fitness fd rescaled with the generalized 

disruptive pressure. f and fd  have a linear relationship with a discontinuity at fmin  + ω 

( favg - fmin ). The fitness scaling function scales the fitness fd to have the range 

between 0 and fmax  - fmin  + ω (favg - fmin ). As evolution procedure goes on, the 

average fitness tends to near at the maximum fitness fmax. The fitness scaling method 

with the modified disruptive pressure assures that the bending point locates between 

the two fitness values fmin and favg. 

Two selection processes are present in the evolutionary algorithm: parent 

selection for variation operation and survivor selection for reinsertion [67]. Parent 

selection picks one or a pair of individuals from old population for variation 

operation. The roulette-wheel selection finds individuals in proportional to the fitness 

value. Despite its popularity, roulette-wheel selection may have problems as 

premature convergence in early phase of evolution or genetic drift in later phase of 

evolution. Tournament selection picks out the best one from c randomly chosen 

individuals [70]. Tournament selection has the same effects as both fitness 

proportional sampling and selection probability adjustment [71][72]. It has the useful 

property of not requiring global knowledge of the population. Tournament size, c 

closely adjusts the selection pressure. A larger tournament size imposes a higher 
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Figure 13: Fitness scaling with generalized disruptive pressure. 

 

 

 

selection pressure. Binary tournament used in this paper for parent selection finds the 

better one of the two individuals selected randomly, i.e., c = 2.  

Survivor selection determines which member of the current population to be 

replaced with the newly produced offspring. The commonly used scheme of replacing 

the worst implements an elitism strategy that keeps the best trait found so far, 

however it is likely to cause premature convergence because an outstanding 

individual can quickly take over the entire population under such a scheme [67]. In 

this paper, a tournament selection that picks the worst individual among c (= 5 in this 

paper) randomly selected individuals is used. The new offspring is reinserted into the 

population and it replaces the chosen individual. 

3.2.3 Evolutionary Operators 

The proposed optimization scheme of BbNN includes two types of genetic operators 

(crossover and mutation), and a local search operator called gradient descent search 
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(GDS). Crossover exchanges substructures between two individuals and mutation 

randomly changes a unit in an individual. The GDS operator searches for better 

solution in the direction of gradient descent for an individual. All operators directly 

work on the phenotype of selected BbNN individuals that eliminates the 

encoding/decoding procedure between the genotype and phenotype of BbNN 

individuals. The operator rate determines the intensity an operator is applied. The 

proposed update scheme adaptively adjusts an operator’s rate based on both its 

effectiveness in improving the fitness and current fitness trend. 

3.2.3.1 Crossover 

Crossover and mutation serve as basic genetic operators used to evolve the structure 

and weights of the BbNN. For a crossover operation of a pair of BbNNs, a group of 

signal flows is randomly selected. The selected signal flows are exchanged according 

to the crossover probability. After the exchange, the internal structure of a block is 

reconfigured according to the new signal flows. As a result, some weights in a BbNN 

will have corresponding weights in the other BbNN and some will be alone. 

Corresponding weights will be updated by a weighted combination of the two weights 

wc1 and wc2. 

Crossover operation can be done in two steps: signal flow and connection 

weights. Figure 14 shows an example of crossover operation. For two individual 

BbNNs, signal flow bits of the same size and same location are exchanged. Figure 14 

(a)(b) demonstrates two individual BbNNs before the crossover operation. Three 

basic blocks B22, B23, and B24 are randomly selected for crossover. Two individual 

BbNNs in Figure 14 (c)(d) are after crossover operation. Internal configurations of 

the block after crossover are rearranged. 

Crossover operation based on the signal flow takes the following 

manipulations.  

i. Select signal flow bits to be crossed over. 

ii. Identify the blocks and the connection weights of the blocks that are 
connected to the signal flow. Crossover operation can be done for the two 
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 (a)                                                                    (b) 

         

(c)                                                                       (d) 

Figure 14: Crossover operation example of two individual 3×4 BbNNs. (a)(b) Two 
individual BbNNs before crossover, (c)(d) Two individual BbNNs after crossover. 
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  cases: 

a. Signal flow remains unchanged after crossover 

Take two corresponding weights wc1 and wc2 from the two blocks. 

The crossover operator for real-valued weights is defined as:  

*
1 1 2

*
2 1 2

(1 )

(1 )

c c c

c c c

w w w

w w w

λ λ

λ λ

= + −

= − +
                                                     (32) 

where λ denotes a uniform random number in [0, 1].   

b. Signal flow changes after crossover  

Changed signal flow modifies internal configuration of the block. 

New connection weights generated accordingly are initialized with 

Gaussian random numbers having zero mean and unit variance, while 

not connected weights are removed.   

 

Figure 15 shows an example of crossover for the case ii-b in the above. In 

Figure 15(a), the signal flow bit between the blocks indicates leftward connection. 

The two connection weights that are connected to this signal flow are represented as 

dotted arrows. Assume that the signal flow bit is flipped after the crossover of the 

signal flow bits. Then internal configurations of the two blocks will be changed as in 

Figure 15(b), where the weights connected to the changed signal flow are represented 

in dotted arrows. Changing the signal flow will affect several connection weights of 

the two neighboring blocks. Newly generated weights are randomly initialized, while 

pre-existing weights remain the same. Inactive weights are not used in the crossover 

operation. 

The proposed crossover operator has advantage that we can optimize network 

structure and connection weights at the same time. In early stage of learning, BbNN 

individuals have a variety of network structures. When the evolution process goes on 

sufficiently, only relatively small number of possible structures survives. As a result, 

crossover for signal flow will not change internal configurations as well as structure. 

So as evolution goes on, the optimization task will be mostly weight optimization. 
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Figure 15: Internal configuration due to changing signal flow.  
(a) Before crossover, (b) After crossover. 
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3.2.3.2 Mutation 

Mutation operator randomly adds a perturbation in an individual according to the 

mutation rate. Block-based neural network has different mutation rates for the 

structure bit string and the weights. Structure mutation means an operation flipped a 

signal flow bit according to the structure mutation rate. When signal flow is reversed 

after mutation, all the irrelevant weights are removed and created with a random 

value on a proper direction. A weight selected for mutation will be updated with: 

*
mt mtw w r= +                         (33) 

where r denotes a zero mean, unit variance Gaussian noise. 

3.2.3.3 Gradient Descent Search (GDS) 

The gradient descent search operator updates the weights in a BbNN. A GDS operator 

searches for optimal weights based on gradient descent methods. There are two steps 

within a GDS epoch: forward pass of the inputs to compute network outputs and 

backward pass of error signals to update internal weights. After completing the 

calculation for the blocks in stage s, inputs of the blocks in stage s+1 are updated with 

the outputs from the blocks in stage s, followed by calculating the outputs of the 

blocks in stage s+1. This forward pass is not complete until the output calculation for 

the blocks in the last computation stage is finished. 

In backward passes, the error signals propagate from the blocks in higher stages 

to those in lower stages. The error criterion function is defined as: 

2

1

1
2

M
l l

l
ε

=

= −∑ d y                                                      (34) 

where M is the total number of training patterns. The two vectors dl and yl are the 

target and actual outputs for the l-th training pattern respectively. Beginning with an 

initial guess, successive weight vectors are generated such that the error is reduced at 

each iteration, i.e.: 
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( )( ) ( )( )1k kε ε+ <w w                                                 (35) 

The successive cost reduction can be implemented with a class of gradient 

methods. The simple gradient steepest descent updates the weights according to the 

following equation [19][73]: 

( ) ( ) ( ) ( )( )1k k k kη ε=+ − ∇w w w                                     (36) 

or in its component form: 

,    ,pq
pq

w p qC D
w
εη∆ = − ∈ ∈
∂
∂

                                      (37) 

where η is the learning rate. The increment ∆wpq of the internal weight of a block can 

be deduced according to the generalized delta rule [15][16][73]. We first rewrite the 

error function in Eq. (34) using the formula that ,2j mjy v=  to: 

( )2
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d vε
= =

= −∑∑                                            (38) 

Then, for the weights associated with output nodes connecting to network 

outside, we can use chain rule to compute the derivative: 

( ) ( )
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                               (39) 

where 'h  is the first derivative of the activation function. Let us define the sensitivity 

of the error criterion to the changes of net input of the output node to be: 

( ) ( )
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=− −

                                         (40) 
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We can then rewrite Eq. (39) in the following equation:                                             

,
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M

mj mj p
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w
ε ρ
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∂
=

∂ ∑                                          (41) 

For the weights associated with output nodes in stage s that are not connected to 

network outside, we again use the chain rule to get the derivative: 
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where 
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,
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                                                 (43) 

In analogy to Eq. (40), let us define the sensitivity for an output node in stage s 

in Eqs. (44), (45) and (46) depending on the node position.  
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Finally, we get 
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M

ij q ij p
lij pq

u
w
ε ρ

=

∂
=

∂ ∑                                              (47) 

Thus, the weight update for a block can be summarized in the following 

equation: 
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1
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∆ = ∈ ∈∑                                    (48) 

where η is the learning rate, ρq is the sensitivity of the output node, and up is the input 

to the input node. C and D are the index sets of input and output nodes. 

The sensitivities of the output nodes of the blocks in calculation stage s are first 

calculated, and then the internal weights of these blocks are updated by adding the 

increment ∆wpq given in Eq. (48). After calculating the sensitivities and updating the 

weights of all blocks in stage s, the sensitivities of the nodes of the blocks in stage s-1 

are computed with the weights update followed. This procedure continues until the 

calculation of the blocks in the first computation stage is finished.  

GDS operation stops when either the maximum number of epochs is reached or 

the fitness stops increasing. The maximum number of epochs is tuned based on some 

simulations, and 8 epochs are found to work well for the test data in this paper. Too 

big epoch will increase the computation time of every iteration.  

3.2.4 Operator Rate Update 

An operator rate determines the probability according to which the operator is 

applied. The proposed update scheme automatically adjusts an operator’s rate based 

on both its effectiveness in improving the fitness and current fitness trend. Operator 

rates are updated every evolution period and kept unchanged during each evolution 

period. In the (k+1)-th evolution period, the first step is to assign a probability to each 

of the operators based on its performance during the k-th period. Then, the operator 

rates are increased if the maximum fitness has not been improved during the past 

evolution period. The performance of an operator during the k-th evolution period is 

measured by the effectiveness defined as:  

( )
( )

e
k

t

N kE
N k

=                                                        (49) 
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where Ne is the number of generations within each evolution period that an operator 

produces offspring with higher fitness value than that of its parent(s), and Nt is the 

total number of generations that an operator is selected in the same evolution period. 

Thus, the value of Ek has a range from 0 (least effective) to 1 (most effective). The 

effectiveness of an operator determines its probability in the next evolution period, 

p(k+1), as defined in the following equation: 

( ) { }
{ }
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min ( ) ln , , if 0.5
1

max ( ) ln , , if 0 0.5
k

k

p k k p E
p k

p k k p E
α
α

⎧ + ≥⎪+ = ⎨ − ≤ <⎪⎩
                 (50) 

where αlnk is rate adjustment during an evolution period, and pmax and pmin denote the 

maximum and minimum rate allowed for an operator. The scaling factor α controls 

the amount of rate adjustment and has been set to 0.02 experimentally. The lower and 

upper limit for pmax and pmin are 0 (never apply an operator) and 1 (always apply an 

operator), respectively. Usually, pmax is set to a big value (1.0 in the experiments) to 

ensure an operator that has been effective can be applied with high frequency; while 

pmin is set to a small nonzero value (0.1 in the experiments) such that an less effective 

operator still get an chance to be applied. Overall, the update scheme uses high 

operator rates in early evolution stages, and then gradually decreases the rates of the 

less effective operators but keeps the higher operator rates for those effective 

operators.  

The next step in rate adjustment considers the fitness trend during the past 

evolution periods. If the improvement for maximum fitness has been stalled before a 

solution is found, the algorithm tends to be trapped into a local maximum. It is thus 

desired to perform more searches in order to help the search escape from the local 

solution, and the operator rates are accordingly increased to consider such situation as 

described in the following equation: 

( ) { }max max' 1 min ( 1) 'ln , ,       if   Fitness ( ) 0p k p k k p kα+ = + + ∆ ≈                        (51) 

where α' > α and ∆Fitnessmax(k) ≈ 0 means the maximum fitness has not been 

improved during the k-th evolution period. An operator rate is determined according 
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to the performance and the current fitness trend. An operator will maintain a high rate 

if it is effective in generating fitter individuals, otherwise its rate will be gradually 

decreased. If the maximum fitness has not been improved before a desired solution is 

found, the operator rates will be increased to do denser searches. 

3.2.5 Implementation Platform 

The evolutionary algorithm described in preceding sections was implemented under 

PC environment using Microsoft Visual C++ 6.0 programming language. Figure 16 

shows a screenshot of the graphical user interface (GUI) designed for evolutionary 

optimization of BbNN.  

This GUI allows user to change various parameters for BbNN and the 

evolutionary algorithm through a pop-up window. The BbNN network size and 

activation functions of neurons can be configured by the user. The parameters that 

govern the running of the evolutionary algorithm, like population size, maximum 

fitness, stop generation, and minimum operator rates, etc., can also be changed by the 

user. Users can save a successful individual BbNN into a file as well as recall it later. 

3.3 A Test Example 

3.3.1 XOR Problem 

The proposed learning algorithm is tested on the simple XOR problem, in which two 

identical inputs generate an output of one and two different inputs produce negative 

one. A 2x3 BbNN is chosen for the simulation. The first and second input blocks 

receive the XOR input and the third output block serves as the network output. A 

sigmoid activation function of the form:  
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Figure 16: Graphical user interface for block-based neural networks. 
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is used, in which  a = 1.716 and b = 2/3 are chosen. This set of values makes 

( )' 0 1h ≈ , the linear range 1 1jg− < < , and the second derivative achieve its extrema 

at approximately ±2 [74]. The fitness used to evaluate the quality of candidate BbNNs 

is defined in the following equation: 

2

1

1Fitness
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l l

lM =

=

+ −∑ d y
                                        (53) 

where M denotes the numbers of training patterns. d and y are desired and actual 

output responses. The stop condition is that either the target fitness (0.95) or a 

maximum epoch (5000) is met. The other parameters of the algorithm are listed in 

Table 1. 

 

 

Table 1: Parameters of the evolutionary algorithm for XOR problem 

Parameter Value 
Population 80 
Maximum Generations 5, 000 
Maximum Fitness Value 0.95 
GDS Epoch 8 
GDS Learning Rate 0.2 
Disruptive Pressure 0.9 
Tournament Size 2 
Rate Update Interval 12 
Initial Operator Rate 1.0 
Minimum Operator Rate 0.1 
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3.3.2 Experimental Results 

Evolutionary algorithms are applied to evolve the selected BbNN. Figure 17 shows a 

typical fitness trend. The dotted and solid line corresponds to the average and 

maximum fitness. The evolution stops when the desired fitness is met after 

approximately 2,100 generations. Figure 18 demonstrates structure evolution process 

in terms of the number of occurrences of different structures. A solid line indicates 

the occurrences of a near-optimal structure. The others represent three non-optimal 

structures. The number of BbNNs with a near-optimal structure increases during the 

evolution and becomes dominant and relative stable in the population after about 500 

generations. 

Figure 19 demonstrates an operator rate update trend. The GDS rate is almost 

constant with some fluctuations through entire evolution process while the crossover 

operator favors a high rate with bigger fluctuations than the GDS. The rates for two 

mutation operators have similar trend that decreases slowly overall and increases 

sometimes when fitter individuals are generated by the mutations or the fitness has 

not been improved.  

Figure 20 plots the network structure of the evolved BbNN among 100 random 

trials for XOR classification. The numbers on the arrow are occurrence counts of the 

same signal flows among 100 individual BbNNs. The output y indicates the category 

of a test pattern. The redundant output nodes are marked by *. Inputs x1 and x2 are the 

inputs to the BbNN. 

In order to study the effect of various parameters, we dissect the evolutionary 

algorithm to remove some components. The evolutionary algorithms with and 

without GDS are first compared in terms of their convergence behavior. Both 

algorithms are run for a fixed number of generations for 100 times. Figure 21(a) 

shows the averaged maximum fitness along with standard deviation and the number 

of successful runs after evolution. A trial is successful if the desired fitness value is 

met before the maximum generation is reached. The GDS operator produces higher 

averaged maximum fitness and more successful runs compared to EA only case.  
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Figure 21(a) shows the average generations and running time that the two algorithms 

take to reach the desired fitness level. The EA with GDS operator takes much less 

generations and time than without GDS case. 

The effect of fitness scaling and adaptive rate adjustment scheme is analyzed 

using similar approach. Figure 22(a) shows the comparisons of maximum fitness 

achieved number of successful runs. Figure 22(b) shows the total generations and 

actual running time to reach the desired fitness level. The EA algorithm using fitness 

scaling generates more successful runs than the EA without fitness scaling. The use of 

fitness scaling does not affect much on the generations and running time. 

Last, the effect of the use of adaptive operator rates is analyzed. The EA using 

adaptive rates and the EA with fixed rates (0.8 for crossover and GDS, 0.2 for 

structure mutation and weight mutation) are run for 100 times with their performance 

compared. Figure 23(a) shows the comparisons of maximum fitness achieved number 

of successful runs. Figure 23 (b) shows the total generations and actual running time 

to reach the desired fitness level. The EA with adaptive rates guarantees higher fitness 

values and more successful runs on average than the EA using fixed operator rates. In 

terms of generations and running time, the two algorithms are comparable with the 

EA with adaptive rates takes a bit more generations and time that is probably due to 

more searches are used when the search tends to fall into a local maximum. 
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Figure 17: The evolution trend of BbNN for XOR classification. 
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Figure 18: Number of occurrences of particular structures during evolution. 
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Figure 19: An adaptive operator rate adjustment scheme. 
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Figure 20: The evolved BbNN for XOR classification. 
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(b) 

Figure 21: Comparison of the evolutionary algorithm with and without GDS in terms 
of (a) final fitness achieved and (b) convergence speed. 
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(b) 

Figure 22: Comparison of the evolutionary algorithm with and without fitness scaling 

in terms of (a) final fitness achieved and (b) convergence speed. 
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(b) 

Figure 23: Comparison of the evolutionary algorithm with adaptive and fixed rate 
scheme in terms of (a) final fitness achieved and (b) convergence speed. 
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Chapter 4 PERSONALIZED ECG HEARTBEAT 

CLASSIFICATION  

Electrocardiogram (ECG) has become an important routine clinic practice to 

monitoring heart activities. Analysis of heartbeat patterns may reveal the symptoms 

indicating that the heart needs immediate attention. This chapter describes 

personalized ECG heartbeat classification using block-based neural networks, which 

is motivated by the observation that a classifier with fixed structure and internal 

weights and trained with a limited number of data may not be able to tackle the big 

variations in ECG signals. In the following, an introduction on ECG signal 

classification is first presented. 

4.1 Introduction 

4.1.1 Electrocardiogram  

ECG is a diagnostic tool that records the electrical activity of heart. The commonly 

used ECG is the standard twelve lead ECG that examines the electrical activity of the 

heart from twelve different points of view including V1, V2, …, V6, I, II, III, aVR, 

aVL and aVF [75]. While no single point of view could provide a complete picture of 

the heart, the twelve points of view provide complementary information about the 

heart. 

There are total three types of waves occurred in a single heartbeat. The first one 

is called P wave that corresponds to the contractions of both atrial of a heart. The 

second is a series of three waves, known as QRS complex that reflects the ventricular 

contractions. The QRS complex has been an important feature of heartbeat signals in 

the detection of arrhythmia waveforms. The last T wave is recorded when ventricles 
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are repolarizing. The three basic waves occur sequentially in the order of P, QRS and 

T wave. Figure 24 illustrates a single heartbeat. Figure 25 shows the first five beats of 

ECG record #201 from MIT-BIH Arrhythmia Database [1]. 

4.1.2 Challenges in ECG Signal Classification 

Correctly classifying heartbeats is the first important step toward identifying an 

arrhythmia. AAMI recommended practice groups the normal and various abnormal 

types into five heartbeat classes that include class N (beats originating in the sinus 

node), class S (supraventricular ectopic beats), class V (ventricular ectopic beats), 

class F (fusion beats), and class Q (unclassifiable beats) [9].  

It has been a challenge to classify ECG beats in achieving high performance 

possibly due to the big variations in ECG heartbeat patterns. A large inter-individual 

variability in the ECG waveforms is observed within different individuals and patient 
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Figure 24: The three waves in a single heartbeat. 
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Figure 25: Heartbeat examples from MIT-BIH Arrhythmia Database. 
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 (a)                                              (b)  

        

                  (c)                                                    (d)   

                   

    (e)                                             (f) 

Figure 26: Examples of AAMI beat classes from MIT-BIH Arrhythmia database, (a) 
Class N (beat #1 of record 100), (b) Class S (beat #8 of record 100), (c) Class V (beat 
#1907 of record 100), (d) Class F (beat #471 of record 108), (e) Class Q (beat #361 of 

record 101), (f) Class N (beat #1 of record 108). 
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groups due to physiological and geometrical differences between the hearts [76]. 

Consequently, the sensitivity and specificity of ECG classification algorithms are 

often low. Figure 26 shows example beats of each of the five classes from MIT-BIH 

Arrhythmia database [1]. Note that the beats belonging to the same normal class in 

Figure 26(a) and (f) demonstrate significant morphological difference; while the 

different classes of N and S beats shown in Figure 26(a) and (b) possess quite similar 

shapes. 

4.1.3 Previous Approaches for ECG Classification 

In the past decades, a number of methods have been proposed to classify ECG 

heartbeats into different categories [3][77]-[90]. Among them, different types of 

features are first extracted from detected heartbeats including morphological features, 

heartbeat intervals, frequency domain features and wavelet transform coefficients, 

etc. After the extraction of features, a certain classification technique is applied to 

classify the heartbeats into normal or one of the abnormal types. Such methods 

include linear discriminant analysis (LDA), support vector machine (SVM), artificial 

neural networks, mixture-of-experts methods [86], and statistical Markov models 

[87][88]. Unsupervised clustering of ECG complexes using self-organizing maps 

(SOM) is also proposed.  

Hu et al. [86] proposed an artificial neural network method based on MLP 

trained with BP algorithm. They used the original data samples as input to the 

network and the dataset contains 6,474 QRS complex templates from MIT-BIH 

Arrhythmia database. A two-layer MLP network of the size 51-25-2 reported an 

average accuracy of 90% for the classification of normal and abnormal heartbeats for 

the selected dataset.  

The method in [86] studied the problem of distinguishing VEB from non-VEB 

beats. The algorithm exploited a Mixture-of-Experts (MOE) method and employed a 

test set of 20 recordings that excluded records without premature ventricular 

contractions (PVCs). A global expert was developed using both unsupervised self-
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organizing map (SOM) and supervised learning vector quantization (LVQ) based on a 

common set of ECG training data. A local expert was developed similarly but based 

solely on patient-specific training data. The decisions from both classifiers are then 

linearly combined using coefficients from a gating network that is trained with 

another set of patient-specific ECG data. The MOE method achieved an accuracy of 

94.0% for distinguishing ventricular ectopic beats (VEB) from non-VEB heartbeats. 

Despite of the performance improvement, this work was limited at the detection of 

VEB beats. Besides, the fact that three separate neural networks need to be trained for 

a single patient makes this method somehow inefficient. 

Lagerholm et al. [79] proposed a method for unsupervised clustering of ECG 

heartbeats into 25 clusters. Their method uses Hermite function representation of 

QRS complexes and self-organizing maps (SOM). Their clustering results correspond 

to a classification rate of 98.5% if the dominant beat of a cluster can be correctly 

identified. 

Chazal et al. [77] proposed a method that consists of linear discriminants (LDs) 

and various sets of morphology and heartbeat interval features. The 44 non-paced 

recordings from MIT-BIH database were divided into two sets with approximate 

proportion of beat types and total beat numbers (about 50,000 heartbeats). The first 

set was used to evaluate the performance of different classifier configurations in order 

to select a final classifier. The second set served as the independent test data used to 

evaluate the final performance of the selected classifier. For each heartbeat, various 

features based on ECG morphology, heartbeat intervals and RR-intervals were 

extracted and combined into eight feature sets. The performance of each feature set in 

classification was then evaluated to determine the best configuration that is then used 

to classify the beats in the second datasets. The performance evaluation for the second 

dataset reported an accuracy of 97.4% for VEB detection and 94.6% for SVEB 

detection. 

Osowski et al. [83] presented a method using support vector machine (SVM) 

for heart beat recognition. Two different types of features, Hermite characterization 

and High Order Statistic, have been used in the classification system. The training 
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and test data include 6690 and 6095 heartbeat patterns selected from MIT-BIH 

database. The overall accuracy of heart beat recognition is 95.91% for normal rhythm 

and 12 different types of arrhythmias. 

Despite the widely available methods, their performances leave room for 

further improvement. The sensitivity reported is usually insufficient. For example, for 

VEB detection, the method in [86] reported a sensitivity rate of 77.7% and a 

classification rate of 97.4%, and the method in [77] achieved a sensitivity rate of 

82.6% and a classification rate of 94.0%. For SVEB detection, 75.9% sensitivity rate 

and 94.6% classification rate are reported in [77]. Apparently, there is a need for 

better classification performance, especially higher sensitivity rate. 

4.2 Personalized ECG Signal Classification 

4.2.1 Evolvable Hardware Platform 

Advance of embedded systems and other related resources on many of the present 

generation FPGA boards enables the on-board evolution of block-based neural 

networks. Figure 27 shows a schematic diagram of the proposed method, in which 

dotted and solid arrows correspond to respective training and testing phase.  

Hermite function transform extracts the features from the incoming ECG 

heartbeats and input the features to the other two blocks. An evolutionary algorithm 

finds the structure and weights of a selected BbNN based on training patterns. The 

“trained” network is obtained, is downloaded into the reconfigurable FPGA chip. The 

configured BbNN classifies the current ECG beat into one of five classes. If the 

performance of the evolved network is degraded due to changes in the environment or 

the subject, the evolution switch will activate the BbNN evolution block, and the 

search for a fitter BbNN classifier is initialized. Hence, the BbNN classifier continues 

to reconfigure itself in order to provide consistent performance. 
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Figure 27: Heartbeat monitoring using block-based neural networks. 

 

 

 

4.2.2 The ECG Data 

The MIT-BIH Arrhythmia Database [1] provides the ECG signals used in the 

experiments. The database contains 48 records obtained from 47 different individuals 

(Two records came from the same patient). Each record contains 2-channel ECG 

signals measured for 30 minutes. Twenty-three records (numbered from 100 to 124, 

inclusive with some numbers missing) serve as representative samples of routine 

clinical recordings. The remaining 25 (numbered from 200 to 234, inclusive with 

some numbers missing) records include unusual heartbeat waveforms such as 

complex ventricular, junctional, and supra-ventricular arrhythmias.  

Continuous ECG signals were filtered using a bandpass filter with a passband 

from 0.1 to 100 Hz. Filtered signals were then digitized at 360 Hz. The beat locations 
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are automatically labeled at first and verified later by independent experts to reach 

consensus. The whole database contains more than 109,000 annotations of normal 

and 14 different types of abnormal heartbeats.  

Specific software or interface library are needed to view or read the signals 

contained in this database. Wave is a useful computer program that can be used to 

view and analyze ECG signals [91], but it does not provide a way to extract the 

signals from an ECG recording. The Waveform Database interface library (WFDB 

library) [91] is a set of functions that are callable by C functions to access digitized 

and annotated signals. WFDB_tools is a collection of Matlab functions that enable 

Matlab users to have full access to the WFDB library within Matlab environment. 

Figure 28 shows the procedure of reading ECG signal samples from an ECG 

recording.  

The normal and various abnormal types have been combined into five heartbeat 

classes according to AAMI recommended practice [9] that include class N (beats 

originating in the sinus node), class S (supraventricular ectopic beats), class V 

(ventricular ectopic beats), class F (fusion beats) and class Q (unknown beats). The 

 

 

 

 

 

Figure 28: The procedure in reading ECG signals. 
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mapping from the MIT-BIH heartbeat types to the AAMI heartbeat types is 

summarized in Table 2. 

The records having paced beats were excluded for experiments. The remaining 

records are divided into two sets. The first set contains 20 records numbered from 100 

to 124 and is intended to provide common training data. The second set is composed 

of the rest records numbered from 200 to 234 and each of the records in this set will 

be used in the test. The training data for a patient consist of two parts, the first part 

coming from the common set and being the same for all testing patients. The other 

part are the heartbeats from the first five minutes of the patient’s ECG recording, 

which conforms to the AAMI recommended practice that allows at most 5-minute of 

recordings from a subject to be used for training purpose [86][9]. The remaining beats 

of the record serve as test patterns. 

4.2.3 Feature Extraction 

Basis function representations have been shown to be an efficient feature extraction 

method for ECG signals [92][93]. The most useful basis functions include Karhunen-

Loeve (KL) and Hermite functions. While KL expansion provides optimal signal 

representation in the mean square error sense, Hermite basis function expansion has a 

unique width parameter that is an efficient parameter to represent ECG beats with 

different QRS duration. Hermite basis functions have been widely used in 

representing QRS complexes [80][81] and ECG data compression [94]. The 

coefficients of Hermite expansions characterize the shape of QRS complexes and 

serve as input features.  

Hermite basis functions are given by the following equation: 
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Table 2: Mapping from MIT-BIH heartbeat types to AAMI heartbeat classes 

 
AAMI heartbeat class 

 

 
MIT-BIH heartbeat types 

 

N 
(Sinus node beat) 

Normal beat 
Left branch block beat 

Right branch block beat 
Atrial escape beats 

Junctional escape beat 

S 
(Supraventricular 

ectopic beat)  

Atrial premature beat 
Aberrated atrial premature beat 

Junctional premature beat 
Supraventricular premature beat 

V 
(Ventricular ectopic 

beat) 

Premature ventricular contraction 
Ventricular escape beat 

F 
(Fusion beat) Fusion of ventricular and normal beat 

Q 
(Unknown beat) 

Paced beat 
Fusion of paced and normal beat 

Unclassified class 
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where σ is the width parameter and approximately equal to the half-power duration. 

Hl(t/σ), called the Hermite polynomials, are defined in Eq. (55). Figure 29 shows the 

first five Hermite basis functions. 
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                                     (55) 

Hermite functions are orthonormal for any fixed value of width σ: 
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This useful property enables the calculation of expansion coefficients of an arbitrary 

signal. Specifically, the QRS complex is extracted as a 250-ms window centered at 

the R peak, which is sufficient to cover both normal and wider-than-normal QRS 

signals [75][81]. If we denote a QRS complex as x(t), then it can be approximated by 

a combination of Hermite basis functions: 
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where ( ) ( )x̂ t x t→ as L →∞ . Multiplying ( ),q tφ σ  to both sides of Eq. (57) and 

summing them up over time, we can get the set of coefficients by applying the 

orthonormal property in Eq. (56): 

( ) ( ) ( ),l l
t
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∞

=−∞

= ∑                                                  (58) 

In Eq. (58) the expansion coefficients cl depend on the width σ. In order to 

determine the optimal σ, we stepwise increase σ up to its upper bound to minimize the 

summed square error between the actual and approximated complex. The upper 

bound of the width parameter σ for a given L is determined using the algorithm 

described in [79]. 
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Figure 29: The first five Hermite basis functions with 1σ = . 
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Different number of expansion coefficients can be used to approximate a QRS 

complex. The approximation error depends on the number of coefficients. There is a 

tradeoff between approximation error and computation time. More coefficients lead 

to smaller errors, but the computation burden significantly increases when more basis 

functions are used. We decided to use five Hermite functions that allow for good 

representation for the QRS complexes and fast computation of the coefficients as 

well. When five Hermite functions are used, the representation error for different 

types of beats is acceptable according to a study in [79]. Besides the basis function 

coefficients ci and width parameter σ, the time interval between two neighboring R 

peaks tR is included to discriminate normal and premature heart beats.  

4.2.4 Fitness Function 

Fitness function evaluates the quality of the problem solutions. The fitness of a BbNN 

individual is defined in the following equation:  

1 22 2

1 21 1

Fitness
1 11 1

M M
l l l l
c c s s

ob obl ln M n M

β γ

= =

= +

+ − + −∑ ∑d y d y

                          (59) 

where β and γ are two weights summing to one. M1 and M2 are the numbers of 

samples in the common and patient-specific training data, respectively. nob is the 

number of output blocks.  

Both common and patient-specific training patterns are considered in the fitness 

function. While patient-specific data may serve as the training data for evolving 

BbNN specialized for a patient, the inclusion of common training data is useful when 

the small segment of patient-specific samples contains few arrhythmia patterns. To 

construct the common dataset, representative beats from each class are randomly 

sampled. Since the number of beat instances from each class differs drastically with 

the normal beats having ten times more than the other beat types, it is important to 

construct the common dataset in a ‘fair’ way in order to prevent a few classes 

dominating the common training data [79][86]. To this end, no N-type beats are 
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selected from the common dataset (there always exist sufficient N-type beats in 

patient-specific data); Different percentages of the other four classes are chosen as: 

5% of V-type (64 beats), 30% of S-type (58 beats), all F-type (13 beats) and all Q-

type (7 beats). Therefore, there are total 142 beats in the common set. The number of 

beats in the patient-specific training data varies due to the difference in the heart rates 

of different patients. The user-defined weighting constants β and γ control the relative 

importance of each term in the final fitness. In the simulation reported in the 

following, the two constants equals 0.2 and 0.8, respectively. This assignment of 

control values implies that the correct classification of patient-specific patterns is of 

more importance. 

4.3 Experimental Results 

4.3.1 Training Parameters 

Selection of a BbNN network structure needs to be considered from two aspects. 

First, the number of columns has to be equal to or greater than the number of input 

features. Second, the number of rows should be selected so that the network has 

sufficient complexity to model a given problem. A small network size is preferred, 

provided that it achieves the desired performance. Too big a network runs the risk of 

overfitting that might cause poor generalization performance, and require a more 

complex optimization process because of high degrees of freedom in search space. In 

the experiment, a 2×7 network was selected as a minimum-size BbNN that accepts 

seven inputs. The desired output for the target category and non-target categories are 

respectively set to 1.0 and –1.0. There are total five classes (N, S, V, F and Q), so the 

desired output for a training pattern is a vector of five elements. The parameters used 

for the EA in the following simulation are listed in Table 3. The same set of 

parameters has been used for all test records without fine-tuning for specific patients. 
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4.3.2 Evolution Trends 

We apply the evolutionary algorithm to evolve the selected BbNN for a patient. A 

typical fitness trend is shown in Figure 30. The dotted and solid line corresponds to 

the average and maximum fitness, respectively. The evolution stops when the stop 

fitness is met after approximate 1200 generations. 

Figure 31 demonstrates the structure evolution process, in which the percentage 

of occurrences of several structures is shown. The solid line indicates the occurrences 

of a near-optimal structure. The other three lines represent three non-optimal 

structures. The number of BbNNs with a near-optimal structure increases during the 

evolution and become dominant in the population after about 600 generations. 

The operator rate trend is demonstrated in Figure 32. The GDS rate is almost 

constant with some fluctuations during the whole evolution. The crossover maintains 

an overall high rate with bigger fluctuations than GDS. The rates for two mutation 

operators have similar trend that decreases slowly overall and increases sometimes 

when fitter individuals are generated by mutations or the fitness has not been 

improved (cf. to Figure 30).  

Figure 33 shows the effect of the adaptive rate update scheme in terms of the 

convergence speed of maximum fitness. In the fixed rate case, the GDS and the 

crossover use a high rate (0.8) and the mutations use a low rate (0.2). The fitness 

trends are averaged over 10 independent runs. Each error bar shows a standard 

deviation of the maximum fitness at every 200 generations. The error pattern for the 

fixed rate case is similar to that for the adaptive rate update scheme. The EA with 

adaptive rates achieves noticeably higher fitness value on average after the 

conventional evolution procedure. The fitness scaling also enhances fitness levels. 

The EA+GDS algorithm without fitness scaling produces the mean and maximum 

fitness values of 0.900 and 0.909 in 10 trials, which can be compared to 0.920 and 

0.942 when the fitness scaling is applied. 

In order to study the effect of the proposed GDS operator, we dissect the 

evolutionary algorithm to remove the GDS operator. The evolutionary algorithms 
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with and without GDS are then compared in terms of their convergence speed. Both 

algorithms are run for a fixed number of generations 10 times. Figure 33 shows the 

averaged maximum fitness trend during evolution. While the EA without GDS slowly 

improves the fitness, the GDS enhanced EA quickly increases the fitness initially and 

at a slower speed at the last stage. 

A BbNN classifier is evolved specifically for each patient. Both structure and 

internal weights of a BbNN are optimized with the evolutionary algorithm. Figure 34 

shows the network structure of the BbNNs evolved from 24 patients. The numbers on 

the arrow are occurrence counts of the same signal flows among 24 individual 

BbNNs. The maximum output yi indicates the classified ECG type. The redundant 

output nodes are marked by *. Inputs x1, …, x5 to the BbNN are the five Hermite 

transform coefficients c1, ..., c5. The input x6 is the Hermite width σ and x7 is the time 

interval tR between two neighboring R-peaks. 

 

 

Table 3: Parameters of the evolutionary algorithm for ECG signal classification 

Parameter Value 
Population 80 
Maximum Generations 3, 000 
Maximum Fitness Value 0.92 
GDS Epoch 8 
GDS Learning Rate 0.001 
Disruptive Pressure 0.6 
Tournament Size 2 
Rate Update Interval 12 
Initial GDS Rate 1.0 
Minimum Operator Rate 0.1 
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Figure 30: Fitness trend of BbNN evolution. 
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Figure 31: The percentage of occurrences of particular structures during the evolution.  
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Figure 32: Evolution trend of operator rate.  
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Figure 33: Comparison of fitness trend between EA with adaptive and fixed rates. 
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4.4 Classification Results 

Heartbeat classification is performed for test records. Classification statistics of ECG 

heartbeat patterns for test records are reported in Table 4. Two sets of performance 

are reported: the detection of VEBs and detection of SVEBs in accordance with the 

AAMI recommendations [9][77]. Table 5 defines the terms of true positive (TP), true 

negative (TN), false negative (FN) and false positive (FP) for the detection of VEBs 

and SVEBs.  

Four performance measures, classification accuracy (Acc), sensitivity (Sen), 

specificity (Spe), and positive predictivity (PP), are further defined in the following. 

Classification accuracy is defined as the ratio of the number of correctly classified 

patterns (TP and TN) to the total number of patterns classified. Sensitivity is the 

correctly detected events (VEBs/SVEBs) among the total number of events and 

equals to TP divided by the sum of TP and FN. Specificity refers to the rate of 

correctly classified non-events (non-VEBs/non-SVEBs) and is therefore the ratio of 

TN to the sum of TN and FP. Positive predictivity refers to the rate of correctly 

classified events in all detected events and is therefore the ratio of TP to the sum of 

TP and FP.  

The classification of ventricular fusion (F) or unknown beats (Q) as VEBs does 

not contribute to the calculation of classification performance according to AAMI 

recommended practice [9][77]. Similarly, performance calculation for detecting 

SVEBs does not consider the classification of unknown beats as SVEBs. Each 

experiment was repeated ten times and the averaged results were recorded. Each 

experiment was performed ten times. The coefficient of variation (CV) measures 

dispersion of a probability distribution and is defined as the ratio of standard 

deviation to mean, which allows comparison of the variation of populations that have 

significantly different mean values. The CVs for true positive beats of N, S, V, and F 

types are 0.9%, 1.3%, 4.0%, and 48.3%, respectively. The variations for N, S and V 

types are small but type F, which has a very small number of instances. 
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Table 4: Beat-by-beat classification results. 

Classification Result 
Truth 

N S V F Q 
N 41303 311 198 24 0 
S 1051 1181 101 2 0 
V 431 198 4165 14 1 
F 152 48 193 219 0 
Q 5 0 2 1 0 

 

 

 

 

 

Table 5: Definition of TP, FP, TN and FN for detection of VEBs and SVEBs. 

 VEB SVEB 
Classification Result Truth 

N S V F Q N S V F Q 
N TN TN FP TN TN TN FP TN TN TN 
S TN TN FP TN TN FN TP FN FN FN 
V FN FN TP FN FN TN FP TN TN FN 
F TN TN - TN TN TN FP TN TN TN 
Q TN TN - TN TN TN - TN TN TN 
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For VEB detection, the sensitivity was 86.6%, the specificity was 99.3%, the 

positive predictivity was 93.3%, and the overall accuracy was 98.1%. For SVEB 

detection, the sensitivity was 50.6%, the specificity was 98.8%, the positive 

predictivity was 67.9%, and the overall accuracy was 96.6%. From the results, the 

performance of SVEB detection is not as good as VEB detection, and the possible 

reasons include the more diverse types in S class and lack of S class training patterns 

in patients [1][77]. 

4.5 Performance Comparison 

The proposed technique is compared to earlier work using the AAMI standards. An 

automatic heartbeat classification method [77] is based on linear discriminants and 

various sets of morphology and heartbeat interval features. The database was divided 

into two sets with each containing 22 recordings. The best classifier configuration 

determined using the first set was used to classify the heartbeats in the second set for 

performance evaluation. A neural network method based on mixture-of-experts 

concept [86] distinguishes VEB from non-VEB beats. The algorithm employs a test 

set of 20 recordings that excluded records without premature ventricular contractions. 

A global expert was developed using both unsupervised self-organizing map and 

supervised learning vector quantization based on a common set of ECG training data. 

A local expert was developed similarly but based solely on patient-specific training 

data. The decisions from both classifiers are then linearly combined using coefficients 

from a gating network that is trained with another set of patient-specific ECG data. 

A comparison of the classification results among the three methods is given in 

Figure 35 and Table 6. The compared results of VEB detection were based on the 11 

recordings that were common to all three studies. The compared results of SVEB 

detection were based on the 14 recordings that were common to both this study and 

[77]. Figure 35 presents the false positive rate (FPR, equivalent to one minus the 

specificity) versus true positive rate (TPR, equivalent to the sensitivity) from each 

method as a point in the receiver operating characteristics (ROC) curve [95]. The 
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upper-left corner of the ROC curve (TPR = 1.0, FPR = 0.0) is the optimal solution. 

The point representing a pair of TPR and FPR that is closer to the upper-left corner 

corresponds to a better solution. From the plots, the proposed method generated more 

accurate results than the other two methods. 

In Table 6, the numerical values of sensitivity, specificity, positive predictivity 

and overall accuracy for the three methods are presented. These results show that the 

proposed method outperformed the other two methods in terms of sensitivity, 

specificity and positive predictivity and produced notably higher overall classification 

accuracy for VEB detection. Comparing to the method in [77], the proposed method 

produced comparable sensitivity and significant better specificity, positive 

predictivity and overall classification accuracy for SVEB detection. 

   There are some other works in literature involving various classification 

techniques. It is interesting to compare our results with the others, although the 

comparisons are not exact because the other methods either use a subset of the MIT-

BIH database or aims at identifying specific beat types. Hu et al. [84] proposed an 

artificial neural network method based on multi-layer perceptrons (MLP) trained with 

back-propagation algorithm. A two-layer MLP network of the size 51-25-2 reported 

an average accuracy of 90% for the classification of normal and abnormal heartbeats 

and 84.5% in classifying the beats into 13 beat types according to the MIT-BIH 

Database annotations.  The use of multilayer perceptrons and Fourier transform 

features resulted in 2% of mean error for 3 rhythm types based on 700 test QRS 

complexes [3]. Osowski et al. [83] presented a heartbeat classification method using 

support vector machine (SVM) and two different types of features, Hermite 

characterization and high-order cumulants. The overall accuracy of heart beat 

recognition is 95.91% for normal and 12 abnormal types. One thing needs to be 

pointed out that these comparisons are not exact because the methods compared either 

use a subset of the MIT-BIH database or aim at identifying specific beat types. 
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(a) 

   

(b) 

Figure 35: Comparison of true positive rate and false positive rate for the three 
algorithms in terms of VEB detection (a), and SVEB detection (b). 
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Table 6: Performance comparison regarding VEB and SVEB detection. 

VEB SVEB 
Method 

Acc Sen Spe PP Acc Sen Spe PP 
Hu et al. [86] 94.8 78.9 96.8 75.8 - - - - 

Chazal et al. [77] 96.4 77.5 98.9 90.6 92.4 76.4 93.2 38.7
Proposed 98.8 94.3 99.4 95.8 97.5 74.9 98.8 78.8

                       

 

 

 

4.6 Fault Tolerance of BbNN for ECG Classification 

Fault tolerance refers to the ability of continuous operation of a system when fault 

occurs within the system. A system with good fault tolerance degrades its 

performance proportional to the degree of severity of the fault occurred, which is 

compared to a system without such capability that would breakdown regardless of the 

degree of fault.  

In order to learn the fault tolerance ability of BbNNs for ECG signal 

classification, experiments are conducted to study the effect of noise. We want to 

specifically address two questions. The first question is how the classification 

performance is affected by noise. The second is can BbNN recover its functionality 

from such event.  

Two types of fault modes are studied: global and local noise. In the global 

mode, the whole network is corrupted by Gaussian noise. Additive Gaussian noises 

with various levels of variations determined by signal-to-noise ratio (SNR) values are 

used in the simulation. The SNR is defined in the following equation: 
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where wi denotes the weight in a BbNN and n is the total number of weights in the 

BbNN. σ2 is the variance of the Gaussian noise. In the simulation, the weights of the 

evolved BbNNs for 24 test records from Section 4.4 are corrupted using Gaussian 

noise generated with a SNR value. Eight levels of noise, with SNR values of -5, 0, 5, 

10, 15, 20, 25 and 30 dB, are considered to represent noise with varying severity. The 

classification performance (in terms of Acc, Sen, Spe and PP) of the BbNNs with 

corrupted weights is recorded and shown in Figure 36. The error bars along the 

curves for Acc and Sen indicate the standard deviation among 10 trials. The error 

patterns for the other two measures are similar and skipped in the figure for visual 

clarity. Figure 37 presents FPR versus TPR from each noise level as a point in the 

ROC curve. Comparing the results shown in Figure 36 with those in no noise case 

reported in Section 4.4, it is observed that the noise tends to degrade the classification 

performance in both VEB and SVEB detection. However the degradation becomes 

less severe as the noise weakens. When SNR is higher than 15 dB, the performance 

degradation is negligible. Among the four measures, Sen and PP are more sensitive 

than Acc and Spe to the levels of the noise. 

In the second fault mode, local impulse noise is simulated. Instead of the 

whole network, only part of the network is assumed to be corrupted by impulse noise. 

Specifically, a specified percentage of the total weights in the evolved BbNNs for 24 

test records from Section 4.4 are randomly selected and the selected weights are then 

set to 0 in order to simulate the local impulse noise. Ten levels of noise severity, with 

percentages varying from 5% to 50% with an increment of 5%, are considered. The 

classification performance of the BbNNs with corrupted weights is recorded and 

shown in Figure 38. The error bars indicate the standard deviation among 10 trials. 

Figure 39 presents FPR versus TPR from each noise level as a point in the ROC 

curve. From the figures, it is clear that the impulse noise degrades the classification 
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performance with degradation proportional to the severity of the noise. The higher 

percentage of weights is corrupted, the severer the performance degradation is. 

It is interesting to compare the effects of the two types of noise modes. In both 

modes, the noise tends to degrade the classification performance with the degree of 

degradation in proportion to the noise levels (noise strength in global mode and noise 

width in local mode). When SNR is getting higher (e.g. bigger than 15 dB) in 

Gaussian noise case, the performance degradation becomes negligible. However, this 

performance degradation pattern is not observed in the impulse noise case.  

In the next, experiments are conducted to study whether BbNN can recover its 

functionality from noise. Specifically, the effect of noise on fitness values is studied. 

In the simulation, initial evolution is performed on a population of BbNN individuals 

using the proposed evolutionary algorithm. This evolution is stopped after 3,000 

generations when convergence is observed. Then low Gaussian noise with a SNR of 

5dB is added to corrupt the weights of the BbNNs in the population. Following the 

noise addition, a recovery evolution is applied to the noise corrupted population to 

recover the BbNN functionality in terms of fitness values. Figure 40(a) shows the 

evolution trend of maximum and average fitness values during the initial evolution 

(the first 3,000 generations) and recovery evolution (beginning from the 3,001st 

generation) after noise corruption. The error bars indicate the standard deviation 

among 10 trials for every 200 generations. From the figure, both maximum and 

average fitness values dropped significantly after the weights are corrupted by the 

noise. However, the maximum fitness value is able to gradually recover from the 

noise and after 1,000 generations it reaches to a level that is comparable to the one 

achieved at the end of initial evolution. A more severe noise level with SNR of 0 dB is 

also studied. The evolution trend of maximum and average fitness values during the 

initial evolution and recovery evolution after noise corruption is shown Figure 40(b). 

It demonstrates a similar overall trend to the low noise case. However, the fitness 

values dropped heavier and the recovery evolution takes more generations to recover 

the fitness compared to the low noise case. 
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(a) 

 
(b) 

Figure 36: The effect of Gaussian noise on BbNN classification performance, (a) 
VEB detection, (b) SVEB detection. 
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(a) 

 
(b) 

Figure 37: Comparison of true positive rate and false positive rate for different levels 
of Gaussian noise for VEB detection (a), and SVEB detection (b). 



 97

 
(a) 

 
(b) 

Figure 38: The effect of impulse noise on BbNN classification performance, (a) VEB 
detection, (b) SVEB detection. 
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(a) 

 
(b) 

Figure 39: Comparison of true positive rate and false positive rate for different levels 
of impulse noise for VEB detection (a), and SVEB detection (b). 



 99

 
(a) 

 
(b) 

Figure 40: Evolution trend of BbNN with different levels of noise, (a) Low noise 
(SNR = 5 dB), (b) Severe noise (SNR = 0 dB). 
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Chapter 5 ACCELERATED LOCAL SEARCH USING 

BLOCK-WISE LEAST SQUARES LEARNING 

BbNNs provide a model-free approximation approach for nonlinear dynamic systems. 

This chapter provides examples of dynamic system approximation using block-based 

neural networks. A gradient descent search was introduced in chapter 3 and used in 

the evolutionary algorithm as a local search operator. It is shown that the inclusion of 

the GDS operator in the evolutionary algorithm results in faster convergence speed 

and the algorithm performs well for ECG heartbeat classification. However, for 

applications that require highly accurate results like chaotic time series prediction, the 

use of GDS becomes questionable due to the slow speed associated with gradient-

based search procedure. The cause of the slow speed is because that many epochs are 

usually needed for GDS to converge to a satisfactory solution. Moreover, a set of 

parameters like the learning rate need to be tuned to get optimized performance for a 

specific application. Observing these limitations of GDS operator, this chapter 

proposes a least squares learning as an alternative to the gradient descent search for 

dynamic system approximation [52]. 

5.1 Introduction 

Dynamic system approximation is a research area that finds applications in fields 

varying from weather forecasting, chaotic time series prediction, to system 

identification and remote sensing. The general goal in dynamic system approximation 

is to construct a model that can predict the future behavior of a process based on 

observed past instances. In the example of time series prediction, predicted output is 

obtained using past and current observations. Typical inputs contain past samples of 

the series up to a certain length. System identification has application in many 

disciplines where a mathematical model is needed for modeling a physical system. 
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Predicated system output is generated using past system observations and current 

system inputs. Various modeling techniques can be identified ranging from those 

building a model dynamical system to black-box modeling technique using ANNs. A 

common drawback of systems with fixed structures is underfitting or overfitting, 

which is caused due to the lack of knowledge on the functional form and the order of 

the dynamics.  

5.2 Blockwise Least Squares Learning (BLS) 

The gradient-based learning methods for feedforward multilayered neural networks 

have major drawbacks such as slow convergence speed. Many iterations are often 

needed to reach an acceptable accuracy. In the other hand, linear least squares-based 

(LSB) approaches [25][26][27][28] that use linear least squares techniques and layer-

by-layer optimization are found to have faster convergence compared to gradient-

based methods. Unlike the iterative process that needs a learning rate, LSB 

approaches don’t need user-supplied parameters. In the following, a blockwise least 

squares learning adopted from the LSB algorithm [25] is discussed. 

The basic idea in the LSB algorithm is to construct a linear system for each 

layer in a MLP network and solve this system using linear least squares. A layer-by-

layer optimization procedure is followed to optimize the weights in a network [25]. 

Considering the fact that the weights in a layer of BbNN are only sparely connected, 

it would not be possible to apply the least squares method for BbNN in the way as in 

the LSB algorithm. In the BLS algorithm, a blockwise optimization procedure is 

performed that the internal weights of each block are optimized by solving a set of 

linear equations and the blocks in the network are optimized from higher stages to 

lower stages. Each block in the network corresponds to a simple feedforward neural 

networks and its optimization is treated separately. For blocks with known desired 

outputs, the internal weights are optimized by minimizing the least squares criterion. 

For other blocks with unknown target outputs, weight optimization is completed 

using estimated desired outputs. Optimization of the weights of blocks in higher 
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stages is performed earlier than the blocks in lower stages. A training epoch consists 

of weight learning for all blocks from the last stage to the first stage. The training 

process is finished after a stop criterion is met. 

5.2.1 Training a Single Block 

Each block in a BbNN makes a simple feedforward neural network. A detailed view 

of a basic block of type 3/1 is shown in Figure 41. For a set of inputs, the equation to 

computing the linear outputs of the block can be written in matrix format as: 

G = UW                                                        (61) 

where U is the input to the block with each of its columns being outputs from an input 

neuron and the first column being the output from a constant bias node and each row 

representing a data sample vector. W is the internal weights of the block. Each 

column of output matrix G is the linear summation applied to the nonlinearity of a 

node (Refer to Figure 41) to generate the block output. The dimensions of each of the 

 

    

Figure 41: A detailed view of  a basic block. 
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 three basic block types are determined by the number of learning samples and 

number of input/output neurons of the block. Let the number of samples be N, the 

numbers of input and output neurons of a block be (m-1) and n, then it is clear that 

U N m×∈ℜ , W m n×∈ℜ  and N nG ×∈ℜ . Hence, for the 1/3 type block shown in Figure 

11(a), there are 2U N×∈ℜ , 2 3W ×∈ℜ  and 3NG ×∈ℜ . For the 2/2 type block, there are 
3U N×∈ℜ , 3 2W ×∈ℜ  and 2NG ×∈ℜ . For the 3/1 type block, there are 4U N×∈ℜ , 

4 1W ×∈ℜ  and 1NG ×∈ℜ . 

Determining the optimal weights W can be formulated as a linear least squares 

problem: 

2
min UW D−                                                (62) 

where D is the target output. For the three block types, solving the minimization 

problem in Eq. (62) is to find the linear square solution for an over-determined 

system since mN >>  in most cases. The least square solution for an over-determined 

system can be determined using QR decomposition together with Householder 

transformation [96]. To be specific, let us first write the original problem in the 

equivalent component form (associated with each output neuron) as in the following: 

2
min Uw d−                                                    (63) 

where w and d denote any column of W and D, respectively. If U N m×∈ℜ , it can be 

decomposed into the product of an orthogonal matrix Q N N×∈ℜ  and an upper 

triangular matrix R N m×∈ℜ , i.e.: 

U QR=                                                         (64) 

It is reasonable to assume that U has full column rank since mN >> . Therefore 

the economy-sized QR decomposition is given as follows 

U Q Rn n=                                                       (65) 
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where Qn consists of the first n columns of Q and Rn consists of the first n rows of R. 

The least square solution lsw  to Eq. (63) can be computed through back-substitution 

from the following equation: 

R QT
n ls nw d=                                                   (66) 

 After the optimal weights are determined, a set of desired input S is sought for 

in order to reduce further the least squares error. With the weights W and target 

outputs D known, the desired input S is the least square solution to the following 

problem: 

2
min SW D−                                            (67) 

where W is the optimal weights determined from Eq. (62). Since the output from a 

bias node is constant, the entries in the first column of the desired input S are fixed. 

Therefore, the original minimization problem needs to be modified to take into 

account this constraint. The modified minimization problem is given in the following: 

2
min S W Dc c −                                               (68) 

where Wc is same to W excluding its first row and Sc equals S except its first column 

of constant bias output is discarded. Now let us translate this problem into standard 

least squares formulation and write down its component form that corresponds to 

each training sample: 

( )
2

min W T
c c cs d−                                           (69) 

where sc denotes any row of Sc and dc denotes any row of D, respectively. The 

problem given in Eq. (69) can be a square, an over-determined or an under-

determined system depending on the type of the block. When the block is 2/2 type, 

the system is square. It is an over-determined system when the block is 1/3. For type 

3/1 block, the system is under-determined. The method used to solve Eq. (63) can be 

utilized to find the least square solution for square or over-determined system.  
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For a general under-determined system, it has either no solution or infinite 

solutions. In our base, there are infinite solutions as the left-null space of the system 

is empty and the null space is not. Therefore, the minimal 2-norm solution is found 

through the following procedure [96]. For clarity, let us rewrite the Eq. (69) as in the 

following 

T T T

2
min Wc c cs d−                                              (70) 

Let compute QR decomposition of ( )1W n m
c

× −∈ℜ  and get 

R
W Q

0c
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

                                                      (71) 

where R n n×∈ℜ . Then Eq. (70) becomes 
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with 1
nz ∈ℜ 1

2
m nz − −∈ℜ . Let 2 0z = , the minimum 2-norm solution follows 

1T Q
0c

z
s ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

                                                    (74) 

where 1z  is solved from Eq. (72). 

The thus acquired desired input becomes the target output for the blocks 

connected to current block. However, due to the use of nonlinear sigmoidal function, 

the output from output node is bounded. The acquired input S has to be transformed 
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to bring its range into that of the activation function. To that purpose, a 

transformation matrix is used [25]. After the optimal weights W and desired input S 

are determined, the learning process for the block is completed. 

5.2.2 Training a Block-based Neural Network 

The computation stage s associated with a block denotes the priority according to 

which each block is trained. The blocks in higher stages are trained earlier than those 

in lower stages. The blocks within the same stages are trained with the same priority.  

The BLS algorithm for BbNN can be summarized in the following: 

1) Generate randomly initial internal weights for each block in the network. 

2) Propagate all patterns through the network from blocks in lower computation 

stages to blocks in higher stages producing outputs. 

3) Update the weights for the block in stage s using Eq. (62). 

4) Update the input for the block in stage s (the desired output for the connected 

block in stage s-1) using Eq. (67). 

5) Repeat steps 3) - 4) for each block in stage s-1. 

6) If end condition is met, stop learning; otherwise, go to step 2). 

5.2.3 Computation Complexity 

The number of multiplications required to solve a linear least squares problem using 

QR decomposition and Householder transformation equals ( )M n m n× × + , in which M 

and n are the dimensions of input matrix and n and m are dimensions of weight matrix. 

The computation complexity of optimizing the block shown in Figure 41 will be 

O(20M). As a comparison, the GDS optimization of the same block type will have a 

complexity of O(4M). Thus, the operation complexity of both algorithms is only 

linearly correlated to the number of examples. The BLS algorithm takes more 

operations than the GDS algorithm per epoch. However, the experiment results 

presented in the following section show that BLS is much faster than GDS since BLS 
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takes only a few epochs compared to hundreds of epochs of GDS to reach comparable 

or lower error level. 

5.3 Experimental Results 

This section presents experimental results for two dynamic system approximation 

problems: one is the well-known Mackey-Glass time series prediction and the other is 

a realistic nonlinear system identification problem. GDS and BLS are used as a stand-

alone optimization procedure for a fixed structure BbNN, and their performance in 

terms of convergence speed is compared. Then the EA only algorithm and the EA 

with local search algorithms, namely, evolutionary operators plus GDS (referred as 

EA+GDS) and evolutionary operators plus BLS (referred as EA+BLS), are also 

compared. All the algorithms are implemented using Visual C++ 6.0 and run under a 

PC platform with Pentium 4 2.80 GHz CPU. The fitness function is defined as: 

2

1

1Fitness
1

M
i i

i=

=

+ −∑ d y
                                               (75) 

where M denotes the number of training samples. di and  yi are the desired and actual 

outputs when the ith pattern is presented. The parameters used for the EA algorithms 

are listed in Table 7. 

5.3.1 Time Series Prediction 

The time series prediction is to estimate future behavior of a process based on 

observations up to current time, which can be modeled using the following equation: 

( ) ( ) ( ) ( )( )ˆ , ,...,x t I f x t x t D x t qD+ = − −                           (76) 
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Table 7: Parameters of the evolutionary algorithm for dynamic system approximation 

Parameter Value 
Population 80 
Maximum Generations 1, 000 
Maximum Fitness Value 0.95 
GDS Epoch 50 
GDS Learning Rate 0.001 
Disruptive Pressure 0.6 
Tournament Size 2 
Rate Update Interval 12 
Initial GDS Rate 1.0 
Minimum Operator Rate 0.1 

 

 

where t denotes current time index and positive integer q is called the order of the 

model. The function f(·) represents the functional input-output relationship of a time 

series prediction process. 

The Mackey-Glass (M-G) time series is a chaotic time series simulating blood 

flow [97] and it is one of the widely investigated benchmark examples in time series 

prediction. The M-G time series can be represented using the following differential 

equation: 

( ) ( ) ( )
( )101

bx t
x t ax t

x t
τ

τ

−
= − +

+ −
&                                         (77)  

The system can exhibit fixed points, limit cycles, or chaotic behaviors for 

different values of τ. The M-G time series values at integer points were obtained by 

applying the fourth-order Runge-Kutta method to find solution to Eq. (77). The 
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parameters used are a = 0.1, b = 0.2 and τ = 17. For this particular value of τ, the 

system exhibits a chaotic behavior. Figure 42 shows an M-G time series generated for 

experiments where the dotted vertical line marks the beginning of test phase. Among 

the total 500 data points, 300 of them are used to train a selected BbNN with fixed 

structure and the remaining 200 points serve as test data.  

The time series data in lagged space x(t), x(t-1), x(t-2) and x(t-3) are inputs to 

the BbNN and x(t+1) is the output from the network, i.e., I = q = 1 and D = 3. 

Starting from a randomly generated initial set of weights, both GDS and BLS 

algorithms are applied to optimize the internal weights of a BbNN with two rows and 

four columns. The learning rate selected for GDS is 0.05 that allows faster 

convergence based on some initial trials. There is no parameter to set for BLS 

algorithm.  

The performance of the BLS algorithm regarding convergence speed and 

prediction accuracy is compared to that of GDS. Table 8 lists the numerical 

comparison between the two methods. The BLS usually takes only one or a few 

epochs to reach the error level that the GDS algorithm does not achieve after 1,000 

epochs. The actual CPU running time of BLS is also significantly less than that of 

GDS algorithm. The Mean Squared Error (MSE) as the error criterion is also 

compared between the two methods for both training and test data. The BbNN trained 

with BLS algorithm achieves the error level that is nearly 10 times less than that 

achieved with GDS after 1000 epochs. The BbNN trained with BLS is found to 

generalize well to the test data that is not seen before. The errors for training and test 

data are comparable. 

Next, the performance of the EA only and EA with local search operator 

algorithms is compared. The time series data in lagged space x(t), x(t-1), x(t-2) and 

x(t-3) are inputs to the BbNN and x(t+1) is the output from the network, i.e., I = q = 1 

and D = 3. An initial population is randomly generated. The three algorithms are 

applied to find optimal BbNN structure and weights. Figure 43 compares the 

maximum fitness values after 1,000 generations for the three algorithms averaged 

among 10 trials. The use of either GDS or BLS operator in the EA algorithm results 
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in higher fitness value than EA only case. The Mean Squared Error (MSE) 

corresponding to the maximum fitness value is computed and listed in Table 9. The 

EA+GDS and EA+BLS algorithms produce lower training and test error than EA 

only algorithm. Between the two EA algorithms that use a local search operator, 

EA+BLS algorithm performs noticeably better than EA+GDS. 

The convergence speed of the EA algorithms is compared in terms of achieving 

the same level of fitness value (The level compared is the average fitness value that 

the EA+GDS achieves after evolution). Table 10 shows the number of generations 

and CPU running time. From the table, the EA only method failed to achieve this 

level of fitness. Between the two EA methods using local search, EA+BLS algorithm 

takes much less time than EA+GDS. 

Figure 44 plots an evolved BbNN using the EA+BLS algorithm for Mackey-

Glass time series prediction. An output node y gives a future prediction based on 

inputs of past observations. All other redundant output nodes are marked by *. Inputs 

x1,…, x4 to the BbNN are the time series data in lagged space x(t), x(t-1), x(t-2) and 

x(t-3). Figure 45 shows the typical 1-step prediction results from the evolved BbNN 

for the test data. The estimates from EA+BLS resemble the most to the truth data 

among the three algorithms compared. 

5.3.2 Nonlinear System Identification 

Conventional techniques for nonlinear system identification utilizing mathematical 

models require the structure of the model must be known in advance. Block-based 

neural networks provide a general model-free approach for identifying nonlinear 

systems. The system in interest is a practical liquid-saturated steam heat exchanger 

[98], where water is heated by pressurized saturated steam through a copper tube. The 

input variables are the liquid flow rate, the steam temperature, and the inlet liquid 

temperature. The system output is the outlet liquid temperature. In this experiment, 

the steam temperature and the inlet liquid temperature are kept constant to their 

nominal values. The system model can be described as in Eq. (78):  
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Figure 42: A Mackey-Glass time series. 

 

 

 

 

 

 

 

Table 8: Performance comparison for M-G time series prediction 

Method Epoch Time (s) MSE (Train/Test) 

GDS 1,000 15 4.22/4.71×10-3 

BLS 1 0 4.69/4.39×10-4 
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Figure 43: Comparison of achieved maximum fitness among the EA algorithms. 
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Table 9: Comparison of mean squared error for the EA algorithms  

Method Mackey-Glass 

(Training/Test) 

Heater Exchanger 

(Training/Test) 

EA 6.02/5.99×10-3 5.44/5.65×10-3 

EA+GDS 3.39/3.46×10-3 4.12/4.20×10-3 

EA+BLS 3.00/2.95×10-4 1.79/1.58×10-3 

 
 

 

 

 

Table 10: Comparison of convergence speed for the EA algorithms  

Method Mackey-Glass 

(Generation/Time)

Heater Exchanger 

(Generation/Time) 

EA Failed Failed 

EA+GDS 1000/172s 1000/215s 

EA+BLS 11/1s 9/1s 
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Figure 44: Evolved BbNN for M-G time series prediction after 1000 generations.  

 
 

 

Figure 45: Test results of M-G time series prediction. 
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( ) ( ) ( ) ( ) ( ) ( ) ( )( )1 2ˆ 1 , 2 ,..., ; , 1 ,...,y t f y t y t y t D u t u t u t D= − − − − −                   (78) 

in which u and y denote the system input and output, respectively. 

The set of data employed in training the neural network has a large impact on 

the quality of the identified system model, which means the set of training data needs 

to include as much information as possible about the dynamics of the system. It is 

therefore important to construct a balanced set of training data that covers the whole 

system operation range. To this end uniformly distributed input over the process 

range are generated and serve as system input. Figure 46 shows the corresponding 

fluid outlet temperature in which dotted vertical line separates the training and test 

data.  

The system output data y(t-1), y(t-2) and y(t-3) and lagged input x(t-1), and x(t) 

are inputs to the BbNN and y(t) is the output from the network, i.e., D1 = 1 and D2 = 

3. Starting from a randomly generated initial set of weights, GDS and BLS algorithms 

are applied to optimize the internal weights of a BbNN with two rows and five 

columns. The first 300 input-output pairs in the data set are training data and the 

remaining data serve as independent test samples. 

The performance of the BLS algorithm regarding convergence speed is 

compared to that of GDS. The learning rate selected for the GDS is 0.05 that allows 

good convergence performance. Table 11 lists the comparison of numerical results 

between the two methods. The BLS algorithm takes only one or a few epochs to reach 

an error level that the GDS algorithm does not achieve after 1,000 epochs. The actual 

CPU running time of BLS is also significantly less than that of GDS algorithm. 

Similar to the case of M-G time series prediction, the BbNN trained with BLS is 

found to generalize well to the test data that is not seen before. The errors for training 

and test data are comparable. 

Next, the performance of the EA only and EA plus local search algorihtms is 

compared. The system output data y(t-1), y(t-2) and y(t-3) and lagged input x(t-1), and 

x(t) are inputs to the BbNN and y(t) is the output from the network, i.e., D1 = 1 and D2 

= 3. The three algorithms are applied to find optimal BbNN structure and weights 
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starting from randomly generated populations repeated for 10 times. Figure 43 

compares the maximum fitness values after 1,000 generations for the three algorithms 

averaged among the 10 trials. The use of either GDS or BLS operator in the EA 

algorithm results in higher fitness values than EA only case. The EA algorithms with 

local search ability produce lower training and test error than EA only algorithm 

according to Table 8. Between the two algorithms using both evolutionary and local 

search operators, EA+BLS algorithm performs noticeably better than EA+GDS. 

When comparing the convergence speed among the three algorithms, EA only 

method failed to achieve the same level of fitness value that is achieved by the two 

algorithms with local search according to Table 10. When comparing the two 

methods that use both types of operators, EA+BLS algorithm takes much less time 

than EA+GDS. 

Figure 47 plots an evolved BbNN using the EA+BLS algorithm for heater 

exchanger system identification. An output node y gives an estimated fluid outlet 

temperature based on inputs and outputs in lagged space. All other redundant output 

nodes are marked by *. Inputs x1 and x2 to the BbNN are the time series data in 

lagged space x(t), x(t-1), and x3, x4 and x5 correspond to y(t-1), y(t-2) and y(t-3). 

Figure 48 shows the typical output estimates from the evolved BbNN for the test data. 

The estimate from EA+BLS produces the least amount of error among the three 

methods compared. 
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Figure 46: Fluid outlet temperature of a practical heat exchanger. 

 

 

 

 

Table 11: Performance comparison for nonlinear heat exchanger identification 

Method Epoch Time (s) MSE(Train/Test) 

GDS 1,000 20 4.95/5.07×10-3 

BLS 1 0 2.44/2.12×10-3 
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Figure 47: Evolved BbNN for heater exchanger system identification after 1000 
generations. 

 
 
 
 

 

Figure 48: Outlet temperature of the simulated process and BbNN prediction. 
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Chapter 6  CONCLUSIONS 

6.1 Conclusions 

This dissertation presents personalized health monitoring using evolvable block-based 

neural networks. As a specific example, personalized ECG heartbeat classification is 

demonstrated using the BbNN approach. In the following, conclusions of this 

dissertation are drawn. 

A computationally efficient evolutionary algorithm that simultaneously 

optimizes the structure and weights of block-based neural networks is developed. In 

addition to the evolutionary operators of crossover and mutations, this algorithm 

utilizes local search operators that are based on gradient descent principle and linear 

least squares method. The use of local search operator greatly increases the 

optimization speed of the evolutionary algorithm. In order to remove manual tuning 

of operator rates, an adaptive rate update scheme that rewards or penalizes an 

operator based on its past performance is proposed. A fitness scaling with generalized 

disruptive pressure that favors individuals at two extreme ends reduces the possibility 

of premature convergence. The use of both adaptive rate update and fitness scaling 

ensures higher fitness values. 

The BbNN platform provides a viable approach for personalized ECG heartbeat 

classification. Evolvable classifiers based on block-based neural networks can change 

the structure and configurations as well as internal parameters to cope with the 

heartbeat variations due to personal or temporal differences. A BbNN evolved with 

the proposed evolutionary algorithm using the Hermite transform coefficients and a 

time interval between two neighboring R peaks of ECG signal, provides a patient-

specific heartbeat classification system. Experimental results using the MIT-BIH 

Arrhythmia database demonstrate a high accuracy of 98.1% and 96.6% on average for 

the detection of ventricular ectopic beats (VEBs) and supraventricular ectopic beats 
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(SVEBs), respectively, a significant performance improvement over other major 

techniques. Also, experimental study on fault tolerance of BbNNs demonstrates that 

the level of performance degradation is proportional to the severity of noise for ECG 

signal classification. 

The BbNN approach method provides a general model-free technique for 

dynamic system approximation. A blockwise least squares learning method (BLS) is 

proposed as an alternative to the gradient descent search for applications where highly 

accurate results are desired. Experimental results based on Mackey-Glass time series 

prediction and nonlinear system identification reveal that BLS converges faster with 

orders of magnitude compared to the gradient-based procedure. The use of local 

search operator in the evolutionary algorithm produces higher fitness values that lead 

to smaller prediction errors. 

6.2 Future Directions 

6.2.1 Issues on Fault Tolerance 

Fault tolerant systems are desirable in many applications. For example, in deep space 

exploration where physical space is often very limited, a system capable of fault 

recovery is of great value compared to the typical sparse approach. We studied fault 

tolerance of BbNNs for ECG classification. Preliminary experiments demonstrate 

some fault tolerance ability of BbNNs. It was shown that the degree of performance 

degradation due to noisy weight connections is proportional to the level of severity of 

the corruption noise. Also, the functionality of BbNNs can be gradually restored 

through the use of recovery evolution. In the author’s opinion, research on fault 

tolerance of BbNNs can be extended to include discussions on fault recovery in more 

hardware-oriented environments. For that purpose, two specific issues need to be 

addressed. 
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The first issue is efficient fault recovery. The performance of reconfigurable 

hardware can be degraded by faults. Various fault sources exist such as radiation, 

thermal fatigue, oxide breakdown and electromigration [99]. The resulting faults 

include stuck-at faults, shorts and opens, and interconnect delay faults [101]. A 

number of methods have been proposed for fault recovery [99][100] in reconfigurable 

hardware. However, few efforts have been devoted to fault recovery at neural 

network level (i.e. designing ANNs using reconfigurable hardware). Further 

investigations can be conducted on efficient methods for recovering functionalities of 

BbNNs in the event of such faults. 

Another issue is practicality. The combination of evolvable hardware and 

evolutionary algorithm provides reconfiguration that can be utilized for fault 

recovery. While restoring functionality is essential to fault recovery, time constraint 

should also be considered to make fault recovery practical [102]. Hardware 

reconfiguration can be a very time consuming process. As reviewed in previous 

section 2.3.2, one generation of the intrinsic evolution in [60] took 4.8 hours and a 

successful evolution would take months if hundreds of generations are needed. For 

most online applications, this amount of time is not practical. The time constraint on 

reconfiguration depends on the specific application and it varies from application to 

application due to different recovery deadlines [102]. Therefore it is important to 

consider the time constraint for a specific application in fault recovery when 

designing BbNNs using reconfigurable hardware. 

6.2.2 Lazy Learning Methods for ECG Signal Classification 

Lazy learning methods are a class of statistical regression models that store training 

instances in memory and answer a new query by resorting to the relevant instances 

stored. In its simplest form, lazy learning predicts the output of a query by finding a 

set of nearest neighbors and voting on the outputs of those neighbors. Another form 

of typical lazy learning methods, known as locally weighted learning, uses locally 

weighing strategy to combine outputs of relevant training samples determined 
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through a distance measure. Compared to supervised learning methods such as neural 

networks, lazy learning methods avoid the procedure for training model parameters 

and offers higher flexibility in fitting local features of target surface. Lazy learning 

methods have been successfully used in many application domains including robot 

control, modeling time series, reinforcement learning and others. A latest survey on 

locally weighted learning is found in [103]. 

Among the vast literature on ECG signal classification, most approaches 

adopt a “global” strategy [3][77][80][81][83]-[90] in the means that the parameters 

associated with a classifier are optimized by minimizing an error metric between the 

target and actual outputs for a set of labeled training patterns. In the later retrieval 

operation, the trained “global” classifier is used to classify unseen heartbeat patterns.  

Unlike such “global” strategies, in a lazy learning method, the output of a query is 

determined by combining the outputs of neighboring points with known labels. There 

are a few works that tackle ECG signal classification using lazy learning methods. A 

simple nearest neighbor approach in [84] using Euclidean distance for determining 

relevance reported a smaller than 75% classification accuracy for detecting abnormal 

ECG heartbeat patterns based on a limited set of data set containing 6474 samples. 

However, such moderate performance can expect to be greatly enhanced by using 

locally weighted learning and tuning parameters for ECG classification. An 

interesting future research topic would be to investigate whether and how lazy 

learning methods could contribute to improving the performance of ECG signal 

classification. 
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