
University of Tennessee, Knoxville
Trace: Tennessee Research and Creative
Exchange

Doctoral Dissertations Graduate School

8-2007

Personalized Health Monitoring Using Evolvable
Block-based Neural Networks
Wei Jiang
University of Tennessee - Knoxville

This Dissertation is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange. It has been
accepted for inclusion in Doctoral Dissertations by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more
information, please contact trace@utk.edu.

Recommended Citation
Jiang, Wei, "Personalized Health Monitoring Using Evolvable Block-based Neural Networks. " PhD diss., University of Tennessee,
2007.
https://trace.tennessee.edu/utk_graddiss/202

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Tennessee, Knoxville: Trace

https://core.ac.uk/display/268771279?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://trace.tennessee.edu
https://trace.tennessee.edu
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a dissertation written by Wei Jiang entitled "Personalized Health Monitoring
Using Evolvable Block-based Neural Networks." I have examined the final electronic copy of this
dissertation for form and content and recommend that it be accepted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy, with a major in Computer Engineering.

Seong G. Kong, Major Professor

We have read this dissertation and recommend its acceptance:

Donald W. Bouldin, Itamar Elhanany, J. Wesley Hines, Gregory D. Peterson

Accepted for the Council:
Dixie L. Thompson

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:

I am submitting herewith a dissertation written by Wei Jiang entitled “Personalized
Health Monitoring Using Evolvable Block-based Neural Networks.” I have examined
the final electronic copy of this dissertation for form and content and recommend that
it be accepted in partial fulfillment of the requirements for the degree of Doctor of
Philosophy, with a major in Computer Engineering.

Dr. Seong G. Kong____________

 Major Professor

We have read this thesis
and recommend its acceptance:

Dr. Donald W. Bouldin_______

Dr. Itamar Elhanany__________

Dr. J. Wesley Hines__________

Dr. Gregory D. Peterson______

Accepted for the Council:

Carolyn Hodges____________________

Vice Provost and Dean of Graduate School

(Original signatures are on file with official student records)

PERSONALIZED HEALTH MONITORING USING

EVOLVABLE BLOCK-BASED NEURAL NETWORKS

A Dissertation

Presented for the

Doctor of Philosophy Degree

The University of Tennessee, Knoxville

Wei Jiang

Aug. 2007

 ii

Copyright © 2007 by Wei Jiang

All rights reserved.

 iii

Dedication

This dissertation is dedicated to my parents and my wife.

 iv

Acknowledgements

I would like to thank all the individuals who have helped me in one way or another in

finishing this dissertation.

I am deeply indebted to my academic advisor Dr. Seong G. Kong for his

guidance and consistent support throughout my graduate study at University of

Tennessee, and for giving me the opportunity to work on the block-based neural

network project. I also wish to thank Dr. Gregory D. Peterson for the invaluable

discussions and for serving on my committee. I am very grateful for the advice and

service of my other committee members, Dr. Donald W. Bouldin, Dr. J. Wesley

Hines and Dr. Itamar Elhanany.

I would like to acknowledge Saumil Merchant for clarifying me on various

FPGA issues and for general discussions on BbNN research, and Sangwoo Moon for

the valuable discussions on research and programming and for reviewing my papers. I

also want to thank other colleagues: Sang Ki Park, Shaoyu Liu, Zheng Du, Yang Bai,

and Oh Kyu Kwon.

Last but not least, my thanks go to my wife Lidan, and my family members for

their love, support and encouragement through my life.

 v

Abstract

This dissertation presents personalized health monitoring using evolvable block-based

neural networks. Personalized health monitoring plays an increasingly important role

in modern society as the population enjoys longer life. Personalization in health

monitoring considers physiological variations brought by temporal, personal or

environmental differences, and demands solutions capable to reconfigure and adapt to

specific requirements. Block-based neural networks (BbNNs) consist of 2-D arrays of

modular basic blocks that can be easily implemented using reconfigurable digital

hardware such as field programmable gate arrays (FPGAs) that allow on-line partial

reorganization. The modular structure of BbNNs enables easy expansion in size by

adding more blocks. A computationally efficient evolutionary algorithm is developed

that simultaneously optimizes structure and weights of BbNNs. This evolutionary

algorithm increases optimization speed by integrating a local search operator. An

adaptive rate update scheme removing manual tuning of operator rates enhances the

fitness trend compared to pre-determined fixed rates. A fitness scaling with

generalized disruptive pressure reduces the possibility of premature convergence. The

BbNN platform promises an evolvable solution that changes structures and

parameters for personalized health monitoring. A BbNN evolved with the proposed

evolutionary algorithm using the Hermite transform coefficients and a time interval

between two neighboring R peaks of ECG signal, provides a patient-specific ECG

heartbeat classification system. Experimental results using the MIT-BIH Arrhythmia

database demonstrate a potential for significant performance enhancements over other

major techniques.

 vi

Table of Contents

CHAPTER 1 INTRODUCTION ···1

1.1 MOTIVATION AND RESEARCH GOALS··1
1.2 CONTRIBUTIONS··3
1.3 DISSERTATION OUTLINE··5

CHAPTER 2 BACKGROUND ··6

2.1 INTRODUCTION ···6
2.2 ARTIFICIAL NEURAL NETWORKS···6

2.2.1 The Biological Neural Network··6
2.2.2 ANNs: History and Applications ··8
2.2.3 Multilayer Perceptrons···9
2.2.4 Cellular Neural Networks ··16
2.2.5 Neural Network Learning Methods ··18

2.3 EVOLVABLE HARDWARE···22
2.3.1 Reconfigurable Computing (RC)··22
2.3.2 Evolvable Hardware Using FPGA···24

2.4 BLOCK-BASED NEURAL NETWORKS ··26
2.4.1 Network Structure ··27
2.4.2 Optimization of BbNNs···27
2.4.3 BbNNs on FPGA ··31
2.4.4 A Comparison between BbNN and CNN ··31

CHAPTER 3 EVOLUTIONARY OPTIMIZATION OF BBNN···33

3.1 BLOCK-BASED NEURAL NETWORK MODEL ···33
3.2 EVOLUTIONARY OPTIMIZATION OF BBNN···39

3.2.1 Overview ··39
3.2.2 Fitness Scaling and Selection···41
3.2.3 Evolutionary Operators··43
3.2.4 Operator Rate Update ··51
3.2.5 Implementation Platform··53

3.3 A TEST EXAMPLE··53
3.3.1 XOR Problem ···53
3.3.2 Experimental Results··56

CHAPTER 4 PERSONALIZED ECG HEARTBEAT CLASSIFICATION······························65

 vii

4.1 INTRODUCTION ···65
4.1.1 Electrocardiogram ···65
4.1.2 Challenges in ECG Signal Classification···66
4.1.3 Previous Approaches for ECG Classification ··69

4.2 PERSONALIZED ECG SIGNAL CLASSIFICATION ··71
4.2.1 Evolvable Hardware Platform ···71
4.2.2 The ECG Data··72
4.2.3 Feature Extraction ···74
4.2.4 Fitness Function···78

4.3 EXPERIMENTAL RESULTS ··79
4.3.1 Training Parameters ··79
4.3.2 Evolution Trends ··80

4.4 CLASSIFICATION RESULTS···87
4.5 PERFORMANCE COMPARISON ··89
4.6 FAULT TOLERANCE OF BBNN FOR ECG CLASSIFICATION ···92

CHAPTER 5 ACCELERATED LOCAL SEARCH USING BLOCK-WISE LEAST

SQUARES LEARNING ···100

5.1 INTRODUCTION ···100
5.2 BLOCKWISE LEAST SQUARES LEARNING (BLS)···101

5.2.1 Training a Single Block··102
5.2.2 Training a Block-based Neural Network··106
5.2.3 Computation Complexity ··106

5.3 EXPERIMENTAL RESULTS ··107
5.3.1 Time Series Prediction ···107
5.3.2 Nonlinear System Identification ···110

CHAPTER 6 CONCLUSIONS ··119

6.1 CONCLUSIONS···119
6.2 FUTURE DIRECTIONS···120

6.2.1 Issues on Fault Tolerance ··120
6.2.2 Lazy Learning Methods for ECG Signal Classification ···121

BIBLIOGRAPHY ···123

VITA ···137

 viii

List of Figures

Figure 1: Model of a biological neuron. ... 7

Figure 2: Rosenblatt’s Perceptron model.. 10

Figure 3: Feedforward multilayer perceptrons. .. 12

Figure 4: Examples of popularly used activation functions.. 15

Figure 5: A two-dimensional cellular neural network with a size of 3×5. 17

Figure 6: The block diagram of a cell of CNNs. Source: [22].................................... 17

Figure 7: Amirix AP100 Board (Copyright of Amirix Systems). 23

Figure 8: Structure of block-based neural networks. .. 28

Figure 9: Chromosome representation of BbNN, (a) block encoding, (b) network

encoding. ... 29

Figure 10: Feedforward implementation of block-based neural networks. 34

Figure 11: Three possible internal configuration types of a block. (a) One input and

three outputs (1/3), (b) Three inputs and one output (3/1), (c) Two

inputs and two outputs (2/2).. 38

Figure 12: The evolutionary algorithm for BbNN optimization................................. 40

Figure 13: Fitness scaling with generalized disruptive pressure. 43

Figure 14: Crossover operation example of two individual 3×4 BbNNs. (a)(b) Two

individual BbNNs before crossover, (c)(d) Two individual BbNNs after

crossover.. 45

Figure 15: Internal configuration due to changing signal flow. (a) Before crossover,

(b) After crossover. ... 47

Figure 16: Graphical user interface for block-based neural networks. 54

Figure 17: The evolution trend of BbNN for XOR classification. 58

Figure 18: Number of occurrences of particular structures during evolution............. 59

Figure 19: An adaptive operator rate adjustment scheme... 60

Figure 20: The evolved BbNN for XOR classification. ... 61

Figure 21: Comparison of the evolutionary algorithm with and without GDS in terms

of (a) final fitness achieved and (b) convergence speed. 62

 ix

Figure 22: Comparison of the evolutionary algorithm with and without fitness scaling

in terms of (a) final fitness achieved and (b) convergence speed. 63

Figure 23: Comparison of the evolutionary algorithm with adaptive and fixed rate

scheme in terms of (a) final fitness achieved and (b) convergence speed.

... 64

Figure 24: The three waves in a single heartbeat.. 66

Figure 25: Heartbeat examples from MIT-BIH Arrhythmia Database....................... 67

Figure 26: Examples of AAMI beat classes from MIT-BIH Arrhythmia database, (a)

Class N (beat #1 of record 100), (b) Class S (beat #8 of record 100), (c)

Class V (beat #1907 of record 100), (d) Class F (beat #471 of record

108), (e) Class Q (beat #361 of record 101), (f) Class N (beat #1 of

record 108). ... 68

Figure 27: Heartbeat monitoring using block-based neural networks. 72

Figure 28: The procedure in reading ECG signals.. 73

Figure 29: The first five Hermite basis functions with 1σ = 77

Figure 30: Fitness trend of BbNN evolution... 82

Figure 31: The percentage of occurrences of particular structures during the

evolution.. 83

Figure 32: Evolution trend of operator rate. ... 84

Figure 33: Comparison of fitness trend between EA with adaptive and fixed rates... 85

Figure 35: Comparison of true positive rate and false positive rate for the three

algorithms in terms of VEB detection (a), and SVEB detection (b). 91

Figure 36: The effect of Gaussian noise on BbNN classification performance, (a)

VEB detection, (b) SVEB detection.. 95

Figure 37: Comparison of true positive rate and false positive rate for different levels

of Gaussian noise for VEB detection (a), and SVEB detection (b). 96

Figure 38: The effect of impulse noise on BbNN classification performance, (a) VEB

detection, (b) SVEB detection... 97

Figure 39: Comparison of true positive rate and false positive rate for different levels

of impulse noise for VEB detection (a), and SVEB detection (b). 98

 x

Figure 40: Evolution trend of BbNN with different levels of noise, (a) Low noise

(SNR = 5 dB), (b) Severe noise (SNR = 0 dB)....................................... 99

Figure 41: A detailed view of a basic block. ... 102

Figure 42: A Mackey-Glass time series.. 111

Figure 43: Comparison of achieved maximum fitness among the EA algorithms. .. 112

Figure 44: Evolved BbNN for M-G time series prediction after 1000 generations.. 114

Figure 45: Test results of M-G time series prediction. ... 114

Figure 46: Fluid outlet temperature of a practical heat exchanger. 117

Figure 47: Evolved BbNN for heater exchanger system identification after 1000

generations. ... 118

Figure 48: Outlet temperature of the simulated process and BbNN prediction........ 118

 xi

List of Tables

Table 1: Parameters of the evolutionary algorithm for XOR problem 55

Table 2: Mapping from MIT-BIH heartbeat types to AAMI heartbeat classes.......... 75

Table 3: Parameters of the evolutionary algorithm for ECG signal classification 81

Table 4: Beat-by-beat classification results. ... 88

Table 5: Definition of TP, FP, TN and FN for detection of VEBs and SVEBs. 88

Table 6: Performance comparison regarding VEB and SVEB detection. 92

Table 7: Parameters of the evolutionary algorithm for dynamic system approximation

... 108

Table 8: Performance comparison for M-G time series prediction 111

Table 9: Comparison of mean squared error for the EA algorithms......................... 113

Table 10: Comparison of convergence speed for the EA algorithms 113

Table 11: Performance comparison for nonlinear heat exchanger identification 117

 1

Chapter 1 INTRODUCTION

1.1 Motivation and Research Goals

With the world population enjoying longer life, personalized health monitoring for

old people capable of early detection of abnormal conditions becomes increasingly

important. Also, people working in dangerous environments (e.g. military personnel,

firefighters, and over-sized vehicle drivers) benefit from continuous monitoring of

health conditions for prediction of various dangerous states such as losing

consciousness and heart infarct. Personalization is essential in health monitoring

applications in the means that patient-specific situation such as history, gender and

age usually need to be considered in making medical decisions. In addition,

physiological variations exist due to temporal or environmental differences.

Personalized health monitoring considers the variations among patients or patient

groups and demands solutions that can reconfigure and adapt to specific needs.

Various measurements can be utilized in providing health monitoring including ECG,

EKG, respiration rate, blood pressure and so on.

Electrocardiogram (ECG) has become an important routine clinic practice to

monitoring heart activities. According to American Heart Association, cardiovascular

disease (CVD) caused deaths account for 38% of the total deaths in United States in

2003 [1]. Since 1900, every year CVD caused more deaths than other forms of

sources including cancer and accidents except 1918. Continuous monitoring of heart

conditions provides quick alarms for emergency rescue and thereby helps reduce the

risk of sudden cardiac death. Heart monitoring is especially important for older

people or patients who have survived cardiac arrest, ventricular tachycardia, or

cardiac syncope.

A unique property of ECG signals lies in its big variation among different

situations. ECG signals show great difference for different individuals. Even for the

 2

same individual, heartbeat patterns significantly change with time of the day and

under different situations. While normal sinus rhythm originates from the sinus node

of heart, arrhythmias have various origins and indicate a wide variety of heart

problems. Under different situations, same symptoms of arrhythmia produce different

morphologies due to their origins such as premature ventricular contraction (PVC)

[2][3].

A possible solution to tackle the big variations in ECG signals is to use a huge

set of dataset that include as much as possible representative heartbeat samples, to

train a classifier and then use the trained classifier to classify the unseen data.

However, a classifier trained for a large set of training data will inevitably need a very

large size in order to consider numerous exceptions brought by the large size of the

training data. It is also difficult to train and generalize a classifier with a large size

using a large set of training data.

Block-based neural networks (BbNNs) [4] consist of a two-dimensional (2-D)

array of modular basic blocks. BbNNs have structures that can be easily implemented

using reconfigurable digital hardware such as field programmable gate arrays

(FPGAs) that allow on-line partial reorganization of internal structures due to

modular characteristics of BbNN architecture and simultaneous optimization of

structure and weights. The modular structure of BbNNs enables easy expansion in

size by adding more blocks.

Evolvable classifiers based on block-based neural networks change the

structure and configurations as well as internal parameters to cope with the heartbeat

variations due to personal or temporal differences, and have demonstrated a potential

for performance improvement over conventional techniques for ECG signal

classification [5][6][7][8].

The main objective of this dissertation is to demonstrate the unique capabilities

of the BbNN platform in personalized health monitoring where the dynamic nature of

the problem needs an evolvable solution to tackle the changes in operating

environments. Example of target applications includes personalized ECG heartbeat

classification.

 3

Another goal in this dissertation is to design an evolutionary algorithm to

optimize simultaneously the structure and weights of block-based neural networks.

The previous evolutionary algorithm provides an effective optimization technique in

finding optimal structure and weights for block-based neural networks, but the

convergence speed is often too slow as well as it is limited to binary representation of

internal weights.

1.2 Contributions

In this dissertation, we work on development of optimization algorithms for BbNN

configuration and demonstration of the capabilities of the BbNN approach in various

dynamic environments. Contributions in finishing this dissertation are summarized in

the following.

Computationally efficient optimization of block-based neural networks.

We describe a computationally efficient evolutionary algorithm that simultaneously

optimizes structure and weights of BbNNs (Chapter 3, pp. 33-64). Fitness scaling and

local search techniques are developed to circumvent the deficiencies of inefficient

and slow optimization frequently encountered in previous evolution scheme.

Feedforward implementation of BbNNs is considered to facilitate hardware

implementation and enables the use of local search (Section 3.1, pp. 33-39).

Evolutionary operators are designed to work directly on the phenotype of BbNN

individuals that eliminates the encoding/decoding procedure between BbNN

phenotype and genotype as in conventional evolutionary algorithms (Section 3.2.3,

pp. 43-51). To speed up the optimization, a local search operator based on gradient

descent is integrated with the evolutionary algorithm (Section 3.2.3.3, pp. 48-51). A

fitness scaling with generalized disruptive pressure that favors individuals at two

extreme ends makes an effective approach for searching in mountainous function

landscape of BbNNs (Section 3.2.2, pp. 41-43). An adaptation scheme that rewards or

penalizes an operator based on its past performance automatically updates the

 4

parameters during evolution without manual adjustment of operator rates (Section

3.2.4, pp. 51-53).

Personalized ECG heartbeat classification. A personalized ECG heartbeat

classification scheme is implemented based on the BbNN platform. (Chapter 4, pp.

65-99). The structure and weights of a selected BbNN are evolved for a patient using

training data consisting of both common and patient-specific heartbeat patterns. The

Hermite transform coefficients and a time interval between the two neighboring R

peaks of ECG signal are used as the input to the network. The evolved BbNN

provides a personalized monitoring system that classifies each heartbeat into one of

five classes recommended by Association for the Advancement of Medical

Instrumentation (AAMI). Simulation results using the MIT-BIH Arrhythmia

Database demonstrate a high accuracy of 98.1% and 96.6% on average for the

detection of ventricular ectopic beats (VEBs) and supraventricular ectopic beats

(SVEBs), respectively. These results are significant improvements over previously

published results for ECG heartbeat classification. The fault tolerance ability of

BbNNs on ECG signal classification is studied under two types of fault modes:

Global Gaussian noise and local impulse noise. Experiment results demonstrate the

fault tolerance of BbNNs by showing that the level of performance degradation is

proportional to the severity of noise.

Accelerated local search using blockwise least squares learning. Observing

the slow optimization speed of gradient descent search operator (GDS), I use a

blockwise least squares learning method (BLS) as an alternative to the GDS for

applications where highly accurate results are desired such as nonlinear function

approximation (Chapter 5, pp. 100-118). Two examples are studied including

Mackey-Glass time series prediction and a practical heater exchanger nonlinear

system identification problem. Computer simulations demonstrate that BLS

converges faster with orders of magnitude than the gradient-based search.

 5

1.3 Dissertation Outline

This dissertation is organized as in the following:

Chapter 2 introduces background knowledge for this dissertation. This chapter

briefly reviews the development of artificial neural networks and evolvable hardware.

The introduction of block-based neural network model focuses on discussions about

the structure of BbNN, the previous optimization scheme, issues in hardware

implementation using reconfigurable computing platform and comparison with the

Cellular Neural Networks (CNN) model.

Chapter 3 describes an evolutionary optimization method for block-based

neural networks that simultaneously optimizes the structure and weights of the

network. This algorithm uses a generalized fitness scaling that can adjust disruptive

pressure depending on applications. The section of evolutionary operators discusses

in detail crossover, mutation and the gradient descent search operator. An adaptive

rate update scheme proposed to replace manual tuning follows. In the end of this

chapter, implementation platform is discussed that is followed by an illustrative

example showing the effect of various parameters in the algorithm.

Chapter 4 proposes personalized ECG signal classification based on the BbNN

model. An evolvable hardware platform is described. Details on the challenges of

ECG signal classification, the experimental ECG data, feature extraction and other

issues are discussed. The later part of this chapter compares the performance of the

proposed method with other techniques and studies the issue of fault tolerance of

BbNNs in ECG signal classification.

Chapter 5 introduces an accelerated local search method that uses the least

squares principle. This local search method is compared to gradient descent search in

terms of convergence speed. The performance of the EA algorithm with the enhanced

local search operator is demonstrated by two dynamic system approximation

problems.

Chapter 6 concludes this dissertation with future research directions suggested.

 6

Chapter 2 BACKGROUND

2.1 Introduction

This dissertation finds its foundation in the general theory of artificial neural

networks (ANNs). An introduction of ANNs is first presented with focus on

multilayer perceptrons, cellular neural networks and the neural network learning

methods. Then, brief reviews of evolvable hardware and block-based neural networks

are given.

2.2 Artificial Neural Networks

Artificial neural networks were inspired by Man’s desire to produce systems that are

capable of performing complex tasks excelled by the human brain. The field of

artificial neural networks covers a vast number of theories and applications and

reflects a number of interdisciplinary research efforts. A detailed review of ANN

theory is beyond the scope of this document. This section provides only a brief

review of ANN theory that is closely related to the main work of this dissertation.

2.2.1 The Biological Neural Network

It is helpful to gain some knowledge about biological neural network as ANNs draw

much of its inspiration from the biological nervous system. Human brains are made

up of thousands of thousand of neurons of many varieties connected with each other

via a vast number of interconnections. The simplified model of a typical biological

neuron is shown in Figure 1, which reveals only important computational features and

ignores the details that differentiate neurons of different types. The dendrites are input

 7

Figure 1: Model of a biological neuron.

Source: http://www.mines.edu/Academic/courses/math_cs/macs570/node11.html.

 8

channels for the neuron. The cell body is the primary processing unit and the axon

hillock sums input signals that are transmitted from neighboring neural cells. The

axon has many branches connected to other cells forming output channels.

Each neuron receives signals, processes them and sends the outputs to other

neurons. Specifically, all the inputs to the cell are summed up. The sum is then

processed by a threshold function producing an output signal that propagates down

the axon to other connected neurons through branches of the axon. Those branches

are connected to the dendrites of other neurons through junctions called synapses.

Output signals from one neuron modified at synapses become the input signals to the

connected neuron. During this modification process, the activation potential from the

pre-synaptic neuron is either lowered or raised, which can be interpreted as a

weighting operation of the input signals.

Each neuron can be considered as a basic signal processing element. Billions of

neurons are connected to form complex neural networks, each of which can learn to

perform a certain task. It is true that the functional capability of a single neuron is

limited; however, the neural networks formed with a large number of basic neurons

can learn to perform very complex tasks.

2.2.2 ANNs: History and Applications

The desire to emulating the working mechanisms of human brains motivates the

development of ANNs. The emulation has been limited to some behavior

characteristics of brains mainly due to our limited knowledge about human brain. A

lot of joint effort from interdisciplinary researchers has been devoted to ANN

research with many exciting work resulted.

The first advance in modern neural network came in 1943 when Warren

McCulloch and Walter Pitts wrote a paper [10] on how neurons might work in which

they modeled the arithmetic and logical functionality of a simple neural network. In

the following, Donald Hebb proposed a learning mechanism in biological neurons

[11]. In 1959, Bernard Widrow and Marcian Hoff at Stanford University introduced

 9

the neural network model [12] called ADALINE that is trained using least mean

square (LMS) algorithm. ADALINE was the first neural network model applied in

real world applications. The development of Perceptron proposed by Rosenblatt in

1958 demonstrates the promise of neural networks in computation [13]. A single-

layer perceptron was able to classify continuous valued inputs into one of two classes.

Unfortunately, Minsky and Papert later showed in their famous 1969 book [14] that

Perceptron is limited only to linearly separable problems. They proved that

perceptron neural network cannot solve problems that are not linearly separable. The

publication of their book has generated a great impact on neural network research and

brought dark to the promises of ANNs. That illusion was not changed until the well-

known error back-propagation algorithm was proposed by Rumelhart et al. [15][16].

Other major neural network models include self-organizing maps by Kohonen [17]

and Hopfield models by Hopfield [18].

Artificial neural networks have drawn a lot of interest from many fields. ANNs

have been successfully used in a wide variety of application domains such as system

identification, time series prediction, classification, expert systems, etc. Some

examples of the applications include speech recognition, face recognition, adaptive

signal processing, financial prediction, bioinformatics, control system design, optimal

scheduling of task assignments, and electronic circuit layout design.

2.2.3 Multilayer Perceptrons

Let us first look at Rosenblatt’s perceptron model shown in Figure 2. Perceptron

model consists of a linear combiner and a hard limiter. The linear combiner sums the

linear combination of the inputs applied to the synapses of the neuron. A bias is

usually applied to the linear combiner too. The sum from the combiner is then subject

to a hard limiter to produce an output. The output is +1 or -1 depending on the input

to the hard limiter is positive or negative. Mathematically, a neuron computes the

output according to the following equation:

 10

Figure 2: Rosenblatt’s Perceptron model.

()
1 , 0
1 , 0

if v
y f v

if v
+ ≥⎧

= = ⎨− <⎩
 (1)

where v is the net activation applied to the neuron and is computed according to

1

m

i i
i

v w x b
=

= +∑ (2)

where xi is an externally applied stimuli and wi denotes the synaptic weights of the

perceptron. The bias to the neuron is denoted by b.

The perceptron described is able to classify the set of inputs x1, x2, …, xm into

one of two classes, C1 and C2. The decision boundary given by the perceptron is

simply a hyperplane defined by:

1
0

m

i i
i

w x b
=

+ =∑ (3)

The decision rule is to assign a point in the m-dimensional input space to C1 if the

 11

output from the perceptron is positive; otherwise, the point is assigned to C2.

This two-layered architecture was found to be able to implement simple logic

functions. However, due to a lack of usable training algorithm, perceptron model is

limited to have only two layers, which severely limits the capability of perceptrons.

As pointed out by Minsky and Papert in their book entitled, Perceptrons: An

Introduction to Computational Geometry [14], the two-layered perceptron cannot

solve the problem even as simple as the XOR classification.

The book by Minsky and Papert reveals the severe limit of two-layered

perceptron model and suggests adding hidden layers in order to extend the capability

of Perceptrons. However, the addition of hidden layers requires new learning

algorithm that is capable of training perceptrons with more than two layers. Such an

algorithm did not appear until the advent of back-propagation (BP) algorithm

proposed by Rumelhart et al. in 1986. BP algorithm provides a computationally

efficient approach to training multilayer perceptrons. BP algorithm lifts the

limitations of two-layered perceptrons and enables the perceptrons to solve complex

practical problems. Since its publication, BP algorithm has gained popularity in

neural network field due to its simplicity and effectiveness in solving practical

problems. In the following, the idea of BP algorithm is briefly visited.

Figure 3 shows the architecture of a multilayer perceptron. The network is

composed of an input layer, one or more hidden layers and an output layer. Each

neuron in a layer is connected to any neuron in the next layer. Signals progress in the

network in a forward direction, from input layer to hidden layer and to output layer.

BP algorithm consists of two passes: forward pass of input signal and backward

pass of error signal. In the forward pass, input signals xi (i = 1, 2, …, m) propagate

from the inputs layer through the hidden layer to output layer producing network

outputs yk (k = 1, 2, …, n).

()

1

k k

J

jk j k
j

y f v

f w z b
=

=

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∑

 (4)

 12

Figure 3: Feedforward multilayer perceptrons.

 13

where f(·) is the activation function and zj is output from the jth node in the hidden

layer:

1

I

j ji i j
i

z f w x b
=

⎛ ⎞= +⎜ ⎟
⎝ ⎠
∑ (5)

In a backward pass, error signals generated at output nodes are back propagated

from output layer to previous layers. In order to derive the BP learning procedure, let

us define in the following equation an error criterion that the algorithm wants to

minimize.

() ()2

1

1
2

K

k k
k

w t yε
=

= −∑ (6)

where tk and yk are the target and actual output at the kth node of output layer.

Beginning with an initial guess, successive weight vectors are generated such that the

error is reduced at each iteration. The simple gradient steepest descent updates the

weights according to the following equation [19]:

 w
w
εη∆ = −
∂
∂

 (7)

where η is the learning rate.

For the weights kjw that connects hidden node to output node, we can compute

the gradient using chain rule:

k

kj k kj

v
w v w
ε ε ∂∂ ∂

=
∂ ∂ ∂

 (8)

As we have

() ()'k
k k k

k k k

z t z f v
v z v
ε ε ∂∂ ∂
= = − −

∂ ∂ ∂
 (9)

 14

and

k
j

kj

v y
w
∂

=
∂

 (10)

So by using Eq. (9) and Eq. (10), Eq. (8) can be rewritten as in the following

() ()'
k k k j

kj

t z f v y
w
ε∂

= − −
∂

 (11)

The update equation for kjw is therefore given in the following equation:

 () ()'
kj k k k j

kj

w t z f v y
w
εη η∂

∆ = − = −
∂

 (12)

For the weights jiw that connects input node to hidden node, we can again use

the chain rule to compute the gradient:

j

ji j ji

v
w v w
ε ε ∂∂ ∂

=
∂ ∂ ∂

 (13)

Since the following equation holds

 () () ()' '
k k k kj j

kj

t y f v w f v
v
ε∂ ⎛ ⎞= − −⎜ ⎟∂ ⎝ ⎠

∑ (14)

Let us use the following notations

 () ()'
k k k kt y f vδ = − (15)

and

 j
i

ji

v
x

w
∂

=
∂

 (16)

Then Eq. (13) can be formulated as in the following equation using Eqs. (14)-(16)

 15

 ()'
k kj j i

kji

w f v x
w
ε δ∂ ⎛ ⎞= −⎜ ⎟∂ ⎝ ⎠

∑ (17)

The update equation for jiw is therefore given in the following equation:

 ()'
ji k kj j i

kji

w w f v x
w
εη η δ∂ ⎛ ⎞

∆ = − = ⎜ ⎟∂ ⎝ ⎠
∑ (18)

From above derivation, it is clear that the activation function needs to be

differentiable in order to apply the back-propagation learning algorithm. Examples of

popular choices are log sigmoidal and tangent sigmoidal function that are shown in

Figure 4.

Figure 4: Examples of popularly used activation functions.

 16

2.2.4 Cellular Neural Networks (CNNs)

CNNs are a class of artificial neural networks that feature a regular array of

component cells and local interconnections among the cells. The CNN model was

invented by Chua and Yang in their seminal papers published in 1988 [20][21].

Unlike digital computers, CNNs process signals in continuous-time space due to the

use of analog elements in constructing the cells. Unlike digital computers that execute

instructions sequentially, the cells in a CNN process signal in parallel. A CNN is

suited for VLSI implementation because of its local interconnections.

A cellular neural network is composed of N-dimensional array of basic circuit

elements called cells. A cell is connected only to its neighbor cells. Adjacent cells

interact with each other directly through connection weights. Cells not directly

connected may affect each other through propagation effect. A two-dimensional CNN

with a size of 3×5 is shown in Figure 5, in which any cell is connected to its 1-

neighborhood cells. The links connecting two cells indicate interactions between

them. In general, a cell can be connected to its r-neighborhood cells. The r-

neighborhood of a cell located at the ith row and the jth column in a CNN, denoted by

C(i,j) is defined as:

 () () { }{ }, , max , ,1 ,1rN i j C k l k i l j r k M l N= − − ≤ ≤ ≤ ≤ ≤ (19)

where M and N denote the rows and columns of the network, respectively.

The basic elements in a cell include linear capacitors, linear resistors, linear

and nonlinear controlled sources and independent sources. The controlled sources can

be implemented using operational amplifiers. All cells in a CNN share the same

circuit structure and element values. A cell C(i,j) has direct connections to its

neighbors through two kinds of weights: the feedback weights arranged in the

Feedback Template and the control weights arranged in the Control Template. A

block diagram of the cell is shown in Figure 6. The state equation of the cell C(i,j) is

given in the following:

 17

Figure 5: A two-dimensional cellular neural network with a size of 3×5.

Figure 6: The block diagram of a cell of CNNs. Source: [22].

 18

()1ij
ij k k k k

k

dx
C x a y b u I

dt R
= − + + +∑ (20)

where C and R denote the capacitor and resistor in the circuit, respectively.

Coefficients ak and bk are the weights in the Feedback and Control Template. Index

k denotes a specified neighborhood of the cell C(i,j). Variables xij, uk and yk

correspond to the state, input and output of the cell. The output of cell is given as in

the following piece-wise linear equation:

()1 1 1
2ij ij ijy x x= + − − (21)

Cellular neural networks find applications in high speed parallel signal

processing such as image processing and pattern recognition [23]. By choosing

appropriate coefficients in the Control and Feedback Templates, CNNs are able to

perform such image processing tasks as noise removal, edge detection and

character recognition. The CNN model is found to be orders-of-magnitude faster

than a PC-based solution in a task involving in processing an image of size

128×128 [23].

2.2.5 Neural Network Learning Methods

Artificial neural networks offer a distribution-free approach to universal function

approximation and pattern classification. ANNs have become an important and

commonly used computation model in a wide range of application areas. The power

of neural networks lies in their general applicable capability.

A neural network can be used only after its internal weights are properly trained

for the target problem. A training procedure involves in applying a set of training

patterns to the network, computing the errors at output node and adjusting the weights

to minimize the errors. The back-propagation algorithm described in preceding

section has become a commonly used training protocol since it is proposed in 1986

[15][16]. Despite of the successful application of the standard BP algorithm in

 19

solving many problems, it suffers from several drawbacks. The major drawback is the

extreme slow rate at which the algorithm converges to a satisfactory solution. The

training time also increases greatly as the complexity of the problem goes up.

The effort for improving the standard BP algorithm has never stopped with

constant appearance of new training methods. A number of improved algorithms were

proposed in literature [24][25][27][28][29][30]. Scalero and Tepedelenlioglu [24]

proposed an algorithm that tries to minimize the mean squared error between the

actual and desired summation outputs from a neuron. A set of linear equations is

constructed for a neuron from which the associated weights are solved using Kalman

filter technique. The desired summation output to a node in hidden layers is however

estimated in a way similar to the error back-propagation procedure as in the BP

algorithm.

König and Bärmann [25] proposed the Least Squares Back Propagation

algorithm (LSB) for training feedforward neural networks based on linear least

squares and layer-by-layer optimization. For each layer, the weight optimization is

formulated as a linear least squares problem that minimizes the mean squared error

between the actual and desired linear neuron outputs. Solving the linear least squares

problem at output layer (layer L) produces an optimal set of weights for the layer. The

desired output vector for the layer preceding the output layer (i.e. layer L-1) is

determined by solving another linear least squares problem based on the optimal

weights of output layer just obtained. The acquired output vector is then transformed

by a matrix to bring its bounds into range of the activation function. Then the optimal

weights for layer L-1 is obtained by the solution of linear squares. This procedure is

repeated for other layers. Although LSB is superior to the standard BP algorithm in

terms of convergence speed, it suffers from the “stalling” problem and instability due

to fluctuating initial weight solution of output layer. It also needs to transform the

estimated target output into the range of the activation function utilized.

Ergezinger and Thomsen [27] proposed to optimize the FNN layer by layer.

The network to be optimized is assumed to have one hidden layer that uses sigmoidal

activation function. The output layer uses a linear activation function. The algorithm

 20

first optimizes the weights of the output layer and then the weights of the hidden

layer. This procedure is performed iteratively. The weights of output layer are

obtained by solving a set of linear equations to minimize the mean squared error

between desired and actual outputs. For the weights of hidden layer, the nonlinear

part (due to the sigmoidal activation function) is first approximated using first order

Taylor series. A cost function is then constructed as a combination of the mean

squared error and the quality of the linear approximation. Minimizing this cost

function gives the optimal solution of the weights of the hidden layer. Comparing to

[25], this method optimizes the weights of the output layer in a similar way, but it is

different in optimizing the weights of the hidden layer.

Wang and Chen [28] proposed a layer-by-layer optimization method. First, the

weights and net inputs to the output layer are solved using matrix inversion

simultaneously. Second, the weights of the hidden layer are optimized with matrix

inversion. This procedure is repeated until stop criterion is met. For efficient matrix

inversion, recursive least-square parameter estimation and recursive least parameter

estimation with dynamic forgetting factor (from a reference) are utilized. (cf.

Scalero’s paper where Kalman filter is used for recursive least square filtering.) The

problem of this approach is that the desired output of the hidden layer obtained via

matrix inversion may go beyond its allowed range (defined by the sigmoid activation

function).

Yam and Chow [29] combined the linear squares method and BP method. The

weights of the output layer are obtained by solving a least squares problem. The

weights of hidden layers are updated using BP algorithm with momentum. Both

learning rates and momentum constant are adaptively adjusted to improve

convergence speed and stability.

Abid et al. [30] proposed a new form of error criterion, which is the summation

of the standard BP criterion and a weighted error term based on the desired and target

linear output of the output layer. The gradient descent rule of BP algorithm is adopted

for the new error function. The authors gave a proof that shows the gradient descent

 21

using the new error functions converges faster than that using the standard error

function.

In the other hand, the design of suitable ANN architecture has relied heavily on

human experts who have sufficient knowledge on the neural network model used and

the problem domain. Commonly, a trial-and-error procedure is performed in finding a

suitable structure for a particular problem. As the complexity of the problem domain

increases, manual design becomes more difficult and unmanageable. Autonomous

determination of network structure and connection weights is an important issue in

automated design of ANNs.

Evolutionary algorithms (EAs) [31][32], inspired by the mechanism of natural

selection and evolution, seeks a global optimum from a vast search space. EAs utilize

a selection scheme that implements the survival-of-the-fittest principle, and various

evolutionary operators that emulate the process of natural evolution. Evolutionary

learning provides an optimal solution for non-convex optimization problems, where

popular gradient-based learning algorithms fail [33][34]. Evolutionary search

procedures have been successful in solving diverse optimization problems [35], and

designing neural networks [36].

Evolvable artificial neural networks [36] use the evolutionary algorithms as an

essential form of adaptation or learning to find network architecture and the

corresponding parameters for a given problem without human intervention. There

have been different approaches to EA-based neural network optimization: structure

optimization only [37], weight optimization with fixed network structure

[38][39][40], and simultaneous optimization of both structure and weights

[41][42][43][44]. Hybrid algorithms have been proposed to combine the global search

ability of the EA and fine-tuning of local search methods [36]: EA-based structure

optimization with gradient-based weight learning [45], weight optimization for a

fixed structure network using both EA and back-propagation [46][47][48].

 22

2.3 Evolvable Hardware

2.3.1 Reconfigurable Computing (RC)

The concept of reconfigurable computing dates back to around 1960 when Gerald

Estrin in a paper [53] proposed a hybrid computing system that is composed of a

standard microprocessor and reconfigurable hardware resource. While the main

microprocessor controls the behavior of the reconfigurable hardware, the latter can

reconfigure its internal connections to perform specific tasks at a speed of dedicated

hardware. Typical RC platforms are circuit boards that house reconfigurable digital

hardware such as FPGAs and other related hardware resources.

FPGAs consist of an array of Configurable Logic Blocks (CLBs) and

configurable interconnections between them. The functional CLBs are often

implemented as look-up tables (LUTs) and can be configured to implement various

Boolean functions. Each LUT can implement a specific Boolean function by loading

appropriate bit patterns into it. These CLBs are connected using configurable

interconnections. A complex digital logic circuit can be formed by routing the input

signals to CLBs of various functions and output signal to output pins.

A number of companies have built a wide variety of RC boards. These boards

differ in the number of on-board FPGAs, capacity of the FPGAs, and other on-board

hardware resources. An example of the system, Amirix AP100 board from Amirix

Systems, is shown in Figure 7. This particular FPGA board features a Xilinx Virtex-II

Pro FPGA – XC2VP30, two on-chip PowerPC 405 processors, on-chip block RAMs

and multiplier blocks. The RC boards are typically connected to a host

microprocessor. A host program is usually utilized to control the reconfiguration and

initialization of the FPGA and handle communication between the host processor and

the board.

 23

Figure 7: Amirix AP100 Board (Copyright of Amirix Systems).

 24

2.3.2 Evolvable Hardware Using FPGA

Evolvable hardware refers to using evolutionary algorithms to designing electronic

circuits automatically. The most widely used hardware is FPGA, although other types

of hardware are also used like Field Programmable Analog Arrays. The hardware can

be evolved in one of two ways: extrinsic or intrinsic according to DeGaris [54]. In

extrinsic evolution, offline evolution is performed on a software model of the

hardware system. Intrinsic evolution of hardware evolves the hardware online in

which the hardware is directly changed by the evolutionary algorithm and the I/O

measured from the hardware affects the search process of the evolutionary algorithm.

DeGaris divided the evolvable hardware into two categories based on whether

the hardware is in the loop of online evolution. In the author’s opinion, there exists

another distinction among various evolvable hardware approaches based on at what

level the hardware is actually evolved. The hardware can be evolved at different

levels, for example, at gate level [55][56], at function level [57][58] or at neural

network level [59][60]. In gate level evolution, configuration bits of FGPA cell logic

function and interconnections are evolved. The evolution is based on primitive gates

such as AND and OR. Example of gate level evolution is the groundbreaking work

reported in 1996 by Adrian Thompson at the University of Sussex [55]. In his

research, Thompson used the evolutionary algorithm to evolve a tone discriminator

using an FPGA from Xilinx. The task involves in using 100 FGPA logic cells to

evolve a circuit that could discriminate between square waves of 1kHz and 10kHz,

without the use of clock signal. This task is not easy due to the lack of clock signal

and the fact that the input periods are much longer than the propagation delay of the

logic cell. However, the evolutionary algorithm was able to find a solution that

discriminates the two tones successfully after 3,500 generations of evolution. The

importance of Thompson’s work lies in that it is the first demonstration of successful

online hardware evolution and it opens the door for future research in this exciting

area.

 25

Despite the success, there are several limitations coming with gate level

evolution. In Thompson’s work, it is found that the evolved circuit is sensitive to

physical location of the circuit in the device and the temperature. It also lacks the

flexibility of porting to other FOGA devices other than the one used during evolution.

Another major drawback of gate level evolution is the scalability problem that refers

to the greatly increased difficulty in evolving an FPGA with larger gates (that result

in genotypes with larger sizes).

Later on, function-level evolution was proposed [57][58] to tackle scalability.

In function-level evolution, the evolution is based on higher-level functions such as

adder, sin, multipliers instead of the primitive gates. Although the function-level

approach was able to evolve circuits for relatively complex task, it requires human

selection of functions for specific applications. A recent effort tackling scalability

utilizes a decomposition strategy in the evolution of large combinational circuits [56].

A latest trend in evolvable hardware aims at evolving circuits at neural network

level, or designing ANNs using FGPA [59][60]. In 2003, a research group at Ecole

Polytechnique Federale de Lausanne (EPFL) implemented an evolvable hardware

system using spiking neural networks in an effort to build an intelligent processor for

robot navigation [59]. In their design, an Altera FPGA with 200,000 gates was used

to build a spiking neural network with run-time reconfigurability of the network

connectivity. Evolving network connectivity has been done via software simulation

and the suitable chromosome is then downloaded to the FPGA. This approach is

extrinsic in nature because the hardware is not in the loop of the evolutionary

procedure.

In 2004, Dennis Earl at the University of Tennessee attacked the neural network

level evolution using unconstrained artificial neural network [60]. In this design, the

connectivity among neurons is not constrained that is compared to the work in [59]

where only a subset of all the possible connections is allowed. Two strategies are

implemented. In the first strategy, the evolutionary algorithm runs in software, but

every candidate network is realized in a hardware description language, compiled,

synthesized, and downloaded into the FPGA. The performance of this network in the

 26

FPGA is measured and fed back to the evolutionary algorithm. The target problem is

frequency recognition that requires the circuit responding linearly to square waves of

increased frequency from 10Hz to 70 Hz. After 300 generations of evolution, an

ANN network is identified that could approximate the desired response closely.

Because every network has to go through a procedure of compilation, synthesize and

downloading before it can be realized in FPGA, the evolutionary process is very slow.

In fact, a single generation took 4.8 hours and 300 generations would take 2 months.

This design demonstrates an intrinsic evolvable hardware system; however, the

extreme slow speed makes it impractical in real-world applications. The other

strategy implements a flexible structure for ANNs in FPGA that avoid the need of

hardware reconfiguration for each network structure. However, this strategy puts a

limitation on the maximum size of the network that can be implemented in FPGA due

to the extra resources used in implementing the flexible structure. The reconfiguration

speed is also affected by the data transfer rate between FPGA and the host. Overall,

the latter strategy reduces the time per generation to 1.2 hours compared to 4.8 hours

of the first strategy.

2.4 Block-based Neural Networks

Block-based neural networks (BbNNs) model [4] provides a unified approach to the

two fundamental problems of artificial neural network design: simultaneous

optimization of structures and weights and implementation using reconfigurable

digital hardware. An integrated representation of network structure and connection

weights of BbNNs offers simultaneous optimization by use of the evolutionary

algorithm. Block-based neural networks have a suitable structure for implementation

using re-configurable hardware. The network can be easily expanded in size by

adding more blocks. BbNNs can be implemented by use of reconfigurable digital

hardware such as FPGAs that can modify (reconfigure) its internal structure

dynamically in response to the operating environments [49]. Such characteristics

enable BbNNs to fine-tune the structure and weights “on the fly” to cope with

 27

changing environments. BbNNs have been applied to various practical problems such

as mobile robot navigation [4], pattern recognition [50], time series prediction

[51][52] and ECG signal classification [5][6][7][8].

2.4.1 Network Structure

A BbNN can be represented by a 2-D array of blocks. Each block is a basic

processing element that corresponds to a feedforward neural network with four

variable input/output nodes. A block is connected to its four neighboring blocks with

signal flow represented by an arrow between the blocks. Leftmost and rightmost

blocks are laterally interconnected. Signal flow uniquely specifies the internal

configurations of a block as well as the overall network structure. Figure 8 illustrates

the network structure of an m×n BbNN with m rows and n columns of blocks labeled

as Bij. The first row of blocks B11, B12, ..., B1n is an input layer and the blocks Bm1,

Bm2, ..., Bmn form an output layer. BbNNs with n columns can have up to n inputs and

n outputs. Redundant input nodes take a constant input value and the output nodes not

used are ignored. Due to its modular characteristics, a BbNN can be easily expanded

to build a larger-scale network. The BbNN can have a multiple number of middle

layers (m ≥ 1). The size of a BbNN is only limited by the capacity of a reconfigurable

hardware.

2.4.2 Optimization of BbNNs

Optimization of BbNN includes both structure and weight learning. Structure learning

refers to determination of internal configuration of blocks and weight optimization

determines weights of internal configurations for given training data. The structure

and weights of block-based neural networks are optimized using a genetic algorithm

(GA).

Network structure and connection weights of an individual BbNN are encoded

 28

. .
 .

. .
 .

. .
 .

. .
 .

. . .

. . .

. . .

. . .1x 2x xn

. . .2y yn1y

B 11 B 12

B 22B 21

B 1n

B 2n

B m1 B m1 B mn

Figure 8: Structure of block-based neural networks.

 29

to form a chromosome for optimization using the GA. The overall structure of a

BbNN can be effectively encoded with binary directions of signal flow. Signal flow

provides an integrated representation of BbNN structure and internal configurations.

The signal flow determines the structure and the internal configuration of a BbNN

using a sequence of binary numbers. Any connection between the blocks is

represented with either 0 or 1. Bit 0 denotes down (↓) and left (←), and bit 1 indicates

up (↑) and right (→) signal flows. Figure 9(a) shows the encoding scheme for a basic

block of BbNN in which white boxes denote connection weights and colored boxes

are structure bits. The weights are represented with 4-bit binary numbers. The signal

flow bits associated with the blocks in the input and output stages are all zeros and

therefore are not included in structure encoding. Figure 9(b) shows the chromosome

representation of a 2×2 BbNN with each of its four blocks encoded with the scheme

illustrated in Figure 9(a). Neighboring blocks share signal flows and the common

structure bits are therefore the same.

(a)

(b)

Figure 9: Chromosome representation of BbNN, (a) block encoding, (b) network
encoding.

 30

 An initial population of BbNN chromosomes is generated that represents a set

of individual BbNNs as candidate solutions for the given problem. Each generation of

the genetic algorithm involves three main components: fitness evaluation, selection,

and genetic operation. The current population of BbNNs are evaluated and ranked in

terms of fitness value. The population goes through the selection and the genetic

operation until the maximum fitness reaches the desired value. The genetic algorithm

for BbNN optimization proceeds as in the following:

1) An initial population of BbNN chromosomes is randomly generated.

2) Each chromosome in the population is mapped into the corresponding individual

BbNN network. The quality of the BbNN networks in the current population is

measured in terms of a pre-defined fitness function. The fitness function is defined

such that a BbNN network with higher fitness value corresponds to a better solution

to the target problem.

3) A new population of chromosomes is generated based on current population. Fitter

individuals with higher fitness values are selected using a selection method and their

corresponding chromosomes undergo a set of genetic operations to producing

offspring. The genetic operators used include crossover, mutation, copy and

inversion. Each operator is applied with a pre-selected probability. The new

population consisting of newly produced offspring replaces the current population.

The best individual in current population is included in the new population to

implement the elitism strategy.

4) Steps 2) and 3) are repeated until a satisfactory solution is found.

 31

2.4.3 BbNNs on FPGA

The flexible and modular architecture of BbNNs facilitates the implementation of

BbNNs on RC platforms. Block-based neural networks can be implemented using

reconfigurable digital hardware such as FPGAs that can modify and fine-tune its

internal structure “on the fly” during the evolutionary optimization procedure. A

library-based approach [49] creates a library of VHDL modules of the BbNN basic

blocks and pieces together these basic modules to form a custom BbNN network,

which is then synthesized, placed and routed, and downloaded to an FPGA. This

initial approach gains some flexibility in that some parameters like block internal

weights are software configurable, but it suffers from the major problem that any

change in the network structure would require a new hardware design and FPGA

reconfiguration.

A recent effort [56] implements a “smart block” that can be software

reconfigured to work as any one of the basic blocks. Therefore, the structure of the

network can be reconfigured via software removing the need of hardware redesign

and FPGA reconfiguration. The design was implemented on Amirix AP130 board

shown in Figure 7. This approach implements a complete System-on-Chip (SoC)

design with the evolutionary algorithm running on PowerPC and the reconfigurable

BbNN network implemented in FPGA. Research work has been carried out to

implement a complete evolutionary algorithm on FPGAs that results in performance

improvement over software implementation [62][63].

2.4.4 A Comparison between BbNN and CNN

There are similarities shared by the CNN and BbNN model. To some extent, the two

models resemble each other by adopting a regular array of basic units and local

interconnections among those units.

However, there are clear distinctions between the two models. In a BbNN, blocks

are arranged in layers with the first and last row being the input and output layer.

 32

Information flows from the input layer, through middle layer(s) and at last reach the

output layer. Each block in a BbNN is only connected to its four immediate

neighboring blocks. On the contrary, in a CNN, cells are locally interconnected with

each cell being a separate dynamic system. Each cell in a CNN is connected to the

cells within its r-neighborhood. In the extreme case, each is connected to all the other

cells in the network. Also, the basic unit in the two models functions differently. The

function of a block in a BbNN can be described using a set of linear summations and

nonlinear activation functions, while the dynamics of a cell is governed by a set of

partial differential equations. The output from the output neuron in a BbNN has a

range determined by the activation function. In the CNN case, the output from a cell

was proven to converge to a value of either +1 or -1. Moreover, while both the

structure and internal weights in a BbNN are optimized using an evolutionary

algorithm, the CNN template coefficients are selected initially using cut-and-try

techniques and later with a variety of methods including Genetic Algorithm, fuzzy

design technique, and even neural network techniques. Last, while the BbNN model

targets at applications where the dynamic nature of the problem needs an evolvable

solution, CNNs are found to be advantageous in applications as high speed visual

computing.

 33

Chapter 3 EVOLUTIONARY OPTIMIZATION OF

BBNN

Block-based neural network model has modular structures of two-dimensional basic

blocks suited for implementation using reconfigurable digital electronic hardware

such as FPGAs that allow on-line partial reorganization of internal structures. The

structure and internal weights of BbNNs are simultaneously optimized with an

evolutionary algorithm. The evolutionary algorithm provides an effective

optimization technique in finding optimal structure and weights for block-based

neural networks, but the convergence speed of evolutionary algorithm-based learning

is often too slow. This chapter introduces an evolutionary algorithm that utilizes local

search operator to increase the convergence speed of optimization of BbNNs.

3.1 Block-based Neural Network Model

Figure 10 shows the structure of feedforward implementation of an m×n BbNN with

m rows and n columns of blocks labeled as Bij. A block is connected to its four

neighboring blocks with signal flow represented by an incoming or outgoing arrow

between the blocks. The vertical signal flows are all considered downward. A

feedforward implementation facilitates hardware implementation of block-based

neural networks and enables the use of gradient-based local search. Artificial neural

networks implemented using digital hardware such as FPGAs have been confined to

feedforward architectures [64][65]. Implementation of feedback BbNN architecture in

digital hardware can cause unstable network output. Moreover, a long propagation

delay and the use of extra hardware resources to store the network states are

unavoidable in feedback implementation. The feedforward implementation also

enables the usage of gradient-based local search that combined with global search can

 34

. .
 .

. .
 .

. .
 .

. .
 .

. . .

. . .

. . .

. . .1x 2x xn

. . .2y yn1y

B 11 B 12

B 22B 21

B 1n

B 2n

B m1 B m1 B mn

Figure 10: Feedforward implementation of block-based neural networks.

 35

 potentially increase the optimization speed significantly [36]. In the following, a

theorem regarding the number of possible structure combinations in a BbNN is

presented, following by a corollary for the case of feedforward implementation of

BbNNs.

THEOREM 1: The number of all the possible structures of the block-based neural

network of the size m×n is nm)12(2 − .

Proof: A BbNN of the size m×n has m rows and n columns of basic blocks. The

number of horizontal connections (signal flows) between the blocks in a stage equals

the number of columns (n). Since there are m rows of blocks, the total number of

horizontal signal flows is

mnNh = (22)

The number of vertical connections of a column is (m+1). However, all the blocks in

the input and output stages have fixed signal flows (0), which are not responsible for

a difference combination of the BbNN structure. Therefore, the total number of

vertical connections that affects the structure becomes

nmNv)1(−= (23)

Then the total number of all the signal flow bit settings of the m×n BbNN is

nmNNN vh)12(−=+= (24)

The number of all the possible BbNN structures equals the number of all the

combinations of signal flows. So the number of all the possible structures equals

nmN)12(22 −= . □

 36

Corollary: The number of all the possible structures of the feedforward

implementation of the block-based neural network of the size m×n is 2mn .

Proof: From Theorem 1, the total number of horizontal signal flows is

mnNh = (25)

In the feedforward implementation, the vertical signal flows of all the blocks are fixed

downward. Therefore, the total number of all the signal flow bit settings of the m×n

BbNN is equal to the total number of horizontal signal flows. The number of all the

possible BbNN structures equals the number of all the combinations of signal flows.

So the number of all the possible structures is equal to 2 2hN mn= .

□

Thus, the number of possible structure combinations for a given BbNN is

determined by the number of rows and columns. For a BbNN with a size of 2×7, the

number of all the possible structures will be 2,097,152. The feedforward

implementation of the same size network will have 16,384 possible structures.

Internal configuration of a BbNN is characterized by the input-output

connections of the nodes. A node can be an input or an output according to the

internal configuration determined by the signal flow. An incoming arrow to a block

specifies the node as an input, and output nodes are associated with outgoing arrows.

Generalization capability emerges through various internal configurations of a block.

A block can be represented by one of the three different types of internal

configurations. Figure 11(a) shows a block with one input and three outputs (1/3). A

block in Figure 11(b) has three inputs and an output (3/1). Figure 11(c) corresponds

to the type of two inputs and two outputs (2/2).

The four nodes inside a block are connected with each other with the weights.

The signal ui denotes the input and vj indicates the output of the block, in which the

subscripts indicate the node positions. The top, bottom, left and right node has indices

 37

1, 2, 3, and 4, respectively. A weight wij therefore denotes a connection from node i to

node j. A block can have up to six connection weights including the bias. For the case

of two inputs and two outputs (2/2), there are four weights and two biases. The 1/3

case has three weights and three biases, and the 3/1 three weights and one bias.

The overall signal flows determine the input-output computation path, along

which an input signal x = (x1, x2, …, xn) propagates through the blocks from top to

bottom and generates a network output y = (y1, y2, …, yn). A block Bij has four

horizontal and vertical neighbors. Let us denote this set of neighbors of Bij by N(Bij)

given by:

() { }1, 1, , 1 , 1, , ,ij i j i j i j i jN B B B B B+ − + −= (26)

The block Bij is connected with its four neighbors by either incoming or outgoing

arrow depending on the signal flow. We further use I(Bij) to denote the subset of

N(Bij) that are connected to block Bij with outgoing arrows. The computation stage of

block Bij is computed according to the following equation:

() ()max 1,k
ij

k
s s k I B= + ∈ (27)

I(Bij) may include 0, 1, 2, or 3 neighbors of block Bij depending on its block

configuration. When a block Bij is in the input layer and I(Bij) is a null set, its

computation stage equals one.

For a block Bij in the network, its output node produces an output qv for the

activation with an activation function h(⋅):

() ,q qv h q Dg= ∈ (28)

The net activation to the node is computed according to the following equation:

,q pq p q
p C

g q Dw u b
∈

= ∈+∑ (29)

 38

1u

3v 4v

13w

12w

14w

2v

4b3b

2b

(a)

1u

3u 4u

2v

32w 42w

12w

2b

u1

v2

u4v3
w12

w43

w13

w42

b3

b2

(b) (c)

Figure 11: Three possible internal configuration types of a block. (a) One input and
three outputs (1/3), (b) Three inputs and one output (3/1), (c) Two inputs and two

outputs (2/2).

 39

where u is the input to the block. C and D are the respective index sets of input nodes

and output nodes in the block. For the type 1/3 basic block shown in Figure 11(a), C

= {1} and D = {2, 3, 4}. For blocks of the type 3/1, C = {1, 3, 4} and D = {2}. The

type 2/2 blocks have C = {1, 4} and D = {2, 3}. The term bq is the bias term to the qth

node.

The computation stage associated with a block represents its priority, according

to which the outputs of the block are computed. The blocks in lower stages are

calculated earlier than those in higher stages. The blocks in the first calculation stage

have the highest priority for output calculation. The input signal x = (x1, x2, …, xn) is

passed through the network from the blocks in lower stages to those in higher stages

generating the output y = (y1, y2, …, yn).

3.2 Evolutionary Optimization of BbNN

3.2.1 Overview

Evolutionary optimization of BbNN involves three main procedures: selection,

variation operation and reinsertion. A parent individual (or a pair of parent

individuals for crossover) is selected using tournament selection, varied with a

selected operator, and reinserted into the population replacing a chosen inferior

individual. Before parent selection, the fitness is rescaled with a generalized

disruptive pressure that favors both good and bad individuals. An operator rate update

scheme adaptively adjusts rate parameters considering an operator’s effectiveness in

improving fitness and the current fitness trend.

A pseudo-code description of the evolutionary algorithm is shown in Figure 12.

After the random generation of initial population, the algorithm enters into the

evolution loop. The current population is first evaluated to update individual fitness

values. The fitness rescaling by disruptive pressure ensures the selection of some

individuals with low fitness. The algorithm then starts the variation operation stage.

 40

Figure 12: The evolutionary algorithm for BbNN optimization.

Generate randomly an initial population of BbNNs;
k = 0;
do{
 Evaluate fitness values;
 if(desired maximum fitness is achieved)
 break;
 else{

 k = k + 1;
 Fitness rescaling by the disruptive pressure;
 Parent selection;
 Variation operation;
 Reinsertion;
 }

 if ((k % T) equals zero)

 Update operator rates;

 }while(maximum number of iteration not reached)

Save the best individual produced;

 41

An operator is selected based on a uniform probability distribution. Applying this

operator to the parent(s) chosen with tournament selection produces a new offspring.

This offspring is reinserted into the population replacing an individual chosen with a

tournament selection. This evolution process runs for a fixed number of T

generations. After each T generations of evolution, the operators’ rates are updated

based on their past performance and current fitness trend. The evolution algorithm is

terminated either by finding a satisfactory solution or after a certain number of

generations.

It is clear that two neighboring populations differ by a single individual in this

incremental evolutionary algorithm [66][67]. In the generational EA model, a new

population is produced and it replaces the old population. An incremental EA is

preferred over the generational model in order to reduce the computational and

memory requirements at each generation.

3.2.2 Fitness Scaling and Selection

The search space in many problems can be rather multi-peaked or mountainous. The

search space of block-based neural networks resembles a mountainous characteristic

due to two reasons. Firstly, each of the possible structures will lead to a local

optimum if the weights are properly optimized. Secondly, for a given structure, the

weight space can also contain many peaks. In a “Needle-in-a-Haystack” problem, the

global optimum is surrounded by poor solutions and isolated from other good regions.

The proportional selection that favors good individuals was criticized for its

inefficiency in finding the global optimum in such problems [68][69]. A selection

scheme with disruptive pressure devotes more trials to both superior and inferior

individuals and helps improve search performance as one of the solutions for such

problems [68]. A popular disruptive pressure method modifies the fitness by taking

an absolute difference of the fitness with the average fitness [69]:

avgd fff −= (30)

 42

where f denotes the actual fitness, favg is the average fitness, and fd is the fitness

function rescaled with disruptive pressure.

In this study, a modified fitness scaling function with generalized disruptive

pressure is used [8].

()min mind avgf f f f fω= − − − (31)

where fmin denotes the minimum fitness value. The scaling function adjusts the degree

of being selected of an individual whose fitness is near the minimum by controlling

the parameter ω that adjusts the degree of disruptive pressure in the range of 0 ≤ ω ≤

1. For ω = 0, the scaling function becomes a linear function with no disruptive

pressure. When ω = 1, the fitness function becomes the usual disruptive pressure that

centers at favg as in Eq. (30). In this paper, ω = 0.6 was used. Figure 13 shows the

relationship between the fitness f and the new fitness fd rescaled with the generalized

disruptive pressure. f and fd have a linear relationship with a discontinuity at fmin + ω

(favg - fmin). The fitness scaling function scales the fitness fd to have the range

between 0 and fmax - fmin + ω (favg - fmin). As evolution procedure goes on, the

average fitness tends to near at the maximum fitness fmax. The fitness scaling method

with the modified disruptive pressure assures that the bending point locates between

the two fitness values fmin and favg.

Two selection processes are present in the evolutionary algorithm: parent

selection for variation operation and survivor selection for reinsertion [67]. Parent

selection picks one or a pair of individuals from old population for variation

operation. The roulette-wheel selection finds individuals in proportional to the fitness

value. Despite its popularity, roulette-wheel selection may have problems as

premature convergence in early phase of evolution or genetic drift in later phase of

evolution. Tournament selection picks out the best one from c randomly chosen

individuals [70]. Tournament selection has the same effects as both fitness

proportional sampling and selection probability adjustment [71][72]. It has the useful

property of not requiring global knowledge of the population. Tournament size, c

closely adjusts the selection pressure. A larger tournament size imposes a higher

 43

Figure 13: Fitness scaling with generalized disruptive pressure.

selection pressure. Binary tournament used in this paper for parent selection finds the

better one of the two individuals selected randomly, i.e., c = 2.

Survivor selection determines which member of the current population to be

replaced with the newly produced offspring. The commonly used scheme of replacing

the worst implements an elitism strategy that keeps the best trait found so far,

however it is likely to cause premature convergence because an outstanding

individual can quickly take over the entire population under such a scheme [67]. In

this paper, a tournament selection that picks the worst individual among c (= 5 in this

paper) randomly selected individuals is used. The new offspring is reinserted into the

population and it replaces the chosen individual.

3.2.3 Evolutionary Operators

The proposed optimization scheme of BbNN includes two types of genetic operators

(crossover and mutation), and a local search operator called gradient descent search

 44

(GDS). Crossover exchanges substructures between two individuals and mutation

randomly changes a unit in an individual. The GDS operator searches for better

solution in the direction of gradient descent for an individual. All operators directly

work on the phenotype of selected BbNN individuals that eliminates the

encoding/decoding procedure between the genotype and phenotype of BbNN

individuals. The operator rate determines the intensity an operator is applied. The

proposed update scheme adaptively adjusts an operator’s rate based on both its

effectiveness in improving the fitness and current fitness trend.

3.2.3.1 Crossover

Crossover and mutation serve as basic genetic operators used to evolve the structure

and weights of the BbNN. For a crossover operation of a pair of BbNNs, a group of

signal flows is randomly selected. The selected signal flows are exchanged according

to the crossover probability. After the exchange, the internal structure of a block is

reconfigured according to the new signal flows. As a result, some weights in a BbNN

will have corresponding weights in the other BbNN and some will be alone.

Corresponding weights will be updated by a weighted combination of the two weights

wc1 and wc2.

Crossover operation can be done in two steps: signal flow and connection

weights. Figure 14 shows an example of crossover operation. For two individual

BbNNs, signal flow bits of the same size and same location are exchanged. Figure 14

(a)(b) demonstrates two individual BbNNs before the crossover operation. Three

basic blocks B22, B23, and B24 are randomly selected for crossover. Two individual

BbNNs in Figure 14 (c)(d) are after crossover operation. Internal configurations of

the block after crossover are rearranged.

Crossover operation based on the signal flow takes the following

manipulations.

i. Select signal flow bits to be crossed over.

ii. Identify the blocks and the connection weights of the blocks that are
connected to the signal flow. Crossover operation can be done for the two

 45

 (a) (b)

(c) (d)

Figure 14: Crossover operation example of two individual 3×4 BbNNs. (a)(b) Two
individual BbNNs before crossover, (c)(d) Two individual BbNNs after crossover.

 46

 cases:

a. Signal flow remains unchanged after crossover

Take two corresponding weights wc1 and wc2 from the two blocks.

The crossover operator for real-valued weights is defined as:

*
1 1 2

*
2 1 2

(1)

(1)

c c c

c c c

w w w

w w w

λ λ

λ λ

= + −

= − +
 (32)

where λ denotes a uniform random number in [0, 1].

b. Signal flow changes after crossover

Changed signal flow modifies internal configuration of the block.

New connection weights generated accordingly are initialized with

Gaussian random numbers having zero mean and unit variance, while

not connected weights are removed.

Figure 15 shows an example of crossover for the case ii-b in the above. In

Figure 15(a), the signal flow bit between the blocks indicates leftward connection.

The two connection weights that are connected to this signal flow are represented as

dotted arrows. Assume that the signal flow bit is flipped after the crossover of the

signal flow bits. Then internal configurations of the two blocks will be changed as in

Figure 15(b), where the weights connected to the changed signal flow are represented

in dotted arrows. Changing the signal flow will affect several connection weights of

the two neighboring blocks. Newly generated weights are randomly initialized, while

pre-existing weights remain the same. Inactive weights are not used in the crossover

operation.

The proposed crossover operator has advantage that we can optimize network

structure and connection weights at the same time. In early stage of learning, BbNN

individuals have a variety of network structures. When the evolution process goes on

sufficiently, only relatively small number of possible structures survives. As a result,

crossover for signal flow will not change internal configurations as well as structure.

So as evolution goes on, the optimization task will be mostly weight optimization.

 47

(a)

 (b)

Figure 15: Internal configuration due to changing signal flow.
(a) Before crossover, (b) After crossover.

 48

3.2.3.2 Mutation

Mutation operator randomly adds a perturbation in an individual according to the

mutation rate. Block-based neural network has different mutation rates for the

structure bit string and the weights. Structure mutation means an operation flipped a

signal flow bit according to the structure mutation rate. When signal flow is reversed

after mutation, all the irrelevant weights are removed and created with a random

value on a proper direction. A weight selected for mutation will be updated with:

*
mt mtw w r= + (33)

where r denotes a zero mean, unit variance Gaussian noise.

3.2.3.3 Gradient Descent Search (GDS)

The gradient descent search operator updates the weights in a BbNN. A GDS operator

searches for optimal weights based on gradient descent methods. There are two steps

within a GDS epoch: forward pass of the inputs to compute network outputs and

backward pass of error signals to update internal weights. After completing the

calculation for the blocks in stage s, inputs of the blocks in stage s+1 are updated with

the outputs from the blocks in stage s, followed by calculating the outputs of the

blocks in stage s+1. This forward pass is not complete until the output calculation for

the blocks in the last computation stage is finished.

In backward passes, the error signals propagate from the blocks in higher stages

to those in lower stages. The error criterion function is defined as:

2

1

1
2

M
l l

l
ε

=

= −∑ d y (34)

where M is the total number of training patterns. The two vectors dl and yl are the

target and actual outputs for the l-th training pattern respectively. Beginning with an

initial guess, successive weight vectors are generated such that the error is reduced at

each iteration, i.e.:

 49

()() ()()1k kε ε+ <w w (35)

The successive cost reduction can be implemented with a class of gradient

methods. The simple gradient steepest descent updates the weights according to the

following equation [19][73]:

() () () ()()1k k k kη ε=+ − ∇w w w (36)

or in its component form:

, ,pq
pq

w p qC D
w
εη∆ = − ∈ ∈
∂
∂

 (37)

where η is the learning rate. The increment ∆wpq of the internal weight of a block can

be deduced according to the generalized delta rule [15][16][73]. We first rewrite the

error function in Eq. (34) using the formula that ,2j mjy v= to:

()2

,2
1 1

1
2

M n
l l
j mj

l j

d vε
= =

= −∑∑ (38)

Then, for the weights associated with output nodes connecting to network

outside, we can use chain rule to compute the derivative:

() ()

,2 ,2

, 2 ,2 ,2 , 2

,2 ,
1

'

mj mj

mj p mj mj mj p

M

j j mj mj p
l

v g
w v g w

d y h g u

ε ε

=

∂ ∂∂ ∂
=

∂ ∂ ∂ ∂

= − −∑
 (39)

where 'h is the first derivative of the activation function. Let us define the sensitivity

of the error criterion to the changes of net input of the output node to be:

() ()
,2

,2'

mj
mj

j j mj

g

d y h g

ερ ∂
=
∂

=− −

 (40)

 50

We can then rewrite Eq. (39) in the following equation:

,
1, 2

M

mj mj p
lmj p

u
w
ε ρ

=

∂
=

∂ ∑ (41)

For the weights associated with output nodes in stage s that are not connected to

network outside, we again use the chain rule to get the derivative:

, ,

, , , ,

ij q ij q

ij pq ij q ij q ij pq

v g
w v g w
ε ε ∂ ∂∂ ∂

=
∂ ∂ ∂ ∂

 (42)

where

,
,

,

ij q
ij p

ij pq

g
u

w
∂

=
∂

 (43)

In analogy to Eq. (40), let us define the sensitivity for an output node in stage s

in Eqs. (44), (45) and (46) depending on the node position.

()
, 1

,2 ,2 , 1, , 1,2'
i j

ij ij i j q i j q
q D

h g wρ ρ
+

+ +
∈

≡ ∑ (44)

()
1,

,3 ,3 1, , 1, ,3'
i j

ij ij i j q i j q
q D

h g wρ ρ
−

− −
∈

≡ ∑ (45)

()
1,

,4 ,4 1, , 1, ,4'
i j

ij ij i j q i j q
q D

h g wρ ρ
+

+ +
∈

≡ ∑ (46)

Finally, we get

, ,
1,

M

ij q ij p
lij pq

u
w
ε ρ

=

∂
=

∂ ∑ (47)

Thus, the weight update for a block can be summarized in the following

equation:

 51

1
, ,

M

pq q p
l

w u p qC Dη ρ
=

∆ = ∈ ∈∑ (48)

where η is the learning rate, ρq is the sensitivity of the output node, and up is the input

to the input node. C and D are the index sets of input and output nodes.

The sensitivities of the output nodes of the blocks in calculation stage s are first

calculated, and then the internal weights of these blocks are updated by adding the

increment ∆wpq given in Eq. (48). After calculating the sensitivities and updating the

weights of all blocks in stage s, the sensitivities of the nodes of the blocks in stage s-1

are computed with the weights update followed. This procedure continues until the

calculation of the blocks in the first computation stage is finished.

GDS operation stops when either the maximum number of epochs is reached or

the fitness stops increasing. The maximum number of epochs is tuned based on some

simulations, and 8 epochs are found to work well for the test data in this paper. Too

big epoch will increase the computation time of every iteration.

3.2.4 Operator Rate Update

An operator rate determines the probability according to which the operator is

applied. The proposed update scheme automatically adjusts an operator’s rate based

on both its effectiveness in improving the fitness and current fitness trend. Operator

rates are updated every evolution period and kept unchanged during each evolution

period. In the (k+1)-th evolution period, the first step is to assign a probability to each

of the operators based on its performance during the k-th period. Then, the operator

rates are increased if the maximum fitness has not been improved during the past

evolution period. The performance of an operator during the k-th evolution period is

measured by the effectiveness defined as:

()
()

e
k

t

N kE
N k

= (49)

 52

where Ne is the number of generations within each evolution period that an operator

produces offspring with higher fitness value than that of its parent(s), and Nt is the

total number of generations that an operator is selected in the same evolution period.

Thus, the value of Ek has a range from 0 (least effective) to 1 (most effective). The

effectiveness of an operator determines its probability in the next evolution period,

p(k+1), as defined in the following equation:

() { }
{ }

max

min

min () ln , , if 0.5
1

max () ln , , if 0 0.5
k

k

p k k p E
p k

p k k p E
α
α

⎧ + ≥⎪+ = ⎨ − ≤ <⎪⎩
 (50)

where αlnk is rate adjustment during an evolution period, and pmax and pmin denote the

maximum and minimum rate allowed for an operator. The scaling factor α controls

the amount of rate adjustment and has been set to 0.02 experimentally. The lower and

upper limit for pmax and pmin are 0 (never apply an operator) and 1 (always apply an

operator), respectively. Usually, pmax is set to a big value (1.0 in the experiments) to

ensure an operator that has been effective can be applied with high frequency; while

pmin is set to a small nonzero value (0.1 in the experiments) such that an less effective

operator still get an chance to be applied. Overall, the update scheme uses high

operator rates in early evolution stages, and then gradually decreases the rates of the

less effective operators but keeps the higher operator rates for those effective

operators.

The next step in rate adjustment considers the fitness trend during the past

evolution periods. If the improvement for maximum fitness has been stalled before a

solution is found, the algorithm tends to be trapped into a local maximum. It is thus

desired to perform more searches in order to help the search escape from the local

solution, and the operator rates are accordingly increased to consider such situation as

described in the following equation:

() { }max max' 1 min (1) 'ln , , if Fitness () 0p k p k k p kα+ = + + ∆ ≈ (51)

where α' > α and ∆Fitnessmax(k) ≈ 0 means the maximum fitness has not been

improved during the k-th evolution period. An operator rate is determined according

 53

to the performance and the current fitness trend. An operator will maintain a high rate

if it is effective in generating fitter individuals, otherwise its rate will be gradually

decreased. If the maximum fitness has not been improved before a desired solution is

found, the operator rates will be increased to do denser searches.

3.2.5 Implementation Platform

The evolutionary algorithm described in preceding sections was implemented under

PC environment using Microsoft Visual C++ 6.0 programming language. Figure 16

shows a screenshot of the graphical user interface (GUI) designed for evolutionary

optimization of BbNN.

This GUI allows user to change various parameters for BbNN and the

evolutionary algorithm through a pop-up window. The BbNN network size and

activation functions of neurons can be configured by the user. The parameters that

govern the running of the evolutionary algorithm, like population size, maximum

fitness, stop generation, and minimum operator rates, etc., can also be changed by the

user. Users can save a successful individual BbNN into a file as well as recall it later.

3.3 A Test Example

3.3.1 XOR Problem

The proposed learning algorithm is tested on the simple XOR problem, in which two

identical inputs generate an output of one and two different inputs produce negative

one. A 2x3 BbNN is chosen for the simulation. The first and second input blocks

receive the XOR input and the third output block serves as the network output. A

sigmoid activation function of the form:

 54

Figure 16: Graphical user interface for block-based neural networks.

 55

() 2 1
1 bgh g a

e−
⎛ ⎞= −⎜ ⎟+⎝ ⎠

 (52)

is used, in which a = 1.716 and b = 2/3 are chosen. This set of values makes

()' 0 1h ≈ , the linear range 1 1jg− < < , and the second derivative achieve its extrema

at approximately ±2 [74]. The fitness used to evaluate the quality of candidate BbNNs

is defined in the following equation:

2

1

1Fitness
11

M
l l

lM =

=

+ −∑ d y
 (53)

where M denotes the numbers of training patterns. d and y are desired and actual

output responses. The stop condition is that either the target fitness (0.95) or a

maximum epoch (5000) is met. The other parameters of the algorithm are listed in

Table 1.

Table 1: Parameters of the evolutionary algorithm for XOR problem

Parameter Value
Population 80
Maximum Generations 5, 000
Maximum Fitness Value 0.95
GDS Epoch 8
GDS Learning Rate 0.2
Disruptive Pressure 0.9
Tournament Size 2
Rate Update Interval 12
Initial Operator Rate 1.0
Minimum Operator Rate 0.1

 56

3.3.2 Experimental Results

Evolutionary algorithms are applied to evolve the selected BbNN. Figure 17 shows a

typical fitness trend. The dotted and solid line corresponds to the average and

maximum fitness. The evolution stops when the desired fitness is met after

approximately 2,100 generations. Figure 18 demonstrates structure evolution process

in terms of the number of occurrences of different structures. A solid line indicates

the occurrences of a near-optimal structure. The others represent three non-optimal

structures. The number of BbNNs with a near-optimal structure increases during the

evolution and becomes dominant and relative stable in the population after about 500

generations.

Figure 19 demonstrates an operator rate update trend. The GDS rate is almost

constant with some fluctuations through entire evolution process while the crossover

operator favors a high rate with bigger fluctuations than the GDS. The rates for two

mutation operators have similar trend that decreases slowly overall and increases

sometimes when fitter individuals are generated by the mutations or the fitness has

not been improved.

Figure 20 plots the network structure of the evolved BbNN among 100 random

trials for XOR classification. The numbers on the arrow are occurrence counts of the

same signal flows among 100 individual BbNNs. The output y indicates the category

of a test pattern. The redundant output nodes are marked by *. Inputs x1 and x2 are the

inputs to the BbNN.

In order to study the effect of various parameters, we dissect the evolutionary

algorithm to remove some components. The evolutionary algorithms with and

without GDS are first compared in terms of their convergence behavior. Both

algorithms are run for a fixed number of generations for 100 times. Figure 21(a)

shows the averaged maximum fitness along with standard deviation and the number

of successful runs after evolution. A trial is successful if the desired fitness value is

met before the maximum generation is reached. The GDS operator produces higher

averaged maximum fitness and more successful runs compared to EA only case.

 57

Figure 21(a) shows the average generations and running time that the two algorithms

take to reach the desired fitness level. The EA with GDS operator takes much less

generations and time than without GDS case.

The effect of fitness scaling and adaptive rate adjustment scheme is analyzed

using similar approach. Figure 22(a) shows the comparisons of maximum fitness

achieved number of successful runs. Figure 22(b) shows the total generations and

actual running time to reach the desired fitness level. The EA algorithm using fitness

scaling generates more successful runs than the EA without fitness scaling. The use of

fitness scaling does not affect much on the generations and running time.

Last, the effect of the use of adaptive operator rates is analyzed. The EA using

adaptive rates and the EA with fixed rates (0.8 for crossover and GDS, 0.2 for

structure mutation and weight mutation) are run for 100 times with their performance

compared. Figure 23(a) shows the comparisons of maximum fitness achieved number

of successful runs. Figure 23 (b) shows the total generations and actual running time

to reach the desired fitness level. The EA with adaptive rates guarantees higher fitness

values and more successful runs on average than the EA using fixed operator rates. In

terms of generations and running time, the two algorithms are comparable with the

EA with adaptive rates takes a bit more generations and time that is probably due to

more searches are used when the search tends to fall into a local maximum.

 58

Figure 17: The evolution trend of BbNN for XOR classification.

 59

Figure 18: Number of occurrences of particular structures during evolution.

 60

Figure 19: An adaptive operator rate adjustment scheme.

 61

Figure 20: The evolved BbNN for XOR classification.

 62

(a)

(b)

Figure 21: Comparison of the evolutionary algorithm with and without GDS in terms
of (a) final fitness achieved and (b) convergence speed.

 63

(a)

(b)

Figure 22: Comparison of the evolutionary algorithm with and without fitness scaling

in terms of (a) final fitness achieved and (b) convergence speed.

 64

(a)

(b)

Figure 23: Comparison of the evolutionary algorithm with adaptive and fixed rate
scheme in terms of (a) final fitness achieved and (b) convergence speed.

 65

Chapter 4 PERSONALIZED ECG HEARTBEAT

CLASSIFICATION

Electrocardiogram (ECG) has become an important routine clinic practice to

monitoring heart activities. Analysis of heartbeat patterns may reveal the symptoms

indicating that the heart needs immediate attention. This chapter describes

personalized ECG heartbeat classification using block-based neural networks, which

is motivated by the observation that a classifier with fixed structure and internal

weights and trained with a limited number of data may not be able to tackle the big

variations in ECG signals. In the following, an introduction on ECG signal

classification is first presented.

4.1 Introduction

4.1.1 Electrocardiogram

ECG is a diagnostic tool that records the electrical activity of heart. The commonly

used ECG is the standard twelve lead ECG that examines the electrical activity of the

heart from twelve different points of view including V1, V2, …, V6, I, II, III, aVR,

aVL and aVF [75]. While no single point of view could provide a complete picture of

the heart, the twelve points of view provide complementary information about the

heart.

There are total three types of waves occurred in a single heartbeat. The first one

is called P wave that corresponds to the contractions of both atrial of a heart. The

second is a series of three waves, known as QRS complex that reflects the ventricular

contractions. The QRS complex has been an important feature of heartbeat signals in

the detection of arrhythmia waveforms. The last T wave is recorded when ventricles

 66

are repolarizing. The three basic waves occur sequentially in the order of P, QRS and

T wave. Figure 24 illustrates a single heartbeat. Figure 25 shows the first five beats of

ECG record #201 from MIT-BIH Arrhythmia Database [1].

4.1.2 Challenges in ECG Signal Classification

Correctly classifying heartbeats is the first important step toward identifying an

arrhythmia. AAMI recommended practice groups the normal and various abnormal

types into five heartbeat classes that include class N (beats originating in the sinus

node), class S (supraventricular ectopic beats), class V (ventricular ectopic beats),

class F (fusion beats), and class Q (unclassifiable beats) [9].

It has been a challenge to classify ECG beats in achieving high performance

possibly due to the big variations in ECG heartbeat patterns. A large inter-individual

variability in the ECG waveforms is observed within different individuals and patient

P

Q
S

T

R

Figure 24: The three waves in a single heartbeat.

 67

Figure 25: Heartbeat examples from MIT-BIH Arrhythmia Database.

 68

 (a) (b)

 (c) (d)

 (e) (f)

Figure 26: Examples of AAMI beat classes from MIT-BIH Arrhythmia database, (a)
Class N (beat #1 of record 100), (b) Class S (beat #8 of record 100), (c) Class V (beat
#1907 of record 100), (d) Class F (beat #471 of record 108), (e) Class Q (beat #361 of

record 101), (f) Class N (beat #1 of record 108).

 69

groups due to physiological and geometrical differences between the hearts [76].

Consequently, the sensitivity and specificity of ECG classification algorithms are

often low. Figure 26 shows example beats of each of the five classes from MIT-BIH

Arrhythmia database [1]. Note that the beats belonging to the same normal class in

Figure 26(a) and (f) demonstrate significant morphological difference; while the

different classes of N and S beats shown in Figure 26(a) and (b) possess quite similar

shapes.

4.1.3 Previous Approaches for ECG Classification

In the past decades, a number of methods have been proposed to classify ECG

heartbeats into different categories [3][77]-[90]. Among them, different types of

features are first extracted from detected heartbeats including morphological features,

heartbeat intervals, frequency domain features and wavelet transform coefficients,

etc. After the extraction of features, a certain classification technique is applied to

classify the heartbeats into normal or one of the abnormal types. Such methods

include linear discriminant analysis (LDA), support vector machine (SVM), artificial

neural networks, mixture-of-experts methods [86], and statistical Markov models

[87][88]. Unsupervised clustering of ECG complexes using self-organizing maps

(SOM) is also proposed.

Hu et al. [86] proposed an artificial neural network method based on MLP

trained with BP algorithm. They used the original data samples as input to the

network and the dataset contains 6,474 QRS complex templates from MIT-BIH

Arrhythmia database. A two-layer MLP network of the size 51-25-2 reported an

average accuracy of 90% for the classification of normal and abnormal heartbeats for

the selected dataset.

The method in [86] studied the problem of distinguishing VEB from non-VEB

beats. The algorithm exploited a Mixture-of-Experts (MOE) method and employed a

test set of 20 recordings that excluded records without premature ventricular

contractions (PVCs). A global expert was developed using both unsupervised self-

 70

organizing map (SOM) and supervised learning vector quantization (LVQ) based on a

common set of ECG training data. A local expert was developed similarly but based

solely on patient-specific training data. The decisions from both classifiers are then

linearly combined using coefficients from a gating network that is trained with

another set of patient-specific ECG data. The MOE method achieved an accuracy of

94.0% for distinguishing ventricular ectopic beats (VEB) from non-VEB heartbeats.

Despite of the performance improvement, this work was limited at the detection of

VEB beats. Besides, the fact that three separate neural networks need to be trained for

a single patient makes this method somehow inefficient.

Lagerholm et al. [79] proposed a method for unsupervised clustering of ECG

heartbeats into 25 clusters. Their method uses Hermite function representation of

QRS complexes and self-organizing maps (SOM). Their clustering results correspond

to a classification rate of 98.5% if the dominant beat of a cluster can be correctly

identified.

Chazal et al. [77] proposed a method that consists of linear discriminants (LDs)

and various sets of morphology and heartbeat interval features. The 44 non-paced

recordings from MIT-BIH database were divided into two sets with approximate

proportion of beat types and total beat numbers (about 50,000 heartbeats). The first

set was used to evaluate the performance of different classifier configurations in order

to select a final classifier. The second set served as the independent test data used to

evaluate the final performance of the selected classifier. For each heartbeat, various

features based on ECG morphology, heartbeat intervals and RR-intervals were

extracted and combined into eight feature sets. The performance of each feature set in

classification was then evaluated to determine the best configuration that is then used

to classify the beats in the second datasets. The performance evaluation for the second

dataset reported an accuracy of 97.4% for VEB detection and 94.6% for SVEB

detection.

Osowski et al. [83] presented a method using support vector machine (SVM)

for heart beat recognition. Two different types of features, Hermite characterization

and High Order Statistic, have been used in the classification system. The training

 71

and test data include 6690 and 6095 heartbeat patterns selected from MIT-BIH

database. The overall accuracy of heart beat recognition is 95.91% for normal rhythm

and 12 different types of arrhythmias.

Despite the widely available methods, their performances leave room for

further improvement. The sensitivity reported is usually insufficient. For example, for

VEB detection, the method in [86] reported a sensitivity rate of 77.7% and a

classification rate of 97.4%, and the method in [77] achieved a sensitivity rate of

82.6% and a classification rate of 94.0%. For SVEB detection, 75.9% sensitivity rate

and 94.6% classification rate are reported in [77]. Apparently, there is a need for

better classification performance, especially higher sensitivity rate.

4.2 Personalized ECG Signal Classification

4.2.1 Evolvable Hardware Platform

Advance of embedded systems and other related resources on many of the present

generation FPGA boards enables the on-board evolution of block-based neural

networks. Figure 27 shows a schematic diagram of the proposed method, in which

dotted and solid arrows correspond to respective training and testing phase.

Hermite function transform extracts the features from the incoming ECG

heartbeats and input the features to the other two blocks. An evolutionary algorithm

finds the structure and weights of a selected BbNN based on training patterns. The

“trained” network is obtained, is downloaded into the reconfigurable FPGA chip. The

configured BbNN classifies the current ECG beat into one of five classes. If the

performance of the evolved network is degraded due to changes in the environment or

the subject, the evolution switch will activate the BbNN evolution block, and the

search for a fitter BbNN classifier is initialized. Hence, the BbNN classifier continues

to reconfigure itself in order to provide consistent performance.

 72

Figure 27: Heartbeat monitoring using block-based neural networks.

4.2.2 The ECG Data

The MIT-BIH Arrhythmia Database [1] provides the ECG signals used in the

experiments. The database contains 48 records obtained from 47 different individuals

(Two records came from the same patient). Each record contains 2-channel ECG

signals measured for 30 minutes. Twenty-three records (numbered from 100 to 124,

inclusive with some numbers missing) serve as representative samples of routine

clinical recordings. The remaining 25 (numbered from 200 to 234, inclusive with

some numbers missing) records include unusual heartbeat waveforms such as

complex ventricular, junctional, and supra-ventricular arrhythmias.

Continuous ECG signals were filtered using a bandpass filter with a passband

from 0.1 to 100 Hz. Filtered signals were then digitized at 360 Hz. The beat locations

 73

are automatically labeled at first and verified later by independent experts to reach

consensus. The whole database contains more than 109,000 annotations of normal

and 14 different types of abnormal heartbeats.

Specific software or interface library are needed to view or read the signals

contained in this database. Wave is a useful computer program that can be used to

view and analyze ECG signals [91], but it does not provide a way to extract the

signals from an ECG recording. The Waveform Database interface library (WFDB

library) [91] is a set of functions that are callable by C functions to access digitized

and annotated signals. WFDB_tools is a collection of Matlab functions that enable

Matlab users to have full access to the WFDB library within Matlab environment.

Figure 28 shows the procedure of reading ECG signal samples from an ECG

recording.

The normal and various abnormal types have been combined into five heartbeat

classes according to AAMI recommended practice [9] that include class N (beats

originating in the sinus node), class S (supraventricular ectopic beats), class V

(ventricular ectopic beats), class F (fusion beats) and class Q (unknown beats). The

Figure 28: The procedure in reading ECG signals.

 74

mapping from the MIT-BIH heartbeat types to the AAMI heartbeat types is

summarized in Table 2.

The records having paced beats were excluded for experiments. The remaining

records are divided into two sets. The first set contains 20 records numbered from 100

to 124 and is intended to provide common training data. The second set is composed

of the rest records numbered from 200 to 234 and each of the records in this set will

be used in the test. The training data for a patient consist of two parts, the first part

coming from the common set and being the same for all testing patients. The other

part are the heartbeats from the first five minutes of the patient’s ECG recording,

which conforms to the AAMI recommended practice that allows at most 5-minute of

recordings from a subject to be used for training purpose [86][9]. The remaining beats

of the record serve as test patterns.

4.2.3 Feature Extraction

Basis function representations have been shown to be an efficient feature extraction

method for ECG signals [92][93]. The most useful basis functions include Karhunen-

Loeve (KL) and Hermite functions. While KL expansion provides optimal signal

representation in the mean square error sense, Hermite basis function expansion has a

unique width parameter that is an efficient parameter to represent ECG beats with

different QRS duration. Hermite basis functions have been widely used in

representing QRS complexes [80][81] and ECG data compression [94]. The

coefficients of Hermite expansions characterize the shape of QRS complexes and

serve as input features.

Hermite basis functions are given by the following equation:

() 2 2/ 21,
2 !

t l
l ll

tt e H
l

φ σ
σσ π

− ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (54)

 75

Table 2: Mapping from MIT-BIH heartbeat types to AAMI heartbeat classes

AAMI heartbeat class

MIT-BIH heartbeat types

N
(Sinus node beat)

Normal beat
Left branch block beat

Right branch block beat
Atrial escape beats

Junctional escape beat

S
(Supraventricular

ectopic beat)

Atrial premature beat
Aberrated atrial premature beat

Junctional premature beat
Supraventricular premature beat

V
(Ventricular ectopic

beat)

Premature ventricular contraction
Ventricular escape beat

F
(Fusion beat) Fusion of ventricular and normal beat

Q
(Unknown beat)

Paced beat
Fusion of paced and normal beat

Unclassified class

 76

where σ is the width parameter and approximately equal to the half-power duration.

Hl(t/σ), called the Hermite polynomials, are defined in Eq. (55). Figure 29 shows the

first five Hermite basis functions.

()
() () ()1 2

1, 0
2 , 1

2 2 1 , 2
n

n n

n
H x x n

xH x n H x n− −

⎧ =
⎪= =⎨
⎪ − − ≥⎩

 (55)

Hermite functions are orthonormal for any fixed value of width σ:

() (), ,q l ql
t

t tφ σ φ σ δ
∞

=−∞

=∑ (56)

This useful property enables the calculation of expansion coefficients of an arbitrary

signal. Specifically, the QRS complex is extracted as a 250-ms window centered at

the R peak, which is sufficient to cover both normal and wider-than-normal QRS

signals [75][81]. If we denote a QRS complex as x(t), then it can be approximated by

a combination of Hermite basis functions:

() () ()
1

0

ˆ ,
L

l l
l

x t c tσ φ σ
−

=

=∑ (57)

where () ()x̂ t x t→ as L →∞ . Multiplying (),q tφ σ to both sides of Eq. (57) and

summing them up over time, we can get the set of coefficients by applying the

orthonormal property in Eq. (56):

() () (),l l
t

c t x tσ φ σ
∞

=−∞

= ∑ (58)

In Eq. (58) the expansion coefficients cl depend on the width σ. In order to

determine the optimal σ, we stepwise increase σ up to its upper bound to minimize the

summed square error between the actual and approximated complex. The upper

bound of the width parameter σ for a given L is determined using the algorithm

described in [79].

 77

-15 -10 -5 0 5 10 15
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

 -15 -10 -5 0 5 10 15
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

 ()0 ,tφ σ ()1 ,tφ σ

-15 -10 -5 0 5 10 15
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

 -15 -10 -5 0 5 10 15
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

 ()2 ,tφ σ ()3 ,tφ σ

 -15 -10 -5 0 5 10 15
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

 ()4 ,tφ σ

Figure 29: The first five Hermite basis functions with 1σ = .

 78

Different number of expansion coefficients can be used to approximate a QRS

complex. The approximation error depends on the number of coefficients. There is a

tradeoff between approximation error and computation time. More coefficients lead

to smaller errors, but the computation burden significantly increases when more basis

functions are used. We decided to use five Hermite functions that allow for good

representation for the QRS complexes and fast computation of the coefficients as

well. When five Hermite functions are used, the representation error for different

types of beats is acceptable according to a study in [79]. Besides the basis function

coefficients ci and width parameter σ, the time interval between two neighboring R

peaks tR is included to discriminate normal and premature heart beats.

4.2.4 Fitness Function

Fitness function evaluates the quality of the problem solutions. The fitness of a BbNN

individual is defined in the following equation:

1 22 2

1 21 1

Fitness
1 11 1

M M
l l l l
c c s s

ob obl ln M n M

β γ

= =

= +

+ − + −∑ ∑d y d y

 (59)

where β and γ are two weights summing to one. M1 and M2 are the numbers of

samples in the common and patient-specific training data, respectively. nob is the

number of output blocks.

Both common and patient-specific training patterns are considered in the fitness

function. While patient-specific data may serve as the training data for evolving

BbNN specialized for a patient, the inclusion of common training data is useful when

the small segment of patient-specific samples contains few arrhythmia patterns. To

construct the common dataset, representative beats from each class are randomly

sampled. Since the number of beat instances from each class differs drastically with

the normal beats having ten times more than the other beat types, it is important to

construct the common dataset in a ‘fair’ way in order to prevent a few classes

dominating the common training data [79][86]. To this end, no N-type beats are

 79

selected from the common dataset (there always exist sufficient N-type beats in

patient-specific data); Different percentages of the other four classes are chosen as:

5% of V-type (64 beats), 30% of S-type (58 beats), all F-type (13 beats) and all Q-

type (7 beats). Therefore, there are total 142 beats in the common set. The number of

beats in the patient-specific training data varies due to the difference in the heart rates

of different patients. The user-defined weighting constants β and γ control the relative

importance of each term in the final fitness. In the simulation reported in the

following, the two constants equals 0.2 and 0.8, respectively. This assignment of

control values implies that the correct classification of patient-specific patterns is of

more importance.

4.3 Experimental Results

4.3.1 Training Parameters

Selection of a BbNN network structure needs to be considered from two aspects.

First, the number of columns has to be equal to or greater than the number of input

features. Second, the number of rows should be selected so that the network has

sufficient complexity to model a given problem. A small network size is preferred,

provided that it achieves the desired performance. Too big a network runs the risk of

overfitting that might cause poor generalization performance, and require a more

complex optimization process because of high degrees of freedom in search space. In

the experiment, a 2×7 network was selected as a minimum-size BbNN that accepts

seven inputs. The desired output for the target category and non-target categories are

respectively set to 1.0 and –1.0. There are total five classes (N, S, V, F and Q), so the

desired output for a training pattern is a vector of five elements. The parameters used

for the EA in the following simulation are listed in Table 3. The same set of

parameters has been used for all test records without fine-tuning for specific patients.

 80

4.3.2 Evolution Trends

We apply the evolutionary algorithm to evolve the selected BbNN for a patient. A

typical fitness trend is shown in Figure 30. The dotted and solid line corresponds to

the average and maximum fitness, respectively. The evolution stops when the stop

fitness is met after approximate 1200 generations.

Figure 31 demonstrates the structure evolution process, in which the percentage

of occurrences of several structures is shown. The solid line indicates the occurrences

of a near-optimal structure. The other three lines represent three non-optimal

structures. The number of BbNNs with a near-optimal structure increases during the

evolution and become dominant in the population after about 600 generations.

The operator rate trend is demonstrated in Figure 32. The GDS rate is almost

constant with some fluctuations during the whole evolution. The crossover maintains

an overall high rate with bigger fluctuations than GDS. The rates for two mutation

operators have similar trend that decreases slowly overall and increases sometimes

when fitter individuals are generated by mutations or the fitness has not been

improved (cf. to Figure 30).

Figure 33 shows the effect of the adaptive rate update scheme in terms of the

convergence speed of maximum fitness. In the fixed rate case, the GDS and the

crossover use a high rate (0.8) and the mutations use a low rate (0.2). The fitness

trends are averaged over 10 independent runs. Each error bar shows a standard

deviation of the maximum fitness at every 200 generations. The error pattern for the

fixed rate case is similar to that for the adaptive rate update scheme. The EA with

adaptive rates achieves noticeably higher fitness value on average after the

conventional evolution procedure. The fitness scaling also enhances fitness levels.

The EA+GDS algorithm without fitness scaling produces the mean and maximum

fitness values of 0.900 and 0.909 in 10 trials, which can be compared to 0.920 and

0.942 when the fitness scaling is applied.

In order to study the effect of the proposed GDS operator, we dissect the

evolutionary algorithm to remove the GDS operator. The evolutionary algorithms

 81

with and without GDS are then compared in terms of their convergence speed. Both

algorithms are run for a fixed number of generations 10 times. Figure 33 shows the

averaged maximum fitness trend during evolution. While the EA without GDS slowly

improves the fitness, the GDS enhanced EA quickly increases the fitness initially and

at a slower speed at the last stage.

A BbNN classifier is evolved specifically for each patient. Both structure and

internal weights of a BbNN are optimized with the evolutionary algorithm. Figure 34

shows the network structure of the BbNNs evolved from 24 patients. The numbers on

the arrow are occurrence counts of the same signal flows among 24 individual

BbNNs. The maximum output yi indicates the classified ECG type. The redundant

output nodes are marked by *. Inputs x1, …, x5 to the BbNN are the five Hermite

transform coefficients c1, ..., c5. The input x6 is the Hermite width σ and x7 is the time

interval tR between two neighboring R-peaks.

Table 3: Parameters of the evolutionary algorithm for ECG signal classification

Parameter Value
Population 80
Maximum Generations 3, 000
Maximum Fitness Value 0.92
GDS Epoch 8
GDS Learning Rate 0.001
Disruptive Pressure 0.6
Tournament Size 2
Rate Update Interval 12
Initial GDS Rate 1.0
Minimum Operator Rate 0.1

 82

Figure 30: Fitness trend of BbNN evolution.

 83

Figure 31: The percentage of occurrences of particular structures during the evolution.

 84

Figure 32: Evolution trend of operator rate.

 85

Figure 33: Comparison of fitness trend between EA with adaptive and fixed rates.

 86

Fi
gu

re
 3

4:
 T

he
 B

bN
N

 st
ru

ct
ur

e
ev

ol
ve

d
fr

om
 2

4
pa

tie
nt

s.

 87

4.4 Classification Results

Heartbeat classification is performed for test records. Classification statistics of ECG

heartbeat patterns for test records are reported in Table 4. Two sets of performance

are reported: the detection of VEBs and detection of SVEBs in accordance with the

AAMI recommendations [9][77]. Table 5 defines the terms of true positive (TP), true

negative (TN), false negative (FN) and false positive (FP) for the detection of VEBs

and SVEBs.

Four performance measures, classification accuracy (Acc), sensitivity (Sen),

specificity (Spe), and positive predictivity (PP), are further defined in the following.

Classification accuracy is defined as the ratio of the number of correctly classified

patterns (TP and TN) to the total number of patterns classified. Sensitivity is the

correctly detected events (VEBs/SVEBs) among the total number of events and

equals to TP divided by the sum of TP and FN. Specificity refers to the rate of

correctly classified non-events (non-VEBs/non-SVEBs) and is therefore the ratio of

TN to the sum of TN and FP. Positive predictivity refers to the rate of correctly

classified events in all detected events and is therefore the ratio of TP to the sum of

TP and FP.

The classification of ventricular fusion (F) or unknown beats (Q) as VEBs does

not contribute to the calculation of classification performance according to AAMI

recommended practice [9][77]. Similarly, performance calculation for detecting

SVEBs does not consider the classification of unknown beats as SVEBs. Each

experiment was repeated ten times and the averaged results were recorded. Each

experiment was performed ten times. The coefficient of variation (CV) measures

dispersion of a probability distribution and is defined as the ratio of standard

deviation to mean, which allows comparison of the variation of populations that have

significantly different mean values. The CVs for true positive beats of N, S, V, and F

types are 0.9%, 1.3%, 4.0%, and 48.3%, respectively. The variations for N, S and V

types are small but type F, which has a very small number of instances.

 88

Table 4: Beat-by-beat classification results.

Classification Result
Truth

N S V F Q
N 41303 311 198 24 0
S 1051 1181 101 2 0
V 431 198 4165 14 1
F 152 48 193 219 0
Q 5 0 2 1 0

Table 5: Definition of TP, FP, TN and FN for detection of VEBs and SVEBs.

 VEB SVEB
Classification Result Truth

N S V F Q N S V F Q
N TN TN FP TN TN TN FP TN TN TN
S TN TN FP TN TN FN TP FN FN FN
V FN FN TP FN FN TN FP TN TN FN
F TN TN - TN TN TN FP TN TN TN
Q TN TN - TN TN TN - TN TN TN

 89

For VEB detection, the sensitivity was 86.6%, the specificity was 99.3%, the

positive predictivity was 93.3%, and the overall accuracy was 98.1%. For SVEB

detection, the sensitivity was 50.6%, the specificity was 98.8%, the positive

predictivity was 67.9%, and the overall accuracy was 96.6%. From the results, the

performance of SVEB detection is not as good as VEB detection, and the possible

reasons include the more diverse types in S class and lack of S class training patterns

in patients [1][77].

4.5 Performance Comparison

The proposed technique is compared to earlier work using the AAMI standards. An

automatic heartbeat classification method [77] is based on linear discriminants and

various sets of morphology and heartbeat interval features. The database was divided

into two sets with each containing 22 recordings. The best classifier configuration

determined using the first set was used to classify the heartbeats in the second set for

performance evaluation. A neural network method based on mixture-of-experts

concept [86] distinguishes VEB from non-VEB beats. The algorithm employs a test

set of 20 recordings that excluded records without premature ventricular contractions.

A global expert was developed using both unsupervised self-organizing map and

supervised learning vector quantization based on a common set of ECG training data.

A local expert was developed similarly but based solely on patient-specific training

data. The decisions from both classifiers are then linearly combined using coefficients

from a gating network that is trained with another set of patient-specific ECG data.

A comparison of the classification results among the three methods is given in

Figure 35 and Table 6. The compared results of VEB detection were based on the 11

recordings that were common to all three studies. The compared results of SVEB

detection were based on the 14 recordings that were common to both this study and

[77]. Figure 35 presents the false positive rate (FPR, equivalent to one minus the

specificity) versus true positive rate (TPR, equivalent to the sensitivity) from each

method as a point in the receiver operating characteristics (ROC) curve [95]. The

 90

upper-left corner of the ROC curve (TPR = 1.0, FPR = 0.0) is the optimal solution.

The point representing a pair of TPR and FPR that is closer to the upper-left corner

corresponds to a better solution. From the plots, the proposed method generated more

accurate results than the other two methods.

In Table 6, the numerical values of sensitivity, specificity, positive predictivity

and overall accuracy for the three methods are presented. These results show that the

proposed method outperformed the other two methods in terms of sensitivity,

specificity and positive predictivity and produced notably higher overall classification

accuracy for VEB detection. Comparing to the method in [77], the proposed method

produced comparable sensitivity and significant better specificity, positive

predictivity and overall classification accuracy for SVEB detection.

 There are some other works in literature involving various classification

techniques. It is interesting to compare our results with the others, although the

comparisons are not exact because the other methods either use a subset of the MIT-

BIH database or aims at identifying specific beat types. Hu et al. [84] proposed an

artificial neural network method based on multi-layer perceptrons (MLP) trained with

back-propagation algorithm. A two-layer MLP network of the size 51-25-2 reported

an average accuracy of 90% for the classification of normal and abnormal heartbeats

and 84.5% in classifying the beats into 13 beat types according to the MIT-BIH

Database annotations. The use of multilayer perceptrons and Fourier transform

features resulted in 2% of mean error for 3 rhythm types based on 700 test QRS

complexes [3]. Osowski et al. [83] presented a heartbeat classification method using

support vector machine (SVM) and two different types of features, Hermite

characterization and high-order cumulants. The overall accuracy of heart beat

recognition is 95.91% for normal and 12 abnormal types. One thing needs to be

pointed out that these comparisons are not exact because the methods compared either

use a subset of the MIT-BIH database or aim at identifying specific beat types.

 91

(a)

(b)

Figure 35: Comparison of true positive rate and false positive rate for the three
algorithms in terms of VEB detection (a), and SVEB detection (b).

 92

Table 6: Performance comparison regarding VEB and SVEB detection.

VEB SVEB
Method

Acc Sen Spe PP Acc Sen Spe PP
Hu et al. [86] 94.8 78.9 96.8 75.8 - - - -

Chazal et al. [77] 96.4 77.5 98.9 90.6 92.4 76.4 93.2 38.7
Proposed 98.8 94.3 99.4 95.8 97.5 74.9 98.8 78.8

4.6 Fault Tolerance of BbNN for ECG Classification

Fault tolerance refers to the ability of continuous operation of a system when fault

occurs within the system. A system with good fault tolerance degrades its

performance proportional to the degree of severity of the fault occurred, which is

compared to a system without such capability that would breakdown regardless of the

degree of fault.

In order to learn the fault tolerance ability of BbNNs for ECG signal

classification, experiments are conducted to study the effect of noise. We want to

specifically address two questions. The first question is how the classification

performance is affected by noise. The second is can BbNN recover its functionality

from such event.

Two types of fault modes are studied: global and local noise. In the global

mode, the whole network is corrupted by Gaussian noise. Additive Gaussian noises

with various levels of variations determined by signal-to-noise ratio (SNR) values are

used in the simulation. The SNR is defined in the following equation:

 93

2

1
10 2

1

10log

n
i

i
w

nSNR
σ
==
∑

 (60)

where wi denotes the weight in a BbNN and n is the total number of weights in the

BbNN. σ2 is the variance of the Gaussian noise. In the simulation, the weights of the

evolved BbNNs for 24 test records from Section 4.4 are corrupted using Gaussian

noise generated with a SNR value. Eight levels of noise, with SNR values of -5, 0, 5,

10, 15, 20, 25 and 30 dB, are considered to represent noise with varying severity. The

classification performance (in terms of Acc, Sen, Spe and PP) of the BbNNs with

corrupted weights is recorded and shown in Figure 36. The error bars along the

curves for Acc and Sen indicate the standard deviation among 10 trials. The error

patterns for the other two measures are similar and skipped in the figure for visual

clarity. Figure 37 presents FPR versus TPR from each noise level as a point in the

ROC curve. Comparing the results shown in Figure 36 with those in no noise case

reported in Section 4.4, it is observed that the noise tends to degrade the classification

performance in both VEB and SVEB detection. However the degradation becomes

less severe as the noise weakens. When SNR is higher than 15 dB, the performance

degradation is negligible. Among the four measures, Sen and PP are more sensitive

than Acc and Spe to the levels of the noise.

In the second fault mode, local impulse noise is simulated. Instead of the

whole network, only part of the network is assumed to be corrupted by impulse noise.

Specifically, a specified percentage of the total weights in the evolved BbNNs for 24

test records from Section 4.4 are randomly selected and the selected weights are then

set to 0 in order to simulate the local impulse noise. Ten levels of noise severity, with

percentages varying from 5% to 50% with an increment of 5%, are considered. The

classification performance of the BbNNs with corrupted weights is recorded and

shown in Figure 38. The error bars indicate the standard deviation among 10 trials.

Figure 39 presents FPR versus TPR from each noise level as a point in the ROC

curve. From the figures, it is clear that the impulse noise degrades the classification

 94

performance with degradation proportional to the severity of the noise. The higher

percentage of weights is corrupted, the severer the performance degradation is.

It is interesting to compare the effects of the two types of noise modes. In both

modes, the noise tends to degrade the classification performance with the degree of

degradation in proportion to the noise levels (noise strength in global mode and noise

width in local mode). When SNR is getting higher (e.g. bigger than 15 dB) in

Gaussian noise case, the performance degradation becomes negligible. However, this

performance degradation pattern is not observed in the impulse noise case.

In the next, experiments are conducted to study whether BbNN can recover its

functionality from noise. Specifically, the effect of noise on fitness values is studied.

In the simulation, initial evolution is performed on a population of BbNN individuals

using the proposed evolutionary algorithm. This evolution is stopped after 3,000

generations when convergence is observed. Then low Gaussian noise with a SNR of

5dB is added to corrupt the weights of the BbNNs in the population. Following the

noise addition, a recovery evolution is applied to the noise corrupted population to

recover the BbNN functionality in terms of fitness values. Figure 40(a) shows the

evolution trend of maximum and average fitness values during the initial evolution

(the first 3,000 generations) and recovery evolution (beginning from the 3,001st

generation) after noise corruption. The error bars indicate the standard deviation

among 10 trials for every 200 generations. From the figure, both maximum and

average fitness values dropped significantly after the weights are corrupted by the

noise. However, the maximum fitness value is able to gradually recover from the

noise and after 1,000 generations it reaches to a level that is comparable to the one

achieved at the end of initial evolution. A more severe noise level with SNR of 0 dB is

also studied. The evolution trend of maximum and average fitness values during the

initial evolution and recovery evolution after noise corruption is shown Figure 40(b).

It demonstrates a similar overall trend to the low noise case. However, the fitness

values dropped heavier and the recovery evolution takes more generations to recover

the fitness compared to the low noise case.

 95

(a)

(b)

Figure 36: The effect of Gaussian noise on BbNN classification performance, (a)
VEB detection, (b) SVEB detection.

 96

(a)

(b)

Figure 37: Comparison of true positive rate and false positive rate for different levels
of Gaussian noise for VEB detection (a), and SVEB detection (b).

 97

(a)

(b)

Figure 38: The effect of impulse noise on BbNN classification performance, (a) VEB
detection, (b) SVEB detection.

 98

(a)

(b)

Figure 39: Comparison of true positive rate and false positive rate for different levels
of impulse noise for VEB detection (a), and SVEB detection (b).

 99

(a)

(b)

Figure 40: Evolution trend of BbNN with different levels of noise, (a) Low noise
(SNR = 5 dB), (b) Severe noise (SNR = 0 dB).

 100

Chapter 5 ACCELERATED LOCAL SEARCH USING

BLOCK-WISE LEAST SQUARES LEARNING

BbNNs provide a model-free approximation approach for nonlinear dynamic systems.

This chapter provides examples of dynamic system approximation using block-based

neural networks. A gradient descent search was introduced in chapter 3 and used in

the evolutionary algorithm as a local search operator. It is shown that the inclusion of

the GDS operator in the evolutionary algorithm results in faster convergence speed

and the algorithm performs well for ECG heartbeat classification. However, for

applications that require highly accurate results like chaotic time series prediction, the

use of GDS becomes questionable due to the slow speed associated with gradient-

based search procedure. The cause of the slow speed is because that many epochs are

usually needed for GDS to converge to a satisfactory solution. Moreover, a set of

parameters like the learning rate need to be tuned to get optimized performance for a

specific application. Observing these limitations of GDS operator, this chapter

proposes a least squares learning as an alternative to the gradient descent search for

dynamic system approximation [52].

5.1 Introduction

Dynamic system approximation is a research area that finds applications in fields

varying from weather forecasting, chaotic time series prediction, to system

identification and remote sensing. The general goal in dynamic system approximation

is to construct a model that can predict the future behavior of a process based on

observed past instances. In the example of time series prediction, predicted output is

obtained using past and current observations. Typical inputs contain past samples of

the series up to a certain length. System identification has application in many

disciplines where a mathematical model is needed for modeling a physical system.

 101

Predicated system output is generated using past system observations and current

system inputs. Various modeling techniques can be identified ranging from those

building a model dynamical system to black-box modeling technique using ANNs. A

common drawback of systems with fixed structures is underfitting or overfitting,

which is caused due to the lack of knowledge on the functional form and the order of

the dynamics.

5.2 Blockwise Least Squares Learning (BLS)

The gradient-based learning methods for feedforward multilayered neural networks

have major drawbacks such as slow convergence speed. Many iterations are often

needed to reach an acceptable accuracy. In the other hand, linear least squares-based

(LSB) approaches [25][26][27][28] that use linear least squares techniques and layer-

by-layer optimization are found to have faster convergence compared to gradient-

based methods. Unlike the iterative process that needs a learning rate, LSB

approaches don’t need user-supplied parameters. In the following, a blockwise least

squares learning adopted from the LSB algorithm [25] is discussed.

The basic idea in the LSB algorithm is to construct a linear system for each

layer in a MLP network and solve this system using linear least squares. A layer-by-

layer optimization procedure is followed to optimize the weights in a network [25].

Considering the fact that the weights in a layer of BbNN are only sparely connected,

it would not be possible to apply the least squares method for BbNN in the way as in

the LSB algorithm. In the BLS algorithm, a blockwise optimization procedure is

performed that the internal weights of each block are optimized by solving a set of

linear equations and the blocks in the network are optimized from higher stages to

lower stages. Each block in the network corresponds to a simple feedforward neural

networks and its optimization is treated separately. For blocks with known desired

outputs, the internal weights are optimized by minimizing the least squares criterion.

For other blocks with unknown target outputs, weight optimization is completed

using estimated desired outputs. Optimization of the weights of blocks in higher

 102

stages is performed earlier than the blocks in lower stages. A training epoch consists

of weight learning for all blocks from the last stage to the first stage. The training

process is finished after a stop criterion is met.

5.2.1 Training a Single Block

Each block in a BbNN makes a simple feedforward neural network. A detailed view

of a basic block of type 3/1 is shown in Figure 41. For a set of inputs, the equation to

computing the linear outputs of the block can be written in matrix format as:

G = UW (61)

where U is the input to the block with each of its columns being outputs from an input

neuron and the first column being the output from a constant bias node and each row

representing a data sample vector. W is the internal weights of the block. Each

column of output matrix G is the linear summation applied to the nonlinearity of a

node (Refer to Figure 41) to generate the block output. The dimensions of each of the

Figure 41: A detailed view of a basic block.

 103

 three basic block types are determined by the number of learning samples and

number of input/output neurons of the block. Let the number of samples be N, the

numbers of input and output neurons of a block be (m-1) and n, then it is clear that

U N m×∈ℜ , W m n×∈ℜ and N nG ×∈ℜ . Hence, for the 1/3 type block shown in Figure

11(a), there are 2U N×∈ℜ , 2 3W ×∈ℜ and 3NG ×∈ℜ . For the 2/2 type block, there are
3U N×∈ℜ , 3 2W ×∈ℜ and 2NG ×∈ℜ . For the 3/1 type block, there are 4U N×∈ℜ ,

4 1W ×∈ℜ and 1NG ×∈ℜ .

Determining the optimal weights W can be formulated as a linear least squares

problem:

2
min UW D− (62)

where D is the target output. For the three block types, solving the minimization

problem in Eq. (62) is to find the linear square solution for an over-determined

system since mN >> in most cases. The least square solution for an over-determined

system can be determined using QR decomposition together with Householder

transformation [96]. To be specific, let us first write the original problem in the

equivalent component form (associated with each output neuron) as in the following:

2
min Uw d− (63)

where w and d denote any column of W and D, respectively. If U N m×∈ℜ , it can be

decomposed into the product of an orthogonal matrix Q N N×∈ℜ and an upper

triangular matrix R N m×∈ℜ , i.e.:

U QR= (64)

It is reasonable to assume that U has full column rank since mN >> . Therefore

the economy-sized QR decomposition is given as follows

U Q Rn n= (65)

 104

where Qn consists of the first n columns of Q and Rn consists of the first n rows of R.

The least square solution lsw to Eq. (63) can be computed through back-substitution

from the following equation:

R QT
n ls nw d= (66)

 After the optimal weights are determined, a set of desired input S is sought for

in order to reduce further the least squares error. With the weights W and target

outputs D known, the desired input S is the least square solution to the following

problem:

2
min SW D− (67)

where W is the optimal weights determined from Eq. (62). Since the output from a

bias node is constant, the entries in the first column of the desired input S are fixed.

Therefore, the original minimization problem needs to be modified to take into

account this constraint. The modified minimization problem is given in the following:

2
min S W Dc c − (68)

where Wc is same to W excluding its first row and Sc equals S except its first column

of constant bias output is discarded. Now let us translate this problem into standard

least squares formulation and write down its component form that corresponds to

each training sample:

()
2

min W T
c c cs d− (69)

where sc denotes any row of Sc and dc denotes any row of D, respectively. The

problem given in Eq. (69) can be a square, an over-determined or an under-

determined system depending on the type of the block. When the block is 2/2 type,

the system is square. It is an over-determined system when the block is 1/3. For type

3/1 block, the system is under-determined. The method used to solve Eq. (63) can be

utilized to find the least square solution for square or over-determined system.

 105

For a general under-determined system, it has either no solution or infinite

solutions. In our base, there are infinite solutions as the left-null space of the system

is empty and the null space is not. Therefore, the minimal 2-norm solution is found

through the following procedure [96]. For clarity, let us rewrite the Eq. (69) as in the

following

T T T

2
min Wc c cs d− (70)

Let compute QR decomposition of ()1W n m
c

× −∈ℜ and get

R
W Q

0c
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (71)

where R n n×∈ℜ . Then Eq. (70) becomes

1T

2

R 0 c

z
d

z
Τ⎡ ⎤

⎡ ⎤ =⎢ ⎥⎣ ⎦
⎣ ⎦

 (72)

where

1 T T

2

Q c

z
s

z
⎡ ⎤

=⎢ ⎥
⎣ ⎦

 (73)

with 1
nz ∈ℜ 1

2
m nz − −∈ℜ . Let 2 0z = , the minimum 2-norm solution follows

1T Q
0c

z
s ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (74)

where 1z is solved from Eq. (72).

The thus acquired desired input becomes the target output for the blocks

connected to current block. However, due to the use of nonlinear sigmoidal function,

the output from output node is bounded. The acquired input S has to be transformed

 106

to bring its range into that of the activation function. To that purpose, a

transformation matrix is used [25]. After the optimal weights W and desired input S

are determined, the learning process for the block is completed.

5.2.2 Training a Block-based Neural Network

The computation stage s associated with a block denotes the priority according to

which each block is trained. The blocks in higher stages are trained earlier than those

in lower stages. The blocks within the same stages are trained with the same priority.

The BLS algorithm for BbNN can be summarized in the following:

1) Generate randomly initial internal weights for each block in the network.

2) Propagate all patterns through the network from blocks in lower computation

stages to blocks in higher stages producing outputs.

3) Update the weights for the block in stage s using Eq. (62).

4) Update the input for the block in stage s (the desired output for the connected

block in stage s-1) using Eq. (67).

5) Repeat steps 3) - 4) for each block in stage s-1.

6) If end condition is met, stop learning; otherwise, go to step 2).

5.2.3 Computation Complexity

The number of multiplications required to solve a linear least squares problem using

QR decomposition and Householder transformation equals ()M n m n× × + , in which M

and n are the dimensions of input matrix and n and m are dimensions of weight matrix.

The computation complexity of optimizing the block shown in Figure 41 will be

O(20M). As a comparison, the GDS optimization of the same block type will have a

complexity of O(4M). Thus, the operation complexity of both algorithms is only

linearly correlated to the number of examples. The BLS algorithm takes more

operations than the GDS algorithm per epoch. However, the experiment results

presented in the following section show that BLS is much faster than GDS since BLS

 107

takes only a few epochs compared to hundreds of epochs of GDS to reach comparable

or lower error level.

5.3 Experimental Results

This section presents experimental results for two dynamic system approximation

problems: one is the well-known Mackey-Glass time series prediction and the other is

a realistic nonlinear system identification problem. GDS and BLS are used as a stand-

alone optimization procedure for a fixed structure BbNN, and their performance in

terms of convergence speed is compared. Then the EA only algorithm and the EA

with local search algorithms, namely, evolutionary operators plus GDS (referred as

EA+GDS) and evolutionary operators plus BLS (referred as EA+BLS), are also

compared. All the algorithms are implemented using Visual C++ 6.0 and run under a

PC platform with Pentium 4 2.80 GHz CPU. The fitness function is defined as:

2

1

1Fitness
1

M
i i

i=

=

+ −∑ d y
 (75)

where M denotes the number of training samples. di and yi are the desired and actual

outputs when the ith pattern is presented. The parameters used for the EA algorithms

are listed in Table 7.

5.3.1 Time Series Prediction

The time series prediction is to estimate future behavior of a process based on

observations up to current time, which can be modeled using the following equation:

() () () ()()ˆ , ,...,x t I f x t x t D x t qD+ = − − (76)

 108

Table 7: Parameters of the evolutionary algorithm for dynamic system approximation

Parameter Value
Population 80
Maximum Generations 1, 000
Maximum Fitness Value 0.95
GDS Epoch 50
GDS Learning Rate 0.001
Disruptive Pressure 0.6
Tournament Size 2
Rate Update Interval 12
Initial GDS Rate 1.0
Minimum Operator Rate 0.1

where t denotes current time index and positive integer q is called the order of the

model. The function f(·) represents the functional input-output relationship of a time

series prediction process.

The Mackey-Glass (M-G) time series is a chaotic time series simulating blood

flow [97] and it is one of the widely investigated benchmark examples in time series

prediction. The M-G time series can be represented using the following differential

equation:

() () ()
()101

bx t
x t ax t

x t
τ

τ

−
= − +

+ −
& (77)

The system can exhibit fixed points, limit cycles, or chaotic behaviors for

different values of τ. The M-G time series values at integer points were obtained by

applying the fourth-order Runge-Kutta method to find solution to Eq. (77). The

 109

parameters used are a = 0.1, b = 0.2 and τ = 17. For this particular value of τ, the

system exhibits a chaotic behavior. Figure 42 shows an M-G time series generated for

experiments where the dotted vertical line marks the beginning of test phase. Among

the total 500 data points, 300 of them are used to train a selected BbNN with fixed

structure and the remaining 200 points serve as test data.

The time series data in lagged space x(t), x(t-1), x(t-2) and x(t-3) are inputs to

the BbNN and x(t+1) is the output from the network, i.e., I = q = 1 and D = 3.

Starting from a randomly generated initial set of weights, both GDS and BLS

algorithms are applied to optimize the internal weights of a BbNN with two rows and

four columns. The learning rate selected for GDS is 0.05 that allows faster

convergence based on some initial trials. There is no parameter to set for BLS

algorithm.

The performance of the BLS algorithm regarding convergence speed and

prediction accuracy is compared to that of GDS. Table 8 lists the numerical

comparison between the two methods. The BLS usually takes only one or a few

epochs to reach the error level that the GDS algorithm does not achieve after 1,000

epochs. The actual CPU running time of BLS is also significantly less than that of

GDS algorithm. The Mean Squared Error (MSE) as the error criterion is also

compared between the two methods for both training and test data. The BbNN trained

with BLS algorithm achieves the error level that is nearly 10 times less than that

achieved with GDS after 1000 epochs. The BbNN trained with BLS is found to

generalize well to the test data that is not seen before. The errors for training and test

data are comparable.

Next, the performance of the EA only and EA with local search operator

algorithms is compared. The time series data in lagged space x(t), x(t-1), x(t-2) and

x(t-3) are inputs to the BbNN and x(t+1) is the output from the network, i.e., I = q = 1

and D = 3. An initial population is randomly generated. The three algorithms are

applied to find optimal BbNN structure and weights. Figure 43 compares the

maximum fitness values after 1,000 generations for the three algorithms averaged

among 10 trials. The use of either GDS or BLS operator in the EA algorithm results

 110

in higher fitness value than EA only case. The Mean Squared Error (MSE)

corresponding to the maximum fitness value is computed and listed in Table 9. The

EA+GDS and EA+BLS algorithms produce lower training and test error than EA

only algorithm. Between the two EA algorithms that use a local search operator,

EA+BLS algorithm performs noticeably better than EA+GDS.

The convergence speed of the EA algorithms is compared in terms of achieving

the same level of fitness value (The level compared is the average fitness value that

the EA+GDS achieves after evolution). Table 10 shows the number of generations

and CPU running time. From the table, the EA only method failed to achieve this

level of fitness. Between the two EA methods using local search, EA+BLS algorithm

takes much less time than EA+GDS.

Figure 44 plots an evolved BbNN using the EA+BLS algorithm for Mackey-

Glass time series prediction. An output node y gives a future prediction based on

inputs of past observations. All other redundant output nodes are marked by *. Inputs

x1,…, x4 to the BbNN are the time series data in lagged space x(t), x(t-1), x(t-2) and

x(t-3). Figure 45 shows the typical 1-step prediction results from the evolved BbNN

for the test data. The estimates from EA+BLS resemble the most to the truth data

among the three algorithms compared.

5.3.2 Nonlinear System Identification

Conventional techniques for nonlinear system identification utilizing mathematical

models require the structure of the model must be known in advance. Block-based

neural networks provide a general model-free approach for identifying nonlinear

systems. The system in interest is a practical liquid-saturated steam heat exchanger

[98], where water is heated by pressurized saturated steam through a copper tube. The

input variables are the liquid flow rate, the steam temperature, and the inlet liquid

temperature. The system output is the outlet liquid temperature. In this experiment,

the steam temperature and the inlet liquid temperature are kept constant to their

nominal values. The system model can be described as in Eq. (78):

 111

Figure 42: A Mackey-Glass time series.

Table 8: Performance comparison for M-G time series prediction

Method Epoch Time (s) MSE (Train/Test)

GDS 1,000 15 4.22/4.71×10-3

BLS 1 0 4.69/4.39×10-4

 112

Figure 43: Comparison of achieved maximum fitness among the EA algorithms.

 113

Table 9: Comparison of mean squared error for the EA algorithms

Method Mackey-Glass

(Training/Test)

Heater Exchanger

(Training/Test)

EA 6.02/5.99×10-3 5.44/5.65×10-3

EA+GDS 3.39/3.46×10-3 4.12/4.20×10-3

EA+BLS 3.00/2.95×10-4 1.79/1.58×10-3

Table 10: Comparison of convergence speed for the EA algorithms

Method Mackey-Glass

(Generation/Time)

Heater Exchanger

(Generation/Time)

EA Failed Failed

EA+GDS 1000/172s 1000/215s

EA+BLS 11/1s 9/1s

 114

Figure 44: Evolved BbNN for M-G time series prediction after 1000 generations.

Figure 45: Test results of M-G time series prediction.

 115

() () () () () () ()()1 2ˆ 1 , 2 ,..., ; , 1 ,...,y t f y t y t y t D u t u t u t D= − − − − − (78)

in which u and y denote the system input and output, respectively.

The set of data employed in training the neural network has a large impact on

the quality of the identified system model, which means the set of training data needs

to include as much information as possible about the dynamics of the system. It is

therefore important to construct a balanced set of training data that covers the whole

system operation range. To this end uniformly distributed input over the process

range are generated and serve as system input. Figure 46 shows the corresponding

fluid outlet temperature in which dotted vertical line separates the training and test

data.

The system output data y(t-1), y(t-2) and y(t-3) and lagged input x(t-1), and x(t)

are inputs to the BbNN and y(t) is the output from the network, i.e., D1 = 1 and D2 =

3. Starting from a randomly generated initial set of weights, GDS and BLS algorithms

are applied to optimize the internal weights of a BbNN with two rows and five

columns. The first 300 input-output pairs in the data set are training data and the

remaining data serve as independent test samples.

The performance of the BLS algorithm regarding convergence speed is

compared to that of GDS. The learning rate selected for the GDS is 0.05 that allows

good convergence performance. Table 11 lists the comparison of numerical results

between the two methods. The BLS algorithm takes only one or a few epochs to reach

an error level that the GDS algorithm does not achieve after 1,000 epochs. The actual

CPU running time of BLS is also significantly less than that of GDS algorithm.

Similar to the case of M-G time series prediction, the BbNN trained with BLS is

found to generalize well to the test data that is not seen before. The errors for training

and test data are comparable.

Next, the performance of the EA only and EA plus local search algorihtms is

compared. The system output data y(t-1), y(t-2) and y(t-3) and lagged input x(t-1), and

x(t) are inputs to the BbNN and y(t) is the output from the network, i.e., D1 = 1 and D2

= 3. The three algorithms are applied to find optimal BbNN structure and weights

 116

starting from randomly generated populations repeated for 10 times. Figure 43

compares the maximum fitness values after 1,000 generations for the three algorithms

averaged among the 10 trials. The use of either GDS or BLS operator in the EA

algorithm results in higher fitness values than EA only case. The EA algorithms with

local search ability produce lower training and test error than EA only algorithm

according to Table 8. Between the two algorithms using both evolutionary and local

search operators, EA+BLS algorithm performs noticeably better than EA+GDS.

When comparing the convergence speed among the three algorithms, EA only

method failed to achieve the same level of fitness value that is achieved by the two

algorithms with local search according to Table 10. When comparing the two

methods that use both types of operators, EA+BLS algorithm takes much less time

than EA+GDS.

Figure 47 plots an evolved BbNN using the EA+BLS algorithm for heater

exchanger system identification. An output node y gives an estimated fluid outlet

temperature based on inputs and outputs in lagged space. All other redundant output

nodes are marked by *. Inputs x1 and x2 to the BbNN are the time series data in

lagged space x(t), x(t-1), and x3, x4 and x5 correspond to y(t-1), y(t-2) and y(t-3).

Figure 48 shows the typical output estimates from the evolved BbNN for the test data.

The estimate from EA+BLS produces the least amount of error among the three

methods compared.

 117

Figure 46: Fluid outlet temperature of a practical heat exchanger.

Table 11: Performance comparison for nonlinear heat exchanger identification

Method Epoch Time (s) MSE(Train/Test)

GDS 1,000 20 4.95/5.07×10-3

BLS 1 0 2.44/2.12×10-3

 118

Figure 47: Evolved BbNN for heater exchanger system identification after 1000
generations.

Figure 48: Outlet temperature of the simulated process and BbNN prediction.

 119

Chapter 6 CONCLUSIONS

6.1 Conclusions

This dissertation presents personalized health monitoring using evolvable block-based

neural networks. As a specific example, personalized ECG heartbeat classification is

demonstrated using the BbNN approach. In the following, conclusions of this

dissertation are drawn.

A computationally efficient evolutionary algorithm that simultaneously

optimizes the structure and weights of block-based neural networks is developed. In

addition to the evolutionary operators of crossover and mutations, this algorithm

utilizes local search operators that are based on gradient descent principle and linear

least squares method. The use of local search operator greatly increases the

optimization speed of the evolutionary algorithm. In order to remove manual tuning

of operator rates, an adaptive rate update scheme that rewards or penalizes an

operator based on its past performance is proposed. A fitness scaling with generalized

disruptive pressure that favors individuals at two extreme ends reduces the possibility

of premature convergence. The use of both adaptive rate update and fitness scaling

ensures higher fitness values.

The BbNN platform provides a viable approach for personalized ECG heartbeat

classification. Evolvable classifiers based on block-based neural networks can change

the structure and configurations as well as internal parameters to cope with the

heartbeat variations due to personal or temporal differences. A BbNN evolved with

the proposed evolutionary algorithm using the Hermite transform coefficients and a

time interval between two neighboring R peaks of ECG signal, provides a patient-

specific heartbeat classification system. Experimental results using the MIT-BIH

Arrhythmia database demonstrate a high accuracy of 98.1% and 96.6% on average for

the detection of ventricular ectopic beats (VEBs) and supraventricular ectopic beats

 120

(SVEBs), respectively, a significant performance improvement over other major

techniques. Also, experimental study on fault tolerance of BbNNs demonstrates that

the level of performance degradation is proportional to the severity of noise for ECG

signal classification.

The BbNN approach method provides a general model-free technique for

dynamic system approximation. A blockwise least squares learning method (BLS) is

proposed as an alternative to the gradient descent search for applications where highly

accurate results are desired. Experimental results based on Mackey-Glass time series

prediction and nonlinear system identification reveal that BLS converges faster with

orders of magnitude compared to the gradient-based procedure. The use of local

search operator in the evolutionary algorithm produces higher fitness values that lead

to smaller prediction errors.

6.2 Future Directions

6.2.1 Issues on Fault Tolerance

Fault tolerant systems are desirable in many applications. For example, in deep space

exploration where physical space is often very limited, a system capable of fault

recovery is of great value compared to the typical sparse approach. We studied fault

tolerance of BbNNs for ECG classification. Preliminary experiments demonstrate

some fault tolerance ability of BbNNs. It was shown that the degree of performance

degradation due to noisy weight connections is proportional to the level of severity of

the corruption noise. Also, the functionality of BbNNs can be gradually restored

through the use of recovery evolution. In the author’s opinion, research on fault

tolerance of BbNNs can be extended to include discussions on fault recovery in more

hardware-oriented environments. For that purpose, two specific issues need to be

addressed.

 121

The first issue is efficient fault recovery. The performance of reconfigurable

hardware can be degraded by faults. Various fault sources exist such as radiation,

thermal fatigue, oxide breakdown and electromigration [99]. The resulting faults

include stuck-at faults, shorts and opens, and interconnect delay faults [101]. A

number of methods have been proposed for fault recovery [99][100] in reconfigurable

hardware. However, few efforts have been devoted to fault recovery at neural

network level (i.e. designing ANNs using reconfigurable hardware). Further

investigations can be conducted on efficient methods for recovering functionalities of

BbNNs in the event of such faults.

Another issue is practicality. The combination of evolvable hardware and

evolutionary algorithm provides reconfiguration that can be utilized for fault

recovery. While restoring functionality is essential to fault recovery, time constraint

should also be considered to make fault recovery practical [102]. Hardware

reconfiguration can be a very time consuming process. As reviewed in previous

section 2.3.2, one generation of the intrinsic evolution in [60] took 4.8 hours and a

successful evolution would take months if hundreds of generations are needed. For

most online applications, this amount of time is not practical. The time constraint on

reconfiguration depends on the specific application and it varies from application to

application due to different recovery deadlines [102]. Therefore it is important to

consider the time constraint for a specific application in fault recovery when

designing BbNNs using reconfigurable hardware.

6.2.2 Lazy Learning Methods for ECG Signal Classification

Lazy learning methods are a class of statistical regression models that store training

instances in memory and answer a new query by resorting to the relevant instances

stored. In its simplest form, lazy learning predicts the output of a query by finding a

set of nearest neighbors and voting on the outputs of those neighbors. Another form

of typical lazy learning methods, known as locally weighted learning, uses locally

weighing strategy to combine outputs of relevant training samples determined

 122

through a distance measure. Compared to supervised learning methods such as neural

networks, lazy learning methods avoid the procedure for training model parameters

and offers higher flexibility in fitting local features of target surface. Lazy learning

methods have been successfully used in many application domains including robot

control, modeling time series, reinforcement learning and others. A latest survey on

locally weighted learning is found in [103].

Among the vast literature on ECG signal classification, most approaches

adopt a “global” strategy [3][77][80][81][83]-[90] in the means that the parameters

associated with a classifier are optimized by minimizing an error metric between the

target and actual outputs for a set of labeled training patterns. In the later retrieval

operation, the trained “global” classifier is used to classify unseen heartbeat patterns.

Unlike such “global” strategies, in a lazy learning method, the output of a query is

determined by combining the outputs of neighboring points with known labels. There

are a few works that tackle ECG signal classification using lazy learning methods. A

simple nearest neighbor approach in [84] using Euclidean distance for determining

relevance reported a smaller than 75% classification accuracy for detecting abnormal

ECG heartbeat patterns based on a limited set of data set containing 6474 samples.

However, such moderate performance can expect to be greatly enhanced by using

locally weighted learning and tuning parameters for ECG classification. An

interesting future research topic would be to investigate whether and how lazy

learning methods could contribute to improving the performance of ECG signal

classification.

 123

BIBLIOGRAPHY

 124

Bibliography

[1] American Heart Association, Heart Disease and Stroke Statistics - 2006 Update,

American Heart Association, Dallas, Texas, 2006.

[2] R. Mark and G. Moody, MIT-BIH Arrhythmia Database Directory,

(http://ecg.mit.edu/dbinfo.html).

[3] K. Minami, H. Nakajima, and T. Toyoshima, “Real-Time Discrimination of

Ventricular Tachyarrhythmia with Fourier-Transform Neural Network,” IEEE

Trans. on Biomedical Engineering, Vol. 46, No. 2, pp. 179-185, Feb. 1999.

[4] S. W. Moon and S. G. Kong, “Block-based Neural Networks,” IEEE Trans. on

Neural Networks, Vol. 12, No. 2, pp. 307-317, 2001.

[5] W. Jiang, S. G. Kong, and G. D. Peterson “ECG Signal Classification with

Evolvable Block-based Neural Networks,” Proc. Int’l Joint Conf. on Neural

Networks (IJCNN-2005), Vol. 1, pp. 326-331, July 2005.

[6] W. Jiang and S. G. Kong, "Evolvable Block-based Neural Networks for Heart

Monitoring," Proc. USA-Korea Conference on Science and Engineering, Irvine,

CA, Aug. 2005.

[7] W. Jiang, S. G. Kong, and G. D. Peterson, “Continuous Heartbeat Monitoring

Using Evolvable Block-based Neural Networks,” Proc. Int’l Joint Conf. on

Neural Networks (IJCNN-2006), Vancouver, Canada, July 2006.

[8] W. Jiang and S. G. Kong, “Block-based Neural Networks for Personalized ECG

Heartbeat Classification,” in press, IEEE Trans. on Neural Networks, Nov.

2007.

 125

[9] Association for the Advancement of Medical Instrumentation, Recommended

Practice for Testing and Reporting Performance Results of Ventricular

Arrhythmia Detection Algorithms, 1987.

[10] W. S. McCulloch and W. Pitts, “A Logical Calculus of the Ideas Immanent in

Nervous Activity,” Bulletin of Mathematical Biology, Vol. 5, No. 4, pp. 115-133,

1943.

[11] D. O. Hebb, The Organization of Behavior: A Neuropsychological Theory, John

Wiley & Sons, New York, NY, 1949.

[12] B. Widrow and M. E. Hoff, “Adaptive Switching Circuits”, IRE Western

Electric Show and Convention Record 1960, Part 4, pp. 96-104, Aug. 1960.

[13] F. Rosenblatt, “The Perceptron: A Probalistic Model for Information Storage

and Organization in the Brain,” Psychological Review, Vol. 65, No. 6, pp. 386-

408, 1958.

[14] M. L. Minsky and S. A. Papert, Perceptrons: An Introduction to Computational

Geometry, MIT Press, Cambridge, MA, 1969.

[15] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning Internal

Representations by Back-propagating Errors,” Nature, Vol. 323, No. 6088, pp.

533-536, Oct. 1986.

[16] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning Internal

Representations by Error Propagation,” In D. E. Rumelhart, J. L. McClelland,

and the PDP Research Group, Eds, Parallel Distributed Processing, Vol. 1, Ch.

8, pp. 318-362, MIT Press, Cambridge, MA, 1986.

[17] T. Kohonen, “Self-organized Formation of Topologically Correct Feature

Maps,” Biological Cybernetics, Vol. 43, pp. 59-69, 1982.

 126

[18] J. J. Hopfield, “Neural Networks and Physical Systems with Emergent

Collective Computational Abilities,” Proc. of the National Academy of Science,

Vol. 79, pp. 2554-2558, 1982.

[19] D. P. Bertsekas, Nonlinear Programming, 2nd edition, Athena Scientific,

Belmont, MA, 1999.

[20] L. O. Chua and L. Yang, “Cellular Neural Networks: Theory,” IEEE Trans. on

Circuits and Systems, Vol. 35, No. 10, pp. 1257-1272, Oct. 1988.

[21] L. O. Chua and L. Yang, “Cellular Neural Networks: Applications,” IEEE

Trans. on Circuits and Systems, Vol. 35, No. 10, pp. 1273-1290, Oct. 1988.

[22] http://www.isi.ee.ethz.ch/~haenggi/CNN_web/architecture.html.

[23] L. O. Chua and T. Roska, Cellular Neural Networks and Visual Computing:

Foundations and Applications, Cambridge University Press, UK, 2002.

[24] R. S. Scalero and N. Tepedelenlioglu, “A Fast Algorithm for Training

Feedforward Neural Networks,” IEEE Trans. on Signal Processing, Vol. 40, No.

1, pp. 202-210, 1992.

[25] F. B. König and F. Bärmann, “A Learning Algorithm for Multilayered Neural

Networks Based on Linear Least Squares Problems,” Neural Networks, Vol. 6,

pp. 127-131, 1993.

[26] J. Y. F. Yam and T. W. S. Chow, “Accelerated Training Algorithm for

Feedforward Neural Networks Based on Least Squares Method,” Neural

Processing Letters, Vol. 2, No. 4, pp. 20-25, 1995.

[27] S. Ergezinger and E. Thomsen, “An Accelerated Learning Algorithm for

Multilayer Perceptrons: Optimization Layer by Layer,” IEEE Trans. on Neural

Networks, Vol. 6, No. 1, pp. 31-42, 1995.

 127

[28] G. Wang and C. Chen, “A Fast Multilayer Neural-Network Training Algorithm

Based on the Layer-By-Layer Optimizing Procedures,” IEEE Trans. on Neural

Networks, Vol. 7, No. 3, pp. 768-775, 1996.

[29] J. Y. F. Yam and T. W. S. Chow, “Extended Least Squares Based Algorithm for

Training Feedforward Networks,” IEEE Trans. on Neural Networks, Vol. 8, No.

3, pp. 806-810, 1997.

[30] S. Abid, F. Fnaiech, and M. Najim, “A Fast Feedforward Training Algorithm

Using a Modified Form of the Standard Backpropagation Algorithm,” IEEE

Trans. on Neural Networks, Vol. 12, No. 2, pp. 424-430, 2001.

[31] D. B. Fogel, Evolutionary Computation: Toward a New Philosophy of Machine

Intelligence, 2nd ed., Wiley-IEEE Computer Society Press, 2001.

[32] T. Bäck, U. Hammel, and H.-P. Schwefel, “Evolutionary Computation:

Comments on the History and Current State,” IEEE Trans. on Evolutionary

Computation, Vol. 1, No. 1, pp. 3-17, Apr. 1997.

[33] N. K. Kasabov and Q. Song, “DENFIS: Dynamic Evolving Neural-Fuzzy

Inference System and Its Application for Time Series Prediction,” IEEE Trans.

on Fuzzy Systems, Vol. 10, No. 2, pp. 144-154, Apr. 2002.

[34] X. Yao and Y. Liu, “A New Evolutionary System for Evolving Artificial Neural

Networks,” IEEE Trans. on Neural Networks, Vol. 8, No. 3, pp. 694-713, May

1997.

[35] D. Dasgupta and Z. Michalewicz, Evolutionary Algorithms in Engineering

Applications, Springer-Verlag, 1997.

[36] X. Yao, “Evolving Artificial Neural Networks,” Proceedings of the IEEE, Vol.

87, No. 9, pp. 1423-1447, Sept. 1999.

 128

[37] X. Yao and Y. Shi, “A Preliminary Study on Designing Artificial Neural

Networks Using Co-evolution,” Proc. IEEE Int’l Conf. Intell. Contr.

Instrumentation, Singapore, pp. 149-154, 1995.

[38] D. Whitley and T. Starkweather, “Optimizing Small Neural Networks Using A

Distributed Genetic Algorithm,” Proc. Int’l Joint Conf. Neural Networks,

Hillsdale, NJ: Lawrence Erlbaum, Vol. 1, pp. 206-209, 1990.

[39] D. Whitley, T. Starkweather, and C. Bogart, “Genetic Algorithms and Neural

Networks: Optimizing Connections and Connectivity,” Parallel Computing,

Vol. 14, pp. 137-170, 1995.

[40] M. Scholz, “A Learning Strategy for Neural Networks Based on A Modified

Evolutionary Strategy,” Proc. Parallel Problem Solving from Nature, H.-P.

Schwefel and R. Männer, eds. Heidelberg: Springer-Verlag, pp. 314-318, 1991.

[41] M. Vittorio, “Genetic Evolution of the Topology and Weight Distribution of

Neural Networks,” IEEE Trans. on Neural Networks, Vol. 5, No. 1, pp. 39-53,

1994.

[42] T. Kumagai, M. Wada, S. Mikami, and R. Hashimoto, “Structured Learning in

Recurrent Neural Network using Genetic Algorithm with Internal Copy

Operator,” Proc. IEEE Int'l Magnetics Conf., pp. 651-656, 1997.

[43] J. R. McDonnell and D. Waagen, “Evolving Recurrent Perceptrons for Time

Series Modeling,” IEEE Trans. on Neural Networks, Vol. 5, No. 1, pp. 24-38,

1994.

[44] P. J. Angeline, G. M. Sauders, and J. B. Pollack, “An Evolutionary Algorithm

that Constructs Recurrent Neural Networks,” IEEE Trans. on Neural Networks,

Vol. 5, No. 1, pp. 54-65, 1994.

 129

[45] D. J. Montana and L. Davis, “Training Feedforward Neural Networks Using

Genetic Algorithms,” Proc. 11th Joint Conf. on Artificial Intelligence (IJCAI),

pp. 762-767, 1989.

[46] S.-W. Lee, “Off-line Recognition of Totally Unconstrained Handwritten

Numerals Using Multilayer Cluster Neural Network,” IEEE Trans. on Pattern

Analysis and Machine Intelligence, Vol. 18, No. 6, pp. 648-652, June 1996.

[47] S. L. Hung and H. Adeli, “A Parallel Genetic/Neural Network Learning

Algorithm for MIMD Shared Memory Machines,” IEEE Trans. on Neural

Networks, Vol. 5, No. 6, pp. 900-909, Nov. 1994.

[48] H. Zhang and M. Ishikawa, “A Hybrid Real-Coded Genetic Algorithm with

Local Search,” Proc. 12th Int’l Conf. on Neural Information Processing

(ICONIP2005), pp. 732-737, Taipei, R.O.C., 2005.

[49] S. Kothandaraman, Implementation of Block-based Neural Networks on

Reconfigurable Computing Platforms, MS Thesis, University of Tennessee,

Aug. 2004.

[50] S. W. Moon and S. G. Kong, “Pattern Recognition with Block-based Neural

Networks,” Proc. Int’l Joint Conf. on Neural Networks (IJCNN-2002), pp. 992-

996, May 2002.

[51] S. G. Kong, “Time Series Prediction with Evolvable Block-based Neural

Networks,” Proc. Int’l Joint Conf. on Neural Networks (IJCNN-2004), Vol. 2,

pp. 1579-1583, July 2004.

[52] W. Jiang and S. G. Kong, "A Least-Squares Learning for Block-based Neural

Networks," in press, Dynamics of Continuous, Discrete and Impulsive Systems,

Special Volume: Advances in Neural Networks - Theory and Applications,

2007.

 130

[53] G. Estrin, “Organization of Computer Systems - The Fixed Plus Variable

Structure Computer,” Proc. Western Joint Computer Conf., pp. 33-40, New

York, 1960.

[54] H. DeGaris, “Evolvable Hardware: Principles and Practice,”

http://www.cs.usu.edu/degaris/papers/CACM-E-Hard.html, Aug. 1997.

[55] A. Thompson, An Evolved Circuit, Intrinsic in Silicon, Entwined with Physics,

Proc. 1st Int’l Conf. on Evolvable Systems, 1996.

[56] E. Stomeo, T. Kalganova, and C. Lambert, “Generalized Disjunction

Decomposition for Evolvable Hardware,” IEEE Trans. on Systems, Man, and

Cybernetics - Part B: Cybernetics, Vol. 36, No. 5, Oct. 2006.

[57] T. Higuchi, M. Murakawa, M. Iwata, I. Kajitani, W. Liu, and M. Salami,

“Evolvable Hardware at Function-Level,” Proc. IEEE Int’l Conf. Evol. Comput.,

pp. 187-192, Apr. 1997.

[58] T. Kalganova, “An Extrinsic Function-Level Evolvable Hardware Approach,”

Proc. 3rd EuroGP, R. Poli and W. Banzhaf, Eds, Edinburgh, U.K., pp. 60-75,

Apr. 2000.

[59] D. Roggen, S. Hofmann, Y. Thoma, and D. Floreano, “Hardware Spiking

Neural Network with Run-Time Reconfigurable Connectivity in an Autonomous

Robot,” Proc. 2003 NASA/DoD Conference on Evolvable Hardware, pp 189-

198, 2003.

[60] D. Earl, “Development of an FPGA-based Hardware Evaluation System for use

with GA-designed Artificial Neural Networks,” Ph.D. Dissertation, University

of Tennessee, May 2004.

 131

[61] S. Merchant, G. D. Peterson, S. K. Park, and S. G. Kong, “FPGA

Implementation of Evolvable Block-based Neural Networks,” Proc. Congress

on Evolutionary Computation (CEC-2006), Vancouver, Canada, July 2006.

[62] P. Martin, “A Hardware Implementation of a GP System Using FPGAs and

Handel-C,” Genetic Programming and Evolvable Machine, Vol. 2, No. 4, pp.

317-343, 2001.

[63] B. Shackleford, G. Snider, R. Carter, E. Okushi, M. Yasuda, K. Seo, and H.

Yasuura, “A High Performance, Pipelined, FPGA-based Genetic Algorithm

Machine,” Genetic Programming and Evolvable Machine, Vol. 2, No. 1, pp. 33-

60, 2001.

[64] N. M. Botros and M. Abdul-Aziz, “Hardware Implementation of An Artificial

Neural Network Using Field Programmable Gate Arrays (FPGA's),” IEEE

Trans. on Industrial Electronics, Vol. 41, No. 6, pp. 665-667, 1994.

[65] F. Yang and M. Paindavoine, “Implementation of An RBF Neural Network on

Embedded Systems: Real-time Face Tracking and Identity Verification,” IEEE

Trans. on Neural Networks, Vol. 14, No.5, pp. 1162-1175, 2003.

[66] T. C. Fogarty, “An Incremental Genetic Algorithm for Real-Time

Optimisation,” Proc. Int’l Conf. on Systems, Man and Cybernetics 1989, pp.

321-326, 1989.

[67] A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computing, Springer-

Verlag, 1998.

[68] M. Li and H.-Y. Tam, “Hybrid Evolutionary Search Method Based on Clusters,”

IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 23, No. 8, pp.

786-799, 2001.

 132

[69] T. Kuo and S.-Y. Hwang, “A Genetic Algorithm with Disruptive Selection,”

IEEE Trans. on Systems, Man and Cybernetics - Part B, Vol. 26, No. 2, pp. 299-

307, 1996.

[70] T. Blickle and L. Thiele, “A Mathematical Analysis of Tournament Selection,”

Proc. 6th Int'l Conf. on Genetic Algorithms (ICGA-95), pp. 9-16, 1995.

[71] B. A, Julstrom, “It’s All the Same to Me: Revisiting Rank-Based Probabilities

and Tournaments,” Proc. Congress on Evolutionary Computation (CEC-99),

Vol. 2, pp. 1501-1505, 1999.

[72] J. Sarma and K. De Jong, “An Analysis of Local Selection Algorithms in a

Spatially Structured Evolutionary Algorithm,” Proc. 7th Int'l Conf. on Genetic

Algorithms (ICGA-97), pp. 181-186, 1997.

[73] S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd Edition, Upper

Saddle River, N.J.: Prentice Hall, 1999.

[74] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2nd Edition,

New York: Wiley-Interscience, 2000.

[75] J. T. Catalano, Guide to ECG analysis, Lippincott, 2002.

[76] R. Hoekema, G. J. H. Uijen, and A. van Oosterom, “Geometrical Aspects of the

Interindividual Variability of Multilead ECG Recordings,” IEEE Trans. on

Biomedical Engineering, Vol. 48, No. 5, pp. 551-559, 2001.

[77] P. de Chazal, M. O’Dwyer, and R. B. Reilly, “Automatic Classification of

Heartbeats Using ECG Morphology and Heartbeat Interval Features,” IEEE

Trans. on Biomedical Engineering, Vol. 51, No. 7, pp. 1196-1206, 2004.

[78] C. Alexakis, H. O. Nyongesa, R. Saatchi, N. D. Harris, C. Davis, C. Emery, R.

H. Ireland, and S. R. Heller, “Feature Extraction and Classification of

 133

Electrocardiogram (ECG) Signals Related to Hypoglycaemia,” Proc. Computers

in Cardiology, Vol. 30, pp. 537-540, 2003.

[79] M. Lagerholm, C. Peterson, G. Braccini, L. Edenbrandt, and L. Sörnmo,

“Clustering ECG Complexes Using Hermite Functions and Self-organizing

Maps,” IEEE Trans. on Biomedical Engineering, Vol. 47, No. 7, pp. 838-848,

2000.

[80] H. Haraldsson, L. Edenbrandt, and M. Ohlsson, “Detection Acute Myocardial

Infarction in the 12-lead ECG Using Hermite Expansions and Neural

Networks,” Artificial Intelligence in Medicine, Vol. 32, pp. 127-136, 2004.

[81] T. H. Linh, S. Osowski, and M. Stodolski, “On-line Heart Beat Recognition

Using Hermite Polynomials and Neuro-Fuzzy Network,” IEEE Trans. on

Instrumentation and Measurement, Vol. 52, No. 4, pp. 1224-1231, 2003.

[82] P. de Chazal and R. B. Reilly, “A Comparison of the ECG Classification

Performance of Different Feature Sets,” Proc. Computers in Cardiology, Vol.

27, pp. 327-330, 2000.

[83] S. Osowski, L. T. Hoai, and T. Markiewicz, “Support Vector Machine-based

Expert System for Reliable Heartbeat Recognition,” IEEE Trans. on Biomedical

Engineering, Vol. 51, No. 4, pp. 582-589, Apr. 2004.

[84] Y. H. Hu, W. J. Tompkins, J. L. Urrusti, and V. X. Afonso, “Applications of

Artificial Neural Networks for ECG Signal Detection and Classification,”

Journal of Electrocardiology, Vol. 26 (Suppl.), pp. 66-73, 1994.

[85] R. Silipo and C. Marchesi, “Artificial Neural Networks for Automatic ECG

Analysis,” IEEE Trans. on Signal Processing, Vol. 46, No. 5, pp. 1417-1425,

1998.

 134

[86] Y. Hu, S. Palreddy, and W. J. Tompkins, “A Patient-Adaptable ECG Beat

Classifier Using a Mixture of Experts Approach,” IEEE Trans. on Biomedical

Engineering, Vol. 44, No. 9, pp. 891-900, 1997.

[87] D. A. Coast, R. M. Stern, G. G. Cano, S. A. Briller, “An Approach to Cardiac

Arrhythmia Analysis using Hidden Markov Models,” IEEE Trans. on

Biomedical Engineering, Vol. 37, No. 9, pp. 826-836, 1990.

[88] R. V. Andreao, B. Dorizzi, and J. Boudy, “ECG Signal Analysis through Hidden

Markov Models,” IEEE Trans. on Biomedical Engineering, Vol. 53, No. 8, pp.

1541-1549, 2006.

[89] S. B. Ameneiro, M. Fernández-Delgado, J. A. Vila-Sobrino, C. V. Regueiro, and

E. Sánchez, “Classifying Multichannel ECG Patterns with an Adaptive Neural

Network,” IEEE Engr. in Medicine and Biology, Vol. 17, No. 1, pp. 45-55,

1998.

[90] M. Fernández-Delgado and S. B. Ameneiro, “MART: A Multichannel ART-

Based Neural Network,” IEEE Trans. on Neural Network, Vol. 9, No. 1, pp.

139-150, 1998.

[91] http://www.physionet.org/physiotools.

[92] N. Ahmed, P. J. Milne, and S. G. Harris, “Electrocardiographic Data

Compression via Orthogonal Transforms,” IEEE Trans. on Biomedical

Engineering, Vol. 22, No. 6, pp. 484-487, 1975.

[93] L. Sörnmo, P. O. Börjesson, M. E. Nygårds, and O. Pahlm, “A Method for

Evaluation of QRS Shape Features Using A Mathematical Model for the ECG,”

IEEE Trans. on Biomedical Engineering, Vol. 28, No. 10, pp. 713-717, 1981.

 135

[94] R. Jane, S. Olmos, P. Laguna, and P. Caminal, “Adaptive Hermite Models for

ECG Data Compression: Performance and Evaluation with Automatic Wave

Detection,” Proc. Computers in Cardiology 1993, pp. 389-392, 1993.

[95] J. A. Swets, “Measuring the Accuracy of Diagnostic Systems,” Science, Vol.

240, pp. 1285-1293, June 1998.

[96] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd Ed, Johns Hopkins

University Press, Baltimore, MD, 1996.

[97] M. C. Mackey and L. Glass, “Oscillation and Chaos in Physiological Control

Systems,” Science, Vol. 197, pp. 287-289, 1977.

[98] S. Bittanti and L. Piroddi, “Nonlinear Identification and Control of a Heat

Exchanger: A Neural Network Approach,” Journal of Franklin Institute, Vol.

334B, No. 1, pp.135-153, 1997.

[99] R. F. Demara and K. Zhang, “Automous FPGA Fault Handling through

Competitive Runtime Reconfiguration,” Proc. NASA/DoD Conference of

Evolution Hardware, 2005.

[100] D. Keymeulen, R. S. Zebulum, Y. Jin, and A. Stoica, “Fault-Tolerant

Evolvable Hardware Using Field-Programmable Transistor Arrays,” IEEE

Trans. on Reliability, Vol. 49, No. 3, pp. 305-316, 2000.

[101] P. R. Menon, W. Xu, and R. Tessier, “Design-Specific Path Delay Testing in

Lookup Table-based FPGAs,” IEEE Trans. on Computer-Aided Design of

Integrated Circuits and Systems, Vol. 25, No. 5, pp.867-877, 2006.

[102] G. W. Greenwood, “On the Practicality of Using Intrinsic Reconfiguration for

Fault Recovery,” IEEE Trans. on Evolutionary Computation, Vol. 9, No. 4, pp.

398-405, 2005.

 136

[103] C. G. Atkeson, A. W. Moore, and S. Schaal, “Locally Weighted Learning,”

Artificial Intelligence Review, Vol. 11, No. 1-5, pp. 11-73, 1997.

 137

VITA

Wei Jiang was born in Nanchong, Sichuan, China in 1977. He received a Bachelor of

Science degree in Electrical Engineering in 2000 from Sichuan University, Sichuan,

China and a Master of Science degree in Computer Engineering in 2004 from the

University of Tennessee, Knoxville, U.S.A. Since he joined in the Department of

Electrical and Computer Engineering at the University of Tennessee in 2002, he has

worked in the Lab directed under Dr. Seong G. Kong as a research assistant. He has

been working on a 3-year project sponsored by National Science Foundation, titled

“Evolving Block-based Neural Networks for Dynamic Environments”. His major

research areas include signal/image processing, artificial neural networks, and

artificial intelligence. He will complete his Doctor of Philosophy degree in Computer

Engineering in summer 2007.

	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	8-2007

	Personalized Health Monitoring Using Evolvable Block-based Neural Networks
	Wei Jiang
	Recommended Citation

	Microsoft Word - jiang-phd-dissertation-final-updt.doc

