797 research outputs found

    A Total Fractional-Order Variation Model for Image Restoration with Non-homogeneous Boundary Conditions and its Numerical Solution

    Get PDF
    To overcome the weakness of a total variation based model for image restoration, various high order (typically second order) regularization models have been proposed and studied recently. In this paper we analyze and test a fractional-order derivative based total α\alpha-order variation model, which can outperform the currently popular high order regularization models. There exist several previous works using total α\alpha-order variations for image restoration; however first no analysis is done yet and second all tested formulations, differing from each other, utilize the zero Dirichlet boundary conditions which are not realistic (while non-zero boundary conditions violate definitions of fractional-order derivatives). This paper first reviews some results of fractional-order derivatives and then analyzes the theoretical properties of the proposed total α\alpha-order variational model rigorously. It then develops four algorithms for solving the variational problem, one based on the variational Split-Bregman idea and three based on direct solution of the discretise-optimization problem. Numerical experiments show that, in terms of restoration quality and solution efficiency, the proposed model can produce highly competitive results, for smooth images, to two established high order models: the mean curvature and the total generalized variation.Comment: 26 page

    Axon diameters and myelin content modulate microscopic fractional anisotropy at short diffusion times in fixed rat spinal cord

    Full text link
    Mapping tissue microstructure accurately and noninvasively is one of the frontiers of biomedical imaging. Diffusion Magnetic Resonance Imaging (MRI) is at the forefront of such efforts, as it is capable of reporting on microscopic structures orders of magnitude smaller than the voxel size by probing restricted diffusion. Double Diffusion Encoding (DDE) and Double Oscillating Diffusion Encoding (DODE) in particular, are highly promising for their ability to report on microscopic fractional anisotropy ({\mu}FA), a measure of the pore anisotropy in its own eigenframe, irrespective of orientation distribution. However, the underlying correlates of {\mu}FA have insofar not been studied. Here, we extract {\mu}FA from DDE and DODE measurements at ultrahigh magnetic field of 16.4T in the aim to probe fixed rat spinal cord microstructure. We further endeavor to correlate {\mu}FA with Myelin Water Fraction (MWF) derived from multiexponential T2 relaxometry, as well as with literature-based spatially varying axonal diameters. In addition, a simple new method is presented for extracting unbiased {\mu}FA from three measurements at different b-values. Our findings reveal strong anticorrelations between {\mu}FA (derived from DODE) and axon diameter in the distinct spinal cord tracts; a moderate correlation was also observed between {\mu}FA derived from DODE and MWF. These findings suggest that axonal membranes strongly modulate {\mu}FA, which - owing to its robustness towards orientation dispersion effects - reflects axon diameter much better than its typical FA counterpart. The {\mu}FA exhibited modulations when measured via oscillating or blocked gradients, suggesting selective probing of different parallel path lengths and providing insight into how those modulate {\mu}FA metrics. Our findings thus shed light into the underlying microstructural correlates of {\mu}FA and are (...

    A Spatially Adaptive Edge-Preserving Denoising Method Based on Fractional-Order Variational PDEs

    Get PDF
    Image denoising is a basic problem in image processing. An important task of image denoising is to preserve the significant geometric features such as edges and textures while filtering out noise. So far, this is still a problem to be further studied. In this paper, we firstly introduce an edge detection function based on the Gaussian filtering operator and then analyze the filtering characteristic of the fractional derivative operator. On the basis, we establish the spatially adaptive fractional edge-preserving denoising model in the variational framework, discuss the existence and uniqueness of our proposed model solution and derive the nonlinear fractional Euler-Lagrange equation for solving our proposed model. This forms a fractional order extension of the first and second order variational approaches. Finally, we apply the proposed method to the synthetic images and real seismic data denoising to verify the effectiveness of our method and compare the experimental results of our method with the related state-of-the-art methods. Experimental results illustrate that our proposed method can not only improve the signal to noise ratio (SNR) but also adaptively preserve the structural information of an image compared with other contrastive methods. Our proposed method can also be applied to remote sensing imaging, medical imaging and so onThe work of Dehua Wang was supported in part by the Science and Technology Planning Project of Shaanxi Province under Grant 2020JM-561, in part by the Postdoctoral Foundation of China under Grant 2019M663462, in part by the Innovative Talents Cultivate Program of Shaanxi Province under Grant 2019KJXX-032, in part by the President Fund of Xi’an Technological University under Grant XAGDXJJ17026, and in part by the Teaching Reform Project of Xi’an Technological University under Grant 18JGY08. The work of Juan J. Nieto was supported in part by the Agencia Estatal de Investigacion (AEI) of Spain under Grant MTM2016-75140-P, and in part by the European Community Fund FEDER. The work of Xiaoping Li was supported in part by the NSFC under Grant 61701086, and in part by the Fundamental Research Funds for the Central Universities under Grant ZYGX2016KYQD143S

    DTI denoising for data with low signal to noise ratios

    Get PDF
    Low signal to noise ratio (SNR) experiments in diffusion tensor imaging (DTI) give key information about tracking and anisotropy, e. g., by measurements with small voxel sizes or with high b values. However, due to the complicated and dominating impact of thermal noise such data are still seldom analysed. In this paper Monte Carlo simulations are presented which investigate the distributions of noise for different DTI variables in low SNR situations. Based on this study a strategy for the application of spatial smoothing is derived. Optimal prerequisites for spatial filters are unbiased, bell shaped distributions with uniform variance, but, only few variables have a statistics close to that. To construct a convenient filter a chain of nonlinear Gaussian filters is adapted to peculiarities of DTI and a bias correction is introduced. This edge preserving three dimensional filter is then validated via a quasi realistic model. Further, it is shown that for small sample sizes the filter is as effective as a maximum likelihood estimator and produces reliable results down to a local SNR of approximately 1. The filter is finally applied to very recent data with isotropic voxels of the size 1×1×1mm^3 which corresponds to a spatially mean SNR of 2.5. This application demonstrates the statistical robustness of the filter method. Though the Rician noise model is only approximately realized in the data, the gain of information by spatial smoothing is considerable

    Contributions en optimisation topologique : extension de la méthode adjointe et applications au traitement d'images

    Get PDF
    De nos jours, l'optimisation topologique a été largement étudiée en optimisation de structure, problème majeur en conception de systèmes mécaniques pour l'industrie et dans les problèmes inverses avec la détection de défauts et d'inclusions. Ce travail se concentre sur les approches de dérivées topologiques et propose une généralisation plus flexible de cette méthode rendant possible l'investigation de nouvelles applications. Dans une première partie, nous étudions des problèmes classiques en traitement d'images (restauration, inpainting), et exposons une formulation commune à ces problèmes. Nous nous concentrons sur la diffusion anisotrope et considérons un nouveau problème : la super-résolution. Notre approche semble meilleure comparée aux autres méthodes. L'utilisation des dérivées topologiques souffre d'inconvénients : elle est limitée à des problèmes simples, nous ne savons pas comment remplir des trous ... Dans une seconde partie, une nouvelle méthode visant à surmonter ces difficultés est présentée. Cette approche, nommée voûte numérique, est une extension de la méthode adjointe. Ce nouvel outil nous permet de considérer de nouveaux champs d'application et de réaliser de nouvelles investigations théoriques dans le domaine des dérivées topologiques.Nowadays, topology optimization has been extensively studied in structural optimization which is a major interest in the design of mechanical systems in the industry and in inverse problems with the detection of defects or inclusions. This work focuses on the topological derivative approach and proposes a more flexible generalization of this method making it possible to address new applications. In a first part, we study classical image processing problems (restoration, inpainting), and give a common framework to theses problems. We focus on anisotropic diffusion and consider a new problem: super-resolution. Our approach seems to be powerful in comparison with other methods. Topological derivative method has some drawbacks: it is limited to simple problems, we do not know how to fill holes, ... In a second part, to overcome these difficulties, an extension of the adjoint method is presented. Named the numerical vault, it allows us to consider new fields of applications and to explore new theoretical investigations in the area of topological derivative

    Spatial Smoothing for Diffusion Tensor Imaging with low Signal to Noise Ratios

    Get PDF
    Though low signal to noise ratio (SNR) experiments in DTI give key information about tracking and anisotropy, e.g. by measurements with very small voxel sizes, due to the complicated impact of thermal noise such experiments are up to now seldom analysed. In this paper Monte Carlo simulations are presented which investigate the random fields of noise for different DTI variables in low SNR situations. Based on this study a strategy for spatial smoothing, which demands essentially uniform noise, is derived. To construct a convenient filter the weights of the nonlinear Aurich chain are adapted to DTI. This edge preserving three dimensional filter is then validated in different variants via a quasi realistic model and is applied to very new data with isotropic voxels of the size 1x1x1 mm3 which correspond to a spatial mean SNR of approximately 3

    Non-local means based Rician noise filtering for diffusion tensor and kurtosis imaging in human brain and spinal cord

    Get PDF
    Background: To investigate the effect of using a Rician nonlocal means (NLM) filter on quantification of diffusion tensor (DT)- and diffusion kurtosis (DK)-derived metrics in various anatomical regions of the human brain and the spinal cord, when combined with a constrained linear least squares (CLLS) approach. / Methods: Prospective brain data from 9 healthy subjects and retrospective spinal cord data from 5 healthy subjects from a 3 T MRI scanner were included in the study. Prior to tensor estimation, registered diffusion weighted images were denoised by an optimized blockwise NLM filter with CLLS. Mean kurtosis (MK), radial kurtosis (RK), axial kurtosis (AK), mean diffusivity (MD), radial diffusivity (RD), axial diffusivity (AD) and fractional anisotropy (FA), were determined in anatomical structures of the brain and the spinal cord. DTI and DKI metrics, signal-to-noise ratio (SNR) and Chi-square values were quantified in distinct anatomical regions for all subjects, with and without Rician denoising. / Results: The averaged SNR significantly increased with Rician denoising by a factor of 2 while the averaged Chi-square values significantly decreased up to 61% in the brain and up to 43% in the spinal cord after Rician NLM filtering. In the brain, the mean MK varied from 0.70 (putamen) to 1.27 (internal capsule) while AK and RK varied from 0.58 (corpus callosum) to 0.92 (cingulum) and from 0.70 (putamen) to 1.98 (corpus callosum), respectively. In the spinal cord, FA varied from 0.78 in lateral column to 0.81 in dorsal column while MD varied from 0.91 × 10−3 mm2/s (lateral) to 0.93 × 10−3 mm2/s (dorsal). RD varied from 0.34 × 10−3 mm2/s (dorsal) to 0.38 × 10−3 mm2/s (lateral) and AD varied from 1.96 × 10−3 mm2/s (lateral) to 2.11 × 10−3 mm2/s (dorsal). / Conclusions: Our results show a Rician denoising NLM filter incorporated with CLLS significantly increases SNR and reduces estimation errors of DT- and KT-derived metrics, providing the reliable metrics estimation with adequate SNR levels
    corecore