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ABSTRACT Image denoising is a basic problem in image processing. An important task of image denoising
is to preserve the significant geometric features such as edges and textures while filtering out noise. So far,
this is still a problem to be further studied. In this paper, we firstly introduce an edge detection function based
on the Gaussian filtering operator and then analyze the filtering characteristic of the fractional derivative
operator. On the basis, we establish the spatially adaptive fractional edge-preserving denoising model in the
variational framework, discuss the existence and uniqueness of our proposed model solution and derive the
nonlinear fractional Euler-Lagrange equation for solving our proposed model. This forms a fractional order
extension of the first and second order variational approaches. Finally, we apply the proposed method to the
synthetic images and real seismic data denoising to verify the effectiveness of our method and compare the
experimental results of our method with the related state-of-the-art methods. Experimental results illustrate
that our proposed method can not only improve the signal to noise ratio (SNR) but also adaptively preserve
the structural information of an image compared with other contrastive methods. Our proposed method can
also be applied to remote sensing imaging, medical imaging and so on.

INDEX TERMS Calculus of variations, fractional-order derivative, nonlinear partial differential equations,
denoising, edge-preserving.

I. INTRODUCTION
Image denoising is an important issue in information pro-
cessing field. In the last decade, many popular methods,
including partial differential equation (PDE) based meth-
ods [1]–[3], dictionary learning [4], [5], sparse represen-
tation [5]–[7] and non-negative matrix factorization based
methods [8] etc., emerge in these fields such as signal and
image processing, medical, seismic and remote sensing imag-
ing and compressed sensing. In this paper, we mainly focus
on the PDE-based image denoising methods. The studies on
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this issue are primarily based on nonlinear diffusion [9]–[13],
or the minimization of energy functional in the varia-
tional framework [14]–[22]. In this work, we focus on the
latter.

Among the variational methods, the pathbreaking work is
the total variation (TV) based noise removal model proposed
in [14] by Rudin, Osher and Fatemi. The TV model can be
written as

min
u

∫
�

|∇u|dxdy+
λ

2

∫
�

(u− u0)2dxdy. (1)

In this model, u0(x, y) and u(x, y) respectively denote the
observed noisy image and the denoised image at x, y ∈ �,

VOLUME 8, 2020
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 163115

https://orcid.org/0000-0001-8202-6578
https://orcid.org/0000-0001-9844-6067
https://orcid.org/0000-0002-5668-6801


D. Wang et al.: Spatially Adaptive Edge-Preserving Denoising Method Based on Fractional-Order Variational PDEs

∇u denotes the gradient of u(x, y) with |∇u| =
√
u2x + u2y

and λ > 0 is a parameter. An anisotropic version of the TV
based algorithm [23] is described as

min
u

∫
�

(|ux | + |uy|)dxdy+
λ

2

∫
�

(u− u0)2dxdy. (2)

Themost noteworthy feature of the TV based algorithm is that
it can successfully preserve the sharp edges in images [24].
Unsatisfactorily, in [25], the authors have shown that the min-
imization of TV norm often results in a piecewise constant
image. The so-called staircase effect often leads to false edges
which do not exist in the true image.

To overcome this false staircase effect caused by the min-
imization of TV norm, higher order derivatives were intro-
duced and the high-order PDE based denoising models have
largely alleviated the staircase effect [26]–[30]. The denois-
ing model based on the high-order PDE was first proposed
in [28] by Lysaker, Lundervold and Tai (LLT). The LLT
model can be described as

min
u

∫
�

(|uxx | + |uyy|)dxdy+
λ

2

∫
�

(u− u0)2dxdy. (3)

Unfortunately, it seems to be difficult to preserve disconti-
nuities in an image while filtering noise [31]. In the [32],
Bredies et al. introduced a regularization functional named
total generalized variation (TGV) defined by

TGVk
α(u) = sup

{∫
�

u divk vdx|v ∈ Ckc (�,Symk (Rd )),

‖ divl v‖∞ ≤ αl, l = 0, . . . , k − 1
}

(4)

where Symk (Rd
)
denotes the space of symmetric tensors

of order k ≥ 2 with arguments in Rd , Ckc
(
�,Symk (Rd

))
denotes the compactly supported vector space of k times con-
tinuously differentiable Symk (Rd

)
-valued mappings, and

α0, . . . , αk−1 are fixed positive parameters. It can effectively
overcome the undesired staircase artifacts and achieved an
optimal tradeoff between the first and second derivative.
However, the TGV is not allowed to measure the directional
information of noisy data because of its rotation invariance.

Recently, Zhang and Wei in [33], [34] thought that the
fractional-order derivative filtering can alleviate the staircase
effect and preserve the textures and details while denoising.
They replaced the integer order derivative in TV regulariza-
tion term with the fractional order derivative and then pro-
posed the following fractional total variation (FTV) denoising
model

min
u

∫
�

|∇
αu|dxdy+

λ

2

∫
�

(u− u0)2dxdy. (5)

where |∇αu| :=
√
(Dαx u)

2
+ (Dαy u)

2, Dαx u and Dαy u respec-
tively denote the α-order derivatives of u with respect to the
variables x and y. The latest published works on the use of
fractional-order total variation are referred to the [35]–[41].
It is worth noting that the orders of fractional derivatives in
these works are all constant.

In fact, the use of constant-order fractional derivatives may
not be the best option, since there are different characteristics
in different image regions, and the fractional derivatives of
different orders need to be used while processing different
regions. In 2014, Wang and Gao in [42] proposed a denoising
method based on anisotropic fractional-gradient operators as
follows

min
u

∫
�

∣∣∣∇(α1,α2)u∣∣∣ dxdy+ λ
2

∫
�

(u− u0)2dxdy, (6)

where u0 denotes the noisy image, u is the denoised image,
α1, α2 denote the orders of fractional derivative in the hor-
izontal and vertical directions respectively,

∣∣∇(α1, α2)u
∣∣ :=√

(Dα1x u)
2
+ (Dα2y u)

2 which can meet different filtering
requirements in different directions, and λ > 0 is a reg-
ularization parameter. This method only consider the hor-
izontal and vertical directions of noisy data. In fact, most
directional information in natural images are often spatially
varying. Therefore, it is meaningful to generalize the order of
derivative to be a function depending on spatial variables.

In this paper, we employ the variable-order fractional
derivative to replace the one of constant order in equation
(5), and establish a spatially adaptive fractional variational
denoising model. The motivation of this work is to develop
a new method which can not only effectively filter noise
but also adaptively preserve important structural information
such as edges. The contribution lies in (i) introducing an
edge detection function based on Gaussian filtering operator;
(ii) establishing the spatially adaptive fractional edge-
preserving denoisingmodel in the variational framework; (iii)
discussing the existence and uniqueness of the solution of
our proposed model; (iv) presenting the selection strategy of
regularization parameter and iteration number.

The rest of this paper is organized as follows. In Section 2,
we introduce an edge detection function based on nonlinear
diffusion. In Section 3, we first analyze the filtering charac-
teristic of the fractional derivative operator, and then establish
the spatially adaptive fractional edge-preserving denoising
model in the variational framework, Furthermore, we discuss
the existence and uniqueness of the solution of our proposed
model. Finally, we derive the nonlinear fractional PDE for
solving the proposed model. In Section 4, we give the numer-
ical implementation scheme for solving the nonlinear PDE.
Section 5 demonstrates the performance of our proposed
method via comparative experiments for the synthetic images
and noisy real seismic data. Some conclusions are presented
in Section 6.

II. THE CHARACTERIZATION OF EDGE FEATURES
Edge detection by nonlinear diffusion first appeared in the
early work of Perona and Malik [9]. They considered the
nonlinear PDE

∂u
∂t
= div

(
g(|∇u|)∇u

)
, u|t=0 = u0. (7)

In above equation, u0 denotes an initial noisy image, g is a
nonincreasing smooth function with g(0) = 1, g(x) ≥ 0, and
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g(x) tending to zero at infinity. The main idea is to reduce the
smoothness in the presence of edges. It follows that the edge
detector can be described as

e1(x, y) := g(|∇u0|) =
1

1+ k|∇u0|2
. (8)

However, an obvious drawback of this edge detector is that
it is not well suitable for the case in the presence of noise.
Later, Catté et al. in [43] replaced the gradient |∇u| in (7)
by its Gaussian smoothing version and the equation (7) is
modified as

∂u
∂t
= div

(
g
(
|∇
(
Gσ ∗ u

)
|

)
∇u
)
, u|t=0 = u0. (9)

Here, the edge detector can be described as

e2(x, y) := g(|∇
(
Gσ ∗ u0

)
|)

=
1

1+ k|∇
(
Gσ ∗ u0

)
|2
, k > 0, σ > 0 (10)

where Gσ denotes a two-dimensional Gaussian filter with
the standard deviation σ and Gσ ∗ u0 denotes a filtering
version of u0 which is independent of the time variable. The
edge detector is immune to the influence of the noise when
detecting the edges in a noisy image. We note that the bigger
the parameter σ , the wider the obtained edges [44]. In next
section, we will employ the edge detector e2(x, y) to define
the spatially variable order of the fractional derivative.

III. METHOD
In this section, we first analyze the filtering characteristic of
the fractional derivative operator. Next, we formulate a varia-
tional PDE based denoising model and present the existence
and uniqueness conclusions of its solution. Finally, we derive
the nonlinear fractional PDE for solving the proposed model.

A. THE FILTERING CHARACTERISTICS OF THE
FRACTIONAL DIFFERENTIAL OPERATOR
The frequency response of a fractional differential operator
can be considered as a nonlinear filter [33]. Its amplitude-
frequency response characteristics are shown in Figure 1,
which shows that the fractional differential operators are
approximately high-pass filters as α > 0. That is to
say, high-frequency components of a signal can be nonlin-
early enhanced and its low-frequency components are sup-
pressed [45]. As seen in Figure 1, the high-pass ability
becomes stronger as α increases. Thus, when 0 < α < 1,
the high-pass ability is weaker than the case of α ≥ 1,
which leads to some useful high-frequency information, like
edges etc., may also be filtered together with the high-
frequency noise. On the contrary, if α is too large, the abil-
ity to enhance high-frequency components is too strong to
effectively remove the high-frequency noise. Therefore, α is
chosen between 1 and 2 in order to preserve the useful high-
frequency informationwhile effectively suppressing the high-
frequency noise.

FIGURE 1. The amplitude-frequency response curves of fractional
differential operators with different orders.

B. DESCRIPTION OF THE PROPOSED MODEL
Based on the edge detection function (10) in Section II
and the filtering characteristic of the fractional derivative in
Section III-A, we define the variable-order α(x, y) of the
fractional derivative as follows

α(x, y) := 1+
1

1+ k|∇
(
Gσ ∗ u0

)
|2
, (11)

where u0 denotes the observed data, σ > 0 is the standard
deviation of Gaussian filter Gσ and k > 0 is a parameter
which depends on the noise level of noisy data.

The proposed variational model is described as the follow-
ing minimization problem of energy functional

min
u

{
E(u) := Jα(x,y)(u)+

λ

2
H (u)

}
. (12)

In this model, u is defined in the space of variable-order
fractional bounded variation functions

BV α(x,y)(�) :=
{
u ∈ L1(�) | Jα(x,y)(u) < +∞

}
(13)

with the norm

‖u‖BV α(x,y) = ‖u‖L1 + J
α(x,y)(u), (14)

Jα(x,y)(u) is defined as

Jα(x,y)(u) :=
∫
�

|∇
α(x,y)u|dxdy (15)

with

∇
α(x,y)u :=

(
a1D

α(x,y)
x u, a2D

α(x,y)
y u

)
and

|∇
α(x,y)u| :=

∫
�

√(
a1D

α(x,y)
x u

)2
+

(
a2D

α(x,y)
y u

)2
dxdy,

and H (u) =
∫
�

(u− u0)2dxdy is defined in the L2(�) and

E(u) is defined in BV α(x,y)(�) ∩ L2(�). On the parts of an
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image where edges are present, |∇
(
Gσ ∗ u0

)
| is very large

and α(x, y) tends to 1, in which case our proposed model is
approximate to the TV model; on the homogeneous regions,
|∇
(
Gσ ∗ u0

)
| is very small and α(x, y) tends to 2, in which

case our proposed model is approximate to the LLT model.
Therefore, our proposed model can theoretically preserve the
edge information while filtering out noise. About this model,
we give some more detailed notes as follows:

(i)� ⊂ R2 is the domain where an image is defined, u0 and
u respectively denote an initial noisy image and the denoised
image and λ > 0 is a parameter;

(ii) According to the [46], the variable-order fractional
derivatives of u(x, y) at a point (x, y) with respect to the
variables x and y are defined as given in (16) and (17),

as shown at the bottom of the page, where
(
α(x, y)
k

)
=

0
(
α(x, y)+ 1

)
0(k + 1)0

(
α(x, y)− k + 1

) and 0(x) = ∫∞0 e−t tx−1dt .

(iii) our proposed method is suitable for removing the
random noise in two dimensional data due to the fact that L2

norm is used to measure the random noise.
Next, we establish the existence and uniqueness theories of

the solution of the proposed model (12). The theories follow
from the next lemmas.
Lemma 1 (Lower Semi-Continuity): Let {un(x, y)} be a

function sequence in BV α(x,y)(�) converging in L1(�) to a
function u(x, y). Then lim inf

n→∞
Jα(x,y)(un) ≥ Jα(x,y)(u).

Proof 1: Since all the functions un(x, y) of the sequence
and their limit function u(x, y) are integrable, by Fatou’s

lemma [47],

lim inf
n→∞

∫
�

|∇
α(x,y)un|dxdy ≥

∫
�

lim inf
n→∞

|∇
α(x,y)un|dxdy

=

∫
�

|∇
α(x,y) lim

n→∞
un|dxdy =

∫
�

|∇
α(x,y)u|dxdy.

Thus lim inf
n→∞

Jα(x,y)(un) ≥ Jα(x,y)(u) holds. The inequality

shows that Jα(x,y)(u) is lower semi-continuous.
Lemma 2: The space BV α(x,y)(�) is a Banach space.
Proof 2: Based on the definitions of BV α(x,y)(�) and

‖u‖BV α(x,y) , we can easily verify that the space BV
α(x,y)(�) is

a normed space. So it only needs to prove the completeness.
Suppose {un} is a Cauchy sequence in BV α(x,y)(�), then it

is also a Cauchy sequence in L1(�). Since the space L1(�)
is complete, there exists a function u ∈ L1(�) such that
un → u. Since the Cauchy sequence {un} in BV α(x,y)(�)
is bounded for each n, then ‖un‖BV α(x,y) < +∞ and thus
Jα(x,y)(un) < +∞ by the definition of ‖ · ‖BV α(x,y) . According
to Lemma 1, we have Jα(x,y)(u) < +∞. We have showed
that u ∈ BV α(x,y)(�). Finally, we shall prove that un → u
in BV α(x,y)(�). Again by Lemma 1, for an arbitrary small
positive number ε,

‖un − um‖BV α(x,y)(�) < ε ∀n,m ≥ N ∈ N
⇒ Jα(x,y)(un − u) ≤ lim inf

m→∞
Jα(x,y)(un − um) ≤ ε,

which shows that un → u in BV α(x,y)(�). It follows that
BV α(x,y)(�) is a Banach space.
Lemma 3: The functional E(u) is coercive on

BV α(x,y)(�) ∩ L2(�).


a1D

α(x,y)
x u(x, y) = lim

h→0
nh=x−a1

h−α(x,y)
n∑

k=0

(−1)k
(
α(x, y)
k

)
u(x − kh, y), (left-sided)

xD
α(x,y)
b1

u(x, y) = lim
h→0

nh=b1−x

h−α(x,y)
n∑

k=0

(−1)k
(
α(x, y)
k

)
u(x + kh, y), (right-sided)

(16)

and


a2D

α(x,y)
y u(x, y) = lim

h→0
nh=y−a2

h−α(x,y)
n∑

k=0

(−1)k
(
α(x, y)
k

)
u(x, y− kh), (left-sided)

yD
α(x,y)
b2

u(x, y) = lim
h→0

nh=b2−y

h−α(x,y)
n∑

k=0

(−1)k
(
α(x, y)
k

)
u(x, y+ kh), (right-sided)

(17)

Jα(x,y)
(
tu+ (1− t)v

)
=

∫
�

√(
a1D

α(x,y)
x

(
tu+ (1− t)v

))2
+

(
a2D

α(x,y)
y

(
tu+ (1− t)v

))2
dxdy

=

∫
�

√(
ta1D

α(x,y)
x u+ (1− t)a1D

α(x,y)
x v

)2
+
(
ta1D

α(x,y)
y u+ (1− t)a1D

α(x,y)
y v

)2dxdy
≤

∫
�

(
t
√(

a1D
α(x,y)
x u

)2
+
(
a1D

α(x,y)
y u

)2
+ (1− t)

√(
a1D

α(x,y)
x v

)2
+
(
a1D

α(x,y)
y v

)2)dxdy
= t

∫
�

√(
a1D

α(x,y)
x u

)2
+
(
a1D

α(x,y)
y u

)2dxdy+ (1− t)
∫
�

√(
a1D

α(x,y)
x v

)2
+
(
a1D

α(x,y)
y v

)2dxdy
= tJα(x,y)(u)+ (1− t)Jα(x,y)(v). (18)
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Proof 3: Since λ > 0 and H (u) ≥ 0, for any sequence
{uk} ⊂ BV α(x,y)(�), we have E(uk ) ≥ Jα(x,y)(uk ) → ∞ as
‖uk‖BV α(x,y) →∞ according to the definition of ‖ · ‖BV α(x,y) .
So E(u) is coercive on BV α(x,y)(�). For any sequence {uk} ⊂
L2(�), we have E(uk ) ≥ λ

2H (uk ) = λ
2‖uk−u0‖

2
2 ≥ (‖uk‖2−

‖u0‖2)2 →∞ as ‖uk‖2 →∞, thus E(u) is also coercive on
L2(�). Therefore, E(u) is coercive on BV α(x,y)(�) ∩ L2(�).
Lemma 4: The functional Jα(x,y)(u) is convex.
Proof 4: It is easy to verify that BV α(x,y)(�) is a non-

empty convex set. For any u, v ∈ BV α(x,y)(�), t ∈ (0, 1),
we have that the result as given in (18), as shown at the
bottom of the previous page. The convexity of Jα(x,y)(u) is
proved.

Applying the above lemmas to problem (12), we can obtain
the following theorem.
Theorem 1 (The Existence and Uniqueness): The func-

tional E(u) has a unique minimizer in BV α(x,y)(�) ∩ L2(�).
Proof 5: We first prove the existence. By Lemma 2,

BV α(x,y)(�) is a Banach space. Also, L2(�) is a Hilbert
space. It follows from the completeness of the both spaces
that BV α(x,y)(�) ∩ L2(�) is a Banach space. Accord-
ing to Lemma 1, Jα(x,y)(u) is lower semi-continuous on
BV α(x,y)(�). Also, the lower semi-continuity of H (u) on
L2(�) also holds as proven in [48]. It follows that E(u) is
lower semi-continuous on BV α(x,y)(�)∩L2(�). The coerciv-
ity of E(u) has been proved by Lemma 3. Thus, there exists
a minimizer such that the functional E(u) attains a minimum
on BV α(x)(�)∩ L2(�). Then we prove the uniqueness. Since
Jα(x)(u) is a convex functional on BV α(x,y)(�) (see Lemma 4)
and H (u) is a strictly convex functional on L2(�), E(u) is a
convex functional on BV α(x,y)(�) ∩ L2(�). The convexity of
E(u) guarantees the uniqueness of the minimizer. Therefore,
the functional E(u) has a unique minimizer in BV α(x,y)(�) ∩
L2(�).

Finally, we derive a fractional Euler-Lagrange equation
for solving the proposed variational model. Take any test
function η(x, y) ∈ C1(�) such that a1D

α(x,y)
x η, a2D

α(x,y)
y η ∈

C(�). For arbitrary ε > 0 and |a| < ε, we define

8(a) := E(u+ aη)

=

∫
�

√(
a1D

α(x,y)
x (u+ aη)

)2
+
(
a2D

α(x,y)
y (u+ aη)

)2
+
λ

2
(u+ aη − u0)2dxdy. (19)

So, it has the following equation (20), as shown at the
bottom of the page. Thus, we can obtain that the value of
8′(a) as a = 0 equals the equation (21), as shown at the
bottom of the page, where

(
a1D

α(x,y)
x

)∗ and (a2Dα(x,y)y
)∗ are

the adjoint operators of a1D
α(x,y)
x and a2D

α(x,y)
y respectively.

Let 8′(0) = 0, then u satisfies the following fractional
Euler-Lagrange equation(
a1D

α(x,y)
x

)∗ a1Dα(x,y)x u
|∇α(x,y)u|

+
(
a2D

α(x,y)
y

)∗ a2Dα(x,y)y u
|∇α(x,y)u|
+λ(u− u0) = 0. (22)

By introducing an artificial time parameter, this PDE can be
solved through the following steepest descent procedure

∂u
∂t
= −

(
a1D

α(x,y)
x

)∗ a1Dα(x,y)x u
|∇α(x,y)u|

−
(
a2D

α(x,y)
y

)∗ a2Dα(x,y)y u
|∇α(x,y)u|

−λ(u− u0). (23)

IV. NUMERICAL IMPLEMENTATION
In this section, we employ the semi-implicit gradient descent
scheme for solving the nonlinear PDE (23). Assume that the
involved image can be expressed as a matrix with size of N ×
N . We denote the time step size as1t and the space grid size
as h, and so the time and space can be discretized as

t = n1t, x = ih, y = jh,

where n = 0, 1, 2, . . . , i, j = 1, 2, . . . ,N . The discrete
scheme of the nonlinear PDE (23) is expressed as

un+1i,j = uni,j +1t
(
−

((
a1D

α(x,y)
x

)∗ a1Dα(x,y)x un

|∇α(x,y)un|

)
i,j

−

((
a2D

α(x,y)
y

)∗ a2Dα(x,y)y un

|∇α(x,y)un|

)
i,j
− λ(uni,j − u

0
i,j)
)

(24)

with the initial condition u0i,j = u0(ih, jh) for i, j =
1, 2, . . . ,N .
In equation (24),

(
a1D

α(x,y)
x un

)
i,j,

(
a2D

α(x,y)
y un

)
i,j can be

expressed as
(
a1D

α(x,y)
x un

)
i,j =

i−1∑
k=0

(−1)k
(
αi,j
k

)
ui−k,j,

(
a2D

α(x,y)
y un

)
i,j =

j−1∑
k=0

(−1)k
(
αi,j
k

)
ui,j−k .

(25)

8′(a) =
∫
�

 a1D
α(x,y)
x (u+ aη)a1D

α(x,y)
x η + a2D

α(x,y)
y (u+ aη)a2D

α(x,y)
y η√(

a1D
α(x,y)
x (u+ aη)

)2
+
(
a2D

α(x,y)
y (u+ aη)

)2 + λ(u+ aη − u0)η

 dxdy. (20)

8′(0) =
∫
�

 a1D
α(x,y)
x ua1D

α(x,y)
x η + a2D

α(x,y)
y ua2D

α(x,y)
y η√(

a1D
α(x,y)
x u

)2
+
(
a2D

α(x,y)
y u

)2 + λ(u− u0)η

 dxdy

=

∫
�

((
a1D

α(x,y)
x

)∗ a1Dα(x,y)x u
|∇α(x,y)u|

+
(
a2D

α(x,y)
y

)∗ a2Dα(x,y)y u
|∇α(x,y)u|

+ λ(u− u0)
)
ηdxdy, (21)
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One can check that the formulae (26) and (27), as shown at
the bottom of the page hold.

Now, we present the numerical algorithm to solve the
nonlinear fractional PDE (23) as follows

Algorithm 1 The Semi-Implicit Gradient Descent Scheme
Input: the noisy image u0, the number of iterations K , k ,
1t and λ;
Initialization: n = 1, uni,j = u0i,j for i, j = 1, 2, . . . ,N ;
Compute the value of αi,j according to (11) for i, j =
1, 2, . . . ,N ;
for n = 1 : K do

Compute
((

a1D
α(x,y)
x

)∗ a1Dα(x,y)x un

|∇α(x,y)un|

)
i,j
and((

a2D
α(x,y)
y

)∗ a2Dα(x,y)y un

|∇α(x,y)un|

)
i,j

for i, j = 1, 2, . . . ,N

according to (16), (17), (26) and (27);

Compute un+1i,j = uni,j + 1t
(
− (Dαx )

∗
Dαx u

n
i,j

|Dαx u
n
i,j|
−

(Dαy )
∗
Dαy u

n
i,j

|Dαy u
n
i,j|
− λ(uni,j − u0i,j)

)
for i, j = 1, 2, . . . ,N ;

n = n+ 1;
end for
Output: the denoised image un.

At last, we analyze the computational complexity for
Algorithm 1. In this algorithm, the number of itera-
tions K is a fixed value. The main per-iteration cost

lies in the update of
((

a1D
α(x,y)
x

)∗ a1Dα(x,y)x un

|∇α(x,y)un|

)
i,j

and((
a2D

α(x,y)
y

)∗ a2Dα(x,y)y un

|∇α(x,y)un|

)
i,j

for i, j = 1, 2, . . . ,N . In each

iteration, according to (27), we need to perform N +
j + 2 additions and 8 multiplications when we compute((

a1D
α(x,y)
x

)∗ a1Dα(x,y)x un

|∇α(x,y)un|

)
i,j
for each fixed (i, j). Meanwhile,

the computation of
((

a2D
α(x,y)
y

)∗ a2Dα(x,y)y un

|∇α(x,y)un|

)
i,j

also pos-

sesses similar complexity with
((

a1D
α(x,y)
x

)∗ a1Dα(x,y)x un

|∇α(x,y)un|

)
i,j
.

So, in Algorithm 1, K iterations will totally need to per-
form about KN 2(2N + i + j + 4) additions and 16KN 2

multiplications.

V. EXPERIMENTAL RESULTS
In this section, we apply the proposed method to the synthetic
images and real seismic data denoising to verify the effec-
tiveness of our method. We choose the rectangular region I
to verify the effectiveness of our method for processing the
smooth region of an image, choose the rectangular region II
and the test image IV to verify the ability to preserve the edges
in noisy images while denoising, choose the test image III to
verify the ability to preserve the structural information and
choose the test image V to verity the ability to preserve the
detailed information while denoising. Furthermore, the real
seismic data is used in experiments to prove that our pro-
posed method is well suitable for processing the real noisy
data.

A. SYNTHETIC IMAGE EXPERIMENTS
In this subsection, we first use the standard test image as
shown in Fig. 4(a) to present the choice scheme of param-
eters involved in this test, and then compare the proposed
method with the related methods like TV, LLT, TGV, FTV
and structure-oriented directional total generalized variation
(SODTGV) denoisingmethod [49] in different noise standard
deviations σ = 10, σ = 20, σ = 30.

In order to get a meaningful solution of problem (12), it is
necessary to estimate the optimal value of the regularization
parameter λ. L-curve method is a usual approach for the
optimal selection of the regularization parameter. This curve
which is a log-log plot between the norm of the regularized
solution and the residual norm appears a typical ‘‘L’’ shape,
and the optimal value of λ is considered to be the corner of
the ‘‘L’’. Here, we plot the L-curve of problem (12) for the
noisy image u0 with the standard deviation of noise σ = 20
as shown in Figure 2. It’s clear that λ = 0.01 is the opti-
mal selection in the values λ = 0.0001, 0.001, 0.01, 0.1, 1.
We evaluate the number of iterations according to the rela-
tion between the SNR and iteration number, and the num-
ber of iteration which leads to the highest SNR is the


((

a1D
α(x,y)
x

)∗ a1Dα(x,y)x un

|∇α(x,y)un|

)
i,j
=

(
xD

α(x,y)
b1

a1D
α(x,y)
x un

|∇α(x,y)un|

)
i,j
,((

a2D
α(x,y)
y

)∗ a2Dα(x,y)y un

|∇α(x,y)un|

)
i,j
=

(
yD

α(x,y)
b2

a2D
α(x,y)
y un

|∇α(x,y)un|

)
i,j
,

(26)



((
a1D

α(x,y)
x

)∗ a1Dα(x,y)x un

|∇α(x,y)un|

)
i,j
=

N−i∑
k=0

(−1)k
(
αi+k,j

k

)(
a1D

α(x,y)
x un

|∇α(x,y)un|

)
i+k,j

,

((
a2D

α(x,y)
y

)∗ a2Dα(x,y)y un

|∇α(x,y)un|

)
i,j
=

N−j∑
k=0

(−1)k
(
αi,j+k

k

)(
a2D

α(x,y)
y un

|∇α(x,y)un|

)
i,j+k

,

fori, j = 1, 2, . . . ,N . (27)
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FIGURE 2. L curve for problem (12).

FIGURE 3. Curve for the SNR versus iteration number.

optimal selection. As shown in Figure 3, the optimal iteration
number is set as K = 200. The other parameters involved
in this test are set as k = 0.05, 1t = 0.1. More details
about the selection of the parameters involved in the other
contrastivemethods are referred to the related [14], [28], [32],
[33] and [49].

In this test, we show the denoising results in the case of the
noise standard deviation σ = 20 shown in Figure 4(c)-4(h).
As seen from the denoised results of the white rectangular
region I, our method can effectively alleviate the staircase
effect and preserve its structural information while effectively
remove the noise in the smooth regions of the noisy image.
As seen from the denoised results of the red rectangular
region II, our method can effectively preserve edge informa-
tion while improving the total image quality. For example,
TV model can preserve the edges but its denoising effect is
not satisfied; the two models of LLT and TGV 2

α-L
2 can get

a cleaner image but they cause excessive smoothing on the
edges and fail to preserve the structure information well; the
edge-preserving ability of FTV model and the improvement

of SNR of FTV and SODTGV are not as good as those of our
proposed method.

Figure 6 presents the denoised results of these noisy images
in Figure 5 to further verify the effectiveness of the proposed
method compared with the related state-of-the-art methods
like TV, LLT, TGV, FTV and SODTGV. As seen from the
first column, our proposed method can get a better visual
effect than the other related methods. As seen from the rect-
angular regions in the second column, our proposed method
is superior to the LLT model, the TGV model and the FTV
model in preserving edge information. Compared with the
TV and SODTGV methods, our method achieves a higher
SNR of the denoised image. It can be seen from the lower
left rectangular areas which are the enlarged areas of the
local images with the same degree in the third column, our
method can preservemore image details than the other related
methods.

Table 1-Table 3 show the performance of noise removal
and the structural similarity in different noise standard devi-
ations σ = 10, σ = 20, and σ = 30 by comparing the pro-
posed method with the TV, LLT, TGV, FTV, and SODTGV
methods. It can be seen from these tables, by appropriately
tuning the involved parameters, our proposed method can
achieve a better trade-off between the improvement of SNR
and the preservation of structural similarity (SSIM) compared
with the other methods. Here, the two error metrics such
as SNR [30] and SSIM [50] are employed to quantitatively
verify the effectiveness of the proposed method.

B. REAL SEISMIC DATA EXPERIMENTS
In this subsection, we employ a two-dimensional post-stack
seismic data shown in Figure 7(a), and compare with other
contrastive methods to verify the denoising effect of our pro-
posed method shown in Figure 7(b)-7(g). Obviously, the 2D
field data suffers from heavy random noise which goes
against follow-up seismic data interpretation. It is well known
for the attributes of seismic data that both lateral continuity of
seismic events and the vertical resolution of seismic profiles
have important geological significance, in which the lateral
continuity of seismic events can be used to interpret the
continuity of the stratum in the horizontal direction and a
clear stratum structure can be seen from the vertical resolution
of seismic profiles.

We compare the denoising effects provided by different
methods from the two aspects such as the lateral continuity
of seismic reflection events and the vertical resolution of
seismic profiles. In practical problems, the noise variance
is commonly unknown, we recommend that one can firstly
estimate the noise variance by the existing method [51], and
then one can set the parameters by the corresponding schemes
introduced in above synthetic data example. For simplicity,
in this paper, we choose the values of the parameters by
hand which can give the satisfactory experimental results.
We set the parameters involved in this test as λ = 0.08,
K = 100, k = 0.05,1t = 0.1 which leads to the satisfactory
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FIGURE 4. A comparison of the denoising results of the local images by different methods.

experimental results. The parameters involved in the other
contrastive methods are set the same as the counterparts of
the synthetic image experiments. As shown in the regions

from 0.5 s to 1 s in the denoised seismic profiles, the proposed
method can enhance the lateral continuity of seismic events
more clearly than the other methods. The strong and weak
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FIGURE 5. Some original test images and their noisy versions.
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FIGURE 6. The denoising results by different methods for the test images III-V.
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FIGURE 6. (Continued.) The denoising results by different methods for the test images III-V.

TABLE 1. A comparison of denoising results of the noisy images with the standard deviation of 10.

TABLE 2. A comparison of denoising results of the noisy images with the standard deviation of 20.

contrast of seismic events shown in above regions tells us
that our method provides a higher vertical resolution than
the TV, LLT, TGV and FTV based methods. Specifically, the
stair-case effects always exist in the denoised results com-
puted by the TV, TGV and FTV based methods, the vertical

resolution of the denoised result computed by the LLT based
method is lower than the proposed method, and the SODTGV
based method leads to some more damages to the seismic
reflection events in the regions from 0.5 s to 1 s in the
denoised seismic profile.
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FIGURE 7. A comparison of the denoising results for the real seismic data by using different methods.
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TABLE 3. A comparison of denoising results of the noisy images with the standard deviation of 30.

Therefore, we can conclude that the proposed method has
a outstanding performance in enhancing the lateral continuity
of seismic events and improving the vertical resolution of
seismic profiles while attenuating the random noise.

VI. CONCLUSION
In this paper, we introduced an edge detection function
based on the Gaussian filtering operator, established the spa-
tially adaptive fractional edge-preserving denoising model in
the variational framework, and discussed the existence and
uniqueness of the solution of the proposed model. This pro-
posed model generalizes the TV model and the LLT model.
In the experiment part, we applied the proposedmethod to the
synthetic images and real seismic data denoising to verify the
effectiveness of our method and compared the experimental
results of our method with the related state-of-the-art meth-
ods. Experimental results illustrate that our proposed method
can not only improve the SNR but also adaptively preserve
the structural information of an image. For example, it can be
seen from Table 1-Table 3, our proposed method can achieve
a better trade-off between the improvement of SNR and the
preservation of structural similarity compared with the other
methods. This work can provide a new approach for solving
the ill-posed inverse problems in engineering science.
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