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A Total Fractional-Order Variation Model for Image Restoration with
Nonhomogeneous Boundary Conditions and Its Numerical Solution∗
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Abstract. To overcome the weakness of a total variation based model for image restoration, various high order
(typically second order) regularization models have been proposed and studied recently. In this
paper we analyze and test a fractional-order derivative based total α-order variation model which
can outperform the currently popular high order regularization models. There exist several previous
works using total α-order variations for image restoration; however, first, no analysis has been
done yet, and second, all tested formulations, differing from each other, utilize the zero Dirichlet
boundary conditions which are not realistic (while nonzero boundary conditions violate definitions of
fractional-order derivatives). This paper first reviews some results of fractional-order derivatives and
then analyzes the theoretical properties of the proposed total α-order variational model rigorously. It
then develops four algorithms for solving the variational problem—one based on the variational Split-
Bregman idea and three based on direct solution of the discretize-optimization problem. Numerical
experiments show that, in terms of restoration quality and solution efficiency, the proposed model
can produce highly competitive results, for smooth images, to two established high order models:
the mean curvature and the total generalized variation.
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1. Introduction. This paper presents a fractional-order derivative based regularizer for
variational image restoration. It may be used for other imaging models such as image regis-
tration. Denote an observed image by z = z(x), x ∈ Ω ⊂ R

d, where Ω is the bounded domain
of the image with d space dimension and has a Lipschitz boundary. Here we consider d = 2
and mainly the image denoising problem with an additive noise; i.e., we assume z = u + η0
with η0 representing some unknown Gaussian noise of mean zero and deviation σ, but most
results are applicable to d > 2 and other noise models.

1.1. Image inverse problem. Restoring the unknown u (without any restrictions) from
z is an inverse problem. According to the maximum likelihood principle [40], most image
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2488 JIANPING ZHANG AND KE CHEN

processing problems involve solving the least-squares problem

(1.1) min
u

∫
Ω
|P (u)− z|2dx,

measuring the fidelity to z. For example, P (u) = u for image denoising, P (u) takes the
template image T (x+ u(x)) (and z = R(x) for a reference image) for image registration, and
P (u) = PΩ1(u(x)) for image inpainting with Ω1 ⊂ Ω the subdomain with missing data.

The problem (1.1) is in general ill-posed due to nonuniqueness; therefore, how to effectively
solve it becomes a fundamental task in image sciences. The most popular idea is to regularize it
so that the resulting well-posed problem admits a unique solution. The classical regularization
technique by Tikhonov and Arsenin [76] is to add a smoothing regularization term into the
energy functional to derive the minimization problem

(1.2) min
u

∫
Ω
|P (u)− z|2dx+ λ

∫
Ω
|∇u|2dx,

where λ is a positive constant. This model cannot preserve image edges, though it is simple
to use. The total variation (TV) model by Rudin, Osher, and Fatemi [68], or the ROF model,

(1.3) min
u

∫
Ω
|∇u|dx,

∫
Ω
|P (u)− z|2dx = σ2, P (u) = u,

is widely used, where σ is an estimate of the error η0 between the noisy image z and the true
data u. The ROF model preserves the image edges by seeking solutions of piecewise constant
functions in the space of bounded variation (BV) functions. A variety of methods based on
the TV regularization have been developed to deal with the imaging problems such as image
restoration [1, 2, 10, 82], image registration [49, 38, 63], image decomposition [62, 39, 33],
image inpainting [47, 41, 42, 23], and image segmentation [16, 77]. Restoring smooth images
in some applications where edges are not the main features presents difficulties for the ROF
model as it can yield the so-called blocky (staircase) effects. Another disadvantage of the
model is the loss of image contrasts [53]. It should be remarked that the recently popular
method by the iterative regularization technique [61] can reduce the staircasing effect and
improve on the image contrast to some extent; additionally it provides a fast implementation.

1.2. High order regularization. To remedy the above-mentioned two drawbacks (stair-
casing and contrast), two types of alternative regularizer to TV regularization have been
proposed in the literature. The first type introduces higher order regularization into image
variational models [22, 24, 7, 53, 74, 32, 15, 84]. The mean curvature based variation denoising
model was studied in [53, 54, 17, 84], where the regularized solution u is obtained by solving
the fourth order Euler–Lagrange equation. Bredies, Kunisch, and Pock [15] proposed the
total generalized variation (TGV) regularizer involving a linear combination of higher order
derivatives and the TV of u to model the image denoising, while Chang, Tai, and Xing [26]
considered a nonlinear combination of regularizer based on first and second order derivatives.
For image inpainting, a high order regularization based on Euler’s elastica of u is used in
[24]. Similarly, Euler’s elastica energy [57] and mean curvature [37, 30] are also proposed to
transform the template image T (x+u) to map the reference image R(x) in image registration;
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TOTAL α-ORDER VARIATION IMAGE DENOISING 2489

see also [36, 52]. The above-mentioned high order regularization methods are effective, but
due to high nonlinearity efficient numerical solution is a major issue.

The second type introduces fractional-order derivatives, which are widely studied in other
research subjects beyond image processing [3, 5, 6, 8, 85], into regularization of images. For ex-
ample, Bai and Feng [11] first introduced fractional-order derivative into anisotropic diffusion
equations for noise removal,

(1.4)
∂u

∂t
= −Dα∗

x (c(|Dαu|)Dαu)−Dα∗
y (c(|Dαu|)Dαu),

where c(·) denotes the divergence parameter and Dα∗
x denotes the adjoint operator of Dα

x ,
which may be viewed as a generalization of the Perona–Malik model. Although the above
equation can be related to the Euler–Lagrange equations of an energy functional with the
fractional derivative of the image intensity, generalizing commonly used PDE models, the
energy minimization models are not studied as such. The discrete Fourier transform is used
to implement the numerical algorithm assuming a periodic input image at its borders [11]. See
also [46, 45, 50, 67] for more motivations and studies based on the above diffusion equation.
Chen et al. [29, 28, 27] considered the fractional-order TV-L2 image denoising model

(1.5) min
u

{
E(u) :=

∫
Ω

√
(Dα

xu)
2 + (Dα

y u)
2dΩ +

λ

2
‖u− f‖22

}
and numerically obtained improved denoising results over the Perona–Malik and ROF models;
however, no analysis was given. There, they converted this primal formulation into a dual
problem for the new dual variable p = (p1, p2) by u = f −divαp/λ and used a dual algorithm
using the gradient descent idea similar to the Chambolle method [18] for the ROF. In [81], the
authors proposed a discrete optimization framework for the image denoising problem where
the fractional order derivative is used to model the regularization term,

(1.6) min
u

{ N∑
i,j=1

|(∇αu)i,j |+ 1/2

L∑
j=0

2−2jsj |[λ(f − u)j ]|2, 1 ≤ α ≤ 2, 0 ≤ sj ≤ 1

}
,

which is solved by an alternating projection algorithm. See also [21].
These works have reflected good performance of the fractional-order derivative in achieving

a satisfactory compromise such as no staircasing and in preserving important fine-scale features
such as edges and textures. Figure 1 presents the denoising results for testing the total
fractional-order variation model in comparison to the previously mentioned three methods
(namely, the TV, mean curvature, and the TGV). The true image was chosen to possess
partly smooth and partly nonsmooth regions, while the test data is after adding zero mean
Gaussian noise with variance σ = 5/255. As can be seen, there are the regions where the
total variation type models (TV, TGV, and the total fractional-order variation) show better
edge enhancement results in comparison to the mean curvature model (see Figure 1(b) for
local representations of the left and right boxes in Figure 1(a)), while in smooth regions (see
Figure 1(b) for local representations of the middle box in Figure 1(a)) the total fractional-
order variation model restores a purely parabolic segment perfectly. The encouraging results
motivated us to investigate this new model more closely.
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2490 JIANPING ZHANG AND KE CHEN

There have been several other works involving discrete forms of an α-order derivative
proposed to tackle image registration problems [78, 55] and image inpainting problems [83].
Comparing with the first type of high order models [15, 37, 30], a fractional-order model (type
two) is less nonlinear and hence is more amenable to developing fast iterative solvers.
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(b) Local representations.

Figure 1. Comparisons of four models in denoising an artificial example.

Clearly there is strong evidence to suggest that fractional-order derivatives may be effective
regularizers for imaging applications. There is an urgent need to establish a rigorous theory
for the total α-order variation based variational model so that further applications to image
inverse problems can be considered in a systematic way.

1.3. Our contributions. This work is substantially different from previous studies. We
mainly focus on the continuous total α variation-based model (instead of discrete formulation),
its analysis, and associated numerical algorithms.

Our contributions are fourfold:

• We analyze properties of the total α-order variation, laying foundations for applications
to imaging inverse problems as a regularizer.

• We give a new method for treating nonzero Dirichlet boundary conditions which rep-
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TOTAL α-ORDER VARIATION IMAGE DENOISING 2491

resents a generalization of similar results that existed only in one to two dimensions.
• We establish the convexity, the solvability, and a solution theory for the total α-

order variation model to make it more advantageous to work with than high order
and nonconvex counterparts (such as a mean curvature based model) which are not
gradient based and whose solutions are not as theoretically well known.

• We propose and test four solution algorithms (respectively, the Split-Bregman based
algorithm, the forward-backward algorithm, the Nesterov accelerated method, and the
fast iterative shrinkage-thresholding algorithm (FISTA)) to solve the underlying total
α-order variation model. We also compare with related models.

We hope our work will motivate further studies and facilitate future applications of the α-order
variation based regularizer to other imaging problems in the community.

The rest of the paper is organized as follows. Section 2 reviews the definitions and basic
properties of the fractional-order derivative. Section 3 first defines the total α-order variation
and the space of functions of fractional-order bounded variations. In this space, it then
analyzes the the existence and the uniqueness of the solution of the total α-order variation
based model for denoising. In section 4, a boundary condition regularization method for
treating nonzero Dirichlet boundary conditions is proposed to effectively employ and compute
the fractional-order derivatives of an image. Section 5 first discusses the discretization of the
fractional-order derivatives by a finite difference method and presents a Split-Bregman scheme
for effective solution. Section 6 takes the alternative discretize-optimize solution approach and
develops three optimization-based algorithms (the forward-backward algorithm, the Nesterov
accelerated method, and FISTA) to solve the image denoising model. Experimental results
are shown in section 7, and the paper is concluded with a summary in section 8.

2. Review of fractional-order derivatives. This section reviews definitions and simple
properties of a fractional-order derivative which has a long history and may be considered
as a generalization of the integer order derivatives. Three popular definitions to be reviewed
are the Riemann–Liouville (RL), the Grünwald–Letnikov (GL), and the Caputo definitions
[56, 60, 64].

In this paper, a fraction α ∈ R
+ is assumed to lie in between two integers n − 1, n; i.e.,

0 ≤ � = n − 1 < α < n and a fractional α-order differentiation at point x ∈ R is denoted
by the differential operator Dα

[a,x], where a and x are the bounds of the integral over a one-

dimensional (1D) computational domain. Undoubtedly, the gamma function is very important
for the study of the fractional derivative, which is defined by the integral [64]

Γ(z) =

∫ ∞

0
e−ttz−1 dt.

One of the basic properties is that Γ(z +1) = zΓ(z) and hence Γ(n) = n!. Before introducing
formal definitions, we review the following informative but classical example.

Example 1. Abel’s integral equation, with

(2.1)
1

Γ(α)

∫ x

0

ψ(τ)

(x− τ)1−α
dτ = f(x), x > 0,

c© 2015 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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2492 JIANPING ZHANG AND KE CHEN

has the solution given by the well-known formula

(2.2) ψ(x) =
1

Γ(1− α)

d

dx

∫ x

0

f(τ)

(x− τ)α
dτ, x > 0.

This example helps us to understand the formal definitions of fractional derivatives. In
fact, for 0 < α < 1, (2.1) taking on the form Iα[0,x]ψ(x) := D−α

[0,x]ψ(x) = f(x) is called the

fractional α-order left RL integral of ψ(x), and (2.2) taking on the form Dα
[0,x]f(x) = ψ(x)

is defined as the fractional α-order left RL derivative of f(x). As operators, under suitable
conditions [69], we have D−α

[0,x]D
α
[0,x] = I, where I denotes the identity operator.

The first definition of a general order α derivative is the left-sided RL derivative

(2.3) Dα
[a,x]f(x) =

1

Γ(n− α)

(
d

dx

)n ∫ x

a

f(τ)dτ

(x− τ)α−n+1
.

Subsequently the right-sided RL and the Riesz–RL (central) fractional derivative are, respec-
tively, given by

Dα
[x,b]f(x) =

(−1)n

Γ(n− α)

(
d

dx

)n ∫ b

x

f(τ)dτ

(τ − x)α−n+1

and

Dα
[a,b]f(x) =

1

2

(
Dα

[a,x]f(x) + (−1)nDα
[x,b]f(x)

)
.

The second definition is the GL left-sided derivative denoted by

(2.4) GDα
[a,x]f(x) = lim

h→0

1

hα

[x−a
h

]∑
j=0

(−1)j

(
α
j

)
f(x− jh),

(
α
j

)
=
α(α − 1) . . . (α− j + 1)

j!
,

which resembles the definition for an integer order derivative, where [ϑ] is the integer such
that ϑ− 1 < [ϑ] ≤ ϑ. The third definition is the Caputo order α derivative defined by

(2.5) CDα
[a,x]f(x) =

1

Γ(n− α)

∫ x

a

f (n)(τ)dτ

(x− τ)α−n+1
,

where f (n) denotes the nth-order derivative of function f(x). The right-sided derivative and
the Riesz–Caputo fractional derivative are similarly defined by

CDα
[x,b]f(x) =

(−1)n

Γ(n− α)

∫ b

x

f (n)(τ)dτ

(τ − x)α−n+1
, CDα

[a,b]f(x) =
1

2

(
CDα

[a,x]f(x) + (−1)nCDα
[x,b]f(x)

)
.

When α = n−1 is an integer, the above left-sided RL definition reduces to the usual definition
for a derivative. One notes that when a function is n − 1 times continuously differentiable
and its nth derivative is integrable, the fractional derivatives by the above definitions are
equivalent subject to homogeneous boundary conditions [64]. However, we do not require
such equivalence for our image function u; refer to Remark 2.

Fractional derivatives have many interesting properties; below we review a few that are
relevant to this work.
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TOTAL α-ORDER VARIATION IMAGE DENOISING 2493

Linearity. For a fractional derivative Dα
[a,x], by any of the above three definitions, one has

Dα
[a,x](p f(x) + q g(x)) = p Dα

[a,x]f(x) + q Dα
[a,x]g(x)

for any fractional differentiable functions f(x), g(x) and p, q ∈ R. This property will be shortly
used to prove convexity and to derive the first order optimal conditions.

Zero fractional derivatives. An integer derivative of an image u at pixels of flat regions
may be close to zero, but the left RL derivative of a constant intensity function is not zero.
One advantage of minimizing an RL derivative instead of the TV (image gradients) could be
a nonconstant solution. It would be interesting to know the kinds of functions that have zero
α-order derivatives.

Lemma 2.1 (singularity). Assume that Dα
[a,x] is one of the above three fractional-order deriva-

tive operators. For any noninteger α > 0 and x > a, there exists a nonconstant value function
f(τ) in (a, x] such that Dα

[a,x]f(x) = 0.
Proof. We give explicit constructions. Here we consider only the RL and Caputo deriva-

tives; for the GL derivative, we can derive a similar conclusion through their equivalency.
1. Assume that 0 < α < 1; for some x > 0, if f(τ) is taken as

f(τ) = (x− 2τ)(x − τ)α

for any τ ∈ (0, x] in Abel’s inverse transform (2.2), then Dα
[0,x]f(x) = ψ(x) = 0.

2. Assume that α > 1; if f(τ) is taken as

f(τ) = (x− τ)α−1

for any τ ∈ (a, x] in the α-order RL derivative, then Dα
[a,x]f(x) = 0.

3. Assume that α > 0 in the Caputo derivative definition; if f(τ) is taken as

f(τ) = (x− τ)n−1

for any τ ∈ (a, x] in (2.5), then CDα
[a,x]f(x) = 0.

Actually for any α > 0, the left RL Dα
[0,x]f(x) = 0 if f(x) = xα−k for all k = 1, 2, . . . , 1 + �

(note that � = [α] = n− 1); refer to [48].
Remark 1. For our later applications in section 7, we take 1 < α < 2. Hence we have the

left RL Dα
[0,x]f(x) = 0 if f(x) = xα−1 or xα−2; i.e., f(x) = x0.6 or x−0.4 when α = 1.6. For

the Caputo derivative, CDα
[0,x]f(x) = 0 if f(x) = 1 or x.

Boundary conditions. For the left RL derivative Dα
[a,x]f(x) of f(x), one assumes that

f(a) = 0 or f(b) = 0 for the right RL derivative; otherwise, there is a singularity at the
endpoint. So the Riesz–RL derivative would require f(a) = f(b) = 0. One solution for
nonzero Dirichlet boundary conditions for f would be to extract a linear approximation g(x)
(that coincides with f at x = a, b) and consider Dα

[a,x](f(x)− g(x)); however, there is no such

method for the two-dimensional (2D) case. In Jumarie’s work [51], a simple alternative is to
modify the RL derivative to

Dα
[a,x]f(x) =

1

Γ(n− α)

(
d

dx

)n ∫ x

a

f(τ)− f(a)

(x− τ)α−n+1
dτ,
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2494 JIANPING ZHANG AND KE CHEN

also ensuring that the new fractional derivative of a constant is equal to zero and removing
the singularity at x = a [8]. In section 4, we present one method for treating nonzero Dirichlet
boundary conditions in two dimensions.

3. The total α-order variation and its related model. This section first studies the
properties of the total α-order variation, second analyzes a total α-order variation based
denoising model, and finally presents a numerical algorithm. For the classical TV based
model, its solution lies in a suitable space called the function space BV(Ω) of bounded variation
[25, 70, 15]. As seen in Figure 1, the total fractional-order variation model can preserve both
edges and smoothness of an image; we anticipate from the former that its solution should
lie in a space similar to the BV space and from the latter that the smoothness is due to the
nonlocal nature of the new regularizer.

It turns out that for total α-order variation using α-order derivatives, a suitable space is
the space BVα(Ω) of functions of α-bounded variation on Ω which will be defined and studied
next. The work of this section is motivated by analysis of the TV [1, 9, 18] and of the total
generalized variation (TGV) [15].

In variational regularization methods, integration by parts involves the space of test func-
tions in addition to the main solution space. Before discussing the total α-order variation, we
give the following definition.

Definition 3.1 (a space of test functions). Let C�(Ω,Rd) denote the space of �-order contin-
uously differentiable functions. Furthermore, for any C�(Ω,Rd) � v : Ω 	→ R

d, if the (�+ 1)th

order derivative v(�+1) is integrable and ∂iv(x)
∂ni |∂Ω = 0 for all i = 0, 1, . . . , �, then v is a com-

pactly supported continuous-integrable function in Ω. Therefore, the �-compactly supported
continuous-integrable function space is denoted by C �

0 (Ω,R
d).

Definition 3.2 (total α-order variation). Let K denote the space of special test functions

K :=
{
φ ∈ C �

0 (Ω,R
d)
∣∣∣ |φ(x)| ≤ 1 for all x ∈ Ω

}
,

where |φ| =
√∑d

i=1 φ
2
i . Then the total α-order variation of u is defined by

TVα(u) := sup
φ∈K

∫
Ω

(
− u divα φ

)
dx,

where divαφ =
∑d

i=1
∂αφi

∂xα
i

and ∂αφi

∂xα
i

denotes a fractional α-order derivative Dα
[a,b]φi of φi along

the xi direction.
We note that TVα(u) is the same for any definition of ∂αφi

∂xα
i

because φ satisfies the equiv-

alence conditions. However, for our applications in this paper, ∂αu
∂xα

i
is generally not the same

for different fractional derivatives (not even in the distributional sense).
Based on the α-BV seminorm, the α-BV norm is defined by

(3.1) ‖u‖BVα = ‖u‖L1 +TVα(u),

and further the space of functions of α-bounded variation on Ω can be defined by

(3.2) BVα(Ω) :=
{
u ∈ L1(Ω)

∣∣ TVα(u) < +∞
}
.
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TOTAL α-ORDER VARIATION IMAGE DENOISING 2495

Lemma 3.3 (lower semicontinuity). Let {uk(x)} be a sequence from BVα(Ω) which converges
in L1(Ω) to a function u(x). Then TVα(u) ≤ lim infk→∞TVα(uk).

Proof. Since uk ∈ BV α(Ω), for any φ(x) ∈ C �
0 (Ω,R

d) such that |φ(x)| ≤ 1 on Ω, then
divα φ is bounded; hence

∫
Ω

(
− u divα φ

)
dx = lim inf

k→+∞

∫
Ω

(
− uk divα φ

)
dx ≤ lim inf

k→+∞
TVα(uk)

from uk → u in L1(Ω). Taking supφ(x) in the above inequality, we have lower semicontinuity
from TVα(u) ≤ lim infk→+∞TVα(uk) (see [1, 34] for the TV case).

Lemma 3.4. The space BVα(Ω) is a Banach space.

Proof. First we can see that BVα(Ω) is a normed space following immediately from the
definitions of ‖u‖L1(Ω) and total α-order variation TVα(u), so it remains only to prove com-

pleteness. Suppose {uk} is a Cauchy sequence in BVα(Ω); then, by the definition of the norm,
it must also be a Cauchy sequence in L1(Ω). According to the completeness of L1(Ω), there
exists a function u in L1(Ω) such that uk → u in L1(Ω).

Since {uk} is a Cauchy sequence in BVα(Ω), ‖uk‖BVα is bounded. Thus TVα(uk) is
bounded as k → ∞, by the lower semicontinuity of TVα(u) in BVα(Ω) space (see Lemma
3.3); one shows that u ∈ BVα(Ω).

We shall show that uk → u in BVα(Ω). We know that for any ε > 0 there exists a positive
integer N such that ‖uk − uj‖BV α(Ω) < ε for any j, k > N ; hence one has TVα(uk − uj) < ε.

Since uk → u in L1(Ω), thus uj − uk → uj − u in L1(Ω). Hence by Lemma 3.3,

TVα(uj − u) ≤ lim inf
k→∞

TVα(uj − uk) ≤ ε,

which shows that uk → u in BVα(Ω); therefore, BVα(Ω) is a Banach space.

Remark 2. In the literature [64], the equivalence of different fractional derivatives re-
quires stringent continuity conditions; e.g., one has CDα

[a,b]η(x) = Dα
[a,b]η(x) in the test space

C n−1
0 ([a, b],R). However, for imaging applications (the objective function u), we do not require

such equivalence.

To distinguish the two definitions, we shall continue using the superscript C for C deriva-
tive based quantities such as Cdivα and C∇α, while no superscript means that a quantity is
based on the RL derivative.

For any positive integer p ∈ N+, let Wα
p (Ω) =

{
u ∈ Lp(Ω)

∣∣ ‖u‖Wα
p (Ω) < +∞}

be a
function space embedding with the norm

‖u‖Wα
p (Ω) =

(∫
Ω
|u|pdx+

∫
Ω
|∇αu|pdx

)1/p

, where ∇αu =

(
∂αu

∂x1
, . . . ,

∂αu

∂xd

)T

.
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2496 JIANPING ZHANG AND KE CHEN

For any ξ(x) ∈Wα
1 ([a, b]) and η(x) ∈ C n−1

0 ([a, b],R),∫ b

a
ξ(x) · CDα

[a,b]η(x)dx

=(−1)n
∫ b

a
η(x) ·Dα

[a,b]ξ(x)dx +
n−1∑
j=0

(−1)jDα−n+j
[a,b]

ξ(x)
∂n−j−1η(x)

∂xn−j−1

∣∣∣x=b

x=a

=(−1)n
∫ b

a
η(x) ·Dα

[a,b]ξ(x)dx

(3.3)

gives the α-order integration by parts formula (see [4]).
Furthermore, applying (3.3) twice, we have shown the relationship

(3.4)

∫
Ω
u(x)

(
(−1)nCdivα

)
φ(x)dx =

∫
Ω
φ(x) · ∇αu(x)dx,

where u(x) ∈ Wα
1 (Ω) and φ(x) ∈ C �

0 (Ω,R
d); clearly the operator (−1)nCdivα is the adjoint

of operator ∇α. Note that, for φ(x) ∈ C �
0 (Ω,R

d), we have Cdivαφ = divαφ, which may not
be true if φ(x) is in a different space.

Proposition 3.5. Assume that u ∈Wα
1 (Ω); then TVα(u) =

∫
Ω |∇αu|dx.

Proof. For any α > 0, using the dual relationship (3.4), one can obtain that∫
Ω
u(x)divαφ(x)dx = (−1)n

∫
Ω
φ(x) · ∇αu(x)dx,

and in addition |φ| ≤ 1 in K implies that

φ0(x) =

{
(−1)n∇αu/|∇αu|, |∇αu(x)| �= 0,

0 otherwise

can maximize the functional
∫
Ωφ(x)·∇αu(x)dx =

∫
Ω |∇αu|dx. By multiplying φ0 by a suitable

characteristic �-compactly supported continuous function ηε in Ω (e.g., ηε ∈ C �
0 (Ω,R

d)) and
then mollifying (see [1] for TV and [9, 43]), the new

∫
Ωφε(x) · ∇αu(x)dx with φε ∈ K is

arbitrarily close to
∫
Ω |∇αu|dx as ε → 0 [34]; hence one shows that TVα(u) =

∫
Ω |∇αu|dx by

taking supφε∈K
∫
Ω u(x) · divαφε(x)dx = supφε∈K(−1)n

∫
Ωφε(x) · ∇αu(x)dx.

Remark 3. Since u ∈ Wα
1 (Ω) leads to TVα(u) =

∫
Ω |∇αu|dx, in fact, it is easy to show

that the lower semicontinuity
∫
Ω |∇αu|dx ≤ lim infk→∞

∫
Ω |∇αuk|dx holds in the spaceWα

1 (Ω)
similarly to the TV case [34].

Lemma 3.6. The space Wα
p (Ω) is a Banach space.

Proof. The p = 1 case is clear. Now, for p �= 1, let q satisfy 1/p + 1/q = 1. To obtain
the lower semicontinuity, taking u ∈ Wα

p (Ω) and ψ(x) ∈ {φ ∈ C �
0 (Ω,R

d) | ‖φ(x)‖Lq(Ω) ≤
1 for all x ∈ Ω}, the inequality∫

Ω
(−1)n∇αuψdx =

∫
Ω
udivαψdx = lim inf

k→+∞

∫
Ω
ukdivαψdx = lim inf

k→+∞

∫
Ω
(−1)n∇αukψdx

≤ lim inf
k→+∞

(∫
Ω
|∇αuk|pdx

)1/p(∫
Ω
|ψ|qdx

)1/q

≤ lim inf
k→+∞

(∫
Ω
|∇αuk|pdx

)1/p

c© 2015 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d 

11
/2

3/
23

 to
 1

30
.1

59
.8

2.
35

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

C
C

B
Y

 li
ce

ns
e 



TOTAL α-ORDER VARIATION IMAGE DENOISING 2497

holds; further one has
(∫

Ω |∇αu|pdx)1/p ≤ lim infk→+∞
(∫

Ω |∇αuk|pdx)1/p. Then we can de-
duce the result, following reasoning similar to that in the proof of Lemma 3.4.

Lemma 3.7. The following embedding results hold: Wα
2 (Ω) ⊆Wα

1 (Ω) ⊆ BV α(Ω) ⊆ L1(Ω).

Proof. First, from the definitions of BV α(Ω) andWα
p (Ω), we can see that BV α(Ω) ⊂ L1(Ω)

and Wα
1 (Ω) ⊂ L1(Ω). Second, for any f ∈Wα

1 (Ω) and φ ∈ K, we have∫
Ω
fdivαφ dx = (−1)n

∫
Ω
φ(x) · ∇αf(x)dx ≤ ‖∇αf‖L1(Ω) < +∞,

i.e., f ∈ BV α(Ω) or Wα
1 (Ω) ⊆ BV α(Ω). Finally, Wα

2 (Ω) ⊆ Wα
1 (Ω) follows from L2(Ω) ⊆

L1(Ω).

Lemma 3.8. The functional TVα(u) is convex.

Proof. The proof follows the linearity of fractional-order derivatives, and the positively
homogeneous and subadditive properties of TVα(u).

Theory for a total α-order variation model. We are now ready to analyze model (1.5) or
the total α-order variation model in a more precise form:

(3.5) min
u∈BVα(Ω)

{
E(u) := TVα(u) +

λ

2
F (u)

}
, F (u) =

∫
Ω
|u− z|2dx.

To focus on the total α-order variation model in Ω = (0, 1)×(0, 1) ⊂ R
2, we assume 1 < α < 2;

the following theorem establishes convexity of the minimization problem (3.5).

Theorem 3.9 (convexity). The functional E(u) in BVα(Ω) is convex for λ ≥ 0 and strictly
convex if λ > 0.

Proof. Since F (u) is a strictly convex functional, the proof follows from Lemma 3.8.

If a Banach space X is reflexive (separable), then every bounded sequence in X (in X∗)
has a weakly (weak∗) convergent subsequence [80, Prop. 38.2]. Although BVα(Ω) is not
reflexive, it is the dual of a separable space. Therefore, we can give the following definition.

Definition 3.10 (a weak∗ topology). In BVα(Ω), a weak BVα − w∗ topology is defined as

uj
∗−−−−−−→

BVα−w∗ u ⇐⇒ uj −−−−→
L1(Ω)

u and

∫
Ω
φ · ∇αuj dx −−→

∫
Ω
φ · ∇αu dx

for all φ in C 0
0 (Ω,R

d).

From Definition 3.10, we may derive the weak compactness of BVα(Ω) on the weak∗

topology. This, combined with the weak lower semicontinuity of E(u) and boundedness of
Banach space BVα(Ω) (i.e., u is bounded in Banach space BVα(Ω)), yields the following result.

Theorem 3.11 (existence). The functional E(u) : BV α(Ω) → R has a minimum.

Proof. The proof follows reasoning similar to the proof of [80, Prop. 38.12(d)]).

Theorem 3.12 (uniqueness). The functional E(u) has a unique minimizer in BVα(Ω) when
λ > 0.

Proof. The convexity result of Theorem 3.9 leads to uniqueness of solutions. Refer to [80,
Theorem 47C].

We remark that similar existence and uniqueness theories of the TV problem can be found
in [1, 19, 9].
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2498 JIANPING ZHANG AND KE CHEN

4. Nonzero Dirichlet boundary conditions and regularization. The standard definitions
for fractional derivatives require a function to have zero Dirichlet boundary conditions due to
end singularity, but for imaging applications such conditions are unrealistic and too restrictive.
To obtain the system for finding the unknown intensities u at inner nodes of a discretization
grid, we have to use boundary conditions, but the difficulties caused by them in fractional
derivative computations would be hard to overemphasize; inaccurate boundary conditions can
easily lead to the oscillations near boundaries, so proper treatment of the boundary conditions
for problems involving fractional derivatives is crucial.

In this section, we shall reduce nonzero Dirichlet boundary conditions to zero ones so
that standard definitions and our introduced algorithms become applicable. The basic idea of
boundary regularization is to introduce an auxiliary unknown function which satisfies the zero
boundary conditions. In this way, the nonzero boundary conditions move to the right-hand
side of the equation as a new known quantity.

We recall that, in the 1D case, if the boundary conditions are nonzero,

u(0) = a, u(1) = b,

we can reduce them to zero boundary conditions by introducing an auxiliary function e(x) =
a(1− x) + bx. Precisely taking ū(x) = u(x)− e(x) [65], we then have

ū(0) = 0, ū(1) = 0, ū′(0) = ū′(1) = 0,

and a Neumann boundary condition is imposed by artificially extending the boundary values;
i.e., e′(0) = e′(1) = 0 on ∂Ω.

Below we generalize the above 1D idea to the 2D case, assuming that the four corners of
the solution are given or accurately estimated:

u(0, 0) = a, u(0, 1) = b, u(1, 0) = c, u(1, 1) = d.

With a, b, c, d known, at any image point (x, y) ∈ Ω, a bilinear auxiliary function satisfying the
above four conditions, e1(x, y) = a+(c−a)x+(b−a)y+(d+a− c− b)xy, can be constructed
to lead to

(4.1) ū(x, y) = u(x, y)− e1(x, y),

which takes zero values at all four corners.
If boundary conditions u(0, y) = a1(y), u(1, y) = a2(y), u(x, 0) = b1(x), u(x, 1) = b2(x)

at ∂Ω are known a priori, then we can easily verify that

ā1(y) : = ū(0, y) = a1(y)− e1(0, y), ā2(y) := ū(1, y) = a2(y)− e1(1, y),

b̄1(x) : = ū(x, 0) = b1(x)− e1(x, 0), b̄2(x) := ū(x, 1) = b2(x)− e1(x, 1)

define the new Dirichlet conditions for ū(x, y).
We can achieve zero conditions at the edges using the auxiliary function e2(x, y) = ((1−

x)ā1(y) + xā2(y)) + ((1 − y)b̄1(x) + yb̄2(x)). It is clear to see that the new image ũ(x, y) =
u(x, y)− e1(x, y) − e2(x, y) satisfies

(4.2) ũ(x, y)|∂Ω = 0.
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TOTAL α-ORDER VARIATION IMAGE DENOISING 2499

Remark 4. It remains to address the question of how to obtain estimates of u(x, y) at
corners and edges:

1. The true intensities a := u(0, 0), b := u(1, 0), c := u(1, 0), and d := u(1, 1) in four
corner points are unknown a priori. To build the auxiliary function e1(x, y), the
solutions approximating them should be solved from the observed image z(x, y) by
the local smoothing or other simple techniques.

2. Similarly, the true edge intensities a1(y), a2(y), b1(x), and b2(x) are also not given. A
reconstruction step on boundary ∂Ω is necessary in order to capture a robust solution.
To proceed, we can apply a 1D model.

According to Remark 4, we can propose a complete procedure for regularizing boundary
conditions for 2D variational image inverse problems in edges and corners.

• First, we restore image intensities in four corner points from an observed image z. A
natural technique would be a local smoothing operator for the region of corner points.
The oscillations could also be reduced by many variational methods to local regions.

• Second, in order to reconstruct four edges from the restored intensities z(0, y), z(1, y),
z(x, 0), and z(x, 1), the total α-order variation regularization would be used to solve
four 1D inverse problems, i.e., solve an equation like (3.5):

(4.3) min
u

{
E1D(u) =

∫ b

a

∣∣∣∣dαudxα

∣∣∣∣dx+
λ1D

2

∫ b

a
(u− z)2dx

}
.

Thus, through e1(x, y), e2(x, y), we see that (4.1) reduces to finding the new image ū(x, y)
with zero Dirichlet conditions, and hence the standard definitions of fractional derivatives for
ū(x, y) apply.

5. Discretization and Split-Bregman algorithm. Since solution uniqueness of our varia-
tional model (3.5) is resolved, we now consider how to seek a numerical solution of the total
α-order variation model. We first reformulate it in preparation for employment of an efficient
solver and then discuss some discretization details (by finite differences) before presenting our
Algorithm 1.

5.1. A Split-Bregman formulation. Inspired by Goldstein and Osher’s Split-Bregman
work [44], we introduce a special and new variable d(x) = (d1(x), d2(x))

T to the total α-order
variation based model (3.5) to derive the following constrained optimization problem:

min
u,d

∫
Ω
|d|dx+

λ

2
F (u), s.t. d = ∇αu.(5.1)

To enforce the constraint condition, we transfer it into the Bregman formulation

(uk+1,dk+1) =min
u,d

∫
Ω
|d|dx+

λ

2
F (u) −

∫
Ω
〈pk

d,d− dk〉dx

−
∫
Ω
〈pk

u, u− uk〉dx+
μ

2

∫
Ω
|d−∇αu|2dx,

pk+1
u =pk

u − μ(∇α)T (∇αuk+1 − dk+1),

pk+1
d =pk

d − μ(dk+1 −∇αuk+1).
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2500 JIANPING ZHANG AND KE CHEN

The above iterative scheme can be simplified to the two-step algorithm [44, 71, 72]:

(5.2) min
u,d

∫
Ω
|d|dx+

μ

2

∫
Ω

∣∣∣∣d−∇αu+
p

μ

∣∣∣∣2dx+

∫
Ω
|p|2dx+

λ

2
F (u)

with the multiplier updated by iteration pk+1 = pk−γ(d−∇αu), where p(x) = (p1(x), p2(x))
T .

Here the two main subproblems of (5.2) are

Subproblem d min
d

∫
Ω
|d|dx+

μ

2

∫
Ω

∣∣∣∣d−∇αu+
p

μ

∣∣∣∣2dx;
Subproblem u min

u
J(u) :=

μ

2

∫
Ω

∣∣∣∣d−∇αu+
p

μ

∣∣∣∣2dx+
λ

2
F (u).

(5.3)

Further note that subproblem d has a closed-form solution [44], while subproblem u is deter-
mined by the associated Euler–Lagrange equation as shown below.

Theorem 5.1. Let u(x) be a minimizer of functional J(u) from (5.3). Then u(x) satisfies
the first order optimal condition

(5.4) (−1)nμCdivα
(
∇αu− d− p

μ

)
+ λ(u− z) = 0

with one of the following sets of boundary conditions:

(i) fixed: u(x)
∣∣
∂Ω

= b1(x), and ∂u(x)
∂n |∂Ω = b2(x),

(ii) homogeneous: Dα−2(∇αu− d− p
μ) · n|∂Ω = 0, Dα−1(∇αu− d− p

μ) · n|∂Ω = 0,

where n denotes the unit outward normal and Cdivα denotes the divergence operator based on
the C derivative.

Proof. Refer to the appendix.

5.2. Discretization of the fractional derivative. Before introducing the finite difference
discretization of the fractional derivative, we define a spatial partition (xk, yl) (for all k =
0, 1, . . . , N + 1; l = 0, 1, . . . ,M + 1) of image domain Ω. Assume u has a zero Dirichlet
boundary condition (practically, we apply the regularization method section 4 first before
discretization). Here we mainly consider the discretization of the α-order fractional derivative
at the inner point (xk, yl) (for all k =, 1, . . . , N ; l = 0, 1, . . . ,M) on Ω along the x-direction by
using the approach

Dα
[a,b]f(xk, yl) =

δα0 f(xk, yl)

hα
+O(h) =

1

2

(
δα−f(xk, yl)

hα
+
δα+f(xk, yl)

hα

)
+O(h)

=
1

2

(
h−α

k+1∑
j=0

ωα
j f

l
k−j+1 + h−α

N−k+2∑
j=0

ωα
j f

l
k+j−1

)
+O(h),

(5.5)

which is applicable to both the RL and C derivatives [66, 79], where f ls = fs,l, ω
(α)
j = (−1)j(αj ),

j = 0, 1, . . . , N + 1, and

ω
(α)
0 = 1; ω

(α)
j =

(
1− 1 + α

j

)
ω
(α)
j−1 for j > 0.
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TOTAL α-ORDER VARIATION IMAGE DENOISING 2501

Alternative discretization for fractional derivatives in the Fourier space can be found in [11, 45].

Observe from (5.5) that the first order estimate of the α-order fractional Dα
[a,b]f(xk, yl)

along the x-direction at the point (xk, yl) with a fixed yl is a linear combination of N + 2
values {f l0, f l1, . . . , f lN , f lN+1}.

After incorporating the zero boundary condition in the matrix approximation of fractional
derivative, all N equations of fractional derivatives along the x direction in (5.5) can be written
simultaneously in the matrix form (denote w = ωα

0 + ωα
2 )

⎛
⎜⎜⎜⎜⎜⎜⎝

δα0 f(x1, yl)
δα0 f(x2, yl)

...

...
δα0 f(xN , yl)

⎞
⎟⎟⎟⎟⎟⎟⎠ =

1

2hα

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2ωα
1 w ωα

3 · · · ωα
N

w 2ωα
1

. . .
. . .

...

ωα
3

. . .
. . .

. . . ωα
3

...
. . .

. . . 2ωα
1 w

ωα
N · · · ωα

3 w 2ωα
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
Bα

N

⎛
⎜⎜⎜⎜⎜⎜⎝

f l1
f l2
...
...
f lN

⎞
⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
f

.
(5.6)

From the definition of fractional-order derivative (5.5), for any 1 < α < 2, the coefficients ω
(α)
k

have the following properties [64, 79]:

(1) ω
(α)
0 = 1, ω

(α)
1 = −α < 0, (2) 1 ≥ ω

(α)
2 ≥ ω

(α)
3 ≥ · · · ≥ 0,

(3)
∑∞

k=0 ω
(α)
k = 0, (4)

∑m
k=0 ω

(α)
k ≤ 0 (m ≥ 1).

Hence by the Gershgorin circle theorem, one can derive that matrix Bα
N in (5.6) is a symmetric

and negative definite Toeplitz matrix (i.e., −Bα
N is a positive definite Toeplitz matrix).

We recall that the Kronecker product A⊗B of the p× q matrix A = [aij] and the n×m
matrix B = [brt] is the np×mq matrix having the block structure A⊗B := [aijB]. Further,
vector (A ⊗ B)x can be computed by matrix scheme BXAT (i.e., [(A ⊗ B)x]s = [BXAT ]j,i
with s = (i − 1)m + j), where the m × q matrix X is the reshape of the vector x along its
column.

Let U ∈ R
N×M denote the solution matrix at all nodes (khx; lhy), k = 1, . . . , N, l =

1, . . . ,M , corresponding to x-direction and y-direction spatial discretization nodes. Denote by
�u ∈ R

NM×1 the ordered solution vector of U . The direct and discrete analogue of differentiation
of arbitrary α order derivative is

u(α)x = (IM ⊗Bα
N )�u = B(α)

x �u,

where u(α)x = (u
(α)
11 , . . . , u

(α)
N1, u

(α)
12 , . . . , u

(α)
NM )T , �u = (u11, . . . , uN1, u12, . . . , uNM )T . Similarly,

the αth order y-direction derivative of u(x; y) is approximated by

u(α)y = B(α)
y �u = (Bα

M ⊗ IN )�u, where u(α)y = (u
(α)
11 , . . . , u

(α)
1M , u

(α)
21 , . . . , u

(α)
NM )T .

c© 2015 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d 

11
/2

3/
23

 to
 1

30
.1

59
.8

2.
35

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

C
C

B
Y

 li
ce

ns
e 



2502 JIANPING ZHANG AND KE CHEN

5.3. The Split-Bregman algorithm. In discrete form, we are ready to state the discretized
equations in structured matrix form. The discrete scheme of (5.4) is given by

(−1)nμ

((
(B(α)

x )T (B(α)
x �u)+(B(α)

y )T (B(α)
y �u)

)
−
(
(B(α)

x )T �d1 + (B(α)
y )T �d2

)

− 1

μ

(
(B(α)

x )T �p1 + (B(α)
y )T �p2

))
+ λ(�u− �z) = 0

with discretizations �di =
(
di11, . . . , d

i
N1, d

i
12, . . . , d

i
NM

)T
and �pi =

(
pi11, . . . , p

i
N1, p

i
12, . . . , p

i
NM

)T
of vectors d and p (i = 1, 2). A matrix approximation equation is given as

(
(Bα

N )T (Bα
NU) + U(Bα

M )TBα
M

)
+ λ̄U︸ ︷︷ ︸

WU

= λ̄Z +
(
(Bα

N )TD1 +D2B
α
M

)
+

1

μ

(
(Bα

N )TP1 + P2B
α
M

)
︸ ︷︷ ︸

F

,

(5.7)

where Di and Pi are N × M -size reshape matrices of vectors �di and �pi for i = 1, 2, λ̄ =
(−1)nλ/μ. The following justifies the use of a conjugate gradient method for WU = F .

Theorem 5.2. The weighted matrices inner product 〈WU,U〉 =
∑

ij(
∑

kWikUkj)Uij is
positive for any matrix U �= 0, where W is a known positive definite operator.

Proof. For any matrix U �= 0, it is easy to show that

〈WU,U〉 =
〈(

(Bα
N )T (Bα

NU) + U(Bα
M )TBα

M

)
+ λ̄U, U

〉
= 〈Bα

NU,B
α
NU〉+ 〈U(Bα

M )T , U(Bα
M )T 〉+ λ̄〈U,U〉

= ‖Bα
NU‖2F + ‖U(Bα

M )T ‖2F + λ̄‖U‖2F > 0,

which completes the proof.
An implementation of this method is summarized below.
Algorithm 1 (Split-Bregman iterations (PDE-SB)).

Step 1. Boundary regularization for an observed image z;
Step 2. Given initial matrices P k=0

1 , P k=0
2 , and Uk=0;

Step 3. Solve subproblem d: Compute the auxiliary matrix (D1

D2
) from the closed-form solution

(
D1

D2

)k+1

= shrink

⎛
⎝( Bα

NU
k+1

Uk+1(Bα
M )T

)
+

(
P1

P2

)k

,
1

μ

⎞
⎠

by solving the Moreau–Yosida problem with the l1 regularization;
Step 4. Solve subproblem u: Find the solution Uk+1 of (5.7) with an effective parameter λ μ

by the CG method;

Step 5. Update (P1

P2
)k+1 = (P1

P2
)k + γ((

Bα
NUk+1

Uk+1(Bα
M )T

)− (D1

D2
)k+1) with γ ∈ (0, 1];

Step 6. Check the stopping condition;
– If |Uk − Uk+1| < ε,

stop and return U∗ := Uk+1;
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TOTAL α-ORDER VARIATION IMAGE DENOISING 2503

– else
k := k + 1, go back to Step 1;

– end
Step 7. Accept the correct solution U from boundary regularization.

6. Optimization based numerical methods. As many variational models are increasingly
solved by the discretize-optimize approach, we now present three related algorithms for model
(5.1) after applying a finite difference discretization. In this section, we assume that we have
the zero Dirichlet boundary conditions for u mainly to simplify the notation.

As in section 5, the αth order derivative u
(α)
x of u(x; y) along all x-direction nodes in Ω can

be given by matrix Bα
NU , and similarly for U(Bα

M )T for the y-direction (as U is the solution
matrix).

Define 〈U, V 〉 = ∑
ij UijVij , and let V1 = {p | 0 ≤ p ≤ 1}, V2 = {p | |p| ≤ 1}. Then using

the discrete setting introduced above, the discretized problem of model (3.5) is

(6.1) min
U∈V1

max
Φ∈V2

G(U,D∗Φ) +
λ

2
H(U),

where H(U) =
∑

ij(Uij − Zij)
2 and G(U,D∗Φ) = 〈U,D∗Φ〉 = ∑

ij Uij

(
Bα

NΦ1 +Φ2(B
α
M )T

)
ij
,

due to D∗Φ = Bα
NΦ1 +Φ2(B

α
M )T . We also have the adjoint relationship 〈U,D∗Φ〉 = 〈DU,Φ〉

with DU = (Bα
NU,U(Bα

M )T ) and Φ = (Φ1,Φ2). In line with the literature, this model can be
denoted by the convex optimization problem in a generic notation by

(6.2) min
x

{f1(x) + f2(x)} , i.e., min
x,y

{f1(x) + f2(y)} s.t. x = y,

where one views x = U , f1(x) = maxΦ∈V2 G(U,D
∗Φ), f2(x) = H(U). We also need the

notation

proxλf1(x
k) := argmin

x∈V1

{
f1(x) +

1

2λ
‖x− xk‖2

}
,

where f1 can be any other convex function and λ > 0.
To solve (6.2) by the methods to be presented, computation of the proximal point proxλf1(x)

is a major and nontrivial step. We consider how to compute it when D = ∇α, borrowing ideas
from solving a similar problem of TV regularization. In a dual setting, Chambolle [18, 20]
first proposed a discrete dual method by optimizing a cost function consisting of two variants
[18, 29]. Recently, one variant of this scheme was employed in [29] to effectively solve a
fractional image model by a dual transform. The other variant is used in [27].

Define two projections as

ProjV1
(p) =

⎧⎨
⎩

0, p < 0,
p, 0 ≤ p ≤ 1,
1, 1 ≤ p,

ProjV2
(p) =

p

max(1, ‖p‖) .

Note that ∂G(x,D∗Φ)
∂x = D∗Φ and that the optimal solution is

(6.3) x = proxγf1(x
k) = ProjV1

(x̄),
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2504 JIANPING ZHANG AND KE CHEN

where x̄ = xk − γD∗Φ and Φ is unknown. Based on methods of Chambolle [18] and Beck and
Teboulle [13], we see that (6.3) can be used to reduce the min-max problem

min
x∈V1

{
max
Φ∈V2

〈x,D∗Φ〉+ 1

2γ
‖x− xk‖2

}

to the dual problem maxΦ∈V2〈ProjV1
(x̄),D∗Φ〉+ 1

2γ ‖ProjV1
(x̄)− xk‖2 and further to

〈ProjV1
(x̄),D∗Φ〉+ 1

2γ
‖ProjV1

(x̄)− xk‖2 = 〈ProjV1
(x̄),D∗Φ〉

+
1

2γ
‖ProjV1

(x̄)− xk + γD∗Φ‖2 − 1

2γ
‖γD∗Φ‖2 − 1

2γ
2〈ProjV1

(x̄)− xk, γD∗Φ〉

=
1

2γ
‖ProjV1

(x̄)− (xk − γD∗Φ)‖2 − 1

2γ
‖γD∗Φ‖2 + 1

2γ
2〈xk, γD∗Φ〉

=
1

2γ
‖ProjV1

(x̄)− (xk − γD∗Φ)‖2 − 1

2γ

(
‖γD∗Φ‖2 − 2〈xk, γD∗Φ〉+ ‖xk‖2

)
+

1

2γ
‖xk‖2

=
1

2γ
‖ProjV1

(x̄)− (xk − γD∗Φ)‖2 − 1

2γ
‖xk − γD∗Φ‖2 + 1

2γ
‖xk‖2

=
1

2γ

(
‖x̄− ProjV1

(x̄)‖2 − ‖x̄‖2 + ‖xk‖2
)
,

(6.4)

i.e., maxΦ∈V2〈ProjV1
(x̄),D∗Φ〉 + 1

2γ ‖ProjV1
(x̄) − xk‖2 = − 1

2γ minΦ∈V2 h(Φ), where h(Φ) =

‖xk−γD∗Φ‖2−‖(xk−γD∗Φ)−ProjV1
(xk−γD∗Φ)‖2−‖xk‖2 = ‖x̄‖2−‖x̄−ProjV1

(x̄)‖2−‖xk‖2.
Below we consider the operator S(x̄) = ‖x̄ − ProjV1

(x̄)‖2 = infy{δV1(y) +
1
2γ ‖y − x̄‖2}.

Since its gradient is ∇x̄S(x̄) = 2(x̄− ProjV1
(x̄)), we get

∇Φh(Φ) = −2γD(ProjV1
(xk − γD∗Φ)).

The minimization problem minΦ∈V2 h(Φ) can be solved to obtain the Φ-update as follows:
• Φ̄ = Φn − L(h)∇Φh(Φ

n),
• Φn+1 = ProjV2

(Φ̄) = ProjV2
(Φn + 2L(h)γD(ProjV1

(xk − γD∗Φn))),
using the gradient projection scheme of h(Φ) [13]. Here L(h) ≤ 16γ2 is the Lipschitz constant.
Finally, the proximal point proxγf1(x

k) is given by (6.3) once Φ is obtained; see also [13].

6.1. Forward-backward algorithm. Various applications in sparse optimizations stimu-
lated the search for simple and efficient first order methods. The forward-backward scheme
for (6.2) is based (as the name suggests) on recursive application of an explicit forward step
with respect to f2, i.e.,

min
x

{
f2(x

k) + 〈∇f2(xk), x− xk〉︸ ︷︷ ︸
l(x)

+
1

2γ
‖x− xk‖2

}
,

and followed by an implicit backward step with respect to f1, i.e.,

(6.5) min
x

{
f1(x) +

1

2γ
‖x− xk‖2

}
.
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TOTAL α-ORDER VARIATION IMAGE DENOISING 2505

The scheme decouples the contributions of the functions f1 and f2 in a gradient descent step
[12]. The scheme is also known under the name of proximal gradient methods [73, 31, 71, 12],
since the implicit step relies on the computation of the so-called proximity operator.

The forward-backward algorithm is summarized as follows.

Algorithm 2 (forward-backward algorithm (FB) [12]).

• Fix initial x0, set ε ∈ [0,min{1, 1/β}], β (a Lipschitz parameter);
• For k ≥ 0

Step 1. γk ∈ [ε, 2/β − ε], λk ∈ [ε, 1];
Step 2. yk = proxγkl (xk);
Step 3. xk+1 = proxγkf1 (yk);
Step 4. xk+1 = xk + λk(xk+1 − xk);
Step 5. Stop when ‖xk+1 − xk‖ is small enough; otherwise continue.

6.2. Nesterov’s method. As a gradient based method, though simple, the above method
can exhibit a slow speed of convergence. For this reason, Nesterov [58] proposed an improved
gradient method aiming to accelerate and modify the classical forward-backward splitting
algorithm, while achieving an almost optimal convergence rate. As a consequence of this
breakthrough, a few recent works have followed up on the idea and improved techniques for
some specific problems in signal or image processing [13, 10].

Recently Nesterov [59] presented an accelerated multistep version, which converges as
O( 1

r2
) (r is the iteration number). For a problem of type (6.2), this new method introduced

a composite gradient mapping. We now show the algorithm as follows.

Algorithm 3 (Nesterov accelerated method (Nesterov [59])).

• Fix initial x0, b0, set y0 = x0, and β (a Lipschitz parameter);
• For k ≥ 0

Step 1. Find a = ak from the quadratic equation a2

2(bk+a) =
1+bk
β ;

Step 2. v=prox
bk
f1
(xk − yk);

Step 3. zk+1 =
bkxk+akvk

bk+ak
;

Step 4. xk+1 = proxβ
−1

f1
(zk+1 − β−1∇f2(zk+1));

Step 5. yk+1 = yk + ak∇f2(xk+1);
Step 6. bk+1 = bk + ak;
Step 7. Stop when ‖xk+1 − xk‖ is small enough; otherwise continue.

6.3. FISTA method. Beck and Teboulle [13, 14] proposed a fast iterative shrinkage
thresholding algorithm (FISTA) to solve the image denoising and deblurring model. The
method applies the idea of Nesterov to the forward-backward splitting framework, resulting
in the same optimal convergence rate as Nesterov’s method but wider applicability. It can be
applied to a variety of practical problems arising from sparse signal recovery, image processing,
and machine learning and hence has become a standard algorithm.

Applying it to (6.2), we obtain Algorithm 4 below.

Algorithm 4 (FISTA (Beck–Teboulle [12, 13, 14])).

• Fix initial x0, set z0 = x0 and t0 = 1, β (a Lipschitz parameter);
• For k ≥ 0

Step 1. yk = zk − β−1∇f2(zk);
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2506 JIANPING ZHANG AND KE CHEN

Step 2. xk+1 = proxβ
−1

f1
(yk);

Step 3. tk+1 =
1+
√

4t2k+1

2 ;

Step 4. zk+1 = xk + (1 + tk−1
tk

)(xk+1 − xk);
Step 5. Stop when ‖xk+1 − xk‖ is small enough; otherwise continue.

7. Numerical results. Finally, we present some numerical results from using the four
presented algorithms denoted by

PDE-SB: PDE based Split-Bregman (Algorithm 1);
Opti-FB: Optimization based forward-backward (Algorithm 2);
Opti-Nesterov: Optimization based Nesterov accelerated method (Algorithm 3);
Opti-FISTA: Optimization based FISTA (Algorithm 4),

and their comparisons with related methods. In all tests, an initial solution is the noisy image
z(x, y); the algorithms solving the diffusion equation or optimization problem are stopped
after achieving a relative residual of 10−4 or a relative error of 10−8 within 1000 outer and
15 inner iterations. Here we mainly compare the solution’s visual quality, the signal-to-noise
ratio (snr), and the peak signal-to-noise ratio (psnr) values which are given by

snr(u, u∗) = 10 log10
‖u∗ −mean(u∗)‖2F

‖u− u∗‖2F
, psnr(u, u∗) = 10 log10

nxny

(
max
i,j

u∗i,j
)2

‖u− u∗‖2F
,

where mean(u∗) is an average value of the true image u∗, and nx and ny denote the size of
the test image z. It should be noted, however, that these valuations do not always correlate
with human perception. In real life situations, the two measures are also not possible because
the true image is not known.

In general, an optimization problem may be solved many times to select a suitable reg-
ularization parameter λ or to optimize the solution for the underlying inverse problem; a
solution is accepted when some stopping criterion is satisfied. It remains to carry out a sys-
tematic study on our new model as in [82] for the TV model. However, we shall use the best
(numerical) λ for all models in the following tests.

For denoising, F (u) = (u− z)2 is the L2 measure between the solution u and the observed
image z. To intuitively describe the denoising ability, four sets of data will be used in this
part (also see Figure 2):

P1: Problem 1 - Parabolic surfaces; P2 : Problem 2 - Saddle surface;
P3: Problem 3 - Pepper; P4 : Problem 4 - Penguin.

(a) P1. (b) P2.

50 100 150 200 250

50

100

150

200

250

(c) P3.

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

(d) P4.

Figure 2. Test datasets.
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TOTAL α-ORDER VARIATION IMAGE DENOISING 2507

Though our framework is readily applicable to image deblurring and image registration, here
we only present denoising results.

7.1. Performance comparisons of boundary regularization. We first test the idea from
section 4. On the one hand, the variational framework seeks the boundary conditions of a
nonzero Dirichlet or a Neumann type on ∂Ω, and also real images do have nonzero boundary
conditions. On the other hand, fractional-order derivatives require homogeneous boundary
conditions (as used in the work of many authors) due to end singularity. In order to aid
accurate computation of the discretized fractional-order derivative, in our work, a boundary
processing technique (section 4) has been proposed to transform nonzero boundary conditions
of observed data z into zero boundary conditions; hence a consequent matrix approximation
to the fractional derivative operator Dα

[0, 1] can use a zero Dirichlet boundary condition.

Here we test the performance and effectiveness of our boundary regularization against
no regularization. The experiment is carried out on P1. Parabolic surfaces are as shown in
Figure 3; i.e., Figure 3(a) shows a synthetic image of size 256× 256 and range [0, 1], and the
noisy image in Figure 3(b) shows an added zero mean value Gaussian random noise with a
mean variance δ = 15

256 . For the boundary regularization case, the approximation u|∂Ω from
the observed data z|∂Ω is from applying the 1D fractional-order variation model as described
in section 4. The treated case is named “treated,” and the results are depicted in Figures
3(d) and 3(f)), where psnr= 47.53 and snr=35.43. The solution obtained from assuming
zero boundary conditions for u is named “nontreated” and is depicted in Figures 3(c) and
3(e), where psnr = 23.69 and snr = 10.38. Clearly our boundary regularization treatment is
effective.

7.2. Comparisons of Algorithms 1–4. In Table 1, we compare the restoration quality
(via psnr and snr) of the four algorithms. There, all four test datasets are used. In the cases
of synthetic images P1 and P2 with noise variation δ = 10

255 , λ is taken as 12000 and 3800,
respectively, and α = 1.6. In the cases of natural images P3 and P4 with noise variation
δ = 5

255 , λ is taken as 18000 and 20000, respectively, and α = 1.4. One can see from Table 1
that Opti-Nesterov and PDE-SB perform similarly in terms of the best restoration quality (via
psnr and snr). However, in efficiency (computation time cpu(s)), Opti-FISTA and PDE-SB are
the best, while Opti-Nesterov takes more computational time than the other three algorithms.
Evidently, overall, PDE-SB (Algorithm 1) shows the most consistently good performance in
the considered tested cases.

7.3. Sensitivity tests for α and λ. Since our model (3.5) contains two main parameters,
α for the order of differentiation and λ as the coupling parameter for a regularized inverse
problem, it is of interest to test their sensitivity on the restoration quality. Here we shall test
all algorithms’ sensitivity using the image P2 (saddle surface of size 256 × 256, after adding
zero mean value Gaussian random noise image of range [0, 1] and δ = 10

256 ).

Varying λ in a large range from 400 to 60000, all four algorithms are tested on this
synthetic image. The results are shown in Figures 4(a) and 4(c) for different stopping criteria.
(GSC: The general stopping criteria with the relative residual 10−4, relative error 10−8, and
inner iterations 10. SSC: The strong stopping criteria with the relative residual 10−7, relative
error 10−10, and inner iterations 25.) While we see results different from the TV denoising

c© 2015 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d 

11
/2

3/
23

 to
 1

30
.1

59
.8

2.
35

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

C
C

B
Y

 li
ce

ns
e 



2508 JIANPING ZHANG AND KE CHEN

(a) True surface. (b) Noise surface.

(c) Nontreated r = 10.93%. (d) Treated r = 0.66%.

0 0.25 0.5 0.75 1
0

0.5

1

1.2

 

 

True slice

Noise slice

Denoise slice

(e) Slice for nontreated: Bad.

0 0.25 0.5 0.75 1

0.5

1

1.2

 

 

True slice

Noise slice

Denoise slice

(f) Slice for treated: Good.

Figure 3. Test for P1—Comparisons between treated and nontreated cases for nonzero boundary conditions
(δ = 15

256
) using PDE-SB. The treated case has psnr = 47.53 and snr = 35.43, while the nontreated case

has psnr = 23.69 and snr = 10.38. Clearly our boundary regularization (section 4) is effective, while direct
application of a fractional model leads to incorrect boundary restoration. Here the error r = ‖u− u∗‖F /‖u∗‖F .

case, where the regularization parameter λ is crucial for restoration quality [82], Figures 4(a)
and 4(c) show that our total α-order variation regularization model still obtains a satisfactory
solution for a large range of λ; this is a pleasing observation. Of course, there exists the issue
of an optimal choice.

Next, we vary α ∈ (1, 2) from 1.1 to 1.9. Figures 4(b) and 4(d) show the four algorithms’
restored results responding to two stopping conditions GSC and SSC. As represented, the
smaller α leads to the blocky (staircase) effects in u, and the larger α will make solution u
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TOTAL α-ORDER VARIATION IMAGE DENOISING 2509

Table 1
Comparisons of optimizing algorithms, where δ = 10

255
for saddle and parabolic surfaces and δ = 5

255
for

pepper and penguin images.

Opti-FB Opti-Nesterov Opti-FISTA PDE-SB

snr psnr cpu(s) snr psnr cpu(s) snr psnr cpu(s) snr psnr cpu(s)

P1 36.78 50.09 16.83 36.91 50.22 27.23 36.94 50.24 16.71 36.96 50.27 14.53

P2 31.04 53.08 17.28 31.61 53.67 28.43 31.46 53.50 18.14 31.63 53.69 15.09

P3 29.21 43.29 15.96 29.40 43.49 16.09 29.40 43.49 9.75 29.48 43.56 8.16

P4 25.19 38.01 14.68 25.35 38.15 16.27 25.34 38.15 8.62 25.34 38.14 8.45

too smooth along the x1- and x2-directions, respectively. For denoising, our test suggests
that α = 1.6 is suitable for smooth problems because the diffusion coefficients are almost
isotropic in all regions, leading to smooth deformation fields, and α = 1.4 is appropriate for
nonsmooth problems because the diffusion coefficients are close to zero in regions representing
large gradients of the fields, allowing discontinuities at those regions.

We should emphasize that the stopping criteria have impacted the actual numerical im-
plementation. In other words, if we drop the limit on the maximal number of inner iterations
and relative residuals (and relative errors), some methods take too long but obtain more
satisfactory results.

10
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35

40
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(a) GSC: psnr vs. λ
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(b) GSC: psnr vs. α
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(c) SSC: psnr vs. λ

frac-order α
1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

p
sn

r

45

46

47

48

49

50

51

52

53

54

55

Opti-FB
Opti-Nesterov
Opti-FISTA
PDE-SB

(d) SSC: psnr vs. α

Figure 4. Sensitivity test of Algorithms 1–4 to parameters λ (with fixed α = 1.6) and α (with fixed λ = 3800)
in the cases of the GSC and SSC stopping conditions.

7.4. Comparisons with other nonfractional variational models. In this test, we compare
our total α-variation model (PDE-SB) with three popular methods for variational image
denoising. The first compared approach is naturally the TV model proposed by Rudin, Osher,
and Fatemi [68] because the total α-order variation model in this work is inspired by it. The
second compared work is the mean curvature model [75], which also addresses the problem
of restoring a good result for a smooth image; their approach is different from ours since it
is focused on higher order regularization and a multigrid method. See also [54, 17, 84]. The
third compared approach is the TGV model [15] involving a combination of first order and
higher order derivatives to reduce the staircasing effect of the bounded variation functional.

In Table 2, we first compare the restoration quality (via psnr and snr) and efficiency
(computation times cpu(s)) of four approaches by testing the artificial images (P1 (Parabolic
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2510 JIANPING ZHANG AND KE CHEN

surface), P2 (Saddle surface)) and the natural images (P3 (Pepper), P4 (Penguin)); in each
approach relevant parameters are shown in Table 2. We see that, with the empirically optimal
parameters λ∗, the differences between the four models are very small, though our new and
convex model is slightly better. In other tests where such optimal parameters are not used,
our new model performs more robustly and better.

In order to present more visual differences, some stronger regularization parameters (λ∗/2)
and higher noise variations (with the noise level δ = 30

255 ) are tested. Such visual differences in
solutions can be seen in Figures 5 and 7, respectively, for restoring noisy and natural images
P3 (Pepper, Figure 5(b)) and P4 (Penguin, Figure 7(b)). While ROF denoising leads to
blocky results, the mean curvature model performs better in the smooth regions but exhibits
more smooth results near discontinuities. The TGV model leads to further improvements over
the aforementioned models. The total fractional-order variation model leads to significantly
better results. The reason is that the new model tries to approximate the image based on
affine functions or nonlocal high order smooth functions, which is clearly better in this case; in
other words, our approach is more effective in eliminating the noise for smooth images and is
competitive with high order methods; in efficiency the new approach (PDE-SB) is much faster
than the TGV and the mean curvature. We also plot four error results between the restored
and true images along a diagonal (magenta) line in Figure 5(a) for comparison with Figure
6 and present zoomed-in surfaces inside the rectangle (magenta in Figure 7(a)). In Figure 8,
we see that PDE-SB produces the best restored surface, which shows a major advantage (or
better performance) of our total α-order variation model (3.5) when the test image is smooth,
and even when the contrast between meaningful objects and the background is low.

50 100 150 200 250
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100

150

200

250

(a) True z.

50 100 150 200 250
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100
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200

250

(b) Noise f .
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200

250

(c) TV.

50 100 150 200 250
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200
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(d) Mean curvature.
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(e) TGV.
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200

250

(f) Our approach.

Figure 5. Comparison I: Comparisons of our PDE-SB with TV, mean curvature, and TGV models.

8. Conclusions. The total α-order variation regularization model with fractional-order
derivative is potentially useful in modeling all imaging problems. In this paper we rigorously
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TOTAL α-ORDER VARIATION IMAGE DENOISING 2511

Table 2
Comparisons of four models in restoration quality: The total α variation model (3.5), mean curvature

[54, 17, 75], TV [68, 35, 25], and TGV [15] models for synthetic images (P1 in Figure 2(a) and P2 in Figure

2(b)) and natural images (P3 in Figure 5(a) and P4 in Figure 7(a)) with different noise variances δj =
δ̂j
255

(correspondingly we use λj). We first fix μ = 1.1, γ = 1, α = 1.6 for P1–P2, α = 1.15 and α = 1.1 for
P3–P4, respectively, in the total α-order variation model, and γ = 19, β = 10−5 in the mean curvature model,
and two weight parameters of the first and second order terms in the TGV model (ν0 = 1, ν1 = 2 for P1–P2;
ν0 = 1, ν1 = 0.5 for P3–P4); other parameters are as shown on the “para” rows. λ1D from (4.3) is required
by the new model only.

Mean curvature [75] TV [68] TGV [15] Total α-order model (3.5)

δ̂ snr psnr snr psnr snr psnr snr psnr

10 33.44 46.74 32.17 45.52 36.41 49.72 37.55 50.86
P1 20 30.19 43.50 29.55 42.83 33.03 46.33 33.52 46.83

λ1 = 1/0.4 × 2562 λ1 = 1026 λ1 = 1/1.2 × 2562 λ1D
1 = 0.1, λ1 = 21900

Para λ2 = 1/0.03 × 2562 λ2 = 535 λ2 = 1/0.6 × 2562 λ1D
2 = 0.1, λ2 = 14400

10 27.27 49.31 23.09 45.13 30.75 52.68 32.02 54.18
P2 20 22.88 44.92 19.45 41.49 25.62 47.51 26.48 48.54

λ1 = 1/0.9 × 2562 λ1 = 883 λ1 = 1/0.9 × 2562 λ1D
1 = 1, λ1 = 1800

Para λ2 = 1/0.01 × 2562 λ2 = 488 λ2 = 1/0.5 × 2562 λ1D
2 = 0.2, λ2 = 1800

10 20.43 38.80 20.08 38.35 20.40 38.78 20.48 38.86
15 18.76 37.11 18.01 36.69 18.68 37.12 18.84 37.20

P3 20 17.48 35.82 17.17 35.33 17.55 35.87 17.57 35.90
λ1 = 1/16 × 2562 λ1 = 2216 λ1 = 1/55 × 2562 λ1D

1 = 1, λ1 = 16500
Para λ2 = 1/14 × 2562 λ2 = 1373 λ2 = 1/26 × 2562 λ1D

2 = 0.1, λ2 = 9300

λ3 = 1/6× 2562 λ3 = 893 λ3 = 1/12 × 2562 λ1D
3 = 0.01, λ3 = 6200

5 25.16 37.95 24.85 37.58 25.39 38.20 25.34 38.14
10 21.72 34.60 21.33 34.07 21.82 34.71 21.75 34.62

P4 15 19.26 32.05 18.66 31.29 19.44 32.21 19.42 32.20
λ1 = 1/9× 2562 λ1 = 3341 λ1 = 1/49 × 2562 λ1D

1 = 0.1, λ1 = 24000
Para λ2 = 1/5× 2562 λ2 = 1856 λ2 = 1/20 × 2562 λ1D

2 = 0.1, λ2 = 8000
λ3 = 1/6× 2562 λ3 = 1095 λ3 = 1/11 × 2562 λ1D

3 = 0.1, λ3 = 18500

analyzed a simple variational model using total α-order variation for image denoising. One
Split-Bregman based algorithm and three optimization-based algorithms were developed to
solve the resulting image inverse problem. Instead of using the usual fixed and zero bound-
ary conditions, we proposed a boundary regularization method to treat the fractional-order
derivatives. Numerical results show that the PDE-based Split-Bregman algorithm (PDE-SB)
performs similarly to (though more stably than) optimization-based approaches, while our
boundary regularization method is essential for getting good results for imaging denoising.
Moreover, PDE-SB outperforms currently competitive variational models in terms of restora-
tion quality. There are still outstanding issues with our proposed model and algorithms; among
these, optimal selection of λ is to be addressed. Future work will also consider generalization
of this work to other image inverse problems.

Appendix. Proof of Theorem 5.1. To shorten the proof, let ω be a function in Wα
1 (Ω)

to be specified shortly. For u ∈ Wα
1 (Ω) ⊂ BVα(Ω), we compute the first order G-derivative
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2512 JIANPING ZHANG AND KE CHEN
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(b) error u− u∗

Figure 6. Comparison I: The slice presentations of four restorations along a diagonal line in Figure 5(a).

(Gateaux) of the functional J(u) in the direction ω by

J ′(u)ω = lim
t→0

J(u+ tω)− J(u)

t
= lim

t→0

Q(u+ tω)−Q(u)

t
+
λ

2

F (u+ tω)− F (u)

t
,(A.1)

where Q(u) = μ
2

∫
Ω |d − ∇αu + p

μ |2dx (see (5.3)). Using the Taylor series with respect to t
yields

(A.2) J ′(u)ω =

∫
Ω
W · ∇αωdx+ λ

∫
Ω
(u− z) ωdx
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Figure 7. Comparison II: Comparisons of PDE-SB with TV, mean curvature, and TGV models.
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(d) Mean curvature.
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Figure 8. Comparison II: Display of zoom-in surfaces inside of the red rectangle in Figure 7(a). Visibly
the left image (MC) is too smooth, and the middle (TGV) has some noise, while the right (PDE-SB) appears
best.

with W = −μ(d−∇αu+ p
μ). Recall that

∫
Ω
W · ∇αωdx = (−1)n

∫
Ω
ωCdivαWdx−

n−1∑
j=0

(−1)j
∫ 1

0
Dα−n+j

[a,b] W1
∂n−j−1ω(x)

∂xn−j−1
1

∣∣∣x1=1

x1=0
dx2

−
n−1∑
j=0

(−1)j
∫ 1

0
Dα−n+j

[c,d] W2
∂n−j−1ω(x)

∂xn−j−1
2

∣∣∣x2=1

x2=0
dx1,

(A.3)
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2514 JIANPING ZHANG AND KE CHEN

where we note that n = 2 for 1 < α < 2. Next consider two case studies.

(i). Given u(x)|∂Ω = b1(x) and ∂u(x)
∂n |∂Ω = b2(x), since (u(x) + tω(x))|∂Ω = (u(x))|∂Ω =

b1(x) and
∂(u(x)+tω(x))

∂n |∂Ω = ∂u(x)
∂n |∂Ω = b2(x), it suffices to take ω ∈ C 1

0 (Ω,R). Such a choice

ensures ∂iω(x)
∂ni |∂Ω = 0, i = 0, 1 ⇒ ∂n−j−1ω(x)

∂xn−j−1
1

|x1=0 or 1 =
∂n−j−1ω(x)

∂xn−j−1
1

|x2=0 or 1 = 0, n− j−1 =

0, 1. Hence (A.1) with (A.2) reduces to (5.4).

(ii). Keep ω ∈ Wα
1 (Ω). Since ∂n−j−1ω(x)

∂xn−j−1
1

|x1=0 or 1 �= 0, ∂n−j−1ω(x)

∂xn−j−1
1

|x2=0 or 1 �= 0, the

boundary terms in (A.3) can only diminish if

Dα−n+j
[a,b] W1

∣∣∣
x1=0 or 1

= 0 and Dα−n+j
[c,d] W2

∣∣∣
x2=0 or 1

= 0 ⇒ Dα−n+jW · n = 0, j = 0, 1.

The proof is complete.

Remark 5. In imaging applications, the above first set (i) of boundary conditions seems
unreasonable because one hardly knows a priori what b1, b2 should be. The second set (ii) of
boundary conditions appears complicated and might be simplified as follows.

From [64, section 2.3.6, page 75], ifW1(x) has a sufficient number of continuous derivatives,

then Dα−n+j
[0, 1] W1|x1=0 or 1 = 0 for any α ∈ (1, 2) is equivalent to ∂jW1

∂xj
1

|x1=0 or 1 = 0 (j = 0, 1);

i.e.,

W1

∣∣∣
x1=0 or 1

= 0 and
∂W1

∂x1

∣∣∣
x1=0 or 1

= 0.

Indeed, if the nth derivative of u(x) is integrable in [0, 1], then W1|x1=0 or 1 = 0 is equivalent
to

u(x)
∣∣∣
x1=0 or 1

= 0 and
∂u(x)

∂x1

∣∣∣
x1=0 or 1

= 0;

on the other hand, ∂ku(x)

∂xk
1

|x1=0 or 1 = 0 (for all k = 0, 1, 2) are equivalent to ∂αu(x)
∂xα

1
|x1=0 or 1 = 0

and ∂1+αu(x)

∂x1+α
1

|x1=0 or 1 = 0; hence one has ∂W1
∂x1

|x1=0 or 1 = 0. The derivations of W2 are similar

to those of W1.
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