128 research outputs found

    Segmentation of pelvic structures from preoperative images for surgical planning and guidance

    Get PDF
    Prostate cancer is one of the most frequently diagnosed malignancies globally and the second leading cause of cancer-related mortality in males in the developed world. In recent decades, many techniques have been proposed for prostate cancer diagnosis and treatment. With the development of imaging technologies such as CT and MRI, image-guided procedures have become increasingly important as a means to improve clinical outcomes. Analysis of the preoperative images and construction of 3D models prior to treatment would help doctors to better localize and visualize the structures of interest, plan the procedure, diagnose disease and guide the surgery or therapy. This requires efficient and robust medical image analysis and segmentation technologies to be developed. The thesis mainly focuses on the development of segmentation techniques in pelvic MRI for image-guided robotic-assisted laparoscopic radical prostatectomy and external-beam radiation therapy. A fully automated multi-atlas framework is proposed for bony pelvis segmentation in MRI, using the guidance of MRI AE-SDM. With the guidance of the AE-SDM, a multi-atlas segmentation algorithm is used to delineate the bony pelvis in a new \ac{MRI} where there is no CT available. The proposed technique outperforms state-of-the-art algorithms for MRI bony pelvis segmentation. With the SDM of pelvis and its segmented surface, an accurate 3D pelvimetry system is designed and implemented to measure a comprehensive set of pelvic geometric parameters for the examination of the relationship between these parameters and the difficulty of robotic-assisted laparoscopic radical prostatectomy. This system can be used in both manual and automated manner with a user-friendly interface. A fully automated and robust multi-atlas based segmentation has also been developed to delineate the prostate in diagnostic MR scans, which have large variation in both intensity and shape of prostate. Two image analysis techniques are proposed, including patch-based label fusion with local appearance-specific atlases and multi-atlas propagation via a manifold graph on a database of both labeled and unlabeled images when limited labeled atlases are available. The proposed techniques can achieve more robust and accurate segmentation results than other multi-atlas based methods. The seminal vesicles are also an interesting structure for therapy planning, particularly for external-beam radiation therapy. As existing methods fail for the very onerous task of segmenting the seminal vesicles, a multi-atlas learning framework via random decision forests with graph cuts refinement has further been proposed to solve this difficult problem. Motivated by the performance of this technique, I further extend the multi-atlas learning to segment the prostate fully automatically using multispectral (T1 and T2-weighted) MR images via hybrid \ac{RF} classifiers and a multi-image graph cuts technique. The proposed method compares favorably to the previously proposed multi-atlas based prostate segmentation. The work in this thesis covers different techniques for pelvic image segmentation in MRI. These techniques have been continually developed and refined, and their application to different specific problems shows ever more promising results.Open Acces

    Modelo de sistema de soporte a la diagnosis de trastornos osteoarticulares de miembros inferiores utilizando procesamiento de imágenes de rayos X

    Get PDF
    Los trastornos osteoarticulares aquejan a personas de todas las regiones del mundo sin distinción, ejemplos de ellas son: la osteoporosis y atrosis. La OMS determina la existencia de un incremento de casos en sociedades socioeconómicas más bajas y la Unión Europea establece una estrategia enfocada a entregar salud personalizada en el momento correcto, y brindar una alternativa de prevención oportuna y especifica denominada (PerMed). En este contexto nuestro país necesita aplicar la Medicina Personalizada para diagnosticar a tiempo enfermedades con alta incidencia. La presente investigación busca alinearse a los objetivos de la Medicina Personalizada proporcionando un modelo de sistema de soporte a la diagnosis de trastornos osteoarticulares de miembros inferiores utilizando procesamiento de imágenes de rayos X, teniendo presente la confidencialidad y protección de los datos. El pre-procesamiento de las imágenes de rayos X, permitió eliminar los desafíos de estas imágenes, y posibilito la generación de un gold-standard que sirvió como guía para la segmentación-registro de las estructuras óseas de miembros inferiores. Se utilizaron los modelos estadísticos como: SSM - Statistical Shape Model, SAM – Statistical Appeareance Model, ASM - Active Shape Model y Gradient Profiling en el refinamiento de la etapa de segmentación-registro como parte del entrenamiento y prueba. Estos modelos han sido validados con artículos de investigación presentados en el Capítulo IV con resultados de precisión en la segmentación entre el 74 % y 83 % y para la clasificación de las estructuras óseas dependiendo del objetivo a resolver sea: a) detectar fracturas en el acetábulo, o b) detectar osteoporosis en el fémur proximal, los resultados obtuvieron una precisión de: 73% y 87% respectivamente; y por ultimo para lograr el objetivo de: c) medir la distancia articular, se obtiene un error promedio equivalente a 2.4 px, este es un error aceptable para respaldar el diagnostico de desgaste articular de cadera llamado "osteoartritis de cadera". Asimismo, hubo una mejora significativa en el tiempo de procesamiento comparado con la literatura analizada

    Automatic image analysis of C-arm Computed Tomography images for ankle joint surgeries

    Get PDF
    Open reduction and internal fixation is a standard procedure in ankle surgery for treating a fractured fibula. Since fibula fractures are often accompanied by an injury of the syndesmosis complex, it is essential to restore the correct relative pose of the fibula relative to the adjoining tibia for the ligaments to heal. Otherwise, the patient might experience instability of the ankle leading to arthritis and ankle pain and ultimately revision surgery. Incorrect positioning referred to as malreduction of the fibula is assumed to be one of the major causes of unsuccessful ankle surgery. 3D C-arm imaging is the current standard procedure for revealing malreduction of fractures in the operating room. However, intra-operative visual inspection of the reduction result is complicated due to high inter-individual variation of the ankle anatomy and rather based on the subjective experience of the surgeon. A contralateral side comparison with the patient’s uninjured ankle is recommended but has not been integrated into clinical routine due to the high level of radiation exposure it incurs. This thesis presents the first approach towards a computer-assisted intra-operative contralateral side comparison of the ankle joint. The focus of this thesis was the design, development and validation of a software-based prototype for a fully automatic intra-operative assistance system for orthopedic surgeons. The implementation does not require an additional 3D C-arm scan of the uninjured ankle, thus reducing time consumption and cumulative radiation dose. A 3D statistical shape model (SSM) is used to reconstruct a 3D surface model from three 2D fluoroscopic projections representing the uninjured ankle. To this end, a 3D SSM segmentation is performed on the 3D image of the injured ankle to gain prior knowledge of the ankle. A 3D convolutional neural network (CNN) based initialization method was developed and its outcome was incorporated into the SSM adaption step. Segmentation quality was shown to be improved in terms of accuracy and robustness compared to the pure intensity-based SSM. This allows us to overcome the limitations of the previously proposed methods, namely inaccuracy due to metal artifacts and the lack of device-to-patient orientation of the C-arm. A 2D-CNN is employed to extract semantic knowledge from all fluoroscopic projection images. This step of the pipeline both creates features for the subsequent reconstruction and also helps to pre-initialize the 3D-SSM without user interaction. A 2D-3D multi-bone reconstruction method has been developed which uses distance maps of the 2D features for fast and accurate correspondence optimization and SSM adaption. This is the central and most crucial component of the workflow. This is the first time that a bone reconstruction method has been applied to the complex ankle joint and the first reconstruction method using CNN based segmentations as features. The reconstructed 3D-SSM of the uninjured ankle can be back-projected and visualized in a workflow-oriented manner to procure clear visualization of the region of interest, which is essential for the evaluation of the reduction result. The surgeon can thus directly compare an overlay of the contralateral ankle with the injured ankle. The developed methods were evaluated individually using data sets acquired during a cadaver study and representative clinical data acquired during fibular reduction. A hierarchical evaluation was designed to assess the inaccuracies of the system on different levels and to identify major sources of error. The overall evaluation performed on eleven challenging clinical datasets acquired for manual contralateral side comparison showed that the system is capable of accurately reconstructing 3D surface models of the uninjured ankle solely using three projection images. A mean Hausdorff distance of 1.72 mm was measured when comparing the reconstruction result to the ground truth segmentation and almost achieved the high required clinical accuracy of 1-2 mm. The overall error of the pipeline was mainly attributed to inaccuracies in the 2D-CNN segmentation. The consistency of these results requires further validation on a larger dataset. The workflow proposed in this thesis establishes the first approach to enable automatic computer-assisted contralateral side comparison in ankle surgery. The feasibility of the proposed approach was proven on a limited amount of clinical cases and has already yielded good results. The next important step is to alleviate the identified bottlenecks in the approach by providing more training data in order to further improve the accuracy. In conclusion, the new approach presented gives the chance to guide the surgeon during the reduction process, improve the surgical outcome while avoiding additional radiation exposure and reduce the number of revision surgeries in the long term

    Radiographic Assessment of Hip Disease in Children with Cerebral Palsy: Development of a Core Measurement Set and Analysis of an Artificial Intelligence System

    Get PDF
    Cerebral palsy is the most common physical disability during childhood. Cerebral palsy related hip disease is caused by an imbalance of muscle forces, resulting in progressive migration of the hip to complete dislocation. This can decrease function and quality of life. The prevention of hip dislocation is possible if detected early. Therefore, surveillance programmes have been set up to monitor children with cerebral palsy enabling clinicians to intervene early and improve outcomes. Currently, hip disease is assessed by analysing pelvic radiographs with various geometric measurements. This time-consuming task is undertaken frequently when monitoring a child with cerebral palsy. This thesis aimed to identify the key radiographic parameters used by clinicians (the core measurement set), and then build an artificial intelligence system to automate the calculation of this core measurement set. A systematic review was conducted identifying a comprehensive list of previously reported measurements from studies measuring radiographic outcomes in cerebral palsy children with hip pathologies. Fifteen measurements were identified from the systematic review, of which Reimers’ migration percentage was the most commonly reported. These measurements were used to perform a two-round Delphi study among orthopaedic surgeons and physiotherapists. Participants rated the importance of each measurement using a nine-point Likert scale (‘not important’ to critically important’). After the two rounds of the Delphi process, Reimers’ migration percentage was included in the core measurement set. Following the final consensus meeting, the femoral head-shaft angle was also included. The anteroposterior pelvic radiographs of 1650 children were then used to build an artificial intelligence system integrating the core measurement set, in collaboration with engineers from the University of Manchester. The newly developed artificial intelligence system was assessed by comparing its ability to calculate measurements and outline the pelvis and femur on a radiograph. The reliability of the dataset used to train the model was also analysed. The proposed artificial intelligence model achieved a ‘good to excellent’ inter-observer reliability across 450 radiographs when comparing its ability to calculate Reimers’ migration percentage to five clinicians. Its ability to outline the pelvis and proximal femur was ‘adequate’ with the better performance observed in the pelvis than the femur. The reliability of the training dataset used to teach the artificial intelligence model was ‘good’ to ‘very good’. Artificial intelligence systems are feasible solutions to optimise the efficiency of hip radiograph analysis in cerebral palsy. Studies are warranted to include the core measurement set as a minimum when reporting on hip disease in cerebral palsy. Future research should investigate the feasibility of implementing a risk score to predict the likelihood of hip displacement

    Automatic Segmentation of the Mandible for Three-Dimensional Virtual Surgical Planning

    Get PDF
    Three-dimensional (3D) medical imaging techniques have a fundamental role in the field of oral and maxillofacial surgery (OMFS). 3D images are used to guide diagnosis, assess the severity of disease, for pre-operative planning, per-operative guidance and virtual surgical planning (VSP). In the field of oral cancer, where surgical resection requiring the partial removal of the mandible is a common treatment, resection surgery is often based on 3D VSP to accurately design a resection plan around tumor margins. In orthognathic surgery and dental implant surgery, 3D VSP is also extensively used to precisely guide mandibular surgery. Image segmentation from the radiography images of the head and neck, which is a process to create a 3D volume of the target tissue, is a useful tool to visualize the mandible and quantify geometric parameters. Studies have shown that 3D VSP requires accurate segmentation of the mandible, which is currently performed by medical technicians. Mandible segmentation was usually done manually, which is a time-consuming and poorly reproducible process. This thesis presents four algorithms for mandible segmentation from CT and CBCT and contributes to some novel ideas for the development of automatic mandible segmentation for 3D VSP. We implement the segmentation approaches on head and neck CT/CBCT datasets and then evaluate the performance. Experimental results show that our proposed approaches for mandible segmentation in CT/CBCT datasets exhibit high accuracy

    飛行ロボットにおける人間・ロボットインタラクションの実現に向けて : ユーザー同伴モデルとセンシングインターフェース

    Get PDF
    学位の種別: 課程博士審査委員会委員 : (主査)東京大学准教授 矢入 健久, 東京大学教授 堀 浩一, 東京大学教授 岩崎 晃, 東京大学教授 土屋 武司, 東京理科大学教授 溝口 博University of Tokyo(東京大学

    A survey of the application of soft computing to investment and financial trading

    Get PDF

    XXII International Conference on Mechanics in Medicine and Biology - Abstracts Book

    Get PDF
    This book contain the abstracts presented the XXII ICMMB, held in Bologna in September 2022. The abstracts are divided following the sessions scheduled during the conference

    Geometric data understanding : deriving case specific features

    Get PDF
    There exists a tradition using precise geometric modeling, where uncertainties in data can be considered noise. Another tradition relies on statistical nature of vast quantity of data, where geometric regularity is intrinsic to data and statistical models usually grasp this level only indirectly. This work focuses on point cloud data of natural resources and the silhouette recognition from video input as two real world examples of problems having geometric content which is intangible at the raw data presentation. This content could be discovered and modeled to some degree by such machine learning (ML) approaches like deep learning, but either a direct coverage of geometry in samples or addition of special geometry invariant layer is necessary. Geometric content is central when there is a need for direct observations of spatial variables, or one needs to gain a mapping to a geometrically consistent data representation, where e.g. outliers or noise can be easily discerned. In this thesis we consider transformation of original input data to a geometric feature space in two example problems. The first example is curvature of surfaces, which has met renewed interest since the introduction of ubiquitous point cloud data and the maturation of the discrete differential geometry. Curvature spectra can characterize a spatial sample rather well, and provide useful features for ML purposes. The second example involves projective methods used to video stereo-signal analysis in swimming analytics. The aim is to find meaningful local geometric representations for feature generation, which also facilitate additional analysis based on geometric understanding of the model. The features are associated directly to some geometric quantity, and this makes it easier to express the geometric constraints in a natural way, as shown in the thesis. Also, the visualization and further feature generation is much easier. Third, the approach provides sound baseline methods to more traditional ML approaches, e.g. neural network methods. Fourth, most of the ML methods can utilize the geometric features presented in this work as additional features.Geometriassa käytetään perinteisesti tarkkoja malleja, jolloin datassa esiintyvät epätarkkuudet edustavat melua. Toisessa perinteessä nojataan suuren datamäärän tilastolliseen luonteeseen, jolloin geometrinen säännönmukaisuus on datan sisäsyntyinen ominaisuus, joka hahmotetaan tilastollisilla malleilla ainoastaan epäsuorasti. Tämä työ keskittyy kahteen esimerkkiin: luonnonvaroja kuvaaviin pistepilviin ja videohahmontunnistukseen. Nämä ovat todellisia ongelmia, joissa geometrinen sisältö on tavoittamattomissa raakadatan tasolla. Tämä sisältö voitaisiin jossain määrin löytää ja mallintaa koneoppimisen keinoin, esim. syväoppimisen avulla, mutta joko geometria pitää kattaa suoraan näytteistämällä tai tarvitaan neuronien lisäkerros geometrisia invariansseja varten. Geometrinen sisältö on keskeinen, kun tarvitaan suoraa avaruudellisten suureiden havainnointia, tai kun tarvitaan kuvaus geometrisesti yhtenäiseen dataesitykseen, jossa poikkeavat näytteet tai melu voidaan helposti erottaa. Tässä työssä tarkastellaan datan muuntamista geometriseen piirreavaruuteen kahden esimerkkiohjelman suhteen. Ensimmäinen esimerkki on pintakaarevuus, joka on uudelleen virinneen kiinnostuksen kohde kaikkialle saatavissa olevan datan ja diskreetin geometrian kypsymisen takia. Kaarevuusspektrit voivat luonnehtia avaruudellista kohdetta melko hyvin ja tarjota koneoppimisessa hyödyllisiä piirteitä. Toinen esimerkki koskee projektiivisia menetelmiä käytettäessä stereovideosignaalia uinnin analytiikkaan. Tavoite on löytää merkityksellisiä paikallisen geometrian esityksiä, jotka samalla mahdollistavat muun geometrian ymmärrykseen perustuvan analyysin. Piirteet liittyvät suoraan johonkin geometriseen suureeseen, ja tämä helpottaa luonnollisella tavalla geometristen rajoitteiden käsittelyä, kuten väitöstyössä osoitetaan. Myös visualisointi ja lisäpiirteiden luonti muuttuu helpommaksi. Kolmanneksi, lähestymistapa suo selkeän vertailumenetelmän perinteisemmille koneoppimisen lähestymistavoille, esim. hermoverkkomenetelmille. Neljänneksi, useimmat koneoppimismenetelmät voivat hyödyntää tässä työssä esitettyjä geometrisia piirteitä lisäämällä ne muiden piirteiden joukkoon
    corecore