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Abstract 

Cerebral palsy is the most common physical disability during childhood. Cerebral palsy related hip 

disease is caused by an imbalance of muscle forces, resulting in progressive migration of the hip to 

complete dislocation. This can decrease function and quality of life. The prevention of hip dislocation 

is possible if detected early. Therefore, surveillance programmes have been set up to monitor children 

with cerebral palsy enabling clinicians to intervene early and improve outcomes. Currently, hip disease 

is assessed by analysing pelvic radiographs with various geometric measurements. This time-

consuming task is undertaken frequently when monitoring a child with cerebral palsy. This thesis aimed 

to identify the key radiographic parameters used by clinicians (the core measurement set), and then 

build an artificial intelligence system to automate the calculation of this core measurement set.  

 

A systematic review was conducted identifying a comprehensive list of previously reported 

measurements from studies measuring radiographic outcomes in cerebral palsy children with hip 

pathologies. Fifteen measurements were identified from the systematic review, of which Reimers’ 

migration percentage was the most commonly reported. These measurements were used to perform a 

two-round Delphi study among orthopaedic surgeons and physiotherapists. Participants rated the 

importance of each measurement using a nine-point Likert scale (‘not important’ to critically 

important’). After the two rounds of the Delphi process, Reimers’ migration percentage was included 

in the core measurement set. Following the final consensus meeting, the femoral head-shaft angle was 

also included. 

 

The anteroposterior pelvic radiographs of 1650 children were then used to build an artificial intelligence 

system integrating the core measurement set, in collaboration with engineers from the University of 

Manchester. The newly developed artificial intelligence system was assessed by comparing its ability 

to calculate measurements and outline the pelvis and femur on a radiograph. The reliability of the 

dataset used to train the model was also analysed. The proposed artificial intelligence model achieved 

a ‘good to excellent’ inter-observer reliability across 450 radiographs when comparing its ability to 

calculate Reimers’ migration percentage to five clinicians. Its ability to outline the pelvis and proximal 

femur was ‘adequate’ with the better performance observed in the pelvis than the femur. The reliability 

of the training dataset used to teach the artificial intelligence model was ‘good’ to ‘very good’. 

 

Artificial intelligence systems are feasible solutions to optimise the efficiency of hip radiograph analysis 

in cerebral palsy. Studies are warranted to include the core measurement set as a minimum when 

reporting on hip disease in cerebral palsy. Future research should investigate the feasibility of 

implementing a risk score to predict the likelihood of hip displacement.  
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Chapter 1: Introduction 
 

 

1.1 Overview 

 

Cerebral palsy (CP) is the most common childhood physical disability.(1) Individuals with CP are at a 

higher risk of developing hip disease, which may require preventative or reconstructive surgery.(2) Hip 

displacement can decrease the quality of life and function in children with CP and has been reported to 

be the most common cause of pain in the condition.(3-5) Long-lasting hip displacement can increase 

the risk of hip pain in adulthood from 10% to 30%.(6) However, studies have shown that it is possible 

to prevent subluxation and dislocation of the hip if displacement is detected early, resulting in improved 

symptoms and function as well as a reduced likelihood of developing hip pain in adulthood.(7-10) This 

has resulted in the introduction of national hip surveillance programmes, such as Cerebral Palsy 

Integrated Pathway Scotland (CPIPS), which aim to detect hip displacement early and intervene to 

improve the disease prognosis.(11)  

 

Currently, in CPIPS, hip disease is assessed via radiographs that are manually interpreted and analysed 

by a trained expert.(11) This can be and prone to human error, especially in hip surveillance 

programmes. Artificial intelligence (AI) systems that can analyse hip radiographs have proven to be 

highly accurate at recognising different conditions and complex anatomy, making AI an ideal tool for 

surveillance programmes.(12-14) However, only a limited amount of research has looked into 

developing AI systems to analyse CP hip radiographs. In order to build software capable of 

automatically and accurately analysing CP hip radiographs, the key measurements that need to be 

recorded must be clearly listed as a 'core measurement set' (CMS). This measurement set can also serve 

as a minimum requirement to be recorded in clinical studies. This will allow comparisons to be drawn 

between studies and centres and facilitate meta-analyses to be conducted. The use of a standardised set 

of measurements in the United Kingdom (UK) will pave the way for uniformity in implementing a 

national hip surveillance program and guide the development of AI software to automate this process.  
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1.2 Aims and Objectives 

 

1.2.1 Aims 

 

Given the lack of a clinically useable AI system that can automatically interpret CP hip radiographs, 

this study will aim to identify the critical measurements needed to create an automated system and help 

develop and review an AI system capable of calculating the identified measurements. 

 

 

1.2.2 Objectives 

 

• To systematically identify all the radiographic measurements that are currently used to assess 

hip disease in children with CP in the literature 

• To describe the most important measurements needed to assess hip disease in CP children and 

form a CMS by conducting a Delphi study 

• To describe the reliability of an AI system capable of automatically analysing CP hip 

radiographs through the calculation of core measurements 

• To highlight the implications of the thesis results for future research looking into hip disease in 

CP or the automatic analysis of hip radiographs 

 

 

1.2.3 Research Questions 

 

1. What measurements are currently used to assess hip disease in children with 

CP? 

2. What do orthopaedic surgeons and physiotherapists believe to be the most important 

measurements needed to assess hip disease in children with CP? 

3. Can an AI system be developed to automatically interpret hip radiographs using the key 

measurements in children with CP? 
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1.3 Thesis Outline 

 

This first chapter has introduced the research topic by giving an overview, stating the aims and 

objectives of the research as well as the research questions, and outlining the structure of the remaining 

thesis. 

 

In the second chapter, the background and context of the study are discussed in detail. An overview of 

hip disease in CP is presented, including the epidemiology, pathophysiology, clinical features, 

radiographic assessment, classification and management. Hip surveillance programmes will also be 

explored, focussing on CPIPS. AI systems and concepts are introduced, followed by a description of 

the applications of these systems in medical imaging. 

 

In the third chapter, a systematic review is undertaken to look for articles that have used measurements 

to assess hip radiographs in children with CP. The different measurements reported in each study are 

noted, and the definitions given for each measurement are compared. The extracted data points are 

synthesised and analysed to identify a list of all the different measurements reported in the literature 

and identify the most common measurements that will likely be included in the CMS. 

 

In the fourth chapter, a two-round Delphi study is conducted using the identified measurements from 

the previous chapter with orthopaedic surgeons and physiotherapists. An online survey is sent to 

participating orthopaedic surgeons and physiotherapists, requesting them to score the importance of the 

listed measurements on a nine-point Likert scale. A final consensus meeting is held to discuss results 

from round two and finalise the core measurement set. 

 

In the fifth chapter, the performance of a newly proposed AI model will be assessed by analysing its 

ability to calculate radiographic measurements and outline the pelvis and femur. Furthermore, the inter-

and intra-observer reliability of the data used to train the model will also be assessed. 

 

The final chapter concludes the thesis by summarising the main findings of the study in relation to the 

research aims and questions. It will also describe the contributions of this study and outline the 

implications for future research. 
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Chapter 2: Literature Review 
 

 

2.1 Overview 

 

This chapter gives an overview of hip disease in cerebral palsy (CP) and concepts needed to understand 

the role of artificial intelligence (AI) in medical imaging. The four main sub-chapters discussed include 

a general overview of CP hip disease, hip surveillance programmes, AI and AI in medical imaging. CP, 

as a standalone disease, will not be covered in this review. However, any topics that are relevant to hip 

disease will be discussed. A basic introduction to AI will be described to help the reader understand the 

difference between various AI systems. AI techniques can aid radiologists in every step of the way, 

from requesting images and scheduling to reporting results.(15) However, for the purposes of this 

literature review, only the image interpretation applications of AI will be explored. 

 

2.2 Hip Disease in Cerebral Palsy  

 

2.2.1 Background 

 

CP, known eponymously as Little’s disease, was first reported by William Little in the 1840s.(16) 

Following an international workshop on the definition and classification of CP in 2004, CP has been 

defined as an umbrella term that describes “a group of permanent disorders of the development of 

movement and posture, causing activity limitation, that are attributed to nonprogressive disturbances 

that occurred in the developing foetal or infant brain. The motor disorders of cerebral palsy are often 

accompanied by disturbances of sensation, perception, cognition, communication, and behaviour, by 

epilepsy, and by secondary musculoskeletal problems”.(17)  

 

‘Hip disease’ in CP is a generic term that describes a range of hip disorders that lead to degeneration 

and pain of the hip joint.(4) ‘Hip displacement’ and ‘hip migration’ are also generic terms that, by 

definition, describe the progression of the femoral head from normal articulation to complete 

dislocation. ‘Hip subluxation’ occurs when the acetabulum still covers at least one-third of the femoral 

head. ‘Hip dysplasia’ describes the incomplete covering of the femoral head by the acetabulum so that 

at least one-third of the femoral head is uncovered.(18) 

 

Hip disease is commonly seen in children with cerebral palsy and can decrease their quality of life.(5, 

19) Children with hip displacement often experience pain and are known to fracture the femoral shaft 
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once the hip becomes dislocated.(20, 21) Adduction contractures in the hip can worsen sitting balance 

and make caring for children with CP especially problematic, sometimes requiring total care for daily 

activities with perineal care rendered nearly impossible.(22, 23) Displaced hips are unlikely to reduce 

spontaneously and, when left untreated, can progress to complete dislocation, which is associated with 

degenerative arthritis and pain.(4)  

 

2.2.2 Epidemiology  

 

The incidence of CP is difficult to describe accurately as it is usually diagnosed during infancy in an 

outpatient setting; consequently, this data is not included in the birth certificate or the hospital database 

making it hard to monitor.(24) However, a systematic review and meta-analysis has established an 

incidence of 2.11 per 1000 live births.(25) CP is more frequently seen in males than females, and gender 

distribution across different types of CP is insignificant.(26) Time trends from the twentieth century 

show that CP incidence has been relatively stable in the past.(27) However, it has been reported that 

improvements in neonatal care since the late 1960s have resulted in an increase in the survival of 

preterm infants, which has influenced the rates of CP. There was an initial increase in the rates of CP 

associated with the increased survival of extremely low birth weight and low gestation infants; however, 

since 2000, although the survival of preterm infants has remained similar, there has been a decrease in 

the rates of CP which has been associated with a change in practice, namely an increase in the use of 

antenatal steroid therapy and a decrease in the use of postnatal dexamethasone.(28)  

 

The prevalence of hip subluxation ranges from 25% to 60%, with complete dislocation present in 10% 

to 15%.(29) The incidence of hip displacement decreases with age. However, the risk of hip 

displacement is highest between 2 to 3 years of age.(30) No significant difference has been found in the 

prevalence of hip displacement between males and females.(31) 

 

A relationship between the incidence of hip displacement and the severity of CP, as described by the 

Gross Motor Function Classification System (GMFCS), has been established. Children at GMFCS level 

V have the highest incidence of hip displacement and are 2.5 to 3 times more likely to develop hip 

displacement than children at GMFCS level III or IV.(32) Interestingly, an association between femoral 

deformities and hip displacement has not been supported.(33) 
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2.2.3 Pathophysiology 

 

CP, by definition, is caused by disturbances that occur during the development of the brain.(17) Due to 

the complex combination of factors that can be attributed to this condition, the specific underlying cause 

for the development of CP usually remains unknown. It is helpful to view the aetiology of CP as casual 

pathways made up of risk factors.(34, 35) Multiple risk factors can contribute to the causal pathway, 

but the most important risk factors include preterm birth, intrauterine growth restriction, perinatal 

infection, and multiple births.(36, 37)  

 

Injury to the developing brain may result in an inability to inhibit nerve impulses, causing 

hypertonia.(38) Hip displacement primarily occurs due to asymmetric spasticity in the hip adductors, 

hip flexors and medial hamstrings, positioning the hip in flexion, adduction, and internal rotation. This 

combination of abnormal positioning and continued muscle contraction results in the lateralization and 

proximal migration of the femoral head.(39)  

 

As the femoral head continues to migrate in the posterolateral direction, the acetabulum gradually 

expands, completely dislocating the femoral head from the hip joint. This increased pressure also erodes 

the lateral lip of the acetabulum and deforms the femoral head.(39, 40) 

 

Without protection from the acetabulum, the femoral head is further deformed due to the immense 

pressures imposed by surrounding soft tissue. Consequently, the femoral head degenerates, resulting in 

osteoarthritis and pain.(4)  

 

2.2.4 Clinical Features 

 

In CP, children with hip disease may present with hip pain, progressive adduction contractures or leg 

length discrepancy caused by unilateral hip dislocation. Additionally, in children with anterior hip 

dislocations, the femoral head can be palpated in the groin. A windswept hip may also be seen in rare 

cases where one hip has an abduction abnormality and the contralateral hip has an adduction 

abnormality resulting in a ‘windswept’ appearance.(41, 42)  

 

2.2.4.1 Physical Examination 

 

A physical examination can be carried out to investigate any suspicions of hip disease. The following 

steps summarise the different elements of the exam: (43) 
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1. Thomas test is used to assess hip flexion contractures.  

2. Hip adduction contractures and spasticity are assessed via the measurement of hip abduction. 

This is assessed by passively abducting the hip whilst the hip and knee are fully extended.  

3. Internal and external rotation is assessed with the hip and knee flexed. 

4. Popliteal angle is measured to assess hamstring length.  

5. Range of motion is assessed in the knees and ankles.  

6. Leg length is measured. 

7. Duncan Ely test is performed to assess the rectus femoris length. 

8. Hip extension is measured. 

9. Scoliosis and pelvic obliquity are evaluated (especially in non-ambulatory patients). 

10. Difficulties in sitting, standing and walking are assessed. 

 

A physical examination alone is inadequate to diagnose and assess the severity of hip disease. 

Therefore, a radiographic evaluation is carried out in addition to this.   

 

2.2.5 Radiographic Assessment 

 

The degree of hip migration can be assessed on an anteroposterior radiograph. A radiographic 

assessment allows the disease severity to be accurately quantified through the measurement of and 

between anatomical landmarks. The rate of hip migration can be reliably calculated by comparing 

consecutive radiographs, given that the positioning of the hip and pelvis are consistent. This can 

determine an individual’s risk of developing hip subluxation or dislocation.(44) 

 

Various radiographic measurements have been used to assess hip disease in CP, usually in combination 

with each other. Different measurements assess different aspects of the hip. Some common 

measurements include: Reimers’ migration percentage (RMP) which assesses the acetabulum in 

relation to the femur and is used to assess the severity of hip displacement(45); femoral neck-shaft angle 

(NSA) which assesses the femur and is usually measured alongside femoral anteversion when planning 

to perform femoral osteotomies for the correction of coxa valga and femoral anteversion(46-48); 

acetabular index (AcI) which assesses the acetabulum and is used to quantify the degree of acetabular 

coverage of the femoral head, allowing surgeons to assess the severity of hip dysplasia and decide 

whether to reconstruct the acetabulum(49); and femoral head-shaft angle (HSA) which assess the 

proximal femur in cases where the femoral head is in valgus when compared to the femoral neck.(50, 

51) Given the vast number of measurements available and the lack of a standard set of measurements, 

the reporting of CP hip radiographs varies greatly in research and clinical practice. Conversely, RMP 
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has proven to be particularly reliable and has been regarded as the ‘gold standard’ measurement to take 

when hips are assessed in children with CP.(45, 52-54) 

 

2.2.5.1 Reimers’ migration percentage  

 

In 1980, Reimers developed a measurement to assess the severity of hip displacement in children with 

CP. He classified hips as subluxated if the RMP was at least 33% or dislocated if RMP was at least 

90%.(45) Although this criterion has been used in most studies, several recent studies have redefined 

subluxation and dislocation threshold values as 30% and 100%, respectively.(31, 55-59) 

 

Reimers describes RMP as “the fraction (expressed as a percentage) of the visible part of the femoral 

head which on an AP radiograph has migrated beyond Perkin’s line/acetabular ridge.”(45) Perkin’s line 

is a vertical line perpendicular to Hilgenreiner’s line drawn along the most lateral aspect of the 

acetabular roof.(60) Hilgenreiner’s line is a horizontal line drawn through the most inferior aspect of 

the tri-radiate cartilages.(61) RMP is calculated by using the formula: A/B X 100=RMP, where A is the 

section of the femoral head that lies lateral to Perkin’s line and B is the total width of the femoral head 

(Figure 2.1).(62, 63)  

 

Figure 2.1 Reimers’ migration percentage. Hilgenreiner's line is in blue. Perkin's line is the middle vertical line. 

 

 

2.2.5.2 Additional Imaging 

 

Computerised tomography (CT) scans with three-dimensional reconstruction can be used to further 

assess femoral head deformities and acetabular deficiencies prior to surgery.(64) They are especially 

useful in anterior hip dislocations where RMP might be within normal ranges due to the absence of 

femoral head lateralisation.(65) CT scans are also used to assess proximal femoral geometry and 
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femoral anteversion unless coxa valga is present, in which case ultrasound is a cheap and more accurate 

alternative.(41, 66) 

 

2.2.6 Classification 

 

This condition can be classified based on motor abnormality, topography, or function. The motor 

abnormality classification divides the condition into spastic, dyskinetic and ataxic CP.(67) The 

topographic classification divides CP into quadriplegia, hemiplegia, diplegia, monoplegia, and 

triplegia.(68) However, motor abnormality and topographic classifications have been reported to be 

inconsistent and unreliable. This is due to disagreements on definitions and descriptions of terminology 

in each classification.(19, 69, 70)  

 

Functional classification, more specifically the GMFCS, is a more reliable system to categorise CP and 

has been validated.(71, 72) The GMFCS is composed of five levels: I, II, III, IV and V (Table 2.1). 

Each level corresponds to a distinction in functional limitation, use of hand-held mobility devices or 

wheelchair, and quality of movement. Each of these distinctions are then further expanded upon by age 

group, allowing for a more accurate classification.(73) 

 

Table 2.1 GMFCS general headings for each level (73) 

 

 

Multiple studies classify hips as described by Reimers, where an RMP of 33% or more indicates a 

subluxated hip, and an RMP of 90% or more indicates a dislocated hip.(31, 45, 55-57) In 2009, Robin 

et al. expanded Reimers’ classification of hip subluxation and dislocation into a more elaborate 

arrangement encompassing a broader spectrum of hip disease in CP.(45, 58) The Melbourne Cerebral 

Palsy Hip Classification System is a reliable six-grade ordinal scale that classifies hips in cerebral palsy 

based on morphology.(58, 74) Each of the six grades corresponds to a basic description of the hip 

defined by qualitative and quantitative measures (Figure 2.2). The qualitative components of this system 

include: (1) integrity of Shenton’s arch; (2) shape of the femoral head; (3) shape of the acetabulum; and 

GMFCS Level General Description 

I Walks without limitations 

II Walks with limitations 

III Walks Using a Hand-Held Mobility Device 

IV Self-Mobility with Limitations; May Use Powered Mobility 

V Transported in a Manual Wheelchair 
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(4) pelvic obliquity. Quantitatively, hips are assessed using RMP. (58) The Melbourne Cerebral Palsy 

Hip Classification System was initially developed for skeletally mature children. However, it has now 

also been validated in children between 2-7 years with open triradiate cartilage.(75) Although the 

Melbourne Cerebral Palsy Hip Classification System is more extensive and offers more detailed 

comparisons across different studies, the current popularity and adequacy of Reimers’ classification 

makes it a more reliable choice when classifying hips in CP.(31) 

 

 

 

 

Figure 2.2 The Melbourne Cerebral Palsy Hip Classification System (58) 
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2.2.7 Management 

 

The management of hip disease in CP can be divided broadly into two main categories: surgical and 

non-surgical. Treatment for hip disease in CP is usually indicated when patients experience pain, 

restricted mobility or other symptoms of poor hip instability; however, treatment may also be 

undertaken prophylactically in order to avoid complete dislocation and complications related to this 

including osteoarthritis and avascular necrosis of the femoral head.(76) The decision to operate should 

not be based on radiographic signs of hip disease or osteoarthritis. It should instead be based on the 

presence of pain or the limitations caused by contractures.(77) Therefore, the primary outcomes of 

treating hip disease in CP are to alleviate symptoms, improve functionality and prevent dislocation as 

opposed to restoring the hip to anatomical normality. 

 

2.2.7.1 Non-Surgical Management 

 

Non-surgical management involves monitoring, physical therapy, abduction bracing, and sometimes 

botulinum toxin A injections.(64) Weight-bearing exercises and postural management programmes 

have been shown to reduce the severity of hip disease and the need for treatment. However, no studies 

have reported a complete halt in the progression of CP hip disease by using non-surgical techniques.(78, 

79) Furthermore, abduction bracing and spasticity-reducing treatments, such as intrathecal baclofen or 

botulinum toxin A, are also unsuccessful at reducing the risk and severity of hip disease.(76, 80) 

However, spasticity-reducing treatments may relieve painful spasms.(81, 82) Although non-surgical 

management can delay and reduce the severity of hip disease, it is not a definitive treatment. Due to the 

limited benefits of non-surgical management, surgery is a likely direction taken during the lifetime of 

a child with CP hip disease. 

 

2.2.7.2 Surgical Management 

 

Surgical management can be divided further into preventative, reconstructive, and salvage surgery. The 

use of these surgical methods are dependent upon the severity and prognosis of the patient’s 

condition.(81)  

 

Much like non-surgical management, preventative surgery is performed to prevent or delay the 

progression of a displaced hip to severe subluxation or complete dislocation. It is usually indicated in 

children with a progressive RMP between 25%-60% with limited hip abduction <30°.(64) Preventative 

surgery consists of soft-tissue procedures, including adductor releases and an iliopsoas release. An 

adductor release usually involves myotenotomy of the adductor longus, adductor brevis and gracilis.(29, 
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76) The iliopsoas release can be performed differently depending on the child’s ambulatory status. In 

non-ambulatory children, the iliopsoas tendon is divided near the lesser trochanter. However, only the 

psoas tendon is divided in ambulatory children, preserving the iliacus fibres.(64) Additionally, 

hamstring procedures, such as semitendinosus lengthening, can be performed in non-ambulatory 

children with limited knee extension.(41, 64) Ambulatory children may also undergo selective dorsal 

rhizotomy to reduce muscle spasticity.(83) Regardless of the preventative surgical procedure 

performed, there is still a risk of re-displacement during the growth phase.(76) 

 

Reconstructive surgical techniques are used when the hip is so severely subluxated that it cannot be 

reversed using preventative surgery alone, represented by an RMP of >60%.(64) Additionally, 

reconstructive surgery is most effective in children ≥4 years without degenerative changes in the 

acetabulum or femur. Children <4 years of age have reportedly lost >90% of the correction of the NSA, 

an angle used to describe the geometry of the proximal femur and hip. Older children tend to have 

degenerative disease in the hip joint, making it harder to remodel.(84, 85) Reconstructive surgery 

generally involves osteotomies of the femur and acetabulum.(29) The most common hip reconstruction 

surgery in children with CP is the proximal femoral varus derotation osteotomy, an osteotomy focusing 

on the femur. Femoral procedures are indicated in cases where structural deformities of the femur are 

present, such as coxa valga and increased femoral anteversion. Femoral osteotomies also lengthen the 

spastic muscle as the bone is shortened.(41) Acetabular procedures are indicated in children with hip 

dysplasia. The Dega acetabuloplasty is a particularly effective acetabular surgery and is undertaken in 

all dislocated hips and some subluxated hips.(86-88)  

 

Salvage procedures are indicated when reconstructive surgery either fails or is no longer a viable option 

due to delayed presentation or degenerative hip disease.(89) Examples of salvage procedures include 

proximal femoral excision, valgus osteotomy, proximal femoral excision and valgus osteotomy, 

prosthetic interposition arthroplasty, total joint arthroplasty and arthrodesis.(90-95) The most common 

salvage procedure is the Castle procedure, a variation of the proximal femoral resection.(81, 90) Valgus 

osteotomies are used to increase hip abduction in children who have difficulties maintaining hygiene 

around the perineal area, whilst arthroplasty is performed in ambulatory children with an arthritic 

hip.(41) Research on salvage surgery in children with CP and hip disease is inadequate, and the type of 

salvage surgery performed should be decided after evaluating the patient.(96) 
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2.3 Hip Surveillance Programmes  

 

2.3.1.1 Background 

 

The discovery of the preventability of hip dislocation in children with cerebral palsy was a significant 

turning point in the prognosis of these children.(97) This principle is the primary purpose behind the 

development of hip surveillance programmes in children with CP. In 1994, the first hip surveillance 

programme, named ‘Uppföljningsprogram för Cerebral Pares’ (CPUP), was started in southern Sweden 

to detect hip displacement early in the disease and intervene before the hip progressed to 

dislocation.(56) This prevention programme successfully and significantly decreased the incidence of 

hip dislocation over ten years.(56)  

 

Following the implementation of CPUP in Sweden, similar surveillance programmes were adopted by 

other areas, including Norway, Denmark, Iceland, British Columbia, Australia and Scotland.(98-102) 

Although each scheme is run slightly differently, they all evaluate age and GMFCS to determine the 

frequency of check-ups and use RMP to assess the severity of hip disease. 

 

2.3.1.2 Benefits of Hip Surveillance 

 

Hip surveillance programmes can significantly lower the incidence of hip dislocation with early 

detection and intervention.(103, 104) They allow children to have preventative procedures performed 

at an earlier age and a more viable stage of disease, preventing the occurrence of hip dislocation and 

the need for reconstructive or salvage procedures.(105) Children who do not participate in surveillance 

programmes are more likely to develop hip dislocation and undergo surgery at an older age.(106, 107)  

 

2.3.1.3 CPIPS 

 

In the UK, a national hip surveillance programme only exists in Scotland. The CPIPS programme was 

introduced across Scotland in 2013. This surveillance system provides CP children aged 2-16 years 

with equal access to a standardised, protocol-based management system that utilises physical and 

radiological examinations to monitor the risk of hip displacement.(11)  

 

Once a child has been diagnosed with CP, the GMFCS level should be confirmed. At two years of age, 

the child attends the CPIPS clinic for physical examination every six months until the age of six. Beyond 

this, the child attends the CPIPS clinic annually until age sixteen, at which age the child is no longer 

monitored. The frequency of clinics is increased in the presence of ‘red values’ on the traffic light 
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system. The traffic light system compares values from a child’s physical examination to a pre-defined 

set of values, described by the three traffic light colours, which correspond to different levels of severity 

and action (Figure 2.3). Green values do not usually require any action and represent normal or almost 

normal values; amber values require a review of the individual’s current management plan; red values 

necessitate a referral for further assessment from the orthopaedic department. A hip x-ray is taken in 

every child with diagnosed CP at the age of two, six and sixteen. The frequency of radiographic 

evaluation in-between these ages is dependent upon the severity of CP as described by the GMFCS 

level, and age.(11) 

 

Five years after the implementation of CPIPS, 1646 children were actively monitored through the 

programme. The prevalence of hip displacement decreased significantly by 55%, and the prevalence of 

complete dislocation decreased by 48%. Early surgical intervention successfully treated hip subluxation 

in 94% of the patients who required it.(102) The CPIPS system has now been enrolled across England 

and the other UK nations, though different areas and regions are at different stages of 

implementation.(11) 

 

Figure 2.3 CPIPS Traffic Light System for physical examination (11) 
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2.4 Artificial Intelligence 

 

2.4.1.1 Background 

 

AI describes “a system’s ability to interpret external data correctly, to learn from such data, and to use 

those learnings to achieve specific goals and tasks through flexible adaptation.”(108) The notion of an 

intelligent computer was first described by a British mathematician called Alan Turing. In 1950, Turing, 

known for breaking the enigma code during World War II, published an article describing how to test 

the intelligence of a machine. The ‘Turing test’ assesses the capacity of a machine to perform cognitive 

tasks at a human level.(109-111) The term ‘artificial intelligence’ was first used by a computer scientist 

called John McCarthy, who used it the name the Dartmouth Summer Research Project on Artificial 

Intelligence in 1956. Following this eight-week-long conference, the field of AI saw a significant 

improvement in success for nearly two decades, with machines such as ELIZA, a natural language 

processing tool capable of conversing with humans, and the General Problem Solver program, which 

was capable of solving simple problems.(110) Despite the creation of these intelligent machines, the 

field of AI came to a halt in 1969, as the AI methods were too advanced for the computer processing 

power available at the time.(112) Since this time, the field of AI has seen many highs and lows.(113) 

The recent revolution in AI can be attributed to an increase in computer processing power and the 

availability of data for analysis and learning.(114) Currently, applications of AI can be seen in smart 

voice-assistant devices, self-driving cars, weather forecasting, Google search and many other devices 

spanning virtually every field and industry.(115-119)  

 

2.4.1.2 Machine Learning  

 

Machine Learning is a subset of AI that allows computers to learn and make predictions from a dataset 

without being explicitly programmed to do so.(120-122) Algorithms are the processes by which 

calculations and problem-solving operations are performed.(123) Algorithms are employed by Machine 

Learning models to produce an output. The data fed into the Machine Learning model is known as the 

input, and the predictions or descriptions made by the Machine Learning model are known as the output. 

There are three main methods of learning that teach Machine Learning models to make predictions or 

solutions: supervised learning, unsupervised learning and reinforcement learning.(124) It is important 

to note that algorithms are not exclusive to specific types of learning and can be used in multiple 

different models, given that the algorithm is compatible with that model. 

 

Supervised learning is the most common type of training and uses labelled data to teach the Machine 

Learning model. This means that a sample dataset is given containing predetermined input values that 
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have already been paired with corresponding output values. The machine uses this labelled dataset to 

learn the pattern and make predictions.(125) In unsupervised learning, the input data is unlabelled, 

meaning the output data is not known for any values. Therefore, unsupervised learning makes 

predictions by drawing inferences and finding hidden patterns from the input data. Semi-supervised 

learning is a method in which a partially labelled dataset is used to train the Machine Learning model. 

This training method infers the unlabelled values from labelled samples. Semi-supervised models may 

be used to reduce the cost of labelling data and are often used in image retrieval systems. Reinforcement 

learning does not learn from a dataset. It uses a trial-and-error feedback system that learns from external 

responses to make predictions. This model is often used for gaming and navigation.(124, 126) 

 

Supervised learning can be further divided into two broad categories: regressions models and 

classification models. Regression models and classification models solve different types of problems; 

as a result, the algorithms used by these models produce different types of data. In regression models, 

the algorithms map input values to output values containing continuous data. In classification models, 

the algorithms map input values to output values containing discrete categorical data.(127) Commonly 

used supervised learning algorithms include Decision Trees (DTs), Naïve Bayes, Artificial Neural 

Networks (ANNs), Support Vector Machines (SVMs), Logistic Regression, K-Nearest Neighbor 

(KNN) and Random Forests (RFs).(128) Some supervised learning applications include spam detection, 

predictive analysis and image recognition.(129-131) 

 

Similar to supervised learning, unsupervised learning can be divided two: clustering models and 

association models.(132) Clustering models and association models use different approaches to produce 

an output. Clustering models categorise data into groups based on similarities and differences.(133) 

Association models discover relationships between variables in a dataset.(134) Examples of 

unsupervised learning algorithms include K-Means Clustering, KNN, Anomaly Detection, ANNs, 

Principle Component Analysis and Singular Value Decomposition.(135) Use cases of unsupervised 

learning include market research, pattern recognition, fraud detection and social network analysis, 

predictive analysis.(136)  

 

2.4.1.3 Deep Learning 

 

Deep learning is a subset of Machine Learning that uses ANNs with multiple layers to learn from large 

datasets and make accurate predictions.(137, 138) An ANNs consists of interconnected nodes arranged 

in multiple layers, imitating neurons in the human brain (Figure 2.4). (139) The input data is first fed 

into the network’s input layer, the information is then processed in the hidden layer, and a corresponding 

prediction is produced in the output layer. This process is called forward propagation. When a neural 
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network flows unidirectionally from input layer to output layer, it is known as a feedforward neural 

network. Each node in the network represents a different feature of the input dataset. A feature is any 

aspect of the input data that can be measured. A weight is assigned to each node, conveying the 

importance of its feature and its relationships to the final output or prediction. Therefore, heavier 

weighted nodes contribute more to the final output of a model.(140)  

 

Deep Learning models consist of multiple hidden layers, allowing more complex operations to occur. 

Some Deep Learning neural networks can operate bi-directionally through a process called 

backpropagation. Backpropagation allows a Deep Learning algorithm to increase a model’s predictive 

accuracy over time. By performing error calculations every time a prediction is produced, Deep 

Learning algorithms can work backwards and adjust the weight of the interconnected nodes to provide 

a more precise output.(141) This ability to automatically tweak internal parameters allows Deep 

Learning models to automate the process of feature engineering. Feature engineering, traditionally 

undertaken by human experts, involves manipulating data to identify features and ranking them by 

importance before feeding the processed data into a Machine Learning model to produce weighted, 

accurate predictions and solutions.(142) Therefore, Deep Learning models decrease the need for human 

intervention and data preparation and produce increasingly accurate predictions and patterns. 

 

 

Figure 2.4 Artificial neural network model 
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Various types of neural networks are required for the broad range of Deep Learning applications and 

data types. Two commonly used Deep Learning neural networks are convolutional neural networks 

(CNNs) and recurrent neural networks (RNNs).(143) CNNs are feedforward neural networks designed 

to process pixel data. They can easily detect features and patterns in any given image. Thus, CNNs are 

mainly used in image analysis and object detection applications.(144, 145) RNNs work differently to 

traditional feedforward neural networks and CNNs. They have a looping mechanism that acts like a 

memory, allowing previously learned information from prior inputs to affect current inputs and outputs. 

As a result of this memory-like mechanism, RNNs are great at processing sequential data such as audio 

or text and find applications in language translation, speech recognition and generation of image 

descriptions.(146) 

 

2.4.1.4 Ensemble Learning 

 

Ensemble learning is a strategy of learning that can be applied to multiple Machine Learning models to 

produce more robust and accurate predictions. In ensemble learning, multiple Machine Learning models 

are combined to create a single model. The composite output produced by this combined model 

neutralises the high variance and bias produced by individual models. (147) Once Machine Learning 

models are part of an ensemble learning model, they are called base learners. Ensemble learning can be 

achieved via two approaches: bagging and boosting(148, 149) In bagging, also known as bootstrap 

aggregation, base learners are trained in parallel to each other, but in boosting, base learners are trained 

sequentially one after another. Bagging reduces the variance in a model, whilst boosting improves the 

accuracy of a model.(150) Bagging, unlike boosting, uses an equal weight voting system, meaning base 

learners have an equal weighting in the output of the model. In boosting, each base learner is trained on 

data that a previous base learner has modified. As a result, base learners do not carry an equal weighting 

in the function of these models.(151) The most commonly used boosting algorithm is Adaboost.(152) 

Other boosting algorithms include gradient boosting and XGBoost.(153, 154) 

 

Random Forests are commonly used bagging algorithms that combine multiple DTs to produce an 

output. The RF model produces a final output from the prediction of the majority of decision trees.(155) 

A decision tree is a supervised learning algorithm, applicable to regression and classification models, 

that makes predictions by learning decision rules from labelled training data. Decision rules are applied 

repeatedly, finding the best split to arrange most, if not all, of the data into a hierarchical flowchart 

structured like a tree. Decision trees consist of nodes and branches representing all possible decisions 

and consequences (Figure 2.5).(156, 157) Unfortunately, decision trees have a high variance, meaning 

small variations in the data can have significant changes in the model.(158) They are also prone to 

overfitting, which occurs when a model performs too well on training data, resulting in a failure to 
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perform accurately on new data.(159) Random Forests overcome these issues by using multiple 

decision trees, producing highly accurate predictions on large datasets and reducing the risk of 

overfitting.(160) Random Forests can also be used to estimate missing data, as they can maintain high 

accuracy even when a large proportion of data is missing.(161) The applications of RFs can be seen in 

bioinformatics, medicine and economics.(162) 

 

Figure 2.5 Decision tree algorithm. The root node starts the algorithm by evaluating a variable that is best able 

to split the data. Decision nodes occur where another variable is evaluated however, they are not the final output. 

Terminal nodes are the final node in a tree and represent the potential outputs of the algorithm. 

 

 

 

 

2.5 AI Medical Image Analysis 

 

2.5.1.1 Background 

 

The medical field has seen a surge in the implementation of AI technology.(163) Various applications 

of AI have been seen across most specialities, including cardiology, respiratory, endocrinology, 

nephrology, gastroenterology, neurology, oncology, histopathology and medical imaging.(164) These 

applications can be categorised as either virtual or physical.(165) Virtual applications of AI can be seen 

in health management systems, disease detection, medical imaging and clinical trial design.(166-168) 

Physical applications of AI can be seen in robot-assisted surgery, nanobot drug delivery systems and 

care of the elderly or handicapped.(169-171) In 2004, ANNs were the most commonly used algorithms 
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in medicine and were used to determine the diagnosis and prognosis of multiple conditions. Specific 

tasks performed by ANNs include classification of diseases, analysis of radiological images, 

interpretation of data and prediction of patient survival and outcome.(172) Random Forestss and SVMs 

were also popular Machine Learning methods in the past. However, in recent years there has been a 

shift towards CNNs. Currently, CNNs and RFs are the most commonly used algorithms in the medical 

field.(173)  

 

With the disproportionate growth of medical imaging data in recent years, radiologists have had to adapt 

by increasing their productivity to unsustainable rates, making errors in judgement an inevitable 

occurrence.(174-176) The advent of AI in medical imaging has been much needed to meet this 

increasing workload without errors. The Machine Learning models in this field can be classified into 

two types: models requiring feature engineering and models not requiring feature engineering.(177) 

Since Deep Learning models are the only models that do not require feature engineering, they can be 

used synonymously with ‘models not requiring feature engineering’. Deep Learning models, 

specifically CNNs, are the most commonly used models in medical imaging.(178) This could be due to 

the reduced need for human intervention and the increasingly accurate predictions they can make. 

Furthermore, Deep Learning models have been found to perform better than Machine Learning models, 

which require feature engineering, and can match the performance of trained radiologists.(179-181) 

These advancements give machines the ability to interpret images, performing tasks such as: 

abnormality detection; disease classification; monitoring disease progression; and segmentation, which 

is the process of extracting desired structures from an image.(182-186) 

 

2.5.1.2 Medical Imaging 

 

The use of AI to interpret medical images can be seen in most specialities. The most common 

application of AI in chest radiographs and CT scans is the detection and classification of lung 

nodules.(187-190) Other applications include the detection of various pathologies on chest 

radiographs(191-194) and CT texture analysis associated with pulmonary diseases(195, 196). In brain 

imaging analysis, applications are mainly seen in magnetic resonance imaging (MRI) scans for the 

following tasks: classification of disorders such as Alzheimer’s disease, Huntington’s disease, mild 

cognitive impairment and schizophrenia(197-201); and detection, classification and segmentation of 

lesions and tumours(202-206). In ophthalmology, AI is used to detect abnormalities and diseases(207-

209) or segment ocular anatomy on colour fundus images(210, 211). In breast disease, AI applications 

involve the detection, classification and risk calculation of tumours in the breast; modalities include 

mammograms, tomosynthesis and ultrasounds scans.(212-219) There is a wide range of applications in 

cardiac imaging; however, left ventricular segmentation in an MRI scan is the most commonly 
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researched AI application.(220-224) Abdominal imaging applications primarily involve segmentation 

of the liver, kidneys, bladder and pancreas on CT scans.(225-230) Additionally, applications in the 

colon include the detection of polyps and colitis on CT scans or during colonoscopy.(231-235) Medical 

image analysis using AI is not limited to the specialities mentioned above and can be seen in many 

other specialties such as foetal medicine, dermatology and oncology.(236-241) 

 

2.5.1.3 Musculoskeletal Imaging 

 

The applications of AI in musculoskeletal imaging cover various modalities, including 

radiographs(242), CT scans(243), MRI scans(244) and dual-energy X-ray absorptiometry (DEXA) 

scans(245). There are multiple applications of AI in musculoskeletal imaging, from detecting 

abnormalities to diagnosing and classifying diseases. Studies assess an AI model’s performance by 

calculating the area under the curve (AUC) in addition to accuracy, specificity and sensitivity. The AUC 

is a summary of the Receiver Operator Characteristic (ROC) curve, which is an evaluation metric used 

to assess a model’s ability to distinguish between binary classes (0 or 1). The ROC curve is a probability 

curve that is created by plotting sensitivity against the specificity at various threshold values. In studies 

assessing AI models, the AUC is used to describe a model’s diagnostic accuracy and is limited to values 

between 0 and 1. An AUC of 1.0 indicates a perfect prediction and an AUC of 0.5 indicates an even 

chance of predicting correctly or incorrectly(246) (Table 2.2). 

 

 

Table 2.2 Relationship between AUC and Diagnostic Accuracy (246) 

AUC Diagnostic Accuracy 

0.9 - 1.0 Excellent 

0.8 - 0.9 Very good 

0.7 - 0.8 Good 

0.6 - 0.7 Sufficient 

0.5 - 0.6 Bad 

< 0.5 Test not useful 
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Fracture detection is an important research topic in AI, with a large publicly available dataset containing 

over 40,000 labelled images to accelerate the development of AI fracture detection tools.(247) Some 

AI models can detect and classify fractures in multiple anatomical regions such as the ankle, hand, hip, 

spine, wrist, ulna, femur and humerus, with AUCs ranging between 0.94-1.0 and accuracies ranging 

between 77% to 98%.(248) They can also detect fractures in the spine and is especially useful for 

reporting vertebral body compression fractures, which may go unnoticed by radiologists.(249, 250) 

Previously, a limitation of CNN-based fracture detection models was the non-transferable nature of its 

learning; each model must be retrained if analysing a new anatomical model.(251) However, recently, 

an ensemble of 10 CNNs has been used to detect fractures across 16 anatomical sites, with near perfect 

predictions (mean AUCs, >0.98) in over half of the fracture sites.(252)  

 

Osteoarthritis is a condition in which the implementation of AI would have incredibly beneficial 

consequences, given the rising incidence of osteoarthritis in England.(253) Currently, AI models can 

detect hip osteoarthritis on pelvic radiographs achieving an accuracy and precision of 90.2% and 84.7%, 

respectively.(254) They can also grade the severity of osteoarthritis on knee radiographs, according to 

the Kellgren-Lawrence grading scale, achieving a diagnostic accuracy equivalent to human 

experts.(255) The majority of research in this osteoarthritis focuses on the knee, while other locations, 

such as the hand, have not been explored as much.(256)  

 

Some AI models can also detect abnormalities in the knee joint, including meniscal tears and anterior 

cruciate ligament ruptures, achieving AUCs as high as 0.97 for meniscal tears and 0.89 and 0.94 for 

partial and complete ACL tears, respectively.(257, 258)   

 

In orthopaedic oncology, AI models have been developed to automatically detect lytic, sclerotic, and 

metastatic bone lesions in the spine and sclerotic lesions of the ribs. However, sensitivity values are 

lower than those in fraction detection models.(259-262) AI can also differentiate between soft tissue 

tumours, such as lipoma and liposarcoma, on MRI with near perfect predictions (AUC, 0.92) and good 

accuracy (0.88).(263) 

 

Multiple studies report on developing SVM models that can assess trabecular bone strength using 

trabecular bone microarchitecture on DEXA scans and MRIs.(264-266) These AI models will act as a 

framework to automate the assessment of osteoporosis.(267) Recently, AI-interpreted MRI scans have 

been used in conjunction with Fracture Risk Assessment Tool (FRAX) scores, bone mineral density 

and physical traits to predict osteoporotic bone fractures.(268)  
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Bone age has has also been predicted using AI. Some AI models have been developed that can predict 

skeletal maturity from paediatric hand radiographs to the accuracy levels on par with expert 

radiologists.(269) The ideal environment for AI to predict skeletal maturity is in combination with the 

interpretation of a radiologist, which has proven to produce more accurate results when compared to 

solo interpretations from either AI or radiologists.(270)  

 

2.5.1.4 Pelvic Imaging 

 

Currently, AI models are being built that can automatically detect specific landmarks on images, giving 

machines the ability to make accurate diagnoses and calculate radiological geometric measurements to 

assess the severity of the condition. Traditionally, the best Machine Learning model for automatic 

landmark detection is an RF model, which works exceptionally well for image segmentation.(271-274) 

RF models have been applied in the automatic segmentation of the pelvis and femur on pelvic 

radiographs with a success rate of 98%.(275) Recently, CNN models have also been used to detect 

landmarks in the hip and other anatomical regions.(276-282) Other hip-related tasks performed by AI 

models can include: severity grading and prediction of hip osteoarthritis(283, 284); detection of total 

hip replacement prosthesis designs(285); detection and classification of hip fractures(286); 

segmentation of the hip cartilage, proximal femur and pelvis(287-289); classification of hip dysplasia 

status(290). Only a few AI models have been developed to calculate measurements from the detected 

pelvic landmarks. 

 

Developmental dysplasia of the hip (DDH) is a common paediatric hip disorder in which AI has been 

implemented. Image analysis in DDH is an essential yet taxing task that orthopaedic surgeons 

undertake.(291, 292) Automating this process will significantly decrease the workload of surgeons and 

yield more consistent results. A CNN model, built using 10,000 pelvic radiographs, has been reported 

to detect pelvic landmarks and measure the AcI for the diagnosis of DDH in infants aged one month to 

six years.(293) Landmarks were detected by first identifying morphological features from the local 

neighbourhood around the landmark due to the difficulty in identifying landmarks on the misshapen 

pelvis in DDH. The three landmarks plotted on each hip were the tri-radiate cartilage centre, the 

acetabulum superolateral margin and the femoral head. Using these landmarks, Hilgenreiner’s line and 

Perkin’s line were drawn, and the AcI was calculated within an error of 5°. This CNN model achieved 

highly precise landmark detection scores and performed better than human experts on illness 

diagnosis.(293) Another CNN model, developed 11,473 pelvic radiographs, can diagnose DDH by 

automatically measuring Sharp’s angle.(294) Two landmarks on either hip were detected to calculate 

the measurements, including the lower edge of the teardrop and the outer edge of the acetabulum. The 

CNN model’s performance was similar to that of the surgeons’ but required considerably less time. The 
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Sharp’s angle calculated by the model was statistically similar to the surgeons’ calculations. The model 

also achieved a similar diagnostic sensitivity, specificity, and accuracy to that of the surgeons’.(294) 

Furthermore, a CNN model has been used to calculate the alpha and beta angles on ultrasound scans, 

with 93% and 85% of estimates being calculated with errors under 5 degrees, respectively.(295) 

 

Total hip arthroplasty (THA) is a surgical procedure that requires preoperative planning to identify 

various anatomical points and measurements.(296) A CNN model has been used to aid the preoperative 

THA planning by detecting different landmarks and measuring the centre-edge angle (CEA), NSA and 

abduction angle.(297) Seven hundred and seven cases were used to train the model. Eleven landmarks 

were identified on each hip, including the teardrop, upper acetabular rim, ischial tuberosity, lesser 

trochanter, greater trochanter, femoral head centre, lower acetabular rim, top acetabulum, femoral neck 

centre, upper femoral shaft axis and lower femoral shaft axis. Measurements were calculated in 0.3 

seconds.(297) 

 

A CNN model has also been used to identify the landmarks needed to calculate CEA, Tönnis angle, 

Sharp’s angle, and femoral head extrusion index (FHEI).(298) Of the 1260 images included in the study, 

1060 images were used to train the model, and 200 images were used to test the model. The five 

landmarks identified on each hip include the outermost point of the acetabulum, the innermost point of 

subchondral sclerosis, the inferior point of teardrop, the femoral head centre and a point on a circle 

plotted by a dedicated labelling software. Landmark performance was assessed using Percentage of 

Correct Key points (PCK), which shows the percentage of predicted landmarks that fall near the 

reference radiologists’ landmarks. The model produced a PCK range of 87%-100% in a 3mm radius 

region around the reference radiologists’ landmarks. The measurement calculations of the model and 

expert radiologists correlated well and were consistent between the two groups across all four 

measurements.(298) 

 

2.5.1.5 Cerebral Palsy Hips 

 

Children with CP often have pelvic radiographs to assess the severity of hip disease further. The 

interpretation of hip radiographs in CP involves taking manual measurements, such as RMP, which can 

be inconsistent. Little research has been conducted on the automatic interpretation of radiographs in 

CP. Only one article reports on the development of a model that can assess hip radiographs in CP by 

measuring RMP.(299) In this study, the CNN model was trained using a small dataset with limited 

labelled data. Sixty-seven radiographs were used for training and validation, and 55 radiographs for 

testing. However, a fine-tuning method using iterative weight updates was used to compensate for the 

limited dataset. The model detected four landmarks on each hip: the rostral aspect of the open triradiate 



 26 

cartilage through Hilgenreiner’s line (A1, A2), the lateral margins of the acetabulum through Perkin’s 

lines (B1, B2), and the lateral and medial edges of femoral head ossific nucleus perpendicular to 

Hilgenreiner’s line (C1, C2, D1, D2). Using these landmarks, the model is able to calculate the RMP and 

classify the hips in two ways. The hips were classified as both normal or displaced using a threshold 

RMP value of 30%, and as requiring surgery or not requiring surgery using a threshold RMP of 40%. 

The classification of hip displacement achieved a sensitivity and specificity of 87.8% and 93.4%, whilst 

the classification of requiring surgery achieved a sensitivity and specificity of 63.2% and 94.5%. The 

model also has good reliability achieving an intra-class correlation coefficient of 0.91 when comparing 

the model’s predicted RMP to that of the raters in the study. Measurements were calculated within 5 

seconds.(299)  

 

2.6 Summary 

 

Hip disease in CP is a generic term that can be used to describe hip displacement, hip migration, hip 

subluxation, hip dislocation and hip dysplasia. Hip subluxation is a likely occurrence in this disease and 

left untreated can result in hip dislocation. This can decrease the quality of life in children with CP and 

hinder them from carrying out daily activities. Various measurements have been used to assess the 

severity of hip displacement on a radiograph. A standard set of measurements does not exist, but RMP 

has been regarded as the gold standard measurement. This condition can be classified using the 

GMFCS, and CP hips can be classified using either Reimers’ classification system or the Melbourne 

Cerebral Palsy Hip Classification System. Management of CP hip disease can be split into non-surgical 

and surgical. The three different types of surgical procedures are preventative, reconstructive and 

salvage. 

 

Hip surveillance programmes were introduced to detect hip displacement early in the disease. This 

allows children with CP to have interventions earlier and prevent severe disease and dislocation. The 

first country to introduce a national hip surveillance programme was Sweden. Since then, multiple other 

countries have adopted a similar programme, including Scotland.  

 

The term ‘AI’ is a broad and describes any machine that can interpret data, learn from that data, and 

achieve a goal based on that knowledge. Machine Learning is a subset of AI that can be trained via 

supervised, unsupervised or reinforcement learning. Each type of learning may use different algorithms 

to create a Machine Learning model; however, algorithms are not exclusive to a specific learning 

method. Deep Learning is a subset of Machine Learning that utilises algorithms called ANNs, allowing 

models to achieve complex tasks without human interaction. CNNs are one type of Deep Learning 

model that can be used to analyse images. Ensemble learning is a strategy that can be used to combine 
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multiple Machine Learning models to increase accuracy and decrease bias. Random Forests are a 

commonly used ensemble model that utilises algorithms called DTs to produce highly accurate results 

even when data is missing. 

 

Artificial Intelligence models can interpret medical images by performing tasks such as detection, 

classification, monitoring and segmentation. Applications of AI can be seen in most specialties, 

including neurology, respiratory, ophthalmology, breast disease, cardiology and gastroenterology. In 

musculoskeletal imaging, AI has been used to: detect and classify fractures; detect and classify 

osteoarthritis; detect abnormalities in the knee joint; detect bone tumours; assess bone strength and 

osteoporosis; and predict skeletal maturity. AI has also been used to detect various landmarks on hip 

radiographs allowing models to calculate measurements such as AcI, Sharp’s angle, CEA, NSA, 

abduction angle, Tönnis angle and FHEI. Recently, a CNN model has been developed that can detect 

RMP. However, little research has been conducted regarding the automatic calculation of critical 

measurements in CP hips. Therefore, it is important to explore the development of different AI models 

to automate hip radiograph assessment and the calculation of measurements. In order to build a 

clinically useful model, the key measurements that need to be measured when assessing CP hip 

radiographs must first be identified. In the next chapter, a systematic review is performed to first form 

a comprehensive list of the measurements that are used to assess hip disease in CP. 
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Chapter 3: A systematic review of the radiographic 

measurements used in the assessment of cerebral palsy 

hips 
 

 

3.1 Introduction 

 

Multiple radiographic measurements can be used to assess the geometry of various aspects of the hip. 

In cerebral palsy (CP), these measurements can be used to help determine the severity of disease and 

guide decisions regarding treatment.(300) Currently, the evaluation of CP hip radiographs vary greatly 

across clinical practice and research, owing to the vast selection of radiographic measurements. This 

heterogeneity can restrict the effectiveness of comparisons that can be drawn between studies, increase 

the risk of reporting bias and decrease the relevance and effectiveness of research and clinical 

practice.(301) With the recent success of hip surveillance programmes(56, 98-102), there is an 

increased need for accurate methods of radiographic evaluation and an increased amount of data 

available for research. These issues highlight the need to establish a standard set of measurements for 

the reporting of CP hip radiographs. This will encourage uniformity in the assessment of CP hip 

radiographs and support collaboration between centres. Furthermore, a core set of measurements will 

guide the development of an artificial intelligence (AI) system for the automatic evaluation of hip 

radiographs by enabling researchers to focus on the most important measurements. 

 

In order to form this core measurement set (CMS), a comprehensive list of all the different radiographic 

measurements must first be identified from the literature, after which a Delphi study is conducted to 

select the most important measurements for the CMS. To date, one systematic review has assessed the 

validity and reliability of common radiological measurements used to assess CP hips, such as Reimers’ 

migration percentage (RMP), acetabular index (AcI), femoral neck-shaft angle (NSA), femoral head-

shaft angle (HSA) and femoral anteversion, using several imaging modalities including radiography, 

computerised tomography (CT), magnetic resonance imaging (MRI) and ultrasound.(302) However, no 

studies have identified a comprehensive list of the radiographic measurement reported in the literature. 

The aim of this chapter was to systematically identify these measurements for use in a Delphi survey, 

which will form a CMS. This CMS will then be used to inform the development of an artificial 

intelligence (AI) system which will automatically assess the hip radiographs in children with CP. 
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3.2 Methods 

 

A systematic literature review was performed per the Preferred Reporting Items for Systematic Reviews 

and Meta-Analyses (PRISMA) guidelines.(303) The following electronic databases were searched for 

published literature: PubMed, SCOPUS and Web of Science (Appendix 1). The search strategy is 

included in the supplementary material. Relevant papers published in the English language from 1st 

January 2011 onwards were searched. 

 

3.2.1 Eligibility criteria 

 

Studies were eligible if they met the following criteria: 

 

Inclusion criteria 

1. Studies focussing on hip disease in cerebral palsy. 

2. Studies using measurements to assess pelvic radiographs. 

3. Studies with a patient population: 

a. ≥ 50 study participants  

b. aged ≤ 18 years  

4. Case series, retrospective studies, cross-sectional studies, cohort studies or randomised control 

studies. 

5. Studies must be published in the English language. 

6. Published from 1st January 2011. 

 

Exclusion criteria 

1. Studies solely focussing on the diagnostic accuracy or reliability of a measurement. 

2. Studies without a full text article and only an abstract. 

 

3.2.2 Study selection process 

 

The review team consisted of three individuals: Mr Prince Josiah Sajanthan Joseph (PJSJ), MPhil 

student at the University of Liverpool; Miss Sundus Tahir Masudi (STM), Medical Student at the 

University of Liverpool; and Mr Mohammed Khattak (MK), Academic Clinical Fellow in Trauma and 

Orthopaedic Surgery at the University of Liverpool. Articles from the online databases were 

downloaded to Endnote X9, and duplicate articles were checked for and excluded.(304) The 

deduplicated articles were exported to Rayyan, and the title and abstract of each article were 

independently screened by two reviewers (PJSJ and STM) according to the inclusion/exclusion 
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criteria.(305) Disagreements between the reviewers were resolved via discussion. If a resolution was 

not reached, the article was included for full-text analysis. 

 

Articles remaining after the screening process were reviewed in the full-text format against the 

inclusion/exclusion criteria to confirm eligibility. Articles excluded through this process were not 

recorded, with reasons provided. Any disagreements during the full-text analysis were resolved by 

consulting the third reviewer (MK). 

 

3.2.3 Data extraction 

 

The following data fields were independently extracted from each article by two authors (PJSJ and 

STM): title, author, year, journal of publication, location, study type, population size, number of hips 

studied, age, sex, duration of follow-up, measurement used, time point of measurement, verbatim 

definition of measurement, use of visual explanations for measurements and primary intervention. A 

study was considered to have defined a measurement if it provided a definition of the measurement or 

a visual explanation. 

 

3.2.4 Quality assessment and risk of bias 

 

The purpose of this systematic review was to identify all the radiographic measurements reported in the 

literature irrespective of study quality; therefore, an appraisal of the methodological quality of the 

studies or risk of bias assessment was not undertaken. Although this review was submitted to 

PROSPERO, it was deemed out of scope and has therefore not been registered on their database. 

 

3.3 Results 

 

3.3.1 Literature Search Results 

 

The initial literature search identified a total of 763 articles. After removing duplicates, 378 abstracts 

were screened using the eligibility criteria, after which 60 articles were further assessed for eligibility 

using the full-text. Six of the 60 papers were immediately excluded as the full-text article was not 

accessible (Appendix 2). In total, 47 of the 60 articles remained for the final analysis (Appendix 3). The 

PRISMA flow diagram for the selection process is presented in Figure 3.1. 
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Figure 3.1 PRISMA flow diagram 
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3.3.2 Study characteristics  

 

There were 29 retrospective studies, nine prospective studies and nine cross-sectional studies. The most 

common intervention being studied was surgery (n=22). Other primary interventions studied include 

hip surveillance programmes (n=18) and physiotherapy (n=1).  

 

Over half of the studies were conducted in Europe (n=25); however, studies were also completed in 

Asia (n=9), North America (n=9), Australia (n=3) and South America (n=1). 

 

The number of CP patients included per study ranged between 50 and 1171 patients. The average age 

of the study population ranged between 2.0 and 14.6 years. Most studies had a higher proportion of 

males ranging from 44% to 75% of the patient population. The average duration of follow-up ranged 

between 1.2 and 12.8 years. 

 

Of the studies where surgery was the primary intervention, 95% took radiographic assessments before 

and after surgery (n=21), with one study also taking radiographic images intraoperatively. Of the studies 

with hip surveillance programmes as the primary intervention, 50% of studies analysed the radiograph 

taken at the beginning of the programme or the latest radiograph available at the time of the study (n=9). 

The full list of study details and patient characteristics can be found for each study in Appendix 4. 

 

3.3.3 Measurements 

 

Fifteen distinct measurements were identified from the 105 reported measurements obtained across 47 

studies. The median number of measurements reported per study was two (range=1-5, IQR=2). 

Appendix 5 lists all the measurements reported for each study. RMP (n=44, 94%) was the most common 

measurement. Other reported measurements include NSA (n=16, 34%), AcI (n=13, 28%), HSA (n=11, 

23%), pelvic obliquity (PO) (n=8, 17%)*, centre edge angle (CEA) (n=7, 15%), Sharp’s angle or 

acetabular angle (AA) (n=4, 8.5%), acetabular depth ratio (ADR) (n=3, 6.4%), Mose hip ratio (MHR) 

(n=1, 2.1%), Shenton's line (SL) (n=1, 2.1%),  epiphyseal shaft angle (ESA) (n=1, 2.1%), pelvic femoral 

angle (PFA) (n=1, 2.1%), pelvic adjusted migration percentage (PAMP) (n=1, 2.1%), medialization 

index (MeI) (n=1, 2.1%), and Hilgenreiner epiphyseal angle (HEA) (n=1, 2.1%). The list of identified 

measurements are presented in Figure 3.2. 
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Figure 3.2 Total number of studies per measurement. Forty-seven studies were reviewed, identifying 15 distinct 

measurements. RMP was the most common measurement. 

 

 

 

None of the identified measurements were consistently reported across every study. Measurements were 

undefined in 60% of studies (n=28). Definitions of measurements were homogeneous across all studies 

that provided one (Appendix 5). 

 

 

3.4 Discussion 

 

This systematic review is the first to identify all the different measurements that have been reported to 

assess hip radiographs in children with CP in the last ten years. Across the 47 included studies, 15 

distinct measurements have been identified. Of these 15 measurements, RMP is the most common, 

appearing in 44 studies (96%). For comparison, this is 28 more studies (60%) than the second most 

common measurement, highlighting the dominant use of RMP over other radiographic measurements. 

This suggests a widespread agreement on the use of RMP; however, there is little agreement beyond 

this. 
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3.4.1 Radiographic Measurements 

 

RMP has been referred to as the gold standard for the assessment of hip displacement in CP.(53, 54, 

306) The results from this study support this opinion with RMP appearing in the majority of included 

studies. Furthermore, Shore et al. found RMP to be the most reliable measure when compared to AcI 

and AA, obtaining excellent inter-and intra-rater reliability.(52) Craven et al. found RMP to be high 

reliable when measured in young preschool-aged children.(53) Additionally, studies have shown that 

rater experience has no effect on the calculation of RMP, further supporting its reliability and 

repeatability.(307, 308) Thus, it can be concluded that RMP is a robust measurement that is widely used 

in the assessment of CP hip disease and it is highly likely to be included in the CMS.  

 

Other potential candidates for the CMS include NSA, AcI and HSA. These were the only other 

measurements, beyond RMP, that were included in over 20% of studies. Although NSA, AcI and HSA 

are reported in significantly fewer studies than RMP, they assess different aspects and deformities of 

the hip in comparison to RMP and can therefore be used alongside RMP as supplement measurements. 

NSA or HSA can be beneficial when coxa valga deformities are present,(46, 50) whilst AcI can be 

useful when deciding whether or not to surgically reconstruct the acetabulum in the presence of hip 

dysplasia.(2, 309) It has been reported that AcI is insufficient at predicting hip displacement(310) and 

has fewer studies researching it as a primary objective in the context of CP hips when compared to NSA 

and HSA. This suggests that AcI is of lesser importance and may therefore be the least likely 

measurement to be included in CMS from the potential candidates identified. Lee et al. found that 

correlation with RMP was higher in NSA than HSA, and concluded that NSA is a more clinically 

relevant measurement in the assessment of proximal femur deformities in CP when compared to 

HSA.(311) This is finding is reflective of how widespread the reporting of these two measurements are, 

with NSA appearing in five more studies (11%) than HSA. These findings suggest that NSA is more 

likely to be included in the CMS than HSA.  

 

Head-Shaft Angle has some controversy relating to its prognostic value in hip displacement and studies 

have reported conflicting results. Hermanson et al. report that a high HSA is a risk factor for hip 

displacement in children with CP and developed a risk score called the Uppföljningsprogram för 

cerebral pares (CPUP) Hip Score, which predicts the risk of hip displacement in children with CP to a 

high discriminatory accuracy.(51, 312) However, Chougule et al. did not find a correlation between 

HSA and RMP and concluded that the use of HSA in routine x-rays does not add any value.(306) 

Terjesen et al. report that HSA is not a predictor of hip displacement in children under five years of age; 

however, after the age of five, an association between HSA and hip displacement can be seen.(313) 

Conversely, van der List et al. report that HSA is a valuable predictor of hip displacement before the 
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age of four but not after.(314) Head-Shaft Angle is a well-researched measurement; however, its 

importance in the assessment of CP hip disease remains unresolved.  

 

It seems unlikely that measurements reported in fewer studies (i.e. under 20%) will be included in the 

CMS, as this suggests that researchers do not regard these measurements with high importance. This 

may be especially true for measurements that were only reported in one study, such as MHR, SL, ESA, 

PFA, PAMP, MeI and HEA.  

 

3.4.2 Rationale for eligibility criteria 

 

An inclusion criterion of 50 or more participants was established to ensure that only large studies were 

included. This ensured that small studies focusing on newly proposed or unvalidated measurements 

were not included and limited the number papers that had to be screened, allowing this systematic 

review to be completed within the project timeline. An age range of ≤ 18 years was established due to 

the variation in the age of inclusion across the literature. A systematic review assessing the effectiveness 

of hip surveillance programmes and factors associated with the progression of hip displacement, 

reported that most studies focussed on children and adolescents up to 18 years, half of the studies 

focussed on younger children under 12 years, and a few studies focussed on young adults over 18 

years.(101) Therefore, having an upper limit of 18 years ensured that the review broadly encompassed 

studies of “children” and increases the generalisability of the CMS. Additionally, only papers published 

in the English language were included as the research team did not have a reliable means to accurately 

translate articles written in other languages and foreign terminology for the measurements may lead to 

ambiguity regarding the identity of those measurements. Furthermore, only articles published in the last 

10 years were included, as the aim of this systematic review was the identify all the different 

measurements that are currently used. 

 

3.4.3 Strengths and limitations 

 

Strengths of this review include a broad search strategy used to identify all relevant studies, the use of 

two reviewers during the study selection and data extraction process, reducing human error and rater 

bias. However, limitations arise from the restricted full-text search and the eligibility criteria. Only 

libraries accessible through the University of Liverpool were used to gain access to full-text articles; 

other methods such as inter-library loans were not used, limiting the number of full-text articles 

analysed in the review. Furthermore, the inclusion criteria included a participant number that was 50 or 

more and required articles to be published in the English language. These two criteria exclude a vast 

number of articles that may have been included if there was a longer time frame to complete the review 
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and a means to accurately translate non-English language studies. However, although this limitation 

may affect the extent of the measurements identified in this review, it is unlikely to affect the formation 

of the CMS as important measurements are likely to have been used in studies with 50 or more 

participants published in the last 10 years. Additionally, a Delphi process has been planned to identify 

important measurements that have not been established through this systematic review.   

 

Another limitation of this study arises from the uncertainty regarding the exact identity of certain 

measurements from studies which had a poor quality of reporting. A lack of clear definitions or visual 

explanations to accompany a reported measurement restricted the ability of the study authors to 

consistently identify distinct measurements across all studies. Therefore, assumptions were made based 

on the objectives of the study and the application of the measurement in question in order to determine 

undefined and poorly defined measurements as either identical or distinct from other measurements. 

Furthermore, the citation given for each measurement was compared between studies to identify 

duplicate measurements with different names. If citations did not match, the references of the cited 

paper were searched further until a well-informed decision could be made. These issues made it difficult 

to resolve if poorly reported measurements were duplicates of other measurements or separate 

measurements with subtle variations (i.e. HSA and ESA). Of the 15 identified measurements, only RMP 

had consistent and clear definitions and citations. Beyond this, neither a consistent definition nor a 

consistent citation was used for a measurement. To avoid exclusion of any measurements, poorly 

defined measurements were treated as separate measurements and will be included in the Delphi 

survey.  

 

Future studies should assess the quality of reporting and risk of bias to highlight areas for improvement 

when reporting radiographic measurements of the hip in CP. Another limitation of this study arises 

from the selection of articles published only in the English language, which could account for why most 

studies were conducted in Europe and North America.   

 

3.4.4 Recommendation 

 

A formal Delphi study should be conducted to determine the opinions of orthopaedic surgeons and 

physiotherapists on the most important measurements in the assessment of CP hip disease, following 

the COMET (Core Outcome Measures in Effectiveness Trials) guidelines(315). This systematic review 

has identified 15 candidates to form the CMS.  
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3.5 Conclusion 

 

This is the only systematic review to identify and summarise all the different measurements used to 

assess hip radiographs in children with CP. Reimers’ Migration Percentage is the most common 

measurement and is likely to be in the CMS. NSA, AcI and HSA are also reported often and are good 

candidates for the core set. A Delphi study is needed to create a CMS, which will inform the 

development of an AI system for the automatic analysis of CP hips. This chapter has achieved the initial 

objectives to systematically identify all the radiographic measurements used to assess hip disease in 

children with CP. 
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Chapter 4: Development of a Core Measurements Set 

for the assessment of Cerebral Palsy Hips: a Delphi 

study 
 

 

4.1 Introduction 

 

The radiographic assessment of cerebral palsy (CP) hip disease involves using measurements to help 

quantify the severity of the condition. In the previous chapter, 15 measurements were identified in the 

literature. Of these measurements, Reimers’ Migration Percentage (RMP) is the most commonly 

reported measurement appearing in over 90% of studies. It has also been referred to as the 'gold 

standard' measurement for the radiographic assessment of hip displacement and is embedded in the 

radiograph protocol of every hip surveillance programme.(54, 56, 99-102, 316) However, the reporting 

of RMP is not standardised across all studies, and the recording of additional measurements alongside 

RMP differs between studies and surveillance programmes. A core set of measurements for the 

standardised assessment of CP hip radiographs in research and clinical practice has not yet been 

developed. Without a core measurement set (CMS), comparisons cannot be readily made between 

studies or surveillance programmes.  

 

The term ‘core measurement set' has been coined from the term 'core outcome set' (COS). The Core 

Outcome Measures in Effectiveness Trials (COMET) handbook has defined a COS as "an agreed 

standardised collection of outcomes which should be measured and reported, as a minimum, in all trials 

for a specific clinical area".(315) A CMS serves a similar purpose, consisting of measurements as 

opposed to outcomes; however, its application can be extended to clinical practice and trials due to its 

diagnostic nature. Therefore, a CMS can be defined as an agreed standardised collection of 

measurements which should be recorded, as a minimum, in all clinical trials and assessments for a 

specific clinical area. The formation of a CMS will resolve the heterogeneity in the reporting of 

measurements whilst ensuring the inclusion of essential measurements.  

 

This chapter aims to form a CMS for the assessment of hip radiographs in children with CP, which can 

serve as a minimum requirement in clinical studies and hip surveillance programmes. A CMS can 

facilitate multicentre research to be conducted and uniformity in the monitoring of CP children. The 

CMS can also serve as a framework for developing software that automatically analyses hip radiographs 

in children with CP. Building this software around the most important measurements will improve its 

clinical impact and facilitate implementation into hip surveillance programmes.  
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4.2 Methods 

 

The Delphi method was used to form the CMS.(317) This consists of two stages: (1) a two-round Delphi 

survey to score the identified measurements based on importance; and (2) a final consensus meeting to 

discuss any remaining measurements that have not reached consensus and form the CMS. The Delphi 

survey was created using the 15 measurements identified in the previous chapter, including RMP, 

femoral Neck-Shaft Angle (NSA), acetabular index (AcI), femoral head-shaft angle (HSA), pelvic 

obliquity (PO)*, centre-edge angle (CEA), Sharp's angle or acetabular angle (AA), acetabular depth 

ratio (ADR), Mose hip ratio (MHR), Shenton's line (SL),  epiphyseal shaft angle (ESA), pelvic femoral 

angle (PFA), pelvic adjusted migration percentage (PAMP), medialization index (MeI) and 

Hilgenreiner epiphyseal angle (HEA). The study was conducted and supervised by a dedicated steering 

committee consisting of: Mr Prince Josiah Sajanthan Joseph (PJSJ), MPhil student at University of 

Liverpool; Mr Mohammed Khattak (MK), Academic Clinical Fellow at the University of Liverpool; 

and Professor Daniel Perry (DP), Professor & Honorary Consultant Orthopaedic Surgeon at Alder Hey 

Children's Hospital and University of Liverpool.  

 

4.2.1 Participants 

 

The Delphi study was conducted with orthopaedic surgeons and physiotherapists with a specialist 

interest in CP. Participants were eligible to take part from any country, and they were recruited via the 

investigators' networks and newsletters disseminated by the British Society for Children's Orthopaedic 

Surgery (BSCOS).(318) Participants were only allowed to take part in round two of the Delphi survey 

if they participated in round one. Invitations for round two were sent via personalised emails to 

participants from round one. Eligible participants were asked to complete an online Delphi 

questionnaire using Microsoft Forms (Microsoft, Redmond, USA) (Appendices 6 and 7). Twenty 

participants were sought to take part as a minimum. PJSJ was responsible for sending out invitations 

and creating the online Delphi questionnaire, which was reviewed by MK and DP. 

 

4.2.2 Delphi process and Definitions 

 

4.2.2.1 Overview 

 

Participants were given four weeks to complete each round. Participants who failed to complete the 

online questionnaire by the end of week two were sent a personalised follow-up email, if possible, to 

reduce attrition rates. Another personalised email was sent at the end of week three if the participant 
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had still not completed the questionnaire. Failure to complete the questionnaire during the four-week 

window resulted in exclusion from participation in further rounds. Follow-up emails were sent by PJSJ. 

 

Each measurement was scored in the questionnaire using the Grading of Recommendations, 

Assessment, Development and Evaluations approach.(319) A 9-point Likert scale was used to score the 

listed measurements, with 1–3 considered 'not important', 4–6 considered 'important but not critical', 

and 7–9 considered 'critically important'. 

 

4.2.2.2 Definition of Consensus 

 

Consensus definitions were based on the '70/15%' consensus framework described in the COMET 

handbook: version 1.0.(315) For a measurement to be included in the CMS, the majority of participants 

(>70%) should score the measurement in question as being 'critically important', with only a small 

minority (< 15%) considering it to be 'not important'. For a measurement to be excluded from the CMS, 

the majority of participants (> 70%) should score the measurement in question as ‘'not important', with 

only a small minority (<15%) considering it to be 'critically important'. Any measurements that did not 

reach the consensus threshold were considered equivocal and were discussed in a final consensus 

meeting. The threshold for consensus was predefined to avoid bias once the responses have been 

collected. 

 

4.2.2.3 Delphi Round One 

 

Participants were asked to score the list of measurements followed by an optional free-text section 

where any additional measurements not currently listed could be suggested for round two. Results from 

round one were checked for measurements that had reached consensus for exclusion from round two. 

Additional measurements that were suggested by participants were assessed by the steering committee 

(PJSJ and DP) for any duplicate measurements that were synonymous for measurements that were 

already included in the survey. 

 

4.2.2.4 Delphi Round Two 

 

Participants were presented with anonymised data from round one, including the number of 

respondents, distribution of scores for all listed measurements and measurements that had reached 

consensus in round one. The remaining equivocal measurements were rescored acknowledging the 

information from round one, and newly added measurements were scored for the first time. Results 

from round two were analysed to identify measurements that had reached consensus. Each measurement 



 43 

from both rounds was classed as 'consensus in', 'consensus out' or 'no consensus' per the consensus 

criteria. 

 

4.2.2.5 Consensus Meeting 

 

An online consensus setting exercise, chaired by PJSJ, was completed by the Consensus Focus Group, 

consisting of participants from the Delphi survey with expertise in CP hip disease and the steering 

committee (PJSJ and DP). The Consensus Focus Group formed a final CMS following a discussion 

regarding the results from round two with subsequent voting. A Nominal Group Technique was used 

to discuss the equivocal measurements, allowing individuals in the Consensus Focus Group to discuss 

and justify opposing views to make an informed decision. 

 

4.3 Results 

 

4.3.1 Participant Characteristics 

 

The 15 measurements identified in the systematic review were presented to 22 participants in the first 

round of the Delphi process, including 21 orthopaedic surgeons (95%) and one physiotherapist (4.5%). 

Participation came from five countries, including the United Kingdom (UK) (n=17, 77%), United States 

of America (USA) (N=2, 9.1%), Netherlands (n=1, 4.5%), India (n=1, 4.5%) and Thailand (n=1, 4.5%). 

Of these 22 participants, one participant (4.5%) did not also take part in the second round of the Delphi 

process. Participation in round two was also received from five countries, including the UK (n=17, 

81%), USA (N=1, 4.8%), Netherlands (n=1, 4.8%), India (n=1, 4.8%) and Thailand (n=1, 4.8%). 

Twenty orthopaedic surgeons (95%) and one physiotherapist (4.8%) took part in the second round. 

Table 4.1 shows the number of participants taking part from different participant groups. The median 

time for survey completion was 2 minutes and 46 seconds in round one and 4 minutes and 19 seconds 

in round two.  

 

Table 4.1 Number of participants taking part in the Delphi survey. 

Participants group Round 1 Round 2 

Orthopaedic surgeons 21 20 

Physiotherapists 1 1 

UK 17 17 

USA 2 1 

Netherlands 1 1 

India 1 1 

Thailand 1 1 
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4.3.2 Round One and Two 

 

Figure 4.1 presents a summary of the Delphi responses received over the two rounds. At the end of 

round one, two of the 15 measurements had reached consensus. RMP was voted to be included in the 

CMS, and MHR was voted to be excluded from the CMS. Additionally, two new measurements were 

suggested for at the end of round one: Sourcil Tönnis angle (STA) and Femoral head shape/congruency 

(FHS). None of the suggested measurements were duplicates of an already included measurement; 

therefore, both STA and FHS were included in round two. Furthermore, it was suggested by one of the 

participants that pelvic obliquity, which was initially included in this study, should excluded as it is not 

used to measure hip migration in CP and is only considered if the hips are not in the correct position in 

the radiograph. The steering committee agreed with this opinion; therefore, pelvic obliquity was 

prospectively excluded from future rounds of the Delphi.  

 

In round two, 14 measurements were presented, excluding the two measurements that reached 

consensus and the one measurement that was removed upon review, and including the two newly 

suggested measurements. Of these 14 measurements, five measurements reached consensus. 

Measurements that reached consensus to be excluded from the CMS include CEA, ADR, HEA, PFA 

and MeI, and no measurements reached consensus for inclusion in the CMS. After the two rounds of 

the Delphi process, one measurement was voted for inclusion in the CMS, six measurements were voted 

out of the CMS, and nine measurements did not reach consensus. The full set of anonymised responses 

for each round are presented in Appendices 8 and 9. 

 

4.3.3 Final Consensus Meeting 

 

The nine remaining equivocal measurements were discussed in the final consensus meeting. Of these 

nine measurements, one measurement was included in the CMS, and all other measurements were 

excluded from the CMS. The consensus group decided that HSA should be included in the CMS. There 

was a debate between HSA and NSA, as both were broadly identified to be important throughout the 

Delphi study. However, NSA is known to be unreliable and harder to reproduce, given the influence of 

hip rotation.(320) Furthermore, HSA has greater utility as  part of the risk calculation in hip 

displacement using the Uppföljningsprogram för cerebral pares (CPUP) Hip Score.(51) Neck-Shaft 

Angle and AcI were discussed as potential candidates for inclusion but were eventually voted out of the 

CMS. NSA was eventually excluded as it was considered unreliable due to the significant influence hip 

rotation has on the accuracy of the measurement. Although, AcI was recognised as a useful 

measurement, it was ultimately excluded from the CMS as it was not considered critically important. 
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The final consensus group reasoned that when any signs of dysplasia are present, surgeons are likely to 

operate on the acetabulum without needing to quantify the severity of acetabular coverage using AcI. 

Therefore, it was concluded that AcI is not a necessary measurement, but it would be advantageous to 

build an AI system measuring AcI for future research. Overall, of the nine equivocal measurements, 

HSA was the only measurement that was included in the CMS. At the end of the consensus meeting, 

the final CMS consisted of RMP and HSA (Figure 4.2).  

 

Figure 4.1 Summary of Delphi responses over two rounds. A total of 16 measurements were scored over the two 

rounds with RMP reaching 'consensus in' and MHR, CEA, ADR, HEA, PFA and MeI reaching 'consensus out'. 
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4.4 Discussion 

 

This is the first study to identify a set of core measurements for reporting in studies on hip disease in 

CP. Most participants were orthopaedic surgeons, and the country with the most representation was the 

UK. Sixteen measurements were presented over the two rounds, and seven measurements reached 

consensus. Of these seven measurements, RMP was voted in, and MHR, CEA, ADR, HEA, PFA and 

Figure 4.2 Overview of the development of the CMS 



 47 

MeI were voted out. Following the final consensus meeting, HSA was added to the CMS, and all other 

measurements were voted out. The final CMS consists of RMP and HSA. 

 

4.4.1 Interpretation of Results 

 

Reimers’ Migration Percentage is a commonly used measurement that has been considered the 'gold 

standard' in the radiographic assessment of hip displacement.(54) Furthermore, it reached 'consensus 

in' during the first round of the Delphi study, with 95% of participants considering it 'critically 

important' with a score of nine out of nine. Consequently, this measurement will likely be widely 

accepted in future projects. HSA was the fourth most commonly reported measurement identified in 

the systematic review. As outlined in the previous chapter, there is some controversy regarding 

association the association between HSA and hip displacement.(306, 313, 314, 321) The Delphi 

responses reflect this disagreement reaching ‘no consensus’ in both rounds. However, despite the debate 

surrounding HSA, the ability to successfully calculate a risk score for hip displacement using HSA 

suggests there must be some correlation.(51) The CPUP hip score has also been assessed in multiple 

populations, achieving a high discriminatory accuracy indicating its ability to differentiate between 

individuals with different levels of risk for hip displacement, further supporting its significance.(51, 

322) In line with this opinion, HSA was deemed ‘critically important' by the Consensus Focus Group 

to warrant inclusion in the CMS. Head-Shaft Angle is the only other measurement needed, in addition 

to RMP, to calculate the CPUP Hip Score, which is used to predict the probability of developing hip 

displacement in the next five years in children with an RMP of >40%.(51) Furthermore, the measuring 

of HSA in addition to RMP is already embedded in the protocols of a few national hip surveillance 

programmes such as CPUP and CPIPS.(11, 56) Given the ability to successfully calculate a risk score 

using RMP and HSA, the addition of HSA is a trend that other hip surveillance programmes are likely 

to adopt, making it a natural addition to the CMS. 

 

Other commonly reported measurements identified in the systematic review include NSA and AcI. 

Neither of these measurements reached consensus after the two rounds of the Delphi; however, they 

were both very close to being voted in during the second round, with 67% of participants rating them 

as 'critically important' measurements. In the previous chapter, NSA and AcI were the second and third 

most commonly reported measurements, respectively. Despite these measurements being reported more 

often than HSA, they did not make the CMS. 

 

Neck-Shaft Angle requires both hips to be internally rotated to get an accurate measurement. An 

insufficiently rotated hip joint will result in an inaccurate measurement.(323) Although some 

mathematical solutions have been developed to help correct this rotational effect, the correctional 
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outcome cannot be reliably verified.(324) In addition to the effect of rotation on NSA, there are other 

shortcomings that further support its exclusion from the CMS. Boese et al. found a high variance in the 

reporting of NSA in their systematic review and identified inconsistent methods of measurement as the 

main issue for this.(324) An inconsistently reported measurement may not successfully facilitate 

comparisons between studies or achieve true uniformity in the reporting of CP hip radiographs. 

Furthermore, Foroohar et al. stated a preference for HSA over NSA, suggesting that NSA may 

underestimate the deformity of the proximal femur given the valgus position of the femoral head in 

comparison to the femoral neck.(321)  

 

The significance of AcI has been challenged in multiple studies and its exclusion from the CMS is 

expected. Hägglund et al. report that radiographic signs of acetabular dysplasia are usually only detected 

in the later stages of hip displacement, which suggests that AcI is not a good predictor of hip disease in 

CP.(325) Terjesen et al. corroborate these results but found AcI to be a significant prognostic factor in 

hip displacement.(31) Despite this, Terjesen et al. suggest only using AcI as a supplement to RMP and 

also note that AcI can be extremely hard to measure accurately in children with fixed flexion deformities 

that cause anterior pelvic tilts.(31) DiFazio et al. and Spencer et al. also acknowledge the difficulties of 

accurately measuring AcI in children with CP.(326, 327)  

 

Four of the six measurements that were voted out after the Delphi survey, namely MHR, HEA, PFA 

and MI, were also the least commonly reported measurements in the systematic review, with only one 

study reporting each of these measurements. RMP was the only measurement that was included after 

the two rounds of the Delphi survey and was the most commonly reported measurement in the 

systematic review appearing in over 90% of studies. This suggests an association between how 

frequently a measurement is reported and its importance in the assessment of CP hips. Less commonly 

reported measurements are less important than more commonly reported measurements, and vice versa. 

 

The vast majority of participants were orthopaedic surgeons, with only one physiotherapist taking part. 

This dominance is likely due to the relative predominance of orthopaedic surgeons carrying out the 

interpretation of CP hip radiographs. Physiotherapists are usually more involved in the physical 

examination of CP children; however, in recent years, their role has changed, with an increasing 

involvement in the radiological aspect of a child's examination.(11) 

 

4.4.2 Implications for Research and Clinical Practice 

 

This CMS will directly inform the development of an automated system for measuring hip disease in 

children with CP. The automatic calculation of critical measurements and a hip displacement risk score 
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will be especially useful in surveillance programmes. The automatic calculation of risk scores for hip 

displacement will enable children to be monitored without needing input from clinicians and make 

consistent and accurate calculations. Thus far, AI radiograph analysis software has not been developed 

using a CMS. This study provides a framework ensuring the inclusion of critical measurements and 

landmarks for clinically impactful AI software. 

 

The formation of a CMS will standardise the evaluation of hip radiographs in CP children. This will 

improve the quality of reporting and allow for the calculation of risk scores for hip displacement. A 

standardised CMS also allows for comparisons to be drawn between studies. Additionally, the CMS 

can serve as a minimum set of measurements to be reported in hip surveillance programmes. This way, 

research can be conducted by combining and comparing data from different programmes.  

 

4.4.3 Strengths and Limitations 

 

This study had very high retention rates, with only one participant from round one not taking part in 

round two. This is likely due to the online format of the survey and the small amount of time required 

to complete the survey allowing individuals to participate in a time-efficient and convenient manner. 

Hall et al. have found personalised email initiations to be the most effective method for recruitment and 

retention, and report on the negative effects of a three-round Delphi study on retention.(328) This study 

only consisted of two rounds and used personalised emails to recruit and remind participants to take 

part, further explaining the high retention rates.  

 

Moreover, this study could only be conducted with one stakeholder group; therefore, it is free from 

attrition bias. Although orthopaedic surgeons and physiotherapists have different roles in the care of 

CP patients, their perspectives on the importance of different radiographic measurements are not 

distinct, as both roles have the same objectives when assessing CP hip radiographs. Therefore, they 

come under the same stakeholder group preventing the possibility of an attrition bias. Contrary to the 

COMET guidelines, patient involvement was not appropriate in this study as this Delphi process 

assessed the diagnostic importance of geometric measurements as opposed to clinical trial-related 

outcomes assessing the effectiveness or safety of interventions, procedures or treatments that are 

directly relevant to patients.(315) 

 

As highlighted in the previous chapter, measurements are not always reported to a high quality in the 

literature, lacking sufficient definitions and references. This has resulted in the reporting of multiple 

measurements that may or may not be synonymous with each other. Additionally, some of the listed 

measurements may not be well-known, with seven of the identified radiographic measurements only 
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appearing in one study. The use of multiple terms to describe the same measurement and the 

identification of less commonly known measurements may have resulted in some confusion when the 

measurements were scored during the Delphi survey. This is a limitation of this study. If an unfamiliar 

measurement was not researched thoroughly by a participant, the importance of that measurement may 

have been underestimated. However, if a measurement was unfamiliar to most participants, it is unlikely 

for that measurements to be of significant value, reducing the effect of this limitation.  

 

Another limitation includes the generalisability of the views of the Consensus Focus Group to the rest 

of the Delphi participants. Since the Consensus Focus Group consisted of fewer individuals than the 

total number of participants, the opinions and conclusions reached in the final consensus meeting may 

not represent the other participants. Other limitations exist as a result of the online format of the Delphi 

survey and the lack of support for multiple languages. This study is biased towards English-speaking 

individuals with access to a computer with an internet connection. 

 

4.5 Conclusion 

 

In conclusion, this chapter has established a CMS for the reporting of radiographic measurements in 

the assessment of hip disease in children with CP. This CMS consists of two measurements: RMP and 

HSA. These measurements will directly inform the development of AI software for the automatic 

analysis of hip radiographs in children with CP and help standardise the evaluation of hip radiographs 

in CP across clinical practice and research. This chapter has achieved the initial objective to identify 

the most important measurements needed to assess hip disease in CP and form a CMS via a Delphi 

study. 
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Chapter 5: An automated system for the evaluation of 

pelvic radiographs in cerebral palsy: a preliminary 

study 
 

 

5.1 Introduction 

 

With the introduction of artificial intelligence (AI) in medical image analysis, computers are able to 

automate the diagnosis and classification of diseases, enabling clinicians to work efficiently and 

effectively.(329) However, the automatic analysis of hip radiographs in children with cerebral palsy 

(CP) has not been well studied. The manual calculation of radiographic measurements is a frequently 

performed task that would benefit from becoming automated given the growing number of hip 

surveillance programmes.(99-102, 316) 

 

To date, only one study has looked into the automatic assessment of hip displacement in CP.(299) Pham 

et al. used a transfer learning approach on two deep learning models to measure Reimers’ migration 

percentage on anteroposterior pelvis radiographs. More specifically, they used a fine-tuning approach 

in which two pre-trained convolutional neural networks, containing weights and biases specific to 

different datasets, were adjusted using a supervised learning to create a new model. One of the pre-

trained models was tuned to detect eight reference landmarks, and the other pre-trained model was used 

to obtain more precise landmark coordinates.(299) As of yet, no research has been published 

investigating the use of a machine learning model that has been trained from scratch on datasets 

consisting of pelvic radiographs from children with CP. Although unsupervised learning models are the 

more popular choice in medical image analysis(178), this technique requires vast amounts of data. 

Therefore, supervised learning models are more feasible when building AI models from scratch and 

working with smaller datasets. 

 

Random Forest Regression-Voting is a technique that has been used in supervised ensemble learning 

models to outline and segment skeletal structures on radiographs.(273) These outlines can then be used 

to perform shape analysis, including: (1) the construction of statistical shape models(330), which 

describe a range of anatomical variations from a mean bone shape for a given population, or (2) the 

automatic calculation of geometric measurements(331). The Random Forest Regression-Voting 

technique has been used to outline bone contours and landmarks in various structures, including the 

skull(332), teeth(333), hand(334), proximal femur(335), knee(336) and foot(337). It has also been used 

to calculate conventional geometric measurements such as: head diameter, neck width, shaft width and 
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neck-shaft angle from hip radiographs(331); hip–knee–ankle angle from knee radiographs(338); and 

calcaneal tilt, cuboid height and Meary's angle from foot radiographs(337). Furthermore, Random 

Forest Regression-Voting has been used to automatically classify the hip on pelvic radiographs as being 

affected by Legg-Calvé-Perthes disease or not.(339)  

 

This chapter aims to explore the use Random Forest Regression-Voting technique to automate the 

calculation of Reimers’ migration percentage (RMP) in CP hip radiographs. The proposed framework 

works by automatically identifying key structural landmarks of the hip and measuring the relevant 

anatomical distances needed to calculate a given radiographic measurement. This study is part of a 

larger project in which AI is used analyse multiple childhood diseases affecting the hip including Legg-

Calvé-Perthes disease, slipped capital femoral epiphysis, developmental dysplasia of the hip and CP 

hip disease. The long-term objective is to create a system in which children’s hip radiographs can be 

automatically diagnosed with one of these four conditions. In this chapter, a preliminary analysis 

conducted assessing the AI model’s ability to calculate RMP from CP hip radiographs; the reliability 

of the dataset used to train the AI model will also be assessed. 

 

5.2 Methods 

 

5.2.1 Dataset 

 

The anteroposterior pelvic radiographs of 1650 children were retrospectively selected from the Picture 

Archiving Computer Systems (PACS) records stored at Alder Hey Children’s Hospital. The inclusion 

criteria were: (1) age between 2 and 16 years, and (2) a diagnosis of CP with a GMFCS level be between 

1 and 5. The exclusion criterion was an unidentifiable femoral head or acetabulum. Radiographs that 

matched the inclusion criteria were completely anonymised and exported to the annotating software, 

where they were screened using the exclusion criteria. The harmonised arrangement for the Governance 

Arrangements for Research Ethics Committees (GAfREC) has judged that the use of anonymised 

information in this way is acceptable without requiring patient consent.(340) The Alder Hey Caldicott 

guardian approved the use of radiographs.  

 

5.2.2 Training Dataset Preparation 

 

Each radiograph was manually annotated by two observers using the BoneFinder® annotation 

software.(273) Trainer 1, Mr Prince Josiah Sajanthan Joseph (PJSJ), was an MPhil student at the 

University of Liverpool with no prior experience in radiograph analysis; Trainer 2, Dr Peter Thompson 

(PT), was a computer science research associate at the University of Manchester with a year of 
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experience in radiograph analysis. The pelvis and proximal femur in a radiograph were annotated 

separately. Trainer 1 was responsible for annotating the left proximal femur, and Trainer 2 was 

responsible for annotating the right proximal femur and the pelvis. The right proximal femur was flipped 

prior to annotation by Trainer 2, resembling a left proximal femur, as the AI model was not programmed 

to differentiate between the left and right femur. Therefore, the left and right femurs were treated 

generically as the femur after completing the annotations. Each radiographic structure was only 

annotated once. The pelvis and proximal femurs were outlined by placing a set of points along the 

contour of the bone or at key landmark positions. Once the AI trainers annotated all 1650 radiographs, 

the labelled images were used to train the AI model to outline and segment the pelvis and the proximal 

femur automatically. Each annotation point represents a specific anatomical structure or landmark 

(Tables 5.1 and 5.2). Sixty annotation points, numbered 0 to 59, were used to plot the outline of the 

pelvis (Figure 5.1) and 42 annotation points, numbered 0 to 41, were used to plot the outline of the 

proximal femur omitting the greater and lesser trochanter (Figure 5.2). Key annotation points were 

chosen on either side of the triradiate cartilage and at each end of the acetabular roof to segment 

Hilgenreiner’s line and the acetabular roof, both of which are needed to calculate RMP. 

 

Table 5.1 Description of annotation points plotted on the pelvis. 

Pelvis 

Points Description 

0-3 

Extends out the edge of the pelvis and continue to the first point of discontinuity. 
30-33 

3-9 

Follows the acetabular roof from its lateral to medial end. 

33-39 

9-12 & 

22-25 
Follows the visible edge of the bone on either side of the triradiate cartilage, with 9 being 

placed at the medial end of the acetabular roof. Note that the points on the lower side may 

appear above those on the upper side due to parallax. 
39-42 & 

52-55 

12-17 Follow the pelvic brim from the triradiate cartilage to the corner point where the ilium 

meets the sacrum. 42-47 

18-22 
Follow the lower part of the acetabulum until it vanishes or merges with the horizontal line 

of the of the pubic bone. 
48-52 

26-29 
Follow the inside edge of the ischium from where it crosses the ramus superior to the 

corner before it fuses with the pubis. 
56-59 
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Table 5.2 Description of annotation points plotted on the proximal femur. 

 

 

 

 

Proximal Femur 

Points Description 

0-6 
The proximal side of the femoral shaft starting at the intersection with the lesser trochanter. If 

the lesser trochanter is not visible, the most consistent estimate of its location was taken. 

7 The inflection where the convex part of the femoral neck starts. 

8-12 Follows the convex part of the femoral neck to the physis. 

12&31 
Spans the gap between the femoral head and neck in cases where they are not yet fused. In 

cases where they are fused, the points were placed on the visible seam. If there is no visible 

seam, the most consistent estimate of its location was taken. 13&41 

31-41 Follows the edge of the femoral head. 

13-23 Follows the lateral side of the femoral neck to the corner formed by the femoral shaft and neck. 

24-30 
Follows the lateral side of the femoral shaft up to point 30, which is directly opposite to point 

0 on the other side of the femoral shaft. 

Figure 5.1 Manually annotated pelvis.  Annotation points (blue) are numbered 0-59. Curves (green) are formed by a 

line drawn between adjacent annotation points. 
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5.2.3 Artificial Intelligence Model 

 

The AI model was developed in collaboration with engineers from the University of Manchester, using 

previous models that were trained to analyse, outline and segment radiographs of healthy patients, 

patients with Legg-Calvé-Perthes disease and patients with developmental dysplasia of the hip. The 

Figure 5.2 Manually annotated left proximal femur. Annotation points (blue) are numbered 

0-41. Curves (green) are formed by a line drawn between adjacent annotation points. 
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model automatically detects the structural landmarks of the hip using a Hough-like approach and then 

locally refines the positions of each point by applying Random Forest Regression-Voting in a 

Constrained Local Model framework.(273) Each radiograph is interpreted as a grid, with each 

annotation point representing a coordinate. The AI model can calculate a given radiographic 

measurement by measuring the distances between key landmarks. Currently, the AI model has been 

programmed to calculate RMP by identifying Hilgenreiner’s line, defined as the horizontal line that 

passes through the triradiate cartilage on each side of the pelvis, and the acetabular roof, defined as a 

line of impaction running from the triradiate cartilage to the end of the socket. The final model will also 

calculate the femoral head-shaft angle (HSA)(321), the other measurement in the core measurement set. 

 

5.2.4 Evaluation 

 

5.2.4.1 AI Model 

 

The performance of the AI model was assessed by: (1) comparing the inter-observer reliability of 

automatically derived RMP values generated by the model and manually derived RMP values generated 

by five different clinicians; and (2) calculating the point-to-point distance between the automatically 

annotated points plotted by the AI model and the manually annotated points plotted by the AI trainers 

during the preparation of the training dataset.   

 

Intraclass correlation coefficients (ICC) and their 95% confidence intervals (CI) were used to assess the 

inter-observer reliability between (1) the five clinicians that provided manually calculated RMP values 

and (2) the RMP values derived automatically and manually. The manually derived RMP values were 

generated using the mean RMP values of the five clinicians for each image, and the automatically 

derived RMP values were generated using the AI model. The five clinicians that provided the manual 

RMP measurements were all orthopaedic specialty trainee doctors. Each clinician used custom-made 

software, which enabled them to calculate the RMP by drawing Hilgenreiner’s line, Perkin’s line, and 

two parallel lines marking the medial and lateral edges of the femoral head. Each clinician received 

training and had practice measurements validated by the research group before recording measurements 

for the study. 

 

Each of the ICC estimates and their 95% CI were calculated using SPSS statistical package version 27 

(SPSS Inc, Chicago, IL) based on two-way mixed effects, absolute agreement, single rater/measurement 

model per the McGraw and Wong guidelines(341). The inter-observer reliability was interpreted using 

guidelines published by Koo et al., which state that: “the 95% confident interval of the ICC estimate 

(not the ICC estimate itself) should be used as the basis to evaluate the level of reliability using the 
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following general guideline: Values less than 0.5 are indicative of poor reliability, values between 0.5 

and 0.75 indicate moderate reliability, values between 0.75 and 0.9 indicate good reliability, and values 

greater than 0.90 indicate excellent reliability.” (342) 

 

In this study, the point-to-point distance (mm) was measured as the Euclidian distance between two 

matching annotation points in the same radiograph, where each annotation point is plotted by a different 

annotator. Matching annotation points correspond to the same structural landmark descriptions in 

Tables 5.1 and 5.2. Based on previous studies,(273, 339, 343) a general guideline was formed to assess 

the reliability of different point-to-point distance values: Point-to-point distances under 1mm indicate 

excellent reliability, point-to-point distances between 1mm and 2mm indicate very good reliability, 

point-to-point distances between 2mm and 3mm indicate good reliability, point-to-point distances 

between 3mm and 4mm indicate adequate reliability, and point-to-point distances over 4mm indicate 

poor reliability. 

 

In order to assess the performance of the AI model, the point-to-point distances for annotation points 

that were automatically plotted by the AI model were compared to annotation points that were manually 

plotted by the AI trainers during the dataset preparation stage of the study. A total of 102 point-to-point 

distances were calculated for each radiograph for the 60 annotation points of the pelvis (numbered 0-

59, as mentioned in Table 5.1) and the 42 annotations points of the proximal femur (numbered 0-41, as 

mentioned in Table 5.2). Descriptive statistics (including mean, standard error, standard deviation, 

median, 90th percentile, 95th percentile and 99th percentile) were calculated using custom-made software 

to summarise: (1) the mean point-to-point distance for each annotation point across all radiographs; and 

(2) the overall mean point-to-point distance across all annotation points and all radiographs. 

 

5.2.4.2 Training Dataset 

 

The inter-and intra-observer reliability of the training dataset was assessed by comparing the point-to-

point distance between annotations plotted by Trainer 1 and Trainer 2. In order to test the inter-and 

intra-observer reliability, radiographs were reannotated by the AI trainers as the radiographic structures 

in each radiograph were annotated individually during the preparation stage. For this preliminary study, 

the reliability of the left proximal femur was assessed, and 42 point-to-point distances were calculated 

in each radiograph (numbered 0-41, as described in Table 5.2). Since Trainer 1 was solely responsible 

for the annotation of the left proximal femur in the training dataset, the left proximal femur was 

annotated for the first time by Trainer 2 in order to assess the inter-observer reliability, and for a second 

time by Trainer 1 in order to assess the intra-observer reliability. The intra-observer analysis was 

conducted with a three-month gap between the first and second annotations of Trainer 1. Descriptive 
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statistics were calculated, as mentioned before, for each observation pair: Trainer 1’s initial annotations 

and Trainer 2’s annotations (T1a-T2); Trainer 1’s repeat annotations and Trainer 2’s annotations (T1b-

T2); and Trainer 1’s initial and repeat annotations (T1a-T1b). Cumulative distributions of point-to-point 

distance thresholds were also determined for each observation pair using a stepwise increase in distance 

from 0.03mm to 39.97mm. 

 

5.3 Results 

 

5.3.1 AI Model Performance 

 

5.3.1.1 Reimers’ Migration Percentage 

 

A total of 450 new images, separate to the images used in the training cohort, were randomly selected 

to assess the AI model’s ability to automatically calculate RMP and outline and segment the pelvis and 

proximal femur. Table 5.3 presents the descriptive statistics and inter-observer reliability of five 

clinicians. The highest mean RMP was recorded by Clinician 1 (mean = 31.99, SD = 25.25) and the 

lowest mean RMP was recorded by Clinician 2 (mean = 28.48, SD = 25.96). “Excellent” inter-observer 

reliability was observed between all five clinicians (ICC = 0.946, 95% CI = 0.936-0.954).   

 

Table 5.3 Descriptive statistics and inter-observer reliability of RMP measurements (%) derived from five 

clinicians. 

Observers Mean SD1 Range ICC2 
95% confidence interval 

Lower bound Upper bound 

Clinician 1 31.99 25.25 0-100 

0.946 0.936 0.954 

Clinician 2 28.48 25.96 0-100 

Clinician 3 30.16 25.48 0-100 

Clinician 4 28.66 25.04 0-100 

Clinician 5 31.09 24.15 0-100 

 

1Standard deviation, 2 Intraclass correlation coefficient 

Table 5.4 presents the descriptive statistics and inter-observer reliability of the AI and manually derived 

measurements. The AI measurements a mean RMP (mean = 32.27, SD = 25.57) that was 2.19% higher 

than the manual measurement (mean = 30.08, SD = 24.67). The inter-observer reliability between the 

AI measurements and manual measurements was ‘good to excellent’ (ICC = 0.893, 95% CI = 0.870-
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0.912). The full set of RMP values recorded by each observer for 450 images is presented in Appendix 

10. 

Table 5.4 Descriptive statistics and inter-observer reliability of RMP measurements (%) derived automatically 

by the AI model and manually by the five clinicians. The ‘manual’ RMP measurements were formed using the 

mean RMP of the five clinicians for each image. 

Observers Mean SD1 Range ICC2 
95% confidence interval 

Lower bound Upper bound 

Manual 30.08 24.67 0-100 

0.893 0.870 0.912 

AI 32.27 25.57 0-100 

 

1Standard deviation, 2Intraclass correlation coefficient 

 

5.3.1.2 Point-to-Point Distance 

 

The descriptive statistics of the overall mean point-to-point distances for each anatomical structure are 

presented in Table 5.5. The mean overall point-to-point distance was adequate (mean = 3.64mm, SD = 

4.22mm), indicating a moderate inter-observer reliability between the AI annotations and the manual 

annotations. The pelvis had a lower mean point-to-point distance (mean = 2.51mm, SD = 2.15mm) in 

comparison to the proximal femur (mean = 5.26mm, SD = 8.51mm). The AI model achieved an overall 

mean point-to-point distance within 6.15mm, 8.23mm and 26.5mm for 90%, 95% and 99% of all 

images, respectively. The pelvis recorded lower mean point-to-point distances for 90%, 95% and 100% 

of radiographs (90% = 4.84mm, 95% = 6.00mm, 99% = 8.94mm) than the proximal femur (90% = 

8.69mm, 95% = 12.2mm, 99% = 57.2mm). 

 

Table 5.5 Descriptive statistics of the overall point-to-point distances for different anatomical structures. 

Structure Mean 
Standard 

Error 

Standard 

Deviation 
Median 90% 95% 99% 

Pelvis and femur 3.64 0.199 4.22 2.49 6.15 8.23 26.5 

Pelvis 2.51 0.102 2.15 1.89 4.85 6.00 8.94 

Femur 5.26 0.402 8.51 3.07 8.69 12.2 57.2 
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In the pelvis, the lowest mean point-to-point distance was recorded point 56 (mean = 1.63mm, SD = 

3.30mm), and the highest point-to-point distance was recorded for point 0 (mean = 4.01mm, SD = 

5.61mm). In the proximal femur, the lowest mean point-to-point distance was recorded point 37 (mean 

= 3.63mm, SD = 8.64mm), and the highest point-to-point distance was recorded for point 0 (mean = 

11.2mm, SD = 13.0mm). The descriptive statistics for the point-to-point distances per annotation point 

between the annotations completed by the AI model and the observers who helped to train the model 

for the pelvis and proximal femur across 450 images are presented in Appendices 11 and 12. 

 

Figure 5.3 presents a cumulative distribution function graph showing the proportion of annotation 

points falling within a given mean point-to-point distance for each anatomical structure. In the pelvis, 

points 57, 35 and 41 recorded the lowest mean point-to-point distance for 90%, 95% and 99% of 

radiographs, respectively (90% = 3.18mm, 95% = 5.41mm, 99% = 11.2mm), and point 0 achieved the 

highest mean point-to-point distance for 90%, 95% and 99% of radiographs (90% = 9.47mm, 95% = 

15.4mm, 99% = 27.3mm). In the proximal femur, points 38, 8 and 31 recorded the lowest mean point-

to-point distance for 90%, 95% and 99% of radiographs, respectively (90% = 6.27mm, 95% = 9.55mm, 

99% = 43.3mm), and point 0, 0 and 23 achieved the highest mean point-to-point distance for 90%, 95% 

and 99% of radiographs, respectively (90% = 28.4mm, 95% = 35.6mm, 99% = 72.3mm). 

 

Figure 5.3 Cumulative distribution function graph showing the proportion of annotation points falling under a 

given point-to-point distance for each anatomical structure. 
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5.3.2 Reliability of Training Dataset 

 

A total of 50 radiographs were randomly selected to assess the inter-and intra-observer reliability of the 

left proximal femur annotations from the training dataset. The descriptive statistics of the overall mean 

point-to-point distance for each observation pair are presented in Table 5.6. The mean overall point-to-

point distance was generally low for every observation pair, with T1b-T2 and T1a-T1b achieving very 

good reliability and T1a-T2 achieving good reliability. The lowest overall point-to-point distance was 

seen between T1a-T1b (mean = 1.45mm, SD = 0.929mm), and the highest overall point-to-point 

distance was seen between T1a-T2 (mean = 2.20mm, SD = 1.98mm). Observation pair T1a-T1b 

achieved the lowest mean point-to-point distance for 90%, 95% and 99% of radiographs (90% = 

3.25mm, 95% = 3.47mm, 99% = 3.83mm), and observation pair T1a-T2 achieved the highest mean 

point-to-point distance for 90%, 95% and 99% of radiographs (90% = 4.81mm, 95% = 6.38mm, 99% 

= 8.36mm). 

 

Table 5.6 Descriptive statistics of the overall point-to-point distance for different observation pairs. 

 Observation 

pairs 
Mean 

Standard 

Error 

Standard 

Deviation 
Median 90% 95% 99% 

Inter-

observer 

T1a1-T22 2.20 0.283 1.98 1.37 4.81 6.38 8.36 

T1b3-T2 1.93 0.242 1.7 1.37 4.31 6.17 7.38 

Intra-

observer 
T1a-T1b 1.45 0.133 0.929 1.28 3.25 3.47 3.83 

 

1Trainer 1’s first proximal femur annotations, 2 Trainer 2’s first proximal femur annotations, 3Trainer 1’s second 

proximal femur annotations. 

 

The full set of descriptive statistics for the point-to-point distances per annotation point between each 

observation pair are presented in Appendices 13, 14 and 15. In observation pair T1a-T2, the lowest 

mean point-to-point distance was recorded for Point 15 (mean = 1.13mm, SD = 1.03mm) and the highest 

mean point-to-point distance was recorded for Point 0 (mean = 4.45mm, SD = 5.20mm). In observation 

pair T1b-T2, the lowest mean point-to-point distance was recorded for Point 38 (mean = 1.02mm, SD 

= 1.19mm) and the highest mean point-to-point distance was recorded for Point 30 (mean = 3.78mm, 

SD = 4.24mm). In observation pair T1a-T1b, the lowest mean point-to-point distance was recorded for 
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Point 38 (mean = 0.565mm, SD = 1.07mm) and the highest mean point-to-point distance was recorded 

for Point 0 (mean = 2.82mm, SD = 3.58mm).  

 

Figure 5.4 presents a cumulative distribution function graph for the proportion of annotation points that 

fall within a given point-to-point distance. The intra-observation pair had lower mean point-to-point 

distances overall compared to the inter-observation pairs, and the mean point-to-point distances were 

generally lower in T1b-T2 than T1a-T2 amongst the inter-observation pairs.  

 

Figure 5.4 Cumulative distribution function graph showing the proportion of annotation points falling under a 

given point-to-point distance for each observation pair. 
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For observation pair T1a-T2, points 39, 14 and 14 achieved the lowest mean point-to-point distance for 

90%, 95% and 99% of radiographs, respectively (90% = 1.93mm, 95% = 2.93mm, 99% = 4.40mm), 

and points 0, 0 and 32 achieved the highest mean point-to-point distance for 90%, 95% and 99% of 

radiographs, respectively (90% = 11.9mm, 95% = 16.3mm, 99% = 23.8mm).  

 

For observation pair T1b-T2, points 39, 38 and 39 achieved the lowest mean point-to-point distance for 

90%, 95% and 99% of radiographs, respectively (90% = 1.68mm, 95% = 2.43mm, 99% = 4.55mm), 

and points 30, 30 and 32 achieved the highest mean point-to-point distance for 90%, 95% and 99% of 

radiographs, respectively (90% = 11.0mm, 95% = 12.8mm, 99% = 23.1mm).  

 

For observation pair T1a-T1b, points 37, 38 and 16 achieved the lowest mean point-to-point distance 

for 90%, 95% and 99% of radiographs, respectively (90% = 0.88mm, 95% = 1.56mm, 99% = 2.97mm), 

and points 0, 30 and 0 achieved the highest mean point-to-point distance for 90%, 95% and 99% of 

radiographs, respectively (90% = 8.08mm, 95% = 9.72mm, 99% = 14.7mm). 

 

5.4 Discussion 

 

This study has demonstrated that this AI model can achieve ‘good to excellent’ inter-observer reliability 

in the measurement of RMP when compared with clinicians, despite only achieving an adequate point-

to-point distances when compared to the AI trainers’ annotations. The AI trainers achieved a good inter-

and intra-observer reliability, with the intra-observer annotations achieving lower point-to-point 

distances than the inter-observer annotations. Moreover, between the inter-observer analyses, the 

observation pair containing Trainer 1’s repeat annotations achieved a lower point-to-point distance than 

Trainer 1’s initial annotations. 

 

5.4.1 Interpretation of Results 

 

Our AI model’s ability to outline and segment the pelvis and femur was adequate. When comparing the 

annotations between the AI model and clinicians, the annotation point with the highest point-to-point 

distance in both the pelvis and the femur was point 0. In the pelvis, point 0 corresponds to the first point 

of discontinuity along the edge of the pelvis (Table 5.1). In the proximal femur, point 0 corresponds to 

the proximal side of the femoral shaft where the lesser trochanter intersects the femur (Table 5.2). Point 

0 is located at the end of a curve in both the pelvis and the femur, suggesting that the AI model is less 

reliable near these points (Figures 5.1 and 5.2).  
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Furthermore, of the annotation points ranking in the top five highest mean point-to-point distances, the 

vast majority, namely points 0, 30, 1 and 17 in the pelvis and points 0, 30, 1, 29 and 2 in the femur, are 

placed at or near the end of a curve. This further corroborates the theory that the AI model struggles to 

accurately plot annotation points at or near the end of a curve. The reliability of the training dataset for 

the left proximal femur was also substandard for points at or near the end of a curve. The top five 

annotations points with the highest mean point-to-point distances in the inter-and intra-observation pairs 

were points 0, 30, 1, 29 and 2, with point 0 recording the highest mean point-to-point distance. This 

directly corresponds with the top five points that the AI model performed poorly on, which suggests 

that the inferior performance of the AI model for points at or near the end of a curve could have resulted 

from the poor consistency in the training dataset amongst the AI trainers. This could be either as 

opposed to or in addition to computational insufficiencies in the AI model.  

 

Another possible explanation for the high point-to-point distances in points placed at or near the end of 

a curve can include ambiguity in the definition of those points. The pelvis and femur are large bone 

structures that do not need to be outlined and segmented entirely to calculate measurements in CP hip 

radiographs. Cut-off points, which are often annotations points at or near the end of curves, were 

identified for both the pelvis and femur; however, ambiguity in the definition of these cut-off points 

may have decreased the inter-and intra-observer reliability of annotation points. For example, point 0 

in the pelvis, which represents the first point of discontinuity along the edge of the pelvis, has a wide 

area within which a point can be plotted whilst corresponding to the predefined point definitions. 

Although these cut-off points directly affect the mean point-to-point distance of a model’s annotations, 

they are not directly used in the calculation of radiographic measurements. Therefore, inconsistency in 

the annotation of these points may not significantly affect the AI model’s primary output, RMP. This 

is supported by the ‘good to excellent’ ICC estimates achieved by our model despite the poor mean 

point-to-point distances recorded for points at or near the end of curves.  

 

Variability in a landmarks' visibility or structure may have also accounted for the high mean point-to-

point distances observed in points at or near the end of a curve. The inter-and intra-observer analysis of 

the proximal femur amongst the AI trainers, and the AI model and clinicians, showed that point 0 was 

the least reliably annotated point. This could have resulted from an inaccurate identification of the 

anatomical landmark for the femur’s point 0, which corresponds with the intersection of the lesser 

trochanter and the proximal side of the femoral shaft. This landmark was highly variable between 

radiographs as the lesser trochanter was not always visible in every image due to either the rotation of 

the femur, the presence of surgical screw and plate devices or a femoral deformity. In cases where this 

landmark was not visible, an estimate was taken, increasing the likelihood of a poor inter-and intra-

observer reliability.  
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This variability in the radiographic presentation of the proximal femur may also explain the AI model’s 

superior ability to identify the pelvis when compared to the femur. As mentioned previously, estimates 

were taken when the femur’s point 0 was not visible, increasing the likelihood of inconsistent 

annotations in the training dataset. Using inconsistent annotations to train the AI model will decrease 

its accuracy. This mismatch in performance could have resulted from the additional trainer used to 

annotate the proximal femur in the training dataset. For the pelvis, only annotations from Trainer 2 were 

used; however, for the proximal femur, Trainer 1’s annotations of the left femur and Trainer 2’s 

annotations of the right femur were used. This increases the variability of the annotations used to teach 

the AI model to outline the proximal femur when compared to the pelvis, as inter-observer annotations 

are likely to have poorer reliability than intra-observer annotations. This is finding is further supported 

by the higher mean point-to-point distances obtained from the proximal femur annotations when 

compared to the pelvis annotations. This combination of an increased irregularity in the presentation of 

the femur and the use of multiple trainers to annotate the femur in the training dataset significantly 

increases the variability of the femur annotations used to train the AI model, thereby decreasing the 

model’s accuracy for this structure.  

 

Examples of CP-related proximal femoral deformities include femoral anteversion and coxa valga.(344) 

Unlike pelvic deformities, which occur as a result of hip displacement(64), femoral deformities have 

been shown to contribute to hip displacement(47) and occur independently of hip displacement(33). 

Therefore, femoral deformities may be observed more often than pelvic deformities, further explaining 

the mismatch in the AI model’s ability to identify those structures. Beyond this, the AI model’s inferior 

annotation of the proximal femur can be further explained by a reduced likelihood for the pelvis to be 

incorrectly positioned in a radiograph or feature orthopaedic tools from a previous surgery when 

compared to the femur.  

 

The inter-observer reliability between Trainer 1 and Trainer 2 was higher when comparing Trainer 2’s 

annotations with Trainer 1’s second annotations (T1b-T2) as opposed to Trainer 1’s first annotations 

(T1a-T2). This difference in reliability could be explained by the increased experience Trainer 1 would 

have gained by the time the repeat annotations were required. This suggests that the training dataset's 

reliability increases as the trainers' experience increases. 

 

5.4.2 Comparison to other AI models 

 

Pham et al.(299), who developed the only other AI model for the automated assessment of CP hip 

disease, recorded an ICC and 95% CI of 0.91 [0.87,0.94] and 0.91 [0.86,0.94] when comparing the 

RMP values between their AI model and their manual observers. This translates to a ‘good to excellent’ 
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reliability, which is on par with our model. Although the ICC estimates appear to give Pham et al’s 

model the edge over ours, several limitations render our model preferable in comparison. The data used 

to test and train Pham et al’s model included radiographs in which the majority had triradiate cartilages 

that had not yet fused. This restricts the generalisability of the model to calculate RMP measurements 

in children with CP past the age of 10.  

 

Additionally, the eight landmarks identified as reference points for RMP measurements are tailored 

toward radiographs in which the triradiate cartilage has not yet fused, further reducing the effectiveness 

of Pham et al’s model in clinical scenarios. Although our model also included annotations points that 

corresponded to landmarks along the triradiate cartilage, the inclusion of other distinctive points on the 

pelvis enabled our model to analyse radiographs in which the triradiate cartilage was ossified, as the 

model could capture the lateral symmetry of the pelvis using these additional points and produce a better 

estimate of its orientation in the image. Furthermore, the landmarks identified via the 102 annotations 

points outlining the pelvis and proximal femur can be used to calculate multiple measurements in 

addition to RMP, including acetabular index(2), neck-shaft angle(46) and HSA(321). Pham et al’s 

model cannot be expanded to include additional radiographic measurements as the reference landmarks 

used in their model are specific to RMP. 

 

Lindner et al.(330, 343) and Davison et al.(339) assessed the ability of their AI models to successfully 

annotate a proximal femur using the mean point-to-curve distance as opposed to the mean point-to-

point distance. The point-to-curve distance is a more accurate measure when assessing linear structures, 

such as the femoral shaft, as the exact location of an annotation point along a linear structure is not 

necessarily important as long as the outline of the shape is correct. This is because minor differences in 

the point-to-point distance along a line will not significantly affect the shape of a straight annotation 

curve outlining a linear structure; however, it will affect the specific point-to-point distance. 

Conversely, the point-to-point distance is a more accurate measure when assessing non-linear 

structures, such as the femoral head and acetabulum, as the exact location of each point is extremely 

important, and minor differences in the point-to-point distance can significantly affect the arc of an 

annotation curve in these structures. This is a limitation of these previously mentioned studies as the 

point-to-point distance was not reported. Therefore, the AI model’s ability to outline non-linear 

structures, such as the femoral head, was not appropriately assessed in each of these studies.(330, 339, 

343) This is also a limitation of this study, as the point-to-curve distance was not assessed in addition 

to the point-to-point distance despite the presence of a combination of linear and non-linear structures 

in each radiograph. Furthermore, this limitation may further explain the poorer reliability seen in 

annotation points at or near the end of curves, as the end of curves are usually linear structures. 
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5.4.3 Limitations 

 

Although, the AI model’s ability to calculate RMP can be interpreted as ‘good to excellent’ using Koo 

et al’s interpretation(342), there is not enough evidence to determine whether the AI model is on par 

with humans. Therefore, the accuracy of the model may still need improvement for use in clinical 

practice given the 2.19% difference in the mean RMP values calculated by the AI model and the 

clinicians. Additionally, official guidelines for the interpretation of point-to-point distances have yet 

not been published; therefore, the conclusions derived from this study regarding the AI model’s ability 

to outline and segment structures may not be accurate, even though the definitions used were based on 

previous studies. Furthermore, there is currently not enough evidence to determine whether the AI 

model can make a clinically significant difference; however, even if there isn’t a clinically significant 

difference, there are advantages to implementing an AI system to automatically analyse CP hip 

radiographs, and it could be financially beneficial to the NHS and help to standardise access to CP care. 

 

Other limitations of this study include the generalisability of the AI model’s performance to the level 

of experienced orthopaedic surgeons or physiotherapists. Although all the clinicians participating in 

this study were trained and had practice annotations validated, experienced surgeons with more years 

of experience may have generated different RMP values that may be more accurate than trainee doctors. 

However, Demir et al. studied the effect of experience and expertise on the inter-and intra-observer 

reliability of RMP in children with cerebral palsy and concluded that neither experience nor expertise 

affected the measurement of RMP.(308) This suggests that the measurements calculated by orthopaedic 

trainees are sufficient to generalise results to experienced orthopaedic surgeons. However, this excellent 

inter-and intra-observer reliability may not be extended to other measurements, namely the HSA. 

Therefore, in future studies, it would be beneficial to compare the performance of an AI model to that 

of experienced orthopaedic surgeons or physiotherapists. 

 

Additionally, due to a lack of repeat annotation data, the inter-and intra-observer reliability was only 

assessed for the left proximal femur in this preliminary study. This may not represent the reliability of 

the right proximal femur annotations and, therefore, the proximal femur annotations fed to the machine. 

Although the results are likely similar to those of the left proximal femur, this cannot be assumed. This 

highlights one of the disadvantages of using a supervised learning method to train an AI model. The 

time-consuming nature of this method restricts the extent to which a preliminary analysis can be 

conducted on the inter-and intra-observer reliability of the manually annotated radiographs. 

 

Furthermore, the patient age range in this preliminary analysis is different to the patient age range used 

to search for studies in the systematic review of chapter three. Images used in this chapter were obtained 
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from patients aged 2-16 years as per the CPIPS handbook(43), since the research group aims to integrate 

this AI model into the CPIPS system upon completion. One limitation of this focussed age range arises 

from the inability to use this AI model in other countries or regions where “children” with CP may 

include individuals beyond this age range. However, the core measurement set was built using an age 

range of ≤ 18 years in the systematic review, which is more representative of the age of inclusion across 

the literature.(101) 

 

5.5 Conclusion 

 

In conclusion, this chapter explored the use of Random Forest Regression-Voting to build an AI model 

capable of automatically calculating the RMP from hip radiographs in children with CP. Our AI model 

achieved a ‘good to excellent’ inter-observer reliability when compared to five trained clinicians and 

was able to outline the pelvis better than the femur. This AI model can also be programmed to calculate 

other radiographic measurements and assess radiographs in which the triradiate cartilage and physis of 

the femur have fused, providing a good alternative to the other AI models. The structural landmarks 

that our AI model and trainers struggled with the most were located at or near the end of an annotation 

curve. Future research should report both point-to-point distances and point-to-curve distances when 

analysing anatomical structures with linear and non-linear edges, assess AI models against experienced 

healthcare professionals and focus on the accuracy of the proximal femur given its increased variability 

in radiographs. This chapter achieved the initial objective of assessing the performance of the AI model 

as well as the reliability of the data used to train the model. However, this analysis did not include HSA, 

which is part of the CMS. Therefore, this chapter did not achieve the initial objective of assessing the 

performance of the AI model at calculating all the measurements in the CMS; although, it did assess 

the performance of the AI model at calculating RMP. 
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Chapter 6: Conclusion 
 

 

This thesis aimed to identify the most important radiographic measurements used to assess hip disease 

in cerebral palsy (CP) and explore the automatic calculation of these measurements using artificial 

intelligence (AI) software. This was achieved by conducting: a systematic review, which identified all 

the different radiographic measurements currently used in the literature; a Delphi study, which formed 

a core measurement set (CMS) including the most important measurements in the opinion of 

orthopaedic surgeons and physiotherapists; and a preliminary analysis of our newly proposed AI 

system, which assessed the performance and reliability of the model.  

 

The systematic review identified 15 distinct measurements from the literature, including Reimers’ 

migration percentage (RMP), Femoral neck-shaft angle, Acetabular index, Femoral head-shaft angle 

(HSA), Centre edge angle, Sharp’s angle or acetabular angle, Acetabular depth ratio, Mose hip ratio, 

Shenton's line, Epiphyseal shaft angle, Pelvic femoral angle, Pelvic adjusted migration percentage, 

Medialization index, and Hilgenreiner epiphyseal angle. Of these measurements, RMP was by far the 

most reported amongst the included studies. These 15 measurements then formed the basis for the 

Delphi study, which produced a final CMS with RMP and HSA. The preliminary analysis of our AI 

system demonstrated a ‘good to excellent' inter-observer reliability between RMP values generated 

automatically by the model and manually by five clinicians, an adequate ability to automatically outline 

and segment the pelvis and proximal femur, and a ‘good to very good’ inter-and intra-observer 

reliability amongst the manually annotated radiographs in the training dataset used to teach the AI 

model. Having proven the feasibility of an AI system for calculating these measurements, this thesis 

has successfully identified a framework to automate the analysis of hip radiographs in children with 

CP.  

 

The development of a CMS has provided the necessary measurements needed to build a functional AI 

system. Moreover, this CMS will reduce heterogeneity in the reporting of CP hip radiographs and 

facilitate meta-analysis whilst reducing the risk of reporting bias. Our AI model has contributed to the 

limited research in the field of CP hips by proposing a new technique for the calculation of radiographic 

measurements and demonstrating the competence of AI models in the calculation of these 

measurements. Additionally, the automatic analysis of CP hip radiographs will significantly impact the 

management of children with CP, especially if implemented in national hip surveillance programmes. 

Potential benefits include reduced costs to healthcare providers, consistent diagnoses, and standardised 

access to CP care. In regions with limited access to healthcare provisions, children with CP may not be 

monitored regularly via radiographs resulting in poorer outcomes. An automated system can help flatten 
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these inequalities and populate national databases facilitating population-wide research. Optimising the 

operational efficiency of national hip surveillance programmes can improve the management and 

outcome of children with CP.  

 

Upcoming prototypes of our AI model have been planned to additionally measure HSA, after which a 

complete analysis of the model can be conducted. Future research will look at the implementation of 

the Uppföljningsprogram för Cerebral Pares (CPUP) hip score into our proposed model.(51) The 

calculation of the CPUP hip score can be easily applied given the inclusion of RMP and HSA in our 

model’s programming. Automatically calculating the risk of hip displacement would further diminish 

the need for human intervention, as clinicians will not need to review the AI-derived measurements in 

order to assess the risk of hip displacement in a child. Furthermore, in addition to the automatic 

calculation of geometric measurements, future research should also focus on quantifying the shape and 

appearance of CP hips via the formation of Statistical Shape Models(345) and Statistical Appearance 

Models(346). This detailed level of analysis would enable AI systems to automatically differentiate 

between complex and subtle variations in the hip, further improving the prediction and diagnosis of CP 

hip disease.  

 

This chapter has achieved the initial objectives to highlight the implications of the thesis results and 

suggest topics for future research. In conclusion, this thesis has investigated the use of radiographic 

measurements in the assessment of hip disease in CP and explored the application of AI-powered 

software to automate the calculation of these measurements. 
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Appendices 

 

Appendix 1: Systematic review search strategy for PubMed, SCOPUS and Web of Science. 
 

Appendix 1 

Database Number Query Notes 

PubMed 

#1 Cerebral pals*[tiab]  

#2 Cerebral palsy[Mesh]  

#3 
Little’s disease[tiab] OR Little Disease[tiab] OR Spastic 

Diplegi*[tiab] 
 

#4 
Little’s disease[Mesh] OR Little Disease[Mesh] OR Spastic 

Diplegia[Mesh] 
 

#5 #1 OR #2 OR #3 OR #4 
Cerebral 

Palsy 

#6 

Paediatric*[tiab] OR pediatric*[tiab] OR neonat*[tiab] OR 

infant*[tiab] OR child*[tiab] OR adolescen*[tiab] OR 

teen*[tiab] OR young adult*[tiab] 

 

#7 
Pediatrics[Mesh] OR Infant[Mesh] OR Child[Mesh] OR 

Adolescent[Mesh:NoExp] OR Young Adult[Mesh:NoExp] 
 

#8 #6 OR #7 Paediatrics 

#9 
hip[tiab] OR pelv*[tiab] OR acetab*[tiab] OR cotyloid[tiab] 

OR coxa*[tiab] OR ischi*[tiab] 
 

#10 

hip[Mesh] OR pelvic bones[Mesh] OR acetabulum[Mesh] OR 

acetabula[Mesh] OR acetabulas[Mesh] OR coxa[Mesh] OR 

coxas[Mesh] OR ischium[Mesh] 

 

#11 #9 OR #10 Hip 

#12 

radiograph*[tiab] OR radiol*[tiab] OR x-ray*[tiab] OR x 

ray*[tiab] OR xray*[tiab] OR X-Radiation*[tiab] OR 

XRadiation*[tiab] OR X Radiation*[tiab] OR roentgen 

ray*[tiab] 

 

#13 

radiography[Mesh] OR radiology[Mesh] OR x-ray[Mesh] OR 

x ray[Mesh] OR xray[Mesh] OR X-Radiation[Mesh] OR X 

Radiation[Mesh] OR roentgen ray[Mesh] 

 

#14 #12 OR #13 X-ray 
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Appendix 1 (continued) 

Database Number Query Notes 

PubMed #15 #5 AND #8 AND #11 AND #14 

Cerebral Palsy AND 

Paediatrics AND 

Hip AND X-ray 

SCOPUS 

#1 TITLE-ABS-KEY(“Cerebral pals*”)  

#2 
TITLE-ABS-KEY(“Little* disease” OR “Spastic 

Diplegi*”) 
 

#3 #1 OR #2 Cerebral Palsy 

#4 

TITLE-ABS-KEY(Paediatric* OR pediatric* OR 

neonat* OR infant* OR child* OR adolescen* OR 

teen* OR “young adult*”) 

 

#5 
TITLE-ABS-KEY(hip OR pelvi* OR acetabul* 

OR cotyloid OR coxa* OR ischi*) 
 

#6 

TITLE-ABS-KEY(radiograph* OR radiol* OR 

“x-ray*” OR “x ray*” OR xray* OR “X-

Radiation*” OR XRadiation* OR “X Radiation*” 

OR “roentgen ray*”) 

 

#7 #3 AND #4 AND #5 AND #6 

Cerebral Palsy AND 

Paediatrics AND 

Hip AND X-ray 

Web of 

Science 

#1 TS=(“Cerebral pals*”)  

#2 TS=(“Little* disease” OR “Spastic Diplegi*”)  

#3 #1 OR #2 Cerebral Palsy 

#4 

TS=(Paediatric* OR pediatric* OR neonat* OR 

infant* OR child* OR adolescen* OR teen* OR 

“young adult*”) 

 

#5 
TS=(hip OR pelvi* OR acetabul* OR cotyloid OR 

coxa* OR ischi*) 
 

#6 

TS=(radiograph* OR radiol* OR “x-ray*” OR “x 

ray*” OR xray* OR “X-Radiation*” OR 

XRadiation* OR “X Radiation*” OR “roentgen 

ray*”) 

 

#7 #3 AND #4 AND #5 AND #6 

Cerebral Palsy AND 

Paediatrics AND 

Hip AND X-ray 
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Appendix 2: Studies that were not accessible 

 

Appendix 2 

Title Author Year Journal 

Early Bony Hip Reconstructive Surgery 

for Hip Subluxation in Children With 

Severe Cerebral Palsy 

Bean, B. K. and Baird, G. 

O. and Caskey, P. M. and 

Bronson, W. B. and 

McMulkin, M. L. and 

Tompkins, B. J. 

2020 Orthopedics 

Evaluation of adductor myotomy versus 

adductor transfer to ischiadic tuber in the 

treatment of spastic hip in cerebral palsy 

Andrzej Borowski, Ewa 

Pogonowicz, Rafał 

Plebański, Marek Synder, 

Andrzej Grzegorzewski 

2011 

Ortopedia 

Traumatologia 

Rehabilitacja 

Two-stage surgery in the treatment of 

spastic hip dislocation--comparison 

between early and late results of open 

reduction and derotation-varus femoral 

osteotomy combined with Dega pelvic 

osteotomy preceded by soft tissue release 

Marek Jóźwiak and 

Aleksander Koch 
2011 

Ortopedia, 

Traumatologia 

Rehabilitacja 

Soft tissue, varus derotation femoral and 

pelvic surgery in cerebral palsy children: 

A mid-term outcome study 

Panou, A. and Testa, G. 

and Peccati, A. and 

Tsibidakis, H. and 

Portinaro, N. M. 

 

Minerva 

Ortopedicae 

Traumatologica 

The effect of obturator nerve block on 

hip lateralization in low functioning 

children with spastic cerebral palsy 

Park, E. S. and Rha, D. W. 

and Lee, W. C. and Sim, 

E. G. 

2014 Yonsei Med J 

Outcome of Femoral Varus Derotational 

Osteotomy for the Spastic Hip 

Displacement: Implication for the 

Indication of Concomitant Pelvic 

Osteotomy 

Park, H. and Abdel-Baki, 

S. W. and Park, K. B. and 

Park, B. K. and Rhee, I. 

and Hong, S. P. and Kim, 

H. W. 

2020 
Journal of Clinical 

Medicine 
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Appendix 3: Studies included in the systematic review 

 

Appendix 3 

Study 

ID 
Title Author (Year) Journal Location 

1 
Hip pain in adolescents with cerebral palsy: a population-based longitudinal 

study 
Larsen (2021) Dev Med Child Neurol Norway 

2 
Remodelling of femoral head deformity after hip reconstructive surgery in 

patients with cerebral palsy 
Min (2021) Bone Joint J South Korea 

3 
Failure of Hip Reconstruction in Children With Cerebral Palsy: What Are the 

Risk Factors? 
Minaie (2021) J Pediatr Orthop USA 

4 Combined pelvic and femoral reconstruction in children with cerebral palsy Alassaf (2018) J Int Med Res Canada 

5 
Recurrence of hip instability after reconstructive surgery in patients with 

cerebral palsy 

Bayusentono 

(2014) 
J Bone Joint Surg Am South Korea 

6 
Hip-joint congruity after Dega osteotomy in patients with cerebral palsy: long-

term results 
Braatz (2016) Int Orthop Germany 

7 
Hip displacement in children with cerebra palsy in Scotland: a total population 

study 
Bugler (2018) 

Journal of Childrens 

Orthopaedics 
Scotland (UK) 

8 

Results and complications of percutaneous pelvic osteotomy and 

intertrochanteric varus shortening osteotomy in 54 consecutively operated 

GMFCS level IV and V cerebral palsy patients 

Canavese 

(2017) 

Eur J Orthop Surg 

Traumatol 

France and 

Switzerland 

9 
Hip Development After Selective Dorsal Rhizotomy in Patients with Cerebral 

Palsy 
Chan (2013) 

Journal of Orthopaedics, 

Trauma and Rehabilitation 
China 

10 
Outcomes of Isolated Varus Derotational Osteotomy in Children With Cerebral 

Palsy Hip Dysplasia and Predictors of Resubluxation 
Chang (2018) J Pediatr Orthop USA 

11 
Prevalence and predictive factors of hip displacement in children with cerebral 

palsy at paediatric institute, Kuala Lumpur hospital 
Ching (2017) Neurology Asia Malaysia 

12 
Determinants of Hip and Femoral Deformities in Children With Spastic 

Cerebral Palsy 
Cho (2018) Ann Rehabil Med South Korea 
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Appendix 3 (continued) 

Study 

ID 
Title 

Author 

(Year) 
Journal Location 

13 
Is head shaft angle a valuable continuous risk factor for hip migration in cerebral 

palsy? 

Chougule 

(2016) 

Journal of Children's 

Orthopaedics 
England (UK) 

14 
The Impact of Spinal Fusion on Hip Displacement in Cerebral Palsy 

Cobanoglu 

(2020) 
Indian J Orthop USA 

15 
Soft tissue surgery as an initial treatment for hip displacement in spastic cerebral 

palsy 
Silva (2020) Sicot-J Brazil 

16 

Prevalence of hip dislocation among children with cerebral palsy in regions with 

and without a surveillance programme: a cross sectional study in Sweden and 

Norway 

Elkamil 

(2011) 

BMC Musculoskelet 

Disord 

Sweden and 

Norway 

17 

Soft tissue release of the spastic hip by psoas-rectus transfer and adductor 

tenotomy for long-term functional improvement and prevention of hip 

dislocation 

Heimkes 

(2011) 

Journal of Pediatric 

Orthopaedics Part B 
Germany 

18 
Head-shaft angle is a risk factor for hip displacement in children with cerebral 

palsy 

Hermanson 

(2015a) 
Acta Orthop Sweden 

19 
Surgical management of hip subluxation and dislocation in children with cerebral 

palsy: isolated VDRO or combined surgery? 
Huh (2011) J Pediatr Orthop USA 

20 
Five-year outcome of state-wide hip surveillance of children and adolescents 

with cerebral palsy 
Kentish (2011) 

Journal of Pediatric 

Rehabilitation Medicine 
Austrailia 

21 
Hip displacement in relation to age and gross motor function in children with 

cerebral palsy 
Larnert (2014) 

Journal of Children's 

Orthopaedics 
Sweden 

22 
The prognostic value of the head-shaft angle on hip displacement in children with 

cerebral palsy 
List (2015a) 

Journal of Children's 

Orthopaedics 
Netherlands 

23 
Parameters of radiographic coxometry in reconstructive operations on the hip 

joint as part of multilevel surgical interventions in children with cerebral palsy 
Tomov (2019) Genij Ortopedii Russia 

24 
Use of iliac crest allograft for Dega pelvic osteotomy in patients with cerebral 

palsy 
Sung (2018a) 

BMC Musculoskelet 

Disord 
South Korea 
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Appendix 3 (continued) 

Study 

ID 
Title 

Author 

(Year) 
Journal Location 

25 
Hip pain is more frequent in severe hip displacement: a population-based study of 77 

children with cerebral palsy 

Ramstad 

(2016) 
J Pediatr Orthop B Norway 

26 
Hip displacement and dislocation in a total population of children with cerebral palsy 

in Scotland 

Wordie 

(2020) 
Bone Joint J 

Scotland 

(UK) 

27 

The Femoral Head-Shaft Angle Is Not a Predictor of Hip Displacement in Children 

Under 5 Years With Cerebral Palsy: A Population-based Study of Children at GMFCS 

Levels III-V 

Terjesen 

(2021) 
J Pediatr Orthop Norway 

28 
Fate of stable hips after prophylactic femoral varization osteotomy in patients with 

cerebral palsy 

Sung 

(2018b) 
BMC Musculoskelet Disord 

South 

Korea 

29 
Avascular necrosis as a complication of the treatment of dislocation of the hip in 

children with cerebral palsy 

Koch 

(2015) 
Bone Joint J Poland 

30 
The natural history of hip development in cerebral palsy Terjesen 

(2012) 
Dev Med Child Neurol Norway 

31 
Hip displacement in children with cerebral palsy Wordie 

(2021) 
Bone Joint J 

Scotland 

(UK) 

32 
Acetabular and femoral remodeling after varus derotational osteotomy in cerebral 

palsy: The effect of age and Gross Motor Function Classification Level 

Shore 

(2016) 

Journal of Pediatric 

Orthopaedics Part B 
USA 

33 
Severe hip displacement reduces health-related quality of life in children with cerebral 

palsy 

Ramstad 

(2017) 
Acta Orthop Norway 

34 
Patterns of hip migration in non-ambulant children with cerebral palsy: A prospective 

cohort study 

Poirot 

(2020) 

Annals of Physical and 

Rehabilitation Medicine 
France 

35 
Outcome of Femoral Varus Derotational Osteotomy for the Spastic Hip Displacement: 

Implication for the Indication of Concomitant Pelvic Osteotomy 

Park 

(2020) 
Journal of Clinical Medicine 

South 

Korea 

36 
Incidence and risk factors of hip joint pain in children with severe cerebral palsy Jozwiak 

(2011) 

Disability and 

Rehabilitation 
Poland 
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Appendix 3 (continued) 

Study 

ID 
Title Author (Year) Journal Location 

37 
Prediction of hip displacement in children with cerebral palsy: development of the 

CPUP hip score 

Hermanson 

(2015b) 
Bone Joint J Sweden 

38 
Pelvic obliquity and measurement of hip displacement in children with cerebral palsy Hägglund 

(2018) 
Acta Orthop Sweden 

39 
Association between pelvic obliquity and scoliosis, hip displacement and asymmetric 

hip abduction in children with cerebral palsy: a cross-sectional registry study 

Hägglund 

(2020) 

BMC Musculoskelet 

Disord 
Sweden 

40 
Utility of combined hip abduction angle for hip surveillance in children with cerebral 

palsy 
Divecha (2011) 

Indian Journal of 

Orthopaedics 
India 

41 
Proximal femoral geometry before and after varus rotational osteotomy in children with 

cerebral palsy and neuromuscular hip dysplasia 
Davids (2013) J Pediatr Orthop USA 

42 
Reliability of radiologic measures of hip displacement in a cohort of preschool-aged 

children with cerebral palsy 
Craven (2014) J Pediatr Orthop Austrailia 

43 
Acetabular Remodeling After a Varus Derotational Osteotomy in Children With 

Cerebral Palsy 
Chang (2016) J Pediatr Orthop USA 

44 
Proximal femoral osteotomy in children with cerebral palsy: the perspective of the 

trainee 
Zhou (2017) 

Journal of Childrens 

Orthopaedics 
Austrailia 

45 
Clinical and radiographic results of multilevel surgical interventions for hip subluxation 

and dislocation in children with cerebral palsy 
Tomov (2018) Genij Ortopedii Russia 

46 The head–shaft angle of the hip in early childhood List (2015b) Bone Joint J Netherlands 

47 
Assessment of hip displacement in children with cerebral palsy using machine learning 

approach 
Pham (2021) Med Biol Eng Comput Canada 
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Appendix 4: Study details and patient characteristics 

 

Appendix 4 

Study 

ID 
Study type 

Patients 

(controls) 

No. 

of 

hips 

Age 
Sex (% 

female) 

Duration of 

follow up 
Timepoint of assessment Primary intervention 

1 prospective 67 128 
Mean:14y7m  

SD:1y5m 
42% Not specified 

latest radiograph of the pelvis 

and hip joints taken for CPOP. 

If the latest radiograph was 

taken before 2017, the 

respondent was asked to permit 

a new radiograph to be taken. 

hip surveillance programme 

2 retrospective 108 214 
Mean:9.4y  

SD:3.2y 
30% 5.2 years Pre- + postoperative 

HRS (hip reconstructive 

surgery) including FVDO 

3 retrospective 179 291 
Mean:7.8y 

SD:3.3y 
43% 3.9±2.1 years Preoperative 

HRS (hip reconstructive 

surgery) including femoral 

osteotomy, both a femoral 

osteotomy and a concurrent 

acetabular osteotomy and 

isolated acetabular osteotomy 

4 retrospective 71 85 
Mean:8.4y 

SD:3.2y 
52% 

6.6 ± 3.1 

years 

Pre- + postoperative (including 

follow up) 

VDRO combined with 

modified Dega osteotomy 

5 retrospective 76 144 
Mean:8.5y 

SD:2.3y 
25% 

4.9 years 

(SD, 2.4 

years; range, 

1.0 to 9.8 

years) 

Pre- + postoperative (including 

follow up - at least 2 years) 

reconstructive surgery (femoral 

varus derotational osteotomy 

alone or combined with a 

modified Dega pelvic 

osteotomy) 
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Appendix 4 (continued) 

Study 

ID 
Study type 

Patients 

(controls) 

No. of 

hips 
Age 

Sex (% 

female) 

Duration of 

follow up 

Timepoint of 

assessment 
Primary intervention 

6 retrospective 72 72 

Median:7.6y 

Range:4.7–

16.3y 

38% 
7.7 years 

(4.9 to 11.8) 

Pre- + postoperative 

(including follow up) 

single-event multilevel surgery 

(SEMLS) in combination with hip 

reconstruction by using a 

periacetabular osteotomy as 

described by Dega concerning 

post-operative remodeling and 

plasticity of the femoral head 

post-operatively 

7 
cross-

sectional 
1171 

Not 

specified 
Mean:7.88y 

Not 

specified 
N/A 

first hip radiograph as 

part of the CPIPS 

programme 

hip surveillance programme 

8 retrospective 54 64 

Mean:9.1y 

SD:3.3y 

Range:4.0–

16.5y 

37% 

43.9 ± 19.5 

months 

(range 3–

72). 

Pre- + postoperative 

(including follow up) 

simultaneous soft tissue release, 

VDRSO, and PPO 

9 retrospective 53 
Not 

specified 

Mean:7.9y 

SD:2.2y 
43% 

5.3 years 

with 

minimal 

follow up of 

12 months. 

Pre- + postoperative 

(including follow up) 

bilateral selective dorsal 

rhizotomy 

10 retrospective 91 179 

Mean:4.6y 

SD:1.6y 

Range:2.4-

10.6y 

36% 
5.4 (1.03-

10.20) 

Pre- + postoperative 

(most recent 

preoperative radiograph 

and all available 

postoperative 

anteroposterior pelvis 

radiographs.) 

isolated femoral varus 

derotational osteotomy (VDRO) 
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Appendix 4 (continued) 

Study 

ID 
Study type 

Patients 

(controls) 

No. of 

hips 
Age 

Sex (% 

female) 

Duration of 

follow up 
Timepoint of assessment 

Primary 

intervention 

11 
cross-

sectional 
75 

Not 

specified 

Median:7.7y 

IQR:6.5y 
44% N/A Not specified 

hip surveillance 

programme 

12 retrospective 57 
Not 

specified 

Mean:9.3y 

SD:1.8y 

Range:7–14y 

46% 

68.4 months 

(SD=22.0; range, 

60–124 months). 

Duration between 

P/Ex and imaging 

study (mo) 

Preoperative (between 

baseline physical exam and 

pre-operative evaluation for 

ortho paedic surgery) 

Nil 

13 retrospective 100 (103) 
Not 

specified 

Mean:8.8y 

SD:4.3y 

Range:3–18y 

Not 

specified 

7.5 (range 5–10) 

years 

taken in A&E during a 6-

month period 

hip surveillance 

programme 

14 retrospective 

50 

Group 1: 

19 

Group 2: 

23 

Group 3: 8 

100 

Group 1  

Mean:12y 

SD:2y 

Range:8–15y 

Group 2 

Mean:12y 

SD:1.7y 

Range:8–15y 

Group 3 

Mean:12y 

SD:2y 

Range:8–12y 

 

Overall range:7.5–

15.0y 

56% 

Group 1: 54 ± 30 

(6–129) months of 

follow-up 

Group 2: 45 ± 32 

(range 4–98) 

months of follow-

up 

Group 3: 50 ± 39 

(range 3–129) 

months of follow-

up 

pre- + post- spinal fusion 

surgery 

spinal fusion 

with pelvic 

fixation 
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Appendix 4 (continued) 

Study 

ID 

Study type Patients 

(controls) 

No. of 

hips 

Age Sex (% 

female) 

Duration 

of follow 

up 

Timepoint of assessment Primary 

intervention 

15 
cross-

sectional 
93 

Not 

specified 

Mean:6.8y 

SD:3y 

Range:2.4–

12y 

43% 

10.3 years 

(SD = 6) 

years 

Pre- + postoperative 

soft tissue surgery as 

the first treatment for 

hip displacement 

16 
cross-

sectional 

255 (119 

Norwegian + 

136 Swedish) 

Not 

specified 

Sweden 

Mean:5.7y 

SD:2.3y 

 

Norway 

Mean:7.6y 

SD:2.9y 

45.6% in 

Sweden + 

38.7% in 

Norway 

N/A most recent or preoperative 
hip surveillance 

programme 

17 retrospective 71 140 

Mean:7y 

Range:3-

12y 

41% 
12.8 years 

(1.0/27.0) 

The measurement was taken twice; 

the first one was taken as close in 

time as possible before surgery (up 

to 3 months before) and the second 

radiograph on the day of the last 

reassessment. 

Soft tissue release of 

the spastic hip by 

psoas–rectus transfer 

and adductor 

tenotomy 

18 retrospective 145 
Not 

specified 

Mean:3.5y 

Range:0.6-

9.7y 

50% 
Not 

specified 

first radiograph in CPUP +  a 

follow-up period of 5 years or 

until development of MP > 40% of 

either hip within 5 years 

Hip surveillance 

programme 
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Appendix 4 (continued) 

Study 

ID 

Study type Patients 

(controls) 

No. of 

hips 

Age Sex (% 

female) 

Duration of 

follow up 

Timepoint of assessment Primary 

intervention 

19 retrospective 75 116 

Mean:7.0y 

Range:2.1-

12.1y 

40% 

4.6 years 

(range, 2.0 to 

10.7 y) 

Pre- + postoperative 

(including follow up) 

isolated varus 

derotational 

osteotomy (VDRO) + 

VDRO combined 

with open hip 

reduction and/or 

pelvic osteotomy 

20 prospective 1115 
Not 

specified 

Not 

specified 
42% 

1.2 years (range 

1 month –5 

+8yrs) 

During hip surveillance 

program (multiple timepoints 

- not specified) 

Hip surveillance 

programme 

21 retrospective 353 
Not 

specified 

Not 

specified 

Not 

specified 
Not specified ? 

Before 3 years of age + follow 

up between 2-7 years 

Hip surveillance 

programme 

22 retrospective 50 100 
Not 

specified 
30% Not specified ? 

age of two years (12–32 

months; T1), age of four years 

(36–60 months; T2) and age 

of seven years (72–96 

months; T3) 

Nil 

23 prospective 124 
Not 

specified 

Mean:7.01y 

SD:2.47y 

Range:3–

13y 

Not 

specified 

At least 30 

months 

Pre- + postoperative 

(including follow up - 

annually) 

reconstructive surgery 

for hip dislocation 

with also 

simultaneous surgical 

interventions for: 

contractures of the 

knee joints and/or 

contractures of the 

ankle joints and foot 

deformities 
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Appendix 4 (continued) 

Study 

ID 

Study type Patients 

(controls) 

No. of 

hips 

Age Sex (% 

female) 

Duration of 

follow up 

Timepoint of assessment Primary 

intervention 

24 retrospective 110 150 

Mean:8.7y 

SD:2.4y 

Range:2.8-

13.8y 

38% 
2.9 ± 2.6 (1.0 

to 12.0) 

Pre- + postoperative 

(including follow up) 

Dega pelvic 

osteotomy using iliac 

crest allograft 

25 prospective 77 154 

Mean:9.5y 

SD:1.6y 

Range:7–

12y 

38% Not specified 

radiograph taken nearest to 

the time that the questionnaire 

(pain assessment) was 

answered 

Nil 

26 retrospective 1,171 
Not 

specified 

Mean:7.9y 

Range:2-16y 

Not 

specified 
N/A Pre- + post-CPIPS 

hip surveillance 

programme 

27 retrospective 101 
Not 

specified 

Mean:2.4y 

Range:0.8-

4.9y 

40% 

4.3 years 

(range, 0.9 to 

11.8 y) 

At diagnosis + at the last 

follow-up or last preoperative 

radiograph 

hip surveillance 

programme 

28 retrospective 119 224 

Mean:8.9y 

SD:2.7y 

Range:2.8 to 

16.5y 

34% 
3.3 ± 2.7 (1 to 

11.9) 

Pre- + postoperative 

(including follow up - at least 

two follow-up evaluations) 

hip reconstructive 

surgery including 

FVO (femoral 

varization osteotomy) 

29 retrospective 81 115 

Mean:9y 

Range:3.5-

13.8y 

49% 
5.5 years (1.6 

to 15.1) 

Pre- + postoperative 

(including follow up - one 

year post-operatively and at 

final review) 

open reduction of the 

hip 
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Appendix 4 (continued) 

Study 

ID 

Study type Patients 

(controls) 

No. of 

hips 

Age Sex (% 

female) 

Duration of 

follow up 

Timepoint of assessment Primary 

intervention 

30 prospective 335 
Not 

specified 

Mean:3y 

Range:6m–

7y 11m 

44% 

2 years 9 

months 

(range 6mo–

7y 3mo) 

CPOP: Initial radiograph (shortly after 

diagnosis, preferably at the age of 1 year, in 

children with pronounced spasticity OR for 

all other children, a radiograph at the age of 

2 years) + last follow up radiograph (until 

operative treatment for hip displacement or 

until the most recent radiograph in those 

who had not undergone hip surgery) 

hip surveillance 

programme 

31 retrospective 239 346 
Mean:11.6y 

Range:3-18y 
38% 

6.5 (2 to 

14.8) 
birth through to the date of analysis 

hip surveillance 

programme 

32 retrospective 55 102 

Median:6.5y 

Range:3.2–

15.6y 

54% 

7.4 years 

(range 3–11 

years) 

Pre- + postoperative (including follow up - 

within the first year (postoperative), and 

then at ∼ 1-year follow-up intervals for a 

minimum of 2 years and a maximum of 11 

years) 

isolated varus 

derotational 

osteotomy 

(VDRO) 

33 prospective 67 
Not 

specified 

Mean:9y 

Range:7–12y 
40% Not specified 

radiograph taken nearest to the time the 

questionnaire was answered. The mean 

length of time between radiograph and 

questionnaire was 5.4 (0–25) months, and 

no surgery was performed during this 

interval. 

hip surveillance 

programme 

34 prospective 235 
Not 

specified 

Mean:6y4m 

Range:2y 

4m-10y11m) 

55% 

median 

follow-up of 

2.7 years 

(range 0.4–

6.3; mean 

2.6) 

baseline and at each annual visit Nil 
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Appendix 4 (continued) 

Study 

ID 

Study type Patients 

(controls) 

No. of 

hips 

Age Sex (% 

female) 

Duration of follow 

up 

Timepoint of assessment Primary 

intervention 

35 retrospective 72 144 

Mean:6.2y 

Range:3.2-

12.2y 

33% 7.0 (2.0 to 16.0) years 
Preoperative, postoperative, and 

final follow-up radiographs 

bilateral VDROs 

without 

concomitant 

pelvic osteotomy 

36 
cross-

sectional 
73 99 

Mean10.8y 

Range:4.0–

18.0y 

42% N/A Not specified 

physiotherapy 

(abduction 

treatment and 

horse-back riding 

therapy) 

37 prospective 145 
Not 

specified 

Mean:3.5y 

Range:0.6-

9.7y 

50% 

Not specified 

(followed up until hip 

displacement (MP > 

40%) occurred (group 

1) or for five years 

without hip 

displacement (group 

2)) 

CPUP: first radiographic 

examination (MP & HSA) + 

MP was then measured 

prospectively once a year 

according to the CPUP schedule 

until hip displacement (MP > 

40%) occurred (group 1) or for 

five years without hip 

displacement (group 2). 

hip surveillance 

programme 

38 
cross-

sectional 
268 

Not 

specified 

Not specified 

(children < 

18 years) 

44% N/A 
CPUP: First pelvic radiograph 

in CPUP during study period 

hip surveillance 

programme 

39 
cross-

sectional 
337 

Not 

specified 
Not specified 45% N/A 

CPUP: First pelvic radiograph 

in CPUP during study period 

hip surveillance 

programme 

40 
cross-

sectional 
103 206 

Mean:5.03y 

Range:2–11y 
53% N/A Not specified 

hip surveillance 

programme 

 



 112 

Appendix 4 (continued) 

Study 

ID 

Study type Patients 

(controls) 

No. of 

hips 

Age Sex (% 

female) 

Duration of 

follow up 

Timepoint of assessment Primary 

intervention 

41 retrospective 75 137 

Mean:7y 

SD:2y8m 

Range:3y2m-

17y5m 

44% 

5 years and 6 

months (range, 

1 to 12 y and 7 

mo) 

preoperative, postoperative, and 

follow-up 

Varus 

Rotational 

Osteotomy 

42 
cross-

sectional 
133 

Not 

specified 

Median:35.6m 

Range:30.5-

36.4m 

36% 

Not specified 

(18, 24, 30, 36, 

48, and 60 

months) 

During hip surveillance (at 18, 24, 

30, 36, and 48 months) 

hip surveillance 

programme 

43 retrospective 87 (917) 174 

Mean:4.6y 

SD:1.6y 

Range:2.4-10.6 

y 

Not 

specified 

5.1 ± 2.2 years 

(range, 1.1 to 

9.9 y) 

NSA (intraoperatively), ADR 

(preoperative and postoperative - 

but may not be relevant) 

isolated varus 

derotation 

osteotomy 

44 prospective 90 180 

Mean:7y11m 

Range:4y3m-

13y 9m 

47% 

mean 28 

months; 21 to 

40 

Pre- + postoperative (including 

follow up - three, six and 12 weeks 

and at six and 12 months following 

surgery and yearly thereafter) 

Proximal 

femoral 

osteotomy 

45 Retrospective 50 
Not 

specified 

Mean:6.2y 

SD:1.37y 

Not 

specified 

2.8 ± 1.7 years 

(mean) 
Pre- + postoperative Surgery 

46 Retrospective 50 100 

Mean: 

T1:24m 

T2:49m  

T3:84m 

30% Not specified Different age intervals None 

47 retrospective 122 
Not 

specified 

Not specified 

Range:4–10y 

Not 

specified 
Not specified Not specified None 

 

 



 113 

Appendix 5: Measurements reported per article with definitions 

 

Appendix 5 

Study 

ID 
Measurement Verbatim written definition 

Visual 

aid 

1 RMP1 Not specified No 

2 

RMP 
MP was calculated by dividing the width of the femoral head lateral to the Perkin's line by the total width of the 

femoral head 
Yes 

NSA2 
NSA was defined as the angle between a line passing through the centre of the femoral shaft and another line 

connecting the femoral head centre and the midpoint of the femoral neck 
No 

MHR3 

Concentric circles were drawn at the centre of the femoral head with the larger circle outlining the outer cortex of the 

femoral head and the inner circle outlining the innermost cortex of the head. The ratio between the radii of the two 

circles was calculated as the sphericity of the femoral head 

Yes 

3 

RMP Migration percentage (MP) measured as MP = (A/B) ×100.] Yes 

AcI4 
AI measured as the angle formed by Hilgenreiner's line and a line draw from the lateral triradiate cartilage to the 

lateral acetabular margin 
Yes 

NSA 
NSA measured as the angle formed by a line bisecting the femoral head (crossing the epiphysis at 90 degrees) and a 

line formed along the axis of the femoral shaft. 
Yes 

4 

RMP Not specified No 

CEA5 Not specified No 

AA6 Not specified No 

5 

NSA 

On the left hip, the neck-shaft angle (NSA) was defined as the angle between a line passing through the center of the 

femoral shaft and another line connecting the femoral head center and the midpoint of the femoral neck. The femoral 

head center was the center of the largest best-fitting circle inside the femoral head. 

Yes 

HSA7 Not specified No 

RMP 
On the right hip, the migration percentage (MP) was calculated by dividing the width of the femoral head lateral to 

Perkin's line (A) by the total width of the femoral head (B).] 
Yes 

6 
RMP Not specified No 

CEA Not specified No 
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Appendix 5 (continued) 

Study 

ID 
Measurement Verbatim written definition 

Visual 

aid 

7 RMP Not specified No 

8 
RMP Not specified No 

AA Not specified No 

9 
CEA Not specified Yes 

RMP Not specified Yes 

10 
Shenton's line Not specified No 

RMP Not specified No 

11 
RMP 

MP is obtained by identifying Hilgenreiner's line (H) and Perkin's line (P) and then measuring the proportion (%) of 

capital epiphysis that has migrated beyond Perkin's line laterally (A/B x 100).] 
Yes 

AcI AI as the angle between the slope of the acetabulum and Hilgenreiner's line Yes 

12 

RMP 
Measurement of migration percentage (MP). MP=B/A×100. Hilgenreiner's line and Perkins line are marked as 'H' 

and 'P'. MP is the proportion (%) of the capital epiphysis that appears to lie outside the acetabulum. 
Yes 

NSA 

Measurement of the femoral neck and shaft angle (FNS). 'a' is the FNS measurement, performed in standard anterior-

posterior X-rays of the proximal femur or pelvis, which was generated by the intersection angle between the femoral 

neck axis and femoral shaft axis. 

Yes 

13 
RMP Not specified Yes 

HSA Not specified Yes 

14 
RMP migration index (x/y × 100) Yes 

AA acetabular angle (narrow angle between yellow lines) Yes 

15 

RMP Not specified Yes 

AcI Not specified Yes 

HSA Not specified Yes 

16 RMP Not specified No 
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Appendix 5 (continued) 

Study 

ID 
Measurement Verbatim written definition 

Visual 

aid 

17 

RMP Not specified No 

AcI Not specified No 

NSA Not specified No 

18 

RMP migration percentage (MP), calculated as b/c × 100, on the left hip Yes 

HSA 
HSA: The HSA is measured by drawing a line midway through the femoral shaft and then drawing another line 

perpendicular to the proximal femoral physis through the center of the proximal femoral epiphysis 
Yes 

19 

RMP Not specified No 

AcI Not specified No 

AA Not specified No 

NSA Not specified No 

CEA Not specified No 

20 RMP Not specified No 

21 RMP 
Measurement of Migration Percentage (MP). MP = A/B 9 100. On the right hip with a "Gothic arch" formation of 

the lateral margin, the midpoint of the arch is used as reference point 
Yes 

22 

RMP 
the migration percentage (MP) is measured by a Hilgenreiner's line (H) and three perpendicular lines. The MP is 

measured by A/B x 100 % 

 

Yes 

HSA 
head-shaft angle (C) by measuring the medial angle between a line perpendicular to the proximal femoral epiphysis 

and a line through the middle of the femoral shaft. 
Yes 

23 

RMP Not specified No 

AcI Not specified No 

ADR8 Not specified No 

NSA Not specified No 

CEA Not specified No 
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Appendix 5 (continued) 

Study 

ID 
Measurement Verbatim written definition 

Visual 

aid 

24 

NSA 

neck-shaft angle (NSA) was defined as the angle between a line passing through the center of the femoral shaft and 

another line connecting the center of the femoral head and the midpoint of the femoral neck. The center of the 

femoral head was the center of the largest best-fitting circle inside the femoral head 

Yes 

RMP 
Migration percentage (MP) was calculated by dividing the width of the femoral head lateral to Perkin's line (a) by the 

total width of the femoral head (b) 
Yes 

AcI Acetabular index (AI) was defined as the angle between the acetabular roof and the Hilgenreiner's line Yes 

25 RMP 
MP is the percentage of the femoral head lateral to the acetabulum (lateral to Perkins' line), measured parallel to 

Hilgenreiner's line. 
No 

26 RMP Not specified No 

27 

RMP 
MP is the percentage of the femoral head lateral to the acetabulum (lateral to Perkins' line). + Measurement of the 

migration percentage (MP) is shown in the left hip (MP = a/b×100) 
Yes 

HSA 
The head-shaft angle (HSA) is the medial angle between a line perpendicular to the proximal femoral physis and a 

line through the middle of the femoral shaft 
Yes 

28 

NSA 

NSA was defined as the angle between a line passing through the center of the femoral shaft and another line 

connecting the femoral head center and the midpoint of the femoral neck. The femoral head center was the center of 

the largest best-fitting circle inside the femoral head. 

Yes 

 

 

 

HSA 
HSA was defined as the angle between a line passing through the center of the femoral shaft and another line 

perpendicular to the proximal femoral physis passing through the center of the proximal femoral epiphysis 
Yes 

RMP 
RMP was calculated by dividing the width of the femoral head lateral to Perkin's line (A) by the total width of the 

femoral head 
Yes 

29 

RMP Not specified No 

AcI Not specified No 

ESA9 Not specified No 

PFA10 Not specified No 
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Appendix 5 (continued) 

Study 

ID 

Measurement 
Verbatim written definition 

Visual 

aid 

30 
RMP 

RMP the percentage of the femoral head lateral to the acetabulum (lateral to Perkins' line), measured parallel to 

Hilgenreiner's line. 
Yes 

AcI AI as the slope of the acetabular roof, which is the angle between the acetabular roof and Hilgenreiner's line Yes 

31 RMP Not specified No 

32 

NSA Not specified No 

AcI Not specified No 

RMP Not specified No 

CEA Not specified No 

33 RMP 
RMP as the percentage of the femoral head lateral to the acetabulum (lateral to Perkins' line), measured parallel to 

Hilgenreiner's line. 

No 

 

34 RMP Not specified Yes 

35 

RMP Not specified No 

AcI Not specified No 

NSA Not specified No 

HSA Not specified No 

36 RMP Not specified No 

37 

RMP 
Hilgenreiner's and Perkins lines; b: is the horizontal distance that the femoral head has translated lateral to Perkins 

line, c: is the horizontal measurement of the femoral head medial to Perkins line. The MP is b/c × 100 
Yes 

HSA 
HSA was measured by the angle intersecting two lines; one passing through the proximal mid diaphyseal line of the 

femoral shaft and a second perpendicular to the proximal femoral physis 
Yes 

38 
RMP Not specified Yes 

PAMP11 Not specified Yes 

39 RMP Not specified No 

40 RMP Not specified No 
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Appendix 5 (continued) 

Study 

ID 

Measurement 
Verbatim written definition 

Visual 

aid 

41 

NSA 

The femoral shaft and neck axes were drawn on the radiographic film, and the NSA was measured as the angle 

subtended by the intersection of these 2 axes. To define the shaft axis 2 lines were drawn perpendicular to the 

diaphysis of the femur. A line connecting the midpoints of these 2 lines was then drawn to represent the shaft axis. 

The neck axis was defined in a similar manner utilising 2 lines drawn through the proximal and distal margins of the 

middle third of the femoral neck. The head axis was determined by drawing a line perpendicular to the proximal 

femoral physis. The HSA was calculated from the relation between the head and shaft axes 

Yes 

HSA Yes 

MeI12 

The MeI was determined by dividing the distance between the proximal physis and the lateral margin of the greater 

trochanter on the neck axis line (described above for NSA) by the distance between the proximal physis and the 

intersection with the shaft axis line (described above for NSA) on the neck axis line. The greater the MeI, the greater 

the medialisation of the femoral shaft. 

Yes 

42 

RMP Not specified No 

HEA13 
HEA as the acute angle between a line drawn parallel to and through the proximal femoral epiphysis and Hilgenreiner 

line (HL). 
Yes 

AcI Not specified No 

NSA Not specified No 

43 

NSA Not specified No 

ADR 

The acetabular depth ratio (ADR), where A is the depth and B is the width. The width B is measured as the distance 

from the inferior teardrop to the lateral edge of the sourcil and the depth A is the perpendicular distance from the 

midpoint of B to the deepest point of the acetabular roof. ADR = A/BÂ100. This hip has an ADR of 24 

Yes 

44 
RMP Not specified No 

NSA Not specified No 

45 

RMP Not specified No 

AcI Not specified No 

ADR Not specified No 

NSA Not specified No 

CEA Not specified No 
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Appendix 5 (continued) 

Study 

ID 

Measurement Verbatim written definition Visual 

aid 

46 HSA 
The head–shaft angle (HSA) is the medial angle between a line perpendicular to the proximal femoral epiphysis 

and a line through the middle of the femoral shaft. 
Yes 

47 RMP 
Migration percentage MP is defined as the ratio of the femoral head migrated beyond the acetabular edge (a) to the 

total width of the femoral head (b). 
Yes 

 

 

1RMP: Reimers’ migration percentage   2NSA: Femoral neck-shaft angle   3MHR: Mose hip ratio    

  
4AcI: Acetabular index     5CEA: Centre edge angle of Wiberg   6AA: Acetabular angle or Sharp’s angle  

  
7HSA: Femoral head-shaft angle    8ADR: Acetabular Depth Ratio   9ESA: Epiphyseal shaft angle    

 
10PFA: Pelvic femoral angle    11PAMP: Pelvic adjusted migration percentage 12MeI: Medialization index   

 
13HEA: Hilgenreiner epiphyseal angle    
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Appendix 6: Round one survey 
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Appendix 6 (continued) 
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Appendix 6 (continued) 
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Appendix 6 (continued) 
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Appendix 6 (continued) 
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Appendix 6 (continued) 
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Appendix 7: Delphi Round Two Survey 
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Appendix 7 (continued) 
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Appendix 7 (continued) 
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Appendix 7 (continued) 
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Appendix 7 (continued) 
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Appendix 7 (continued) 
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Appendix 7 (continued) 
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Appendix 7 (continued) 
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Appendix 7 (continued) 
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Appendix 8: Delphi Round One Responses 

 

Appendix 8 

Participant  

ID 

Time 

(min:sec) 
RMP HSA NSA MHR AcI CEA AA SL ADR ESA HEA PFA PAMP MeI Additional Measurements 

1 01:04 9 1 7 1 1 1 1 1 1 1 1 1 1 1 Nil 

2 08:28 9 7 7 3 7 5 3 6 3 5 3 3 3 3 Nil 

3 03:15 9 5 5 3 7 7 7 6 3 3 3 3 4 3 Nil 

4 02:48 9 6 8 1 4 2 2 7 6 3 3 3 3 3 Nil 

5 01:28 9 1 4 1 1 1 1 5 1 1 1 1 1 1 Nil 

6 03:08 9 5 5 5 7 5 5 9 5 5 5 5 9 5 Nil 

7 01:20 9 8 7 6 8 6 7 8 7 6 7 6 8 6 Nil 

8 05:20 9 6 4 2 5 3 5 6 4 4 4 4 4 3 Nil 

9 01:40 9 6 6 4 9 8 7 9 7 3 6 3 4 4 Nil 

10 01:34 9 7 9 7 8 6 6 8 6 5 7 5 5 5 Nil 

11 01:27 6 3 6 3 7 3 7 2 2 3 3 7 8 6 Nil 

12 03:54 9 3 7 7 9 7 6 7 4 4 4 6 6 4 Nil 

13 02:43 9 8 8 6 9 5 8 6 5 6 6 6 7 5 Nil 

14 02:04 9 6 7 1 3 1 1 1 1 1 1 1 1 1 Nil 

15 1192:27 9 7 6 1 8 3 5 7 3 1 7 1 1 1 

Sourcil (Tönnis) angle 

Femoral head shape / congruency 

(not strictly a quantitative 

measurement) 

16 16:11 9 6 2 2 3 2 3 7 3 1 2 2 6 2 Nil 

17 05:08 9 7 6 1 5 1 1 4 1 4 1 1 1 1 Nil 

18 02:48 9 6 3 3 9 3 8 7 5 7 5 3 3 3 Nil 

19 02:30 9 9 3 3 3 3 3 3 3 3 3 3 3 3 Nil 

20 03:19 9 3 8 1 8 3 3 6 2 2 2 2 6 2 Nil 

21 01:53 9 8 6 3 6 2 2 7 3 7 3 2 3 2 Nil 

22 01:54 9 4 1 2 7 3 2 6 3 6 4 2 2 2 Nil 
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Appendix 9: Delphi Round Two Responses 

 

Appendix 9 

Participant ID Time (min:sec) HSA NSA AcI CEA AA SL ADR ESA HEA PFA PAMP MeI STA FHS 

1 03:26 1 9 1 1 1 5 1 1 1 1 1 1 1 1 

2 05:20 6 7 6 3 3 7 3 5 3 2 5 3 1 7 

3 04:42 5 5 6 4 5 7 5 5 4 5 4 3 5 7 

4 02:52 6 7 7 3 3 7 3 3 3 3 3 3 3 7 

5 02:42 3 7 3 3 1 7 1 1 1 1 1 1 2 8 

6 05:40 6 7 7 3 3 7 3 1 3 1 5 3 5 9 

7 02:34 7 7 9 7 7 8 3 3 3 3 3 3 7 8 

8 02:49 7 7 4 2 2 5 3 2 3 2 2 3 3 5 

10 01:35 3 7 8 5 6 7 3 1 1 1 2 2 5 7 

11 04:19 5 8 8 5 5 2 7 7 8 2 3 4 5 8 

12 02:43 5 8 9 7 5 6 5 5 5 5 8 5 7 9 

13 03:51 7 7 8 5 7 8 5 5 5 7 7 4 4 7 

14 04:56 6 7 2 2 2 2 2 2 2 1 2 2 2 8 

15 11:06 7 8 8 3 6 9 3 3 7 2 3 1 8 8 

16 05:16 7 4 7 1 3 7 3 1 1 1 5 1 3 5 

17 05:53 7 6 7 2 1 6 2 3 2 1 3 2 2 6 

18 03:21 6 3 8 2 2 8 1 1 3 3 1 1 2 6 

19 06:57 2 9 1 1 1 1 1 1 1 1 1 1 1 1 

20 05:05 3 6 7 3 2 6 2 3 3 2 3 3 3 6 

21 04:54 8 5 7 2 3 7 2 8 5 2 5 1 2 6 

22 02:52 2 1 7 1 1 4 1 4 3 1 1 1 1 1 
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Appendix 10: RMP values generated by each of the clinicians and the AI model for 450 

randomly selected images from the training dataset. The ‘manual’ measurement is the mean of 

the measurements recorded by five clinicians for each image. 

 

Appendix 10 

Image ID Clinician 1 Clinician 2 Clinician 3 Clinician 4 Clinician 5 Manual AI 

1 12 10 11 8 17 11.6 15.1404 

2 20 19 19 18 22 19.6 19.643 

3 15 13 14 14 15 14.2 16.246 

4 16 0 7 6 15 8.8 13.7143 

5 17 18 18 15 20 17.6 10.0682 

6 56 57 58 55 52 55.6 56.9104 

7 52 42 50 45 45 46.8 51.3589 

8 12 10 13 8 17 12 18.4969 

9 41 40 39 39 45 40.8 51.1729 

10 26 25 24 26 28 25.8 30.7776 

11 19 12 11 10 14 13.2 13.8835 

12 22 26 20 23 24 23 22.1916 

13 12 8 7 10 18 11 12.2161 

14 65 63 64 69 56 63.4 59.8752 

15 33 34 33 32 33 33 33.7978 

16 85 94 91 89 95 90.8 86.0601 

17 100 87 99 88 82 91.2 100 

18 11 8 11 12 13 11 9.592 

19 78 100 100 58 72 81.6 92.9574 

20 13 8 6 13 13 10.6 14.7477 

21 54 54 58 54 41 52.2 52.1079 

22 16 7 7 7 10 9.4 15.5345 

23 94 94 94 94 95 94.2 94.909 

24 11 8 12 7 16 10.8 9.97121 

25 43 44 46 48 44 45 48.3322 

26 34 30 32 30 23 29.8 29.3286 

27 10 0 7 8 15 8 8.66488 

28 19 2 14 7 9 10.2 0.55829 

29 42 39 40 37 37 39 35.4541 

30 39 37 37 29 40 36.4 43.9202 

31 83 83 81 81 74 80.4 86.9551 

32 100 95 99 95 99 97.6 99.5701 

33 60 77 77 78 80 74.4 80.6679 

34 17 14 11 12 15 13.8 16.6417 
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Appendix 10 (continued) 

Image ID Clinician 1 Clinician 2 Clinician 3 Clinician 4 Clinician 5 Manual AI 

35 24 25 23 23 27 24.4 29.9589 

36 38 34 46 25 49 38.4 41.9377 

37 62 79 56 20 10 45.4 32.2581 

38 53 42 56 45 40 47.2 49.2717 

39 100 100 100 100 100 100 100 

40 100 0 62 95 0 51.4 81.1082 

41 10 2 16 10 29 13.4 16.7362 

42 81 79 79 74 75 77.6 80.5523 

43 30 27 27 25 29 27.6 29.6751 

44 22 24 20 22 25 22.6 34.9067 

45 25 22 25 31 34 27.4 33.633 

46 13 5 17 8 13 11.2 8.76511 

47 40 38 38 37 39 38.4 38.9373 

48 18 10 13 9 10 12 12.1403 

49 19 18 21 19 21 19.6 24.201 

50 23 23 20 20 22 21.6 28.9348 

51 32 27 26 25 26 27.2 28.6615 

52 71 64 65 62 59 64.2 65.061 

53 24 20 18 17 19 19.6 21.4921 

54 25 8 14 12 24 16.6 14.9124 

55 32 29 29 30 32 30.4 37.4037 

56 0 0 0 0 0 0 29.6948 

57 92 92 100 92 98 94.8 100 

58 33 31 33 30 32 31.8 32.9242 

59 29 17 28 16 29 23.8 23.973 

60 95 96 90 87 83 90.2 100 

61 15 14 14 11 15 13.8 15.1789 

62 21 17 18 14 23 18.6 15.8523 

63 25 0 2 0 2 5.8 1.01129 

64 32 32 31 29 35 31.8 31.3489 

65 20 16 15 12 17 16 16.605 

66 25 20 23 18 24 22 36.9026 

67 31 26 25 24 25 26.2 29.9798 

68 0 0 14 0 0 2.8 0 

69 55 55 57 53 50 54 54.846 

70 62 42 45 56 57 52.4 34.8218 

71 25 26 25 23 28 25.4 24.3794 

72 100 56 91 54 81 76.4 65.4855 
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Appendix 10 (continued) 

Image ID Clinician 1 Clinician 2 Clinician 3 Clinician 4 Clinician 5 Manual AI 

73 14 8 10 8 19 11.8 18.5568 

74 48 49 48 48 48 48.2 53.3842 

75 30 33 31 31 31 31.2 28.1076 

76 68 69 67 70 74 69.6 71.5029 

77 16 12 14 15 16 14.6 17.4906 

78 70 66 67 67 52 64.4 63.3347 

79 68 66 72 68 73 69.4 74.8457 

80 39 35 36 36 31 35.4 34.9216 

81 100 49 44 49 64 61.2 75.3812 

82 20 10 16 16 31 18.6 39.1422 

83 62 57 58 58 53 57.6 57.1107 

84 29 26 26 26 23 26 32.4564 

85 19 14 14 9 19 15 22.2325 

86 31 28 26 28 28 28.2 33.4915 

87 76 75 74 77 100 80.4 78.7379 

88 51 49 54 50 55 51.8 53.1993 

89 54 43 54 44 55 50 48.5607 

90 35 20 21 19 21 23.2 20.5482 

91 72 68 67 69 80 71.2 73.1748 

92 26 24 22 23 33 25.6 24.3886 

93 20 15 14 13 19 16.2 14.1656 

94 34 22 24 23 32 27 26.809 

95 100 100 100 100 100 100 100 

96 16 9 11 11 12 11.8 10.1184 

97 18 13 7 11 20 13.8 9.94869 

98 46 33 30 29 31 33.8 30.4005 

99 15 5 7 10 12 9.8 0 

100 41 35 37 37 38 37.6 30.2937 

101 41 34 45 39 40 39.8 45.5559 

102 29 25 30 25 25 26.8 28.877 

103 72 71 69 68 60 68 61.331 

104 24 19 20 14 27 20.8 26.7228 

105 84 82 83 80 80 81.8 86.6634 

106 0 0 0 0 3 0.6 0 

107 0 0 2 0 22 4.8 0.12165 

108 100 87 91 91 100 93.8 69.3409 

109 23 22 22 21 22 22 34.7766 

110 24 21 22 20 25 22.4 17.5631 
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Appendix 10 (continued) 

Image ID Clinician 1 Clinician 2 Clinician 3 Clinician 4 Clinician 5 Manual AI 

111 13 0 7 4 18 8.4 7.86095 

112 11 12 12 14 20 13.8 23.2307 

113 22 17 18 25 21 20.6 23.2241 

114 100 100 100 100 100 100 100 

115 29 22 22 18 22 22.6 27.2211 

116 1 2 0 4 2 1.8 1.34587 

117 11 7 8 8 8 8.4 0 

118 5 0 0 2 5 2.4 0 

119 22 21 22 22 20 21.4 43.3276 

120 28 17 19 19 24 21.4 22.6169 

121 19 16 18 18 20 18.2 24.0284 

122 0 0 0 0 0 0 0 

123 13 7 9 7 18 10.8 19.4031 

124 38 33 37 27 32 33.4 57.1012 

125 23 21 22 20 27 22.6 31.7515 

126 23 10 14 14 24 17 22.9571 

127 17 19 17 17 20 18 25.0707 

128 17 14 15 15 17 15.6 34.5858 

129 12 10 16 13 24 15 19.1415 

130 31 24 31 27 33 29.2 33.1954 

131 9 5 5 10 21 10 6.82425 

132 17 10 16 15 29 17.4 16.6277 

133 13 8 14 11 13 11.8 10.1178 

134 24 25 22 22 28 24.2 24.6775 

135 38 39 40 43 39 39.8 39.909 

136 72 69 71 69 73 70.8 80.5849 

137 19 17 20 16 20 18.4 17.5973 

138 23 14 17 21 21 19.2 24.6357 

139 0 0 0 1 12 2.6 0.86285 

140 20 21 20 16 27 20.8 20.0569 

141 22 23 25 22 29 24.2 24.9507 

142 19 9 16 6 11 12.2 9.38745 

143 0 22 22 22 25 18.2 0 

144 76 76 67 66 69 70.8 67.7822 

145 14 14 25 16 25 18.8 20.6045 

146 31 46 38 32 36 36.6 35.8336 

147 100 98 96 97 97 97.6 100 

148 15 11 11 9 13 11.8 11.9322 
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Appendix 10 (continued) 

Image ID Clinician 1 Clinician 2 Clinician 3 Clinician 4 Clinician 5 Manual AI 

149 24 21 22 21 26 22.8 22.8452 

150 11 5 5 6 14 8.2 11.5267 

151 74 73 71 74 75 73.4 72.0905 

152 27 0 0 5 18 10 11.2618 

153 19 14 19 13 18 16.6 21.1597 

154 18 11 14 14 16 14.6 16.9379 

155 28 23 24 18 24 23.4 18.9346 

156 70 44 61 38 67 56 21.6328 

157 38 30 35 26 34 32.6 24.9099 

158 93 94 90 91 71 87.8 89.5634 

159 100 100 100 100 100 100 100 

160 14 8 8 12 10 10.4 12.4226 

161 0 0 0 11 3 2.8 1.60097 

162 36 34 34 34 33 34.2 39.9526 

163 0 0 0 0 1 0.2 1.83402 

164 36 36 34 34 37 35.4 10.3591 

165 79 81 81 82 87 82 100 

166 26 30 29 28 28 28.2 30.6492 

167 19 22 21 19 22 20.6 33.3286 

168 20 21 17 19 22 19.8 27.2762 

169 96 86 87 86 82 87.4 84.693 

170 36 50 38 35 35 38.8 36.0883 

171 28 21 26 25 24 24.8 22.5423 

172 0 0 0 4 5 1.8 0 

173 15 12 16 13 16 14.4 16.7571 

174 63 64 63 63 65 63.6 66.7714 

175 100 100 100 100 100 100 70.2846 

176 10 3 6 3 5 5.4 9.48024 

177 31 31 32 31 32 31.4 32.7754 

178 37 32 34 31 35 33.8 39.0436 

179 10 5 7 8 12 8.4 1.12666 

180 15 17 16 18 26 18.4 23.1217 

181 11 0 0 0 7 3.6 0.71434 

182 13 16 18 15 26 17.6 23.257 

183 12 11 11 15 18 13.4 16.4727 

184 38 0 25 24 26 22.6 23.9426 

185 24 27 27 28 27 26.6 22.7825 

186 21 18 19 17 19 18.8 17.6844 
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Appendix 10 (continued) 

Image ID Clinician 1 Clinician 2 Clinician 3 Clinician 4 Clinician 5 Manual AI 

187 19 22 17 17 24 19.8 16.6498 

188 21 17 14 17 18 17.4 20.6118 

189 18 5 12 12 11 11.6 13.7869 

190 77 81 82 80 81 80.2 82.4704 

191 27 20 21 23 22 22.6 36.4503 

192 21 19 25 22 26 22.6 27.4751 

193 47 45 47 45 39 44.6 33.345 

194 12 11 12 13 21 13.8 13.4727 

195 23 11 17 10 18 15.8 20.2164 

196 0 0 23 20 18 12.2 18.5729 

197 23 21 23 23 22 22.4 23.7162 

198 56 50 57 50 47 52 51.871 

199 10 7 11 10 10 9.6 12.7641 

200 58 58 58 56 57 57.4 55.357 

201 3 6 6 5 6 5.2 4.88928 

202 39 35 37 35 38 36.8 37.2158 

203 18 7 18 19 20 16.4 8.41785 

204 28 31 31 29 34 30.6 36.6434 

205 21 23 24 24 29 24.2 26.1572 

206 22 24 24 21 20 22.2 22.0257 

207 6 90 100 92 96 76.8 100 

208 83 89 82 78 81 82.6 100 

209 13 12 6 10 9 10 9.3899 

210 29 27 30 24 26 27.2 29.9651 

211 23 23 26 25 25 24.4 27.595 

212 49 54 50 50 51 50.8 50.5331 

213 22 25 25 24 25 24.2 37.65 

214 24 21 27 23 24 23.8 26.0618 

215 25 20 22 21 23 22.2 31.8022 

216 16 15 17 15 29 18.4 20.606 

217 62 29 29 39 33 38.4 18.3683 

218 81 81 76 75 75 77.6 79.1237 

219 20 5 5 16 16 12.4 0 

220 27 28 31 30 28 28.8 35.4987 

221 41 40 36 41 33 38.2 39.9774 

222 76 80 78 78 78 78 85.5284 

223 14 5 8 6 6 7.8 12.5044 

224 36 26 34 32 36 32.8 54.0935 
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Appendix 10 (continued) 

Image ID Clinician 1 Clinician 2 Clinician 3 Clinician 4 Clinician 5 Manual AI 

225 6 7 7 7 14 8.2 23.0904 

226 26 27 27 21 24 25 19.6775 

227 0 0 0 0 8 1.6 0 

228 37 26 33 27 32 31 33.0579 

229 15 11 14 13 17 14 10.2739 

230 26 22 25 26 29 25.6 28.0881 

231 39 43 43 39 46 42 41.8559 

232 11 2 4 5 1 4.6 10.0103 

233 37 30 32 33 34 33.2 34.1853 

234 0 0 0 0 0 0 0 

235 20 12 16 16 14 15.6 12.1326 

236 18 18 11 21 25 18.6 45.3084 

237 18 14 19 20 19 18 21.2733 

238 41 42 41 41 47 42.4 49.2319 

239 22 22 21 23 24 22.4 26.3037 

240 7 4 9 6 11 7.4 6.00244 

241 19 20 20 19 21 19.8 30.0129 

242 23 19 19 17 21 19.8 31.5756 

243 46 36 40 43 55 44 50.5914 

244 15 17 18 18 23 18.2 20.3076 

245 71 79 72 69 65 71.2 100 

246 29 22 30 29 32 28.4 39.1704 

247 0 1 0 7 10 3.6 13.132 

248 57 52 77 51 52 57.8 54.2188 

249 21 14 19 15 19 17.6 19.7637 

250 39 37 37 39 45 39.4 42.018 

251 44 40 42 43 47 43.2 47.9853 

252 14 11 6 9 19 11.8 14.1402 

253 17 14 19 19 17 17.2 18.2555 

254 63 63 66 49 69 62 0 

255 6 0 8 3 4 4.2 3.85129 

256 92 92 91 88 87 90 90.2851 

257 41 34 30 30 26 32.2 33.4217 

258 13 7 11 11 11 10.6 16.4304 

259 24 3 2 0 8 7.4 0.90308 

260 24 20 23 22 24 22.6 23.8062 

261 20 18 19 18 19 18.8 21.9772 

262 100 93 98 100 97 97.6 90.3108 
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Appendix 10 (continued) 

Image ID Clinician 1 Clinician 2 Clinician 3 Clinician 4 Clinician 5 Manual AI 

263 0 0 0 0 0 0 0 

264 31 18 18 22 21 22 41.1059 

265 7 3 6 6 9 6.2 11.0864 

266 0 0 0 0 0 0 0 

267 36 14 30 14 32 25.2 33.6077 

268 13 1 13 0 0 5.4 2.94593 

269 22 16 16 17 25 19.2 17.1307 

270 17 11 17 16 20 16.2 42.9657 

271 11 0 6 0 4 4.2 1.70083 

272 19 21 25 20 22 21.4 26.1172 

273 18 15 16 16 17 16.4 22.5221 

274 59 45 39 42 41 45.2 47.1271 

275 34 26 30 30 26 29.2 32.6319 

276 43 21 24 16 17 24.2 19.3309 

277 100 100 100 100 100 100 100 

278 19 14 14 13 14 14.8 15.0715 

279 27 22 27 26 28 26 35.0576 

280 24 18 21 18 23 20.8 26.6594 

281 49 49 46 49 48 48.2 47.3735 

282 53 55 57 56 50 54.2 54.6188 

283 10 0 0 0 1 2.2 0.84879 

284 30 25 25 24 25 25.8 29.9709 

285 100 100 100 100 92 98.4 100 

286 23 18 22 23 24 22 27.3124 

287 36 33 35 37 35 35.2 36.5684 

288 25 24 25 24 24 24.4 38.9383 

289 51 44 48 46 36 45 51.1323 

290 27 28 31 29 31 29.2 29.3734 

291 32 26 26 26 26 27.2 38.2534 

292 17 16 16 19 19 17.4 7.60493 

293 60 59 60 61 62 60.4 68.2421 

294 26 23 22 22 22 23 22.6775 

295 23 11 16 26 15 18.2 23.3345 

296 27 11 16 8 9 14.2 8.87414 

297 25 25 25 24 24 24.6 30.5736 

298 28 27 28 30 32 29 27.4182 

299 16 12 12 14 13 13.4 31.3785 

300 27 25 25 25 18 24 26.9776 
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Appendix 10 (continued) 

Image ID Clinician 1 Clinician 2 Clinician 3 Clinician 4 Clinician 5 Manual AI 

301 15 17 20 16 17 17 14.1888 

302 54 45 53 43 44 47.8 0 

303 28 20 19 19 15 20.2 19.627 

304 52 50 52 50 50 50.8 42.5127 

305 24 22 24 23 24 23.4 26.8572 

306 25 18 22 17 21 20.6 17.5759 

307 12 1 1 4 2 4 7.75526 

308 11 1 4 6 6 5.6 8.06986 

309 13 9 7 10 12 10.2 13.2371 

310 17 9 14 10 14 12.8 3.89806 

311 11 0 4 0 1 3.2 0 

312 5 0 2 6 4 3.4 0 

313 43 40 16 27 39 33 22.4886 

314 10 7 8 7 9 8.2 2.37765 

315 14 13 14 14 15 14 16.8922 

316 21 22 22 20 19 20.8 25.9281 

317 100 100 100 100 100 100 100 

318 28 29 37 28 28 30 34.8235 

319 31 29 29 28 27 28.8 33.3293 

320 77 82 77 79 79 78.8 83.0331 

321 100 99 100 100 99 99.6 0 

322 70 72 72 73 74 72.2 80.6687 

323 31 29 28 29 32 29.8 33.0331 

324 36 37 36 33 32 34.8 32.7627 

325 16 18 16 17 15 16.4 27.6267 

326 3 1 5 3 3 3 8.72994 

327 23 19 19 13 17 18.2 15.7901 

328 23 17 24 18 21 20.6 10.5761 

329 37 12 13 11 10 16.6 22.0773 

330 24 20 19 21 22 21.2 24.3439 

331 15 12 13 12 12 12.8 20.3251 

332 0 0 0 0 0 0 1.38181 

333 100 100 100 100 100 100 100 

334 30 29 34 31 29 30.6 32.8635 

335 22 19 22 20 26 21.8 24.1505 

336 25 23 25 27 24 24.8 33.2677 

337 37 36 42 33 43 38.2 40.9447 

338 68 54 71 55 71 63.8 56.6552 
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Appendix 10 (continued) 

Image ID Clinician 1 Clinician 2 Clinician 3 Clinician 4 Clinician 5 Manual AI 

339 24 24 31 27 29 27 31.6345 

340 63 71 71 73 67 69 100 

341 40 38 37 37 41 38.6 87.8709 

342 16 12 14 13 13 13.6 19.6755 

343 34 44 40 31 39 37.6 37.1364 

344 43 39 45 39 41 41.4 42.237 

345 13 14 16 13 20 15.2 21.3892 

346 30 30 29 29 27 29 31.5562 

347 12 6 8 6 8 8 9.34866 

348 32 0 0 0 33 13 54.2606 

349 15 13 13 11 15 13.4 11.6779 

350 27 27 27 30 27 27.6 32.2995 

351 32 30 31 31 34 31.6 37.7682 

352 17 21 20 17 19 18.8 29.4867 

353 23 25 23 20 21 22.4 23.2299 

354 28 24 27 25 29 26.6 42.1719 

355 12 11 12 11 11 11.4 9.09496 

356 49 50 54 52 59 52.8 59.7987 

357 0 0 0 0 0 0 36.668 

358 30 33 30 30 30 30.6 31.219 

359 14 13 13 13 17 14 23.6339 

360 0 0 0 0 0 0 0 

361 35 32 32 33 32 32.8 36.7112 

362 21 24 21 19 24 21.8 27.2574 

363 37 35 35 34 36 35.4 48.7566 

364 8 9 8 9 10 8.8 12.9725 

365 24 23 28 23 25 24.6 26.2454 

366 2 2 0 2 7 2.6 6.06522 

367 11 10 10 5 13 9.8 13.6797 

368 27 14 14 11 14 16 10.1501 

369 26 27 25 26 28 26.4 27.8278 

370 46 45 45 37 38 42.2 42.6926 

371 15 13 15 13 16 14.4 18.0504 

372 76 79 77 77 82 78.2 86.5901 

373 51 46 44 41 40 44.4 45.8339 

374 31 25 31 26 28 28.2 35.9209 

375 22 24 23 23 22 22.8 20.8564 

376 92 96 97 96 99 96 100 
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Appendix 10 (continued) 

Image ID Clinician 1 Clinician 2 Clinician 3 Clinician 4 Clinician 5 Manual AI 

377 17 13 12 10 15 13.4 32.5982 

378 100 95 85 84 94 91.6 0 

379 100 100 100 100 88 97.6 100 

380 10 5 8 6 8 7.4 6.18104 

381 42 59 41 41 58 48.2 59.4743 

382 29 32 32 30 28 30.2 25.9578 

383 23 23 22 20 24 22.4 36.1543 

384 71 63 63 67 61 65 62.8971 

385 56 57 58 57 52 56 61.4929 

386 59 56 62 59 56 58.4 64.5424 

387 0 0 0 0 0 0 2.13934 

388 15 16 18 15 17 16.2 17.7718 

389 9 0 0 0 12 4.2 15.8478 

390 80 0 0 0 0 16 0 

391 70 73 72 71 59 69 73.9973 

392 0 0 0 0 11 2.2 0 

393 18 18 19 17 22 18.8 18.645 

394 8 4 6 7 6 6.2 4.95016 

395 38 35 35 34 38 36 48.3615 

396 17 16 18 18 22 18.2 23.9376 

397 19 5 7 6 18 11 10.1523 

398 4 5 7 8 9 6.6 6.8958 

399 23 14 23 0 7 13.4 9.85073 

400 27 24 27 26 27 26.2 33.3172 

401 27 25 24 26 22 24.8 31.2551 

402 13 13 17 12 16 14.2 16.2968 

403 0 0 0 0 0 0 0 

404 30 41 29 41 42 36.6 38.0337 

405 16 21 29 25 26 23.4 26.8589 

406 8 4 7 5 8 6.4 10.1635 

407 6 0 10 6 2 4.8 7.8898 

408 16 13 15 16 18 15.6 12.6255 

409 46 49 46 46 39 45.2 57.2022 

410 15 14 19 14 21 16.6 19.166 

411 26 18 24 18 28 22.8 21.8422 

412 11 12 22 13 18 15.2 21.319 

413 25 12 17 13 18 17 23.7864 

414 8 6 10 8 12 8.8 16.245 
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Appendix 10 (continued) 

Image ID Clinician 1 Clinician 2 Clinician 3 Clinician 4 Clinician 5 Manual AI 

415 9 11 11 13 12 11.2 17.5508 

416 13 13 16 15 17 14.8 18.1738 

417 33 23 31 26 31 28.8 29.4578 

418 24 23 23 25 28 24.6 33.2147 

419 22 23 24 23 24 23.2 25.9586 

420 12 12 13 12 9 11.6 19.7927 

421 23 22 22 23 22 22.4 27.6152 

422 20 5 12 9 42 17.6 89.0446 

423 13 12 9 10 12 11.2 1.26136 

424 42 40 41 38 38 39.8 48.4493 

425 78 76 72 79 63 73.6 75.2975 

426 20 18 18 21 22 19.8 21.2423 

427 13 8 10 8 14 10.6 15.094 

428 12 10 9 5 7 8.6 2.20573 

429 19 20 21 20 21 20.2 25.4772 

430 8 5 10 8 12 8.6 12.7766 

431 31 31 31 31 32 31.2 34.2777 

432 23 19 20 18 20 20 25.2756 

433 29 27 29 24 30 27.8 30.8596 

434 29 27 27 29 29 28.2 34.1785 

435 16 15 14 16 17 15.6 20.5195 

436 32 33 32 32 32 32.2 33.4537 

437 6 0 4 3 5 3.6 0 

438 28 25 31 28 30 28.4 35.1116 

439 29 27 29 30 30 29 28.6925 

440 7 0 6 7 6 5.2 11.1275 

441 13 12 11 12 13 12.2 20.0801 

442 23 23 23 23 46 27.6 28.3819 

443 33 34 35 34 42 35.6 41.7584 

444 100 100 100 100 100 100 100 

445 14 13 13 12 10 12.4 15.8576 

446 12 5 12 9 14 10.4 10.591 

447 13 13 14 13 12 13 23.3781 

448 9 6 10 7 13 9 12.2612 

449 21 25 21 16 29 22.4 25.9707 

450 18 20 19 21 20 19.6 27.525 
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Appendix 11: Descriptive statistics for point-to-point distances (mm) for the pelvis annotations 

between AI model and AI Trainers. 

 

Appendix 11 

Point Mean Standard error Standard deviation Median 90% 95% 99% 

0 4.01 0.265 5.61 2.16 9.47 15.4 27.3 

1 3.09 0.198 4.2 1.77 7.11 10.4 22.3 

2 2.56 0.16 3.39 1.48 5.52 9.39 16.4 

3 2.54 0.189 4.00 1.24 5.52 10.8 20.8 

4 2.21 0.163 3.46 1.1 4.98 8.80 18.3 

5 2.05 0.13 2.75 1.19 4.19 8.18 15.5 

6 2.16 0.118 2.51 1.38 4.54 7.03 13.6 

7 2.38 0.121 2.55 1.52 5.42 7.39 12.4 

8 2.72 0.131 2.78 1.78 6.07 8.28 15.0 

9 3.07 0.15 3.18 1.92 7.61 9.44 16.1 

10 2.60 0.128 2.7 1.63 6.42 8.00 13.0 

11 2.27 0.119 2.53 1.22 6.40 7.76 11.6 

12 2.38 0.135 2.87 1.27 6.35 8.79 12.7 

13 2.34 0.123 2.62 1.37 5.83 8.31 12.8 

14 2.55 0.123 2.61 1.68 6.04 9.05 11.8 

15 2.68 0.138 2.91 1.67 6.43 8.47 13.2 

16 2.73 0.167 3.53 1.5 6.49 9.47 18.4 

17 3.07 0.203 4.29 1.5 7.32 11.7 22.5 

18 2.77 0.149 3.15 1.81 6.02 8.42 15.1 

19 2.60 0.129 2.73 1.72 5.31 7.93 14.7 

20 2.52 0.129 2.74 1.67 5.14 7.71 16.2 

21 2.58 0.145 3.06 1.57 5.46 8.61 15.5 

22 2.70 0.15 3.18 1.63 6.25 8.33 17.2 

23 2.41 0.134 2.83 1.4 5.55 7.79 14.8 

24 2.31 0.129 2.74 1.42 5.59 7.88 13.9 

25 2.37 0.128 2.71 1.42 5.31 7.59 14.0 

26 1.77 0.155 3.29 0.861 3.59 7.28 17.7 

27 1.79 0.124 2.62 1.06 3.37 6.52 16.0 

28 2.05 0.126 2.67 1.21 4.15 6.44 15.8 

29 2.08 0.148 3.15 1.06 4.05 8.22 16.5 

30 3.81 0.244 5.17 2.17 9.29 14.2 24.4 

31 3.02 0.184 3.9 1.79 6.82 10.4 16.8 

32 2.37 0.157 3.32 1.44 4.66 7.82 15.9 

33 2.29 0.188 3.99 1.11 4.93 8.60 19.9 

34 2.00 0.172 3.64 1.03 4.03 6.83 19.0 

35 1.97 0.159 3.36 1.13 3.96 5.41 17.4 

36 2.12 0.155 3.28 1.31 4.24 5.58 14.9 

37 2.42 0.157 3.32 1.62 5.07 6.08 14.8 

38 2.74 0.158 3.34 1.86 5.62 6.74 13.3 

39 3.12 0.169 3.57 2.07 6.59 8.32 14.8 

40 2.72 0.158 3.35 1.76 5.63 7.65 12.2 

41 2.41 0.154 3.27 1.38 5.36 7.29 11.2 
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Appendix 11 (continued) 

Point Mean Standard error Standard deviation Median 90% 95% 99% 

42 2.43 0.159 3.38 1.31 5.81 8.05 12.2 

43 2.26 0.145 3.07 1.37 5.21 7.45 11.5 

44 2.40 0.141 2.99 1.56 5.16 7.60 11.9 

45 2.55 0.149 3.16 1.56 5.26 8.08 14.4 

46 2.71 0.168 3.57 1.49 5.92 8.55 18.5 

47 3.00 0.194 4.11 1.39 7.03 10.6 23.1 

48 2.69 0.162 3.43 1.81 5.06 7.81 14.6 

49 2.59 0.161 3.42 1.67 5.18 7.66 13.7 

50 2.63 0.167 3.53 1.58 5.53 7.88 15.1 

51 2.66 0.169 3.57 1.59 5.71 7.85 14.9 

52 2.81 0.174 3.69 1.7 6.38 8.01 14.0 

53 2.57 0.169 3.58 1.44 5.62 7.42 14.4 

54 2.47 0.167 3.53 1.36 5.74 7.18 13.9 

55 2.62 0.169 3.59 1.48 5.98 7.76 14.0 

56 1.63 0.156 3.30 0.8 2.99 6.01 13.5 

57 1.77 0.142 3.02 1.05 3.18 5.90 16.1 

58 2.18 0.159 3.38 1.26 3.86 6.36 18.9 

59 2.33 0.177 3.74 1.2 4.41 8.17 20.4 
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Appendix 12: Descriptive statistics for point-to-point distances (mm) for the proximal femur 

annotations between AI model and AI Trainers. 

 

Appendix 12 

Point Mean Standard error Standard deviation Median 90% 95% 99% 

0 11.2 0.615 13.0 6.01 28.4 35.6 54.7 

1 9.96 0.553 11.7 5.36 24.7 30.6 51.9 

2 8.98 0.496 10.5 5.02 20.6 27.8 52.3 

3 7.95 0.451 9.55 4.89 16.9 23.7 50.7 

4 6.73 0.417 8.84 4.29 13.2 19.3 49.4 

5 5.41 0.394 8.35 3.39 9.91 15.6 49.0 

6 4.39 0.383 8.11 2.4 7.83 12.2 48.4 

7 4.66 0.385 8.15 2.78 8.05 11.3 45.5 

8 4.29 0.382 8.09 2.36 6.87 9.55 47.4 

9 4.11 0.378 8.01 2.22 6.34 10.5 48.0 

10 4.03 0.376 7.96 1.9 7.27 12.2 46.5 

11 4.07 0.374 7.93 1.69 9.00 13.9 45.5 

12 4.30 0.374 7.93 1.75 9.79 15.9 44.3 

13 4.12 0.412 8.72 1.41 8.52 15.0 52.5 

14 4.01 0.413 8.75 1.43 8.45 14.8 52.1 

15 3.94 0.417 8.83 1.48 7.56 13.9 54.4 

16 4.00 0.428 9.06 1.54 7.15 13.2 57.7 

17 4.19 0.441 9.34 1.75 7.03 13.9 60.3 

18 4.43 0.46 9.75 1.83 6.98 13.3 65.7 

19 4.55 0.481 10.2 1.98 7.14 12.9 67.2 

20 4.56 0.502 10.6 1.9 7.07 13.7 68.1 

21 4.51 0.526 11.2 1.65 7.41 14.1 67.2 

22 4.62 0.554 11.7 1.5 7.64 14.1 68.6 

23 4.94 0.581 12.3 1.41 8.08 17.0 72.3 

24 4.42 0.552 11.7 1.35 6.66 14.4 66.3 

25 4.81 0.522 11.1 2.11 7.88 13.6 63.5 

26 5.60 0.505 10.7 2.76 10.4 15.7 61.3 

27 6.64 0.504 10.7 3.53 14.0 19.8 58.8 

28 7.81 0.514 10.9 4.52 16.6 24.4 58.2 

29 9.06 0.534 11.3 5.63 20.2 29.3 58.9 

30 10.4 0.565 12.0 6.48 23.3 33.8 60.1 

31 4.63 0.375 7.95 2.2 9.52 16.9 43.3 

32 4.57 0.378 8.00 2.06 8.58 17.4 46.1 

33 4.34 0.38 8.06 1.91 8.38 15.1 46.9 

34 4.10 0.387 8.2 1.64 7.97 14.2 47.0 

35 3.86 0.394 8.34 1.38 6.98 13.5 48.9 

36 3.67 0.399 8.46 1.2 6.59 12.4 51.9 

37 3.63 0.408 8.64 1.31 6.59 11.9 53.4 

38 3.64 0.409 8.67 1.32 6.27 12.3 56.1 

39 3.75 0.411 8.7 1.37 7.00 11.3 53.8 

40 3.97 0.419 8.89 1.52 8.08 13.1 51.8 

41 4.12 0.419 8.88 1.58 8.08 15.8 52.1 
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Appendix 13: Descriptive statistics for point-to-point distances (mm) between Trainer 1a and 

Trainer 2. 

 

 

 

 

Appendix 13 

Point Mean Standard Error Standard Deviation Median 90% 95% 99% 

0 4.45 0.742 5.20 2.45 11.9 16.3 21.0 

1 3.94 0.648 4.53 2.03 10.8 13.9 18.1 

2 3.55 0.557 3.90 1.78 9.63 11.9 15.1 

3 3.18 0.487 3.41 1.76 8.69 9.93 12.3 

4 2.89 0.436 3.05 1.57 7.79 9.13 11.1 

5 2.63 0.39 2.73 1.66 6.83 9.72 10.3 

6 2.40 0.385 2.70 1.34 5.94 9.01 10.3 

7 2.60 0.416 2.91 1.45 5.83 9.79 11.7 

8 2.48 0.411 2.88 1.24 5.31 9.24 11.5 

9 2.44 0.467 3.27 1.26 6.43 8.98 14.5 

10 2.39 0.533 3.73 1.35 6.21 8.43 17.6 

11 2.33 0.585 4.09 1.15 4.79 9.07 19.5 

12 2.41 0.64 4.48 1.15 3.06 10.8 21.4 

13 1.34 0.159 1.12 1.02 2.92 3.35 4.76 

14 1.18 0.15 1.05 0.886 2.56 2.93 4.40 

15 1.13 0.148 1.03 0.725 2.35 3.10 4.41 

16 1.14 0.174 1.22 0.757 2.11 3.66 5.41 

17 1.35 0.208 1.46 0.79 2.36 4.20 6.64 

18 1.61 0.255 1.79 1.09 3.23 4.40 7.96 

19 1.84 0.305 2.13 1.21 3.87 5.18 9.58 

20 1.95 0.337 2.36 1.19 4.52 5.01 10.8 

21 1.85 0.357 2.50 0.958 4.47 4.78 10.9 

22 1.90 0.383 2.68 1.11 3.82 4.81 12.0 

23 1.94 0.414 2.9 1.18 3.43 4.55 12.9 

24 1.87 0.34 2.38 1.14 3.19 4.65 11.1 

25 1.99 0.312 2.18 1.04 4.27 5.84 9.67 

26 2.31 0.338 2.36 1.33 5.17 6.92 9.80 

27 2.67 0.42 2.94 1.57 5.99 8.96 12.3 

28 3.17 0.517 3.62 1.95 7.29 11.2 14.7 

29 3.76 0.622 4.35 2.18 8.87 13.5 17.2 

30 4.38 0.735 5.15 2.59 11.9 15.7 19.7 

31 2.47 0.703 4.92 0.878 4.17 11.6 23.5 

32 2.4 0.7 4.90 0.902 3.59 10.8 23.8 

33 1.95 0.582 4.07 0.581 2.88 10.0 19.2 

34 1.72 0.478 3.35 0.591 3.34 7.55 16.1 

35 1.51 0.388 2.72 0.688 2.55 6.27 13.0 

36 1.31 0.313 2.19 0.632 2.55 4.80 10.7 

37 1.15 0.257 1.80 0.635 2.19 3.95 8.88 

38 1.17 0.206 1.44 0.749 1.94 3.48 7.23 

39 1.18 0.169 1.18 0.820 1.93 3.75 5.66 

40 1.25 0.168 1.18 0.819 2.80 3.23 5.52 

41 1.30 0.176 1.23 0.946 2.38 3.29 5.97 
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Appendix 14: Descriptive statistics for point-to-point distances (mm) between Trainer 1b and 

Trainer 2. 

 

Appendix 14 

Point Mean Standard Error Standard Deviation Median 90% 95% 99% 

0 3.61 0.599 4.19 1.9 8.09 12.6 17.5 

1 3.12 0.522 3.65 1.6 8.08 10.8 15.5 

2 2.73 0.452 3.17 1.72 7.59 9.13 13.4 

3 2.44 0.394 2.76 1.58 6.16 8.62 11.4 

4 2.19 0.355 2.48 1.23 5.44 7.66 10.3 

5 2.14 0.328 2.3 1.3 4.44 7.30 9.48 

6 2.04 0.313 2.19 1.32 4.63 5.78 9.78 

7 1.79 0.324 2.27 1.04 3.78 5.82 10.5 

8 1.74 0.3 2.1 1.05 4.59 5.76 9.37 

9 1.75 0.364 2.55 0.895 4.02 7.04 11.4 

10 1.80 0.446 3.12 0.865 3.23 6.05 15.4 

11 1.91 0.515 3.6 0.98 2.83 5.72 18.2 

12 2.19 0.583 4.08 1.06 2.97 6.07 20.9 

13 1.41 0.183 1.28 1.02 2.90 3.41 6.02 

14 1.37 0.185 1.3 1.03 2.70 3.10 6.32 

15 1.33 0.192 1.35 0.914 2.52 2.94 6.38 

16 1.35 0.215 1.51 0.883 2.72 3.80 6.72 

17 1.60 0.27 1.89 1.04 3.17 4.70 8.89 

18 1.85 0.304 2.13 1.16 3.83 5.57 9.85 

19 2.13 0.333 2.33 1.32 4.35 6.47 10.7 

20 2.19 0.354 2.48 1.46 4.73 6.40 11.1 

21 2.02 0.353 2.47 1.46 3.93 4.91 11.2 

22 1.80 0.369 2.58 1.07 3.22 3.57 11.3 

23 1.60 0.391 2.74 0.8 2.92 3.54 11.7 

24 1.47 0.324 2.27 0.832 3.14 3.50 10.5 

25 1.70 0.271 1.9 1.31 2.81 4.54 9.30 

26 1.99 0.276 1.93 1.31 4.11 5.88 8.71 

27 2.28 0.341 2.39 1.55 4.53 7.09 10.7 

28 2.72 0.421 2.95 1.59 5.59 9.04 12.7 

29 3.23 0.51 3.57 1.92 7.66 10.8 14.8 

30 3.78 0.605 4.24 2.28 11.0 12.8 17.0 

31 2.31 0.645 4.52 0.965 3.54 6.55 23.0 

32 2.12 0.645 4.51 0.933 2.82 6.01 23.1 

33 1.74 0.533 3.73 0.668 2.63 5.12 19.0 

34 1.48 0.432 3.02 0.663 2.54 4.28 15.4 

35 1.26 0.346 2.42 0.598 2.32 3.70 12.3 

36 1.12 0.284 1.99 0.569 2.13 3.13 10.1 

37 1.05 0.224 1.57 0.58 1.86 3.02 7.69 

38 1.02 0.17 1.19 0.66 1.91 2.43 5.86 

39 1.04 0.136 0.955 0.733 1.68 3.21 4.55 

40 1.20 0.159 1.11 0.861 2.44 3.90 4.90 

41 1.38 0.206 1.44 0.896 2.71 4.55 6.74 
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Appendix 15: Descriptive statistics for point-to-point distances (mm) between Trainer 1a and 

Trainer 1b. 

 

Appendix 15 

Point Mean Standard Error Standard Deviation Median 90% 95% 99% 

0 2.82 0.512 3.58 1.28 8.08 9.60 14.7 

1 2.58 0.44 3.08 1.3 6.96 8.18 13.3 

2 2.46 0.376 2.63 1.49 5.55 6.75 11.9 

3 2.38 0.336 2.35 1.6 5.20 6.52 10.4 

4 2.32 0.328 2.29 1.64 5.12 7.97 9.56 

5 2.17 0.345 2.42 1.41 4.78 6.00 11.4 

6 2.07 0.367 2.57 1.07 5.44 6.03 11.5 

7 2.17 0.415 2.9 0.84 5.68 6.82 12.9 

8 1.85 0.346 2.42 0.842 4.47 5.61 10.8 

9 1.56 0.285 2 0.817 4.35 5.57 8.59 

10 1.34 0.244 1.71 0.682 3.29 5.59 7.23 

11 1.20 0.227 1.59 0.657 2.65 4.53 7.12 

12 1.24 0.235 1.65 0.91 2.50 3.11 8.12 

13 0.831 0.116 0.811 0.6 1.50 1.89 3.80 

14 0.708 0.103 0.718 0.546 1.04 1.83 3.50 

15 0.674 0.0916 0.641 0.553 1.10 1.72 3.19 

16 0.777 0.0922 0.645 0.608 1.53 2.16 2.97 

17 1.05 0.129 0.904 0.799 2.12 2.75 4.06 

18 1.30 0.191 1.34 0.838 2.67 4,00 5.95 

19 1.50 0.21 1.47 1.08 2.73 3.90 7.23 

20 1.51 0.188 1.31 1.23 2.89 3.37 6.30 

21 1.48 0.165 1.15 1.16 3.23 3.69 4.54 

22 1.37 0.16 1.12 1.1 3.04 3.50 4.54 

23 1.26 0.171 1.2 0.804 3.16 3.38 4.77 

24 1.15 0.155 1.08 0.819 2.99 3.22 4.46 

25 1.23 0.169 1.18 0.813 2.64 3.18 4.82 

26 1.44 0.206 1.44 0.859 3.31 3.67 6.01 

27 1.72 0.26 1.82 1.08 4.38 4.91 7.69 

28 2.05 0.32 2.24 1.32 5.47 6.51 9.37 

29 2.41 0.383 2.68 1.62 6.55 8.11 11.1 

30 2.81 0.446 3.12 1.92 7.64 9.72 12.7 

31 1.14 0.24 1.68 0.561 2.52 3.48 7.79 

32 1.28 0.261 1.83 0.704 2.59 3.69 9.06 

33 1.02 0.222 1.56 0.427 2.15 2.92 7.69 

34 0.947 0.214 1.5 0.439 2.06 2.62 7.47 

35 0.911 0.248 1.73 0.449 1.35 2.23 8.47 

36 0.804 0.246 1.72 0.388 1.20 2.04 8.01 

37 0.642 0.179 1.26 0.362 0.88 1.63 5.80 

38 0.565 0.153 1.07 0.259 1.05 1.56 4.63 

39 0.654 0.118 0.827 0.391 1.27 1.79 3.91 

40 0.717 0.105 0.733 0.475 1.54 2.26 3.28 

41 0.794 0.105 0.737 0.572 1.52 1.94 3.27 
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