32 research outputs found

    Fully automatic anatomical, pathological, and functional segmentation from CT scans for hepatic surgery

    Get PDF
    International audienceOBJECTIVE: To improve the planning of hepatic surgery, we have developed a fully automatic anatomical, pathological, and functional segmentation of the liver derived from a spiral CT scan. MATERIALS AND METHODS: From a 2 mm-thick enhanced spiral CT scan, the first stage automatically delineates skin, bones, lungs, kidneys, and spleen by combining the use of thresholding, mathematical morphology, and distance maps. Next, a reference 3D model is immersed in the image and automatically deformed to the liver contours. Then an automatic Gaussian fitting on the imaging histogram estimates the intensities of parenchyma, vessels, and lesions. This first result is next improved through an original topological and geometrical analysis, providing an automatic delineation of lesions and veins. Finally, a topological and geometrical analysis based on medical knowledge provides hepatic functional information that is invisible in medical imaging: portal vein labeling and hepatic anatomical segmentation according to the Couinaud classification. RESULTS: Clinical validation performed on more than 30 patients shows that delineation of anatomical structures by this method is often more sensitive and more specific than manual delineation by a radiologist. CONCLUSION: This study describes the methodology used to create the automatic segmentation of the liver with delineation of important anatomical, pathological, and functional structures from a routine CT scan. Using the methods proposed in this study, we have confirmed the accuracy and utility of the creation of a 3D liver model compared with the conventional reading of the CT scan by a radiologist. This work may allow improved preoperative planning of hepatic surgery by more precisely delineating liver pathology and its relationship to normal hepatic structures. In the future, this data may be integrated with computer-assisted surgery and thus represents a first step towards the development of an augmented-reality surgical system

    Computer-assisted access to the kidney

    Full text link
    OBJECTIVES: The aim of this paper is to introduce the principles of computer-assisted access to the kidney. The system provides the surgeon with a pre-operative 3D planning on computed tomography (CT) images. After a rigid registration with space-localized ultrasound (US) data, preoperative planning can be transferred to the intra-operative conditions and an intuitive man-machine interface allows the user to perform a puncture. MATERIAL AND METHODS: Both CT and US images of informed normal volunteer were obtained to perform calculation on the accuracy of registration and punctures were carried out on a kidney phantom to measure the precision of the whole of the system. RESULTS: We carried out millimetric registrations on real data and guidance experiments on a kidney phantom showed encouraging results of 4.7 mm between planned and reached targets. We noticed that the most significant error was related to the needle deflection during the puncture. CONCLUSION: Preliminary results are encouraging. Further work will be undertaken to improve efficiency and accuracy, and to take breathing into account

    Liver Segmentation for Hepatic Lesions Detection and Characterisation

    Get PDF
    The detection and characterisation of hepatic lesions is fundamental in clinical practice, from the diagnosis stages to the evolution of the therapeutic response. Hepatic magnetic resonance is a usual practice in the localization and quantification of lesions. Automatic segmentation of the liver is illustrated in T1 weighted images. This task is necessary for detecting the lesions. The proposed liver segmentation is based on 3D anisotropic diffusion processing without any control parameter. Combinations of edge detection techniques, histogram analysis, morphological post-processing and evolution of an active contour have been applied to the liver segmentation. The active contour evolution is based on the minimization of variances in luminance between the liver and its closest neighbourhood

    Ball-Scale Based Hierarchical Multi-Object Recognition in 3D Medical Images

    Full text link
    This paper investigates, using prior shape models and the concept of ball scale (b-scale), ways of automatically recognizing objects in 3D images without performing elaborate searches or optimization. That is, the goal is to place the model in a single shot close to the right pose (position, orientation, and scale) in a given image so that the model boundaries fall in the close vicinity of object boundaries in the image. This is achieved via the following set of key ideas: (a) A semi-automatic way of constructing a multi-object shape model assembly. (b) A novel strategy of encoding, via b-scale, the pose relationship between objects in the training images and their intensity patterns captured in b-scale images. (c) A hierarchical mechanism of positioning the model, in a one-shot way, in a given image from a knowledge of the learnt pose relationship and the b-scale image of the given image to be segmented. The evaluation results on a set of 20 routine clinical abdominal female and male CT data sets indicate the following: (1) Incorporating a large number of objects improves the recognition accuracy dramatically. (2) The recognition algorithm can be thought as a hierarchical framework such that quick replacement of the model assembly is defined as coarse recognition and delineation itself is known as finest recognition. (3) Scale yields useful information about the relationship between the model assembly and any given image such that the recognition results in a placement of the model close to the actual pose without doing any elaborate searches or optimization. (4) Effective object recognition can make delineation most accurate.Comment: This paper was published and presented in SPIE Medical Imaging 201

    Automatic Abdominal Organ Segmentation from CT images

    Get PDF
    In the recent years a great deal of research work has been devoted to the development of semi-automatic and automatic techniques for the analysis of abdominal CT images. Some of the current interests are the automatic diagnosis of liver, spleen, and kidney pathologies and the 3D volume rendering of the abdominal organs. The first and fundamental step in all these studies is the automatic organs segmentation, that is still an open problem. In this paper we propose our fully automatic system that employs a hierarchical gray level based framework to segment heart, bones (i.e. ribs and spine), liver and its blood vessels, kidneys, and spleen. The overall system has been evaluated on the data of 100 patients, obtaining a good assessment both by visual inspection by three experts, and by comparing the computed results to the boundaries manually traced by experts

    An Automated Liver Vasculature Segmentation from CT Scans for Hepatic Surgical Planning

    Get PDF
    Liver vasculature segmentation is a crucial step for liver surgical planning. Segmentation of liver vasculature is an important part of the 3D visualisation of the liver anatomy. The spatial relationship between vessels and other liver structures, like tumors and liver anatomic segments, helps in reducing the surgical treatment risks. However, liver vessels segmentation is a challenging task, that is due to low contrast with neighboring parenchyma, the complex anatomy, the very thin branches and very small vessels. This paper introduces a fully automated framework consist of four steps to segment the vessels inside the liver organ. Firstly, in the preprocessing step, a combination of two filtering techniques are used to extract and enhance vessels inside the liver region, first the vesselness filter is used to extract the vessels structure, and then the anisotropic coherence enhancing diffusion (CED) filter is used to enhance the intensity within the tubular vessels structure. This step is followed by a smart multiple thresholding to extract the initial vasculature segmentation. The liver vasculature structures, including hepatic veins connected to the inferior vena cava and the portal veins, are extracted. Finally, the inferior vena cava is segmented and excluded from the vessels segmentation, as it is not considered as part of the liver vasculature structure. The liver vessel segmentation method is validated on the publically available 3DIRCAD datasets. Dice coefficient (DSC) is used to evaluate the method, the average DSC score achieved a score 68.5%. The proposed approach succeeded to segment liver vasculature from the liver envelope accurately, which makes it as potential tool for clinical preoperative planning
    corecore