15,019 research outputs found

    Subdivision Shell Elements with Anisotropic Growth

    Full text link
    A thin shell finite element approach based on Loop's subdivision surfaces is proposed, capable of dealing with large deformations and anisotropic growth. To this end, the Kirchhoff-Love theory of thin shells is derived and extended to allow for arbitrary in-plane growth. The simplicity and computational efficiency of the subdivision thin shell elements is outstanding, which is demonstrated on a few standard loading benchmarks. With this powerful tool at hand, we demonstrate the broad range of possible applications by numerical solution of several growth scenarios, ranging from the uniform growth of a sphere, to boundary instabilities induced by large anisotropic growth. Finally, it is shown that the problem of a slowly and uniformly growing sheet confined in a fixed hollow sphere is equivalent to the inverse process where a sheet of fixed size is slowly crumpled in a shrinking hollow sphere in the frictionless, quasi-static, elastic limit.Comment: 20 pages, 12 figures, 1 tabl

    Folds and Buckles at the Nanoscale: Experimental and Theoretical Investigation of the Bending Properties of Graphene Membranes

    Get PDF
    The elastic properties of graphene crystals have been extensively investigated, revealing unique properties in the linear and nonlinear regimes, when the membranes are under either stretching or bending loading conditions. Nevertheless less knowledge has been developed so far on folded graphene membranes and ribbons. It has been recently suggested that fold-induced curvatures, without in-plane strain, can affect the local chemical reactivity, the mechanical properties, and the electron transfer in graphene membranes. This intriguing perspective envisages a materials-by-design approach through the engineering of folding and bending to develop enhanced nano-resonators or nano-electro-mechanical devices. Here we present a novel methodology to investigate the mechanical properties of folded and wrinkled graphene crystals, combining transmission electron microscopy mapping of 3D curvatures and theoretical modeling based on continuum elasticity theory and tight-binding atomistic simulations

    Capacitance fluctuations causing channel noise reduction in stochastic Hodgkin-Huxley systems

    Full text link
    Voltage-dependent ion channels determine the electric properties of axonal cell membranes. They not only allow the passage of ions through the cell membrane but also contribute to an additional charging of the cell membrane resulting in the so-called capacitance loading. The switching of the channel gates between an open and a closed configuration is intrinsically related to the movement of gating charge within the cell membrane. At the beginning of an action potential the transient gating current is opposite to the direction of the current of sodium ions through the membrane. Therefore, the excitability is expected to become reduced due to the influence of a gating current. Our stochastic Hodgkin-Huxley like modeling takes into account both the channel noise -- i.e. the fluctuations of the number of open ion channels -- and the capacitance fluctuations that result from the dynamics of the gating charge. We investigate the spiking dynamics of membrane patches of variable size and analyze the statistics of the spontaneous spiking. As a main result, we find that the gating currents yield a drastic reduction of the spontaneous spiking rate for sufficiently large ion channel clusters. Consequently, this demonstrates a prominent mechanism for channel noise reduction.Comment: 18 page

    Trends of mechanical consequences and modeling of a fibrous membrane around femoral hip prostheses

    Get PDF
    In the present study, the effects of a fibrous membrane between cement and bone in a femoral total hip replacement were investigated. The study involved the problem of modeling this fibrous membrane in finite-element analyses, and its global consequences for the load-transfer mechanism and its resulting stress patterns. A finite-element model was developed, suitable to describe nonlinear contact conditions in combination with nonlinear material properties of the fibrous membrane. The fibrous tissue layer was described as a highly compliant material with little resistance against tension and shear. The analysis showed that the load transfer mechanism from stem to bone changes drastically when such a membrane is present. These effects are predominantly caused by tensile loosening and slip at the interface, and are enhanced by the nonlinear membrane characteristics.\ud \ud Using parametric analysis, it was shown that these effects on the load-transfer mechanism cannot be described satisfactorily with linear elastic models.\ud \ud Most importantly, the fibrous tissue interposition causes excessive stress concentrations in bone and cement, and relatively high relative displacements between these materials

    Bistable forespore engulfment in Bacillus subtilis by a zipper mechanism in absence of the cell wall

    Full text link
    To survive starvation, the bacterium Bacillus subtilis forms durable spores. The initial step of sporulation is asymmetric cell division, leading to a large mother-cell and a small forespore compartment. After division is completed and the dividing septum is thinned, the mother cell engulfs the forespore in a slow process based on cell-wall degradation and synthesis. However, recently a new cell-wall independent mechanism was shown to significantly contribute, which can even lead to fast engulfment in ∼\sim 60 % of the cases when the cell wall is completely removed. In this backup mechanism, strong ligand-receptor binding between mother-cell protein SpoIIIAH and forespore-protein SpoIIQ leads to zipper-like engulfment, but quantitative understanding is missing. In our work, we combined fluorescence image analysis and stochastic Langevin simulations of the fluctuating membrane to investigate the origin of fast bistable engulfment in absence of the cell wall. Our cell morphologies compare favorably with experimental time-lapse microscopy, with engulfment sensitive to the number of SpoIIQ-SpoIIIAH bonds in a threshold-like manner. By systematic exploration of model parameters, we predict regions of osmotic pressure and membrane-surface tension that produce successful engulfment. Indeed, decreasing the medium osmolarity in experiments prevents engulfment in line with our predictions. Forespore engulfment may thus not only be an ideal model system to study decision-making in single cells, but its biophysical principles are likely applicable to engulfment in other cell types, e.g. during phagocytosis in eukaryotes

    A Review on Mechanics and Mechanical Properties of 2D Materials - Graphene and Beyond

    Full text link
    Since the first successful synthesis of graphene just over a decade ago, a variety of two-dimensional (2D) materials (e.g., transition metal-dichalcogenides, hexagonal boron-nitride, etc.) have been discovered. Among the many unique and attractive properties of 2D materials, mechanical properties play important roles in manufacturing, integration and performance for their potential applications. Mechanics is indispensable in the study of mechanical properties, both experimentally and theoretically. The coupling between the mechanical and other physical properties (thermal, electronic, optical) is also of great interest in exploring novel applications, where mechanics has to be combined with condensed matter physics to establish a scalable theoretical framework. Moreover, mechanical interactions between 2D materials and various substrate materials are essential for integrated device applications of 2D materials, for which the mechanics of interfaces (adhesion and friction) has to be developed for the 2D materials. Here we review recent theoretical and experimental works related to mechanics and mechanical properties of 2D materials. While graphene is the most studied 2D material to date, we expect continual growth of interest in the mechanics of other 2D materials beyond graphene

    An isogeometric finite element formulation for phase transitions on deforming surfaces

    Get PDF
    This paper presents a general theory and isogeometric finite element implementation for studying mass conserving phase transitions on deforming surfaces. The mathematical problem is governed by two coupled fourth-order nonlinear partial differential equations (PDEs) that live on an evolving two-dimensional manifold. For the phase transitions, the PDE is the Cahn-Hilliard equation for curved surfaces, which can be derived from surface mass balance in the framework of irreversible thermodynamics. For the surface deformation, the PDE is the (vector-valued) Kirchhoff-Love thin shell equation. Both PDEs can be efficiently discretized using C1C^1-continuous interpolations without derivative degrees-of-freedom (dofs). Structured NURBS and unstructured spline spaces with pointwise C1C^1-continuity are utilized for these interpolations. The resulting finite element formulation is discretized in time by the generalized-α\alpha scheme with adaptive time-stepping, and it is fully linearized within a monolithic Newton-Raphson approach. A curvilinear surface parameterization is used throughout the formulation to admit general surface shapes and deformations. The behavior of the coupled system is illustrated by several numerical examples exhibiting phase transitions on deforming spheres, tori and double-tori.Comment: fixed typos, extended literature review, added clarifying notes to the text, added supplementary movie file
    • …
    corecore