Since the first successful synthesis of graphene just over a decade ago, a
variety of two-dimensional (2D) materials (e.g., transition
metal-dichalcogenides, hexagonal boron-nitride, etc.) have been discovered.
Among the many unique and attractive properties of 2D materials, mechanical
properties play important roles in manufacturing, integration and performance
for their potential applications. Mechanics is indispensable in the study of
mechanical properties, both experimentally and theoretically. The coupling
between the mechanical and other physical properties (thermal, electronic,
optical) is also of great interest in exploring novel applications, where
mechanics has to be combined with condensed matter physics to establish a
scalable theoretical framework. Moreover, mechanical interactions between 2D
materials and various substrate materials are essential for integrated device
applications of 2D materials, for which the mechanics of interfaces (adhesion
and friction) has to be developed for the 2D materials. Here we review recent
theoretical and experimental works related to mechanics and mechanical
properties of 2D materials. While graphene is the most studied 2D material to
date, we expect continual growth of interest in the mechanics of other 2D
materials beyond graphene